{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Realization of Recursive Filters\n", "\n", "*This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Quantization of Variables and Operations\n", "\n", "As for [non-recursive filters](../nonrecursive_filters/quantization_effects.ipynb#Quantization-Effects), the practical realization of recursive filters may suffer from the quantization of variables and algebraic operations. The effects of [coefficient quantization](quantization_of_coefficients.ipynb) were already discussed. This section takes a look at the quantization of variables. We limit the investigations to the recursive part of a second-order section (SOS), since any recursive filter of order $N \\geq 2$ can be [decomposed into SOSs](cascaded_structures.ipynb).\n", "\n", "The computation of the output signal $y[k] = \\mathcal{H}\\{ x[k] \\}$ by a difference equation involves a number of multiplications and additions. As discussed already for [non-recursive filters](../nonrecursive_filters/quantization_effects.ipynb#Quantization-of-Signals-and-Operations), multiplying two numbers in a binary representation (e.g. [two's complement](https://en.wikipedia.org/wiki/Two's_complement) or [floating point](https://en.wikipedia.org/wiki/Floating_point)) requires requantization of the result to keep the word length constant. The addition of two numbers may fall outside the maximum/minimum values of the representation and may suffer from clipping.\n", "\n", "The resulting round-off and clipping errors depend on the number and sequence of algebraic operations. These depend on the structure used for implementation of the SOSs. For ease of illustration we limit our discussion to the [direct form I and II](direct_forms.ipynb). Similar insights can be achieved in a similar manner for other structures." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Analysis of Round-Off Errors\n", "\n", "Round-off errors are a consequence of reducing the word length after a multiplication. In order to investigate the influence of these errors on a recursive filter, the statistical model for [round-off errors in multipliers](../nonrecursive_filters/quantization_effects.ipynb#Model-for-round-off-errors-in-multipliers) as introduced for non-recursive filters is used. We furthermore neglect clipping. \n", "\n", "The difference equation for the recursive part of a SOS realized in direct form I or II is given as\n", "\n", "\\begin{equation}\n", "y[k] = x[k] - a_1 \\, y[k-1] - a_2 \\, y[k-2]\n", "\\end{equation}\n", "\n", "where $a_0 = 1$, $a_1$ and $a_2$ denote the coefficients of the recursive part. Introducing the requantization after the multipliers into the difference equation yields the output signal $y_Q[k]$\n", "\n", "\\begin{equation}\n", "y_Q[k] = x[k] - \\mathcal{Q} \\{ a_{1} \\, y[k-1] \\} - \\mathcal{Q} \\{ a_{2} \\, y[k-2] \\}\n", "\\end{equation}\n", "\n", "where $\\mathcal{Q} \\{ \\cdot \\}$ denotes the requantizer. Requantization is a non-linear process which results in a requantization error. If the value to be requantized is much larger that the quantization step $Q$, the average statistical properties of this error can be modeled as additive uncorrelated white noise. Introducing the error into above difference equation gives\n", "\n", "\\begin{equation}\n", "y_Q[k] = x[k] - a_1 \\, y[k-1] - e_1[k] - a_2 \\, y[k-2] - e_2[k]\n", "\\end{equation}\n", "\n", "where the two white noise sources $e_1[k]$ and $e_2[k]$ are assumed to be uncorrelated to each other. This difference equation can be split into a set of two difference equations\n", "\n", "\\begin{align}\n", "y_Q[k] &= y[k] + e[k] \\\\\n", "y[k] &= x[k] - a_1 \\, y[k-1] - a_2 \\, y[k-2] \\\\\n", "e[k] &= - e_1[k] - e_2[k] - a_1 \\, e[k-1] - a_2 \\, e[k-2]\n", "\\end{align}\n", "\n", "The first difference equation computes the desired output signal $y[k]$ as a result of the input signal $x[k]$. The second one the additive error $e[k]$ due to requantization as a result of the requantization error $- (e_1[k] + e_2[k])$ injected into the recursive filter.\n", "The power spectral density (PSD) $\\Phi_{ee}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega})$ of the error $e[k]$ is then given as\n", "\n", "\\begin{equation}\n", "\\Phi_{ee}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) = | H(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega})|^2 \\cdot (\\Phi_{e_1 e_1}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) + \\Phi_{e_2 e_2}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}))\n", "\\end{equation}\n", "\n", "According to the model for the requantization errors, their PSDs are given as $\\Phi_{e_1 e_1}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) = \\Phi_{e_2 e_2}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) = \\frac{Q^2}{12}$. Introducing this together with the transfer function of the SOS yields\n", "\n", "\\begin{equation}\n", "\\Phi_{ee}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega}) = \\left| \\frac{1}{1 + a_1 \\, \\mathrm{e}^{\\,-\\mathrm{j}\\,\\Omega} + a_2 \\, \\mathrm{e}^{\\,-\\mathrm{j}\\,2\\,\\Omega}} \\right|^2 \\cdot \\frac{Q^2}{6}\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example - Round-off error of a SOS\n", "\n", "The following example evaluates the error $e[k] = y_Q[k] - y[k]$ for a SOS which only consists of a recursive part. The desired system response $y[k]$ is computed numerically by floating point operations with double precision, $y_Q[k]$ is computed by applying a uniform midtread quantizer after the multiplications. The system is excited by uniformly distributed white noise. Besides the PSD $\\Phi_{ee}(\\mathrm{e}^{\\,\\mathrm{j}\\,\\Omega})$, the signal-to-noise ratio (SNR) $10 \\cdot \\log_{10} \\left( \\frac{\\sigma_y^2}{\\sigma_e^2} \\right)$ in dB of the filter is evaluated." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "SNR due to requantization: 45.442600 dB\n" ] }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxNC40NzgxMjUgMjgxLjYyODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nM2azW8cxxHF7/tXzFE6aNTfH0cLshX4EssWnEPsAyFTsgSJgr5iIMgfn9+rnlnOLqmlGSd0BFBYFnuqu19VvXrds356vfPTy8lNr/n5bfLTE35e7hy/vd0Vn+ZUmw+ZX99sfw3NzyW0mjG7g99+3e1e7B5+hZOPPPRkt0t9DuOhWOecIqPw7OoV65utNeQ+RzfMlx62Vpvo/XSN+5zbFIKfa5k+nE9/my6mh18FrSdM37I7djo39urm0p3vTNoSC334+Pwfr56ff//k0fT84/Wrvn4hux92T6f36xwONDdzgCeWm9zFNLsFg90jAvLb7j3/u+mBw1fyc9SUYe55ev529+jZ9PAbP3k3PXthgXr2y+7v0z03u/vTz9Ozb3dfP9s9tSX9d7DZPZkOsfGxza6V3OJ2NxvrbdG50eFJfHx0s48x5RZSjr8Dp3xHOIVQ5tazS367rY31tjjd6PAkTsG3uSfffUndlRtx8neWT9Hnubp4UBt7220xOunsJD4R9qmZqVKNtqub8LmrPEouzdn7jqste1xab81GNzk8jVMvM9tqMfTm/Y04hTvLo9QjTEkdlEOW3Vtvz9o3ODzN2y3PsdTQPRWafgdOd5VPEOXsQ2s1bbe1sd4WpxsdnsQp1zT7yv89VV9vxCke5tM2MUNa8doDZ3408j1rdhrq9h/QLBqgWR48Pn999uPnH84uPj7469vzl2fT43fT0/91uv5uYfSfSwyI76q3qyWd5+6l32Kcayr6dKKB3lk5r26RlzS4Y3z21tvis3F3ic/W29XW2WG8ro1VNElvpwEKd4+QRwOEVI8hujTfFqOtw0uQDvydQAnGm1N2p2FKfwJMFfXX+xWY9uZbw7RxuIFp6+8UTAXl5sJpmMrdwxQ46PXsj2G6NN8Wpq3DS5gO/J2AKXg/+5xOw9T+BJj2bfLtl46ut4Rp43AD09bfVZjiHBiS5+xu4G3vjhqnHn8gR77SqI3/OUfNKcTVj56eey1ZnRIvD78Ji9t7T+9Pz17vGnnuPUevGDmlzS3Yim2kn6oNDDYwzTVUl522ND04Hrn4fGhDUVel++SKXTsw4p43e8Eeohvtafxh+P5DEUfGWywExvfHtwDbptrm4HKNVcomzkXOU0BC9N4Ckcl17t2WhhWG9Ez8ZlfCHA08jD760quMZa5+tcbonFdoa55TtDUnZEx33RzUPlcrghTn3nhexoZgytGHZa7eXZKVYJgNdCtaqGDrgc8WWZwWPeRlJVfH42kGzlw01Dug6G5dVojoMTNn6TFGOkrQd5m8IyHHqsg7mmaykZRzKW3dQLOpOE/MbsRak8Xamo0lbWNbHDR2ZX5DXdWHPETarC0sgt1YF/tm8mbGwtIHiHku7DELRNKG1MLWmKtHiwzpOfs2kK1zSxyAzQOxzau1+ui8DSa23Q1w1OpjyLaGTPhtsjqDgrMw+KL4D3SJfoYtbMvEt7fFQ24pDyCqn+NI6hyABzqLMhPLZC5IINc4LAxrW6ufOTg+VMOHg4fXggu8GT2nVDOyopF4pZOCeSwiEM1m8FQEc+uxZ7PSv0fqdYAq+oPMBFTSh32x+dotRMbOIyEBfc7FEwizUxNLl1cehZSU1IGIlpGUPna0lAuWwCEAo9EYc8ccmuUlj81xJKZXjopubdmEtQ4nbJKjeLYpkycUhp3BSFJ5m5PIJmwKSvChDxuTj+RU4BPV2cyeSR6DyXuVaq4WbxY555Gf3rGDErOlPcGeTeYRH6YveRjZ8EhQxZjFBdsMayq2uqITTy0Dawq6jwyVmROjLaM5u80rhJI0KzaSOcpI0AJTiUvNbevLqYmcVIjH/kiCNBKUPHJAWG1ppEG1BCU6rrigsdGFldiz7shSCc3MRUk8BjsStAqJSBK0kaAqmFqXwT7TYJIyjxB7s+w7s0o603y0CxhjOUSIgAJUX8zaVgaFVZwrWmwk+oNA2W4sLMyMZc+gNJ2kp2RWI1zYkiyNOiTKzIbcGKq/WaHHnPYU6kDDlT6GtpVD3Yx4DTabAjDSVdlKPhqtcF5fSNRRKOSw+SW+K4vq7FihSjOXhUbxkKQWVKSxuZVGMUOtwQ+ztI5MpGO0QoqtrzSKGdYIljfQ1kKjGlyIg9ZLYFZulLlzrrarcUmjdTInwtNkiYPwwni0LRRmyNXMbWE8rB3CzDaYYCyMJx+swxyD70JXDKZYSrfBQFxlKd51AycB5CAwrLFJpskKNgsrRVFx7cXMbDkPG6XTjDh0nbLwjIY6eGeY20IzsuaYmtIpk9ELy8gHUAqcHNzKD2YtFssclJ2y0Hl7GgPbSg4aGKtlfkb0+HWt8I4fDT2Vtdit95eahEAGgaWsdT8NEXmzditrjVQ8tINc2lK/GlgTcTCdENb6tSXkAWPm/LmUqhZBqGy7LS+VKnCrH7lPw1wrVdikkqwdZRBb6lIuOnxhagPI+uoYKguWT4f3DHSdbnT4BfMiY/+Qvpol2k4prKQ+0LUr5DSNGr1RusjEeT6YwoGKUujDGjNxsjbs8O2kLIf0SWV0ch/Jtaarbmgqc84YGkPvsEibJJYjw30bGoMUoISZhrD7Sh8qWzlRdeof4ofPsYB+NIFADvd2pBtU1ikNSaO8yEHTUVBZ1DKUQ4TUSJ0+ZbBLCGNr+8oY2IVV4I4kyMYIXikj4cvopPw1G7Q4ZVK0BqJkFoqa1hN1o2ZqZJgbAiKqOCbWgliPRuLoJUBranbqTq2HPsyVViRxrg5FatYhaZRxiBBWUDK6oiZrfGrdLul4MGnl2qYh3+mZwTDmIJxQDstoOMFVQJIm4bdebNNKW5yDhQiVrrpIFVG4gJ6qOjpDupnJ5mSBamAIxVhVIc0pn6wcQDrBJiGbsCGd48gjWCbHVe84CLsh0cvUu8ilGj/qnMmMjXV7E0ouWMkDMPWWhKySqtGCFnth00kErwsPmpAvQ06JL4T5JO2KsuzJ7NBUbCYwiC3NrvYhbzbSqWgIXW7Yi0IgeGnHEvV9kVS0C0N7klD0dhVv4okm35m9majCY7JDI00KUgwCXjEgXaLvxyIMYqw8O8QZlF4sOxUFYpCGpoxWR3DfJHnJ/M5YFRJjkE5sNr5nl2M7FHOCmSFuuGcvwbJcy5HEHhJGXcmLnScp3ZQULlN0sPuob+Uhx4xgAn6rCumuDtrvw86RWGkWJ1UOrSMO5UQFQjAjXPQhJJPxJqlC1RlReL0ia9TdkIbQTbYSYVUoPLT3sCM3o9WIzkyR1Y9ko75ATUXSTWuWZmZpOjtDTxRXDxCDBUX1NYiICs0sfeQOwtLnUSTAxDkp2RqpLwSSFUkUqNEqLeiiyY8icdJs3ToPnDCXwWYQKTJpdBOKmSBbkUhc64PhzkQuW5GwVJbf8hjd1Z5UJFnVn6I1Dr3rJ9YqEnQVZ9di/StQjSBl7IPO1xnJUqYVPWrsAyZ9zbxur2wFLSIWyZTGLjfallhFPhpUZEmpVgc6syEiLS+oq9lFS2sxscsGN+U+R7s+EJMDe7LkOlS3aA5EmJmp89a1GzsL+zakHeVMgK13qBaQkEOiis6ALapZgVgyLo6Sb3ZJMgQtWPZDidqr1M6h7Ew6RFc3RG7tawvDF90nmQajmMK4MZHm45gQhoyr4iwtTuqOmeMQYmlldKkCTnzWM7MO4ItraAn1Va4RC6groxA0s/gkjNHwR7ES+YL58HZLHf/yZuuPfJ3iupcgp67Ybvcm5bYXeE77Wm7uvO3u5cHXD+xSYahtcnR5cnMNFzbXcLqH+/rjp1dvzz6d/zJ998Pj6ezil+nTh7OLjy/OP0wvPl88//Tq3cX07sX04T5sOuswOP7t7p2//3x28enVP89syMW7Vx/P708/79YLvYdfRYVh/3UeQjG+zIPsLZc3sXmzZXfVrGDTBu1Sb2OWityM7dUljuAH1rpufbc1q773jjdmu0JzlOx2Ojhine5yaXvj84ON7M1D6SPwYb+NOV++DdzMdmANG8fp6kbeHJr3u95OtwfoWoyf61tKj3YnrxyPX85eHpiDFHGz/vyW48h19qMEvbxU3r5fzZcrg0fieHLc79KQinSdLA90/6dVLxe94/r2fLm+jc7E2P5OdrXnZuSiJjwvAw4vdX+6t9zqdhpoGXLDHV0mny8XvIVeZnfJx5fJ62pe20DKudS4/P1Ll8k/3V8vh49f/dLuopM+Nfa75g3w54tXGjHeAV/34tit70iPn/zu11ebp1xdH+MTkoNu4xF6JRVt71oHBy+fLWGOzk8n0iUgzZfS3mbL3nzbZAlhS2b2LqDlqwH+1/W39pvw/mWNmu+j97n/rxy5Ou9+U6ks1H7q5caaY4fxtiNqRFJzfJ32N3w3fd9g92+uxIbSCmVuZHN0cmVhbQplbmRvYmoKMTIgMCBvYmoKMzI2OAplbmRvYmoKMTAgMCBvYmoKWyBdCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkxID4+CnN0cmVhbQp4nD2NsQ3AMAgEe6ZgBIMB2/tEUQpn/zZvEqcATpxe31y5sDaspo4ZfAhJjMSbNHrSJJXCVgvI8XspND67w7C98nLWLa+joVoDybBNyC2XvfOvm3TR+QABNhxACmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicPZFLbuRADEP3PoUuEKD0d52ng2AWPfffzlO5MwtDBCWXSKrvliWh8qV2S0fzmXzr5XU4+Xt59kGeTnXx2Ke+Lo/8MOupbp+OfRitLVP0lkr4KnDPPr33FLsVGuCekkscuhEUAb0B+z5/ZFARkNto6HYpdJpvqd5iTPaKI0mlbYvvx0nkPvV1zQuDCi2tyX9LqkZsm8Ku4z79SSGYpgNyVLUtsZp59LMPIwSyRxYrUJklPTsynyDfV8R/+Bvl+/pzzWTVxBrLDvIMvNzi5FQ2Sq0Vn4U7ImHe1kQzSvVOiYl0IiJsRZPv8a2THduVta51qvV4OAh3igrllJOd2qRulnKHzDp8uZ9ChHCAeR+r0SG6hs95FjKTh5rK6cxmeS0QQRcThvCyOvek46B+jhVEcCpS6YCSwxYiEks5J332TNDBqTVOQL+RvYjv5x+1doAaCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzAgPj4Kc3RyZWFtCnicPZJLbsRACET3PgUXGKn59ec8jkZZTO6/zaPbycIqZKAoqO6a0iS6vNQlh0r2Jl96xVRxM/l5oiExTdwNdHDKfe0ogj8BroOZO0O0UmJQb12isnxk7Pz19fTlwfvydhhslJ4l5tWnZKzBgjwdXXyAObe2+1/l5/q+MunJUqx0VfS51ItnifoQsz+sToXd2H1jWw/Gk6kJmk3UauqUtbaMLgN9kdJNbPUCdHtU4Nyuo7iK9gkQwX2CDioTatXYkpGQaIusX5ynCd0TB/YV0P3SJq5jW2LTNp7xFWkMQXfDkToOM8coA9XmhrWns02WmeJMrrtlcawSaJTWaaktwbPqdVHMGcxAK4VojlZjK0OzQ19vw/tBZnjbUYxFLVV69ryxAsP62O8p9OB5GDuCNzHZLejHSlYhgxabMHWWrnf42Hlj7fsXRPN+KgplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTU3ID4+CnN0cmVhbQp4nD2PSxIDIQhE95yiL0CVIIqeZ1KpWZj7bwNO4oqnaH/UBwpYRMFaHOoO7wUvIbGGZo4PaX1okaiD54aev5LEwF4hZes0jBazTlzkedMFNmOGsErMkRvuaRfHeLd9OXJsiN0Js4inp1j6sNvBOh7k9Batu0JJ4byYhowZxnWnvU6VRTfJeBpGrV/XRdoauvVs0w+N//am9xebTjdLCmVuZHN0cmVhbQplbmRvYmoKMTUgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNiAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDcyIC9IIDgxIC9RIDEwMSAvZSAxMDYgL2ogXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE0IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTMgMCBSID4+CmVuZG9iagoxNCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTMgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTYgMCBvYmoKPDwgL0ggMTcgMCBSIC9RIDE4IDAgUiAvZSAxOSAwIFIgL2ogMjAgMCBSID4+CmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2NCA+PgpzdHJlYW0KeJw9kMERQyEIRO9WsSWAgEA9yWRy+L//a0CTXGQdYPepO4GQUYczw2fiyYPTsTRwbxWMawivI/QITQKTwMTBmngMCwGnYZFjLt9VllWnla6ajZ7XvWNB1WmXNQ1t2oHyrY8/wjXeo/Aa7B5CB7EodG5lWguZWDxrnDvMo8znfk7bdz0YrabUrDdy2dc9OsvUUF5a+4TOaLT9J9cvuzFeH4UUOQgKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgxID4+CnN0cmVhbQp4nE3Nuw3AIAwE0J4pPALg/z5RlCLZv40NEaGxn3QnnWCHCm5xWAy0Oxyt+NRTmH3oHhKSUHPdRFgzJdqEpF/6yzDDmFjItq83V65yvhbcHIsKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicPVE7jkQhDOs5hY9AEvLhPCOttpi5f7sOvNkisgWJY8NIDVTiM5pMvMcy+0dekGyBSMEtICHwKKg4XiPmhMZGSMD0wX1uyFYafC/OOdw5V8Ybn4WwicWT8AWri69hcpmyukPlOyNRR0VWHtXGu+cwbpaw40R4er2p5nGr3U/3ZtJxuIak81l94aQUOr1kKcRYkwtzg/5ai86TYo7FjO2/o04ek6xtyISzZE0EFWhgKnIGtIjcYg9youZhTnvdEbqemaigSiFpeDFK4w2aT4SjmJzhw6i2WjhjUzG0ffPJc96gz8++x+/4+QOz/FtYCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzAgPj4Kc3RyZWFtCnicPZBLEsMgDEP3nEJHAP+A87TT6YLcf1vLmXSDFGPLL0RXdOyVh8fGlI33aGNPhC1c5XQaTlMZj4u7Zl2gy2Ey02+8mrnAVGGR1eyi+hi8ofOsZoevVTMxhDeZEhpgKndyD/X1pzjt25KQbFdh0J0apLMwzJH8PRBTc9BziJH8I19ya2HQmeYXFy2rGa1lTNHsYapsLQzqjUF3yvXUeq7zMBHv8wPfQT5kCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ2Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nEWRS27EMAxD9z6FjmDJ+tjnGaDoYub+2yGVpF0EEiyZj3TG8pDII59hh52JBSpOzVxCS15Dt4rXEc0pbrvrSueE3ZzCDfPTd0wVE6roXkJVzRByNA4mD/E9fof76tPP8GO9F8v6XuSjlDNbO62a1bXp7OiHG/THO5djqjADVZmJHDJff0TS6aSK0QHe4DHJRE5HxljY3kBP2hWrLit5jMZDBdMw6/XAGM9xYFPxDNBL9w6doXfoMmJp4L/j9D3C0NHiRhjFt86tWLBERi38grjqFZ6dVQo36JF3LtNUYQyqIlUD644+QaOXp2LAl/j5Ahu0YdQKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJw1UjvSm0EI679T6AKeWd7LeZzJpPhz/zYCOxUssEIC0gIHmXiJIapRrvglTzBeJ/B3vTyNn8e7kFrwVKQfuDZt4/1YsyYKlkYshdnHvh8l5Hhq/BsCPRdpwoxMRg4kA3G/1ufPepMph9+ANG1OHyVJD6IFu1vDji8LMkh6UsOSnfywrgVWF6EJc2NNJCOnVqbm+dgzXMYTYySomgUk6RP3qYIRacZj56wlDzIcT/Xixa+38VrmMfWyqkDGNsEcbCcz4RRFBOIXlCQ3cRdNHcXRzFhzu9BQUuS+u4eTk173l5OowCshnMVawjFDT1nmZKdBCVStnAAzrNe+ME7TRgl3arq9K/b188wkjNscdlZKpsE5Du5lkzmCZK87JmzC4xDz3j2CkZg3v4stgiuXOddk+rEfRRvpg+L6nKspsxUl/EOVPLHiGv+f3/v58/z+B4wofiMKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMwNyA+PgpzdHJlYW0KeJw9kktuAzEMQ/c+hS4QwPrZnvOkKLqY3n/bJyXpihzZFkVqlrpMWVMekDSThH/p8HCxnfI7bM9mZuBaopeJ5ZTn0BVi7qJ82cxGXVknxeqEZjq36FE5Fwc2Taqfqyyl3S54Dtcmnlv2ET+80KAe1DUuCTd0V6NlKTRjqvt/0nv8jDLgakxdbFKrex88XkRV6OgHR4kiY5cX5+NBCelKwmhaiJV3RQNB7vK0ynsJ7tveasiyB6mYzjspZrDrdFIubheHIR7I8qjw5aPYa0LP+LArJfRI2IYzcifuaMbm1MjikP7ejQRLj65oIfPgr27WLmC8UzpFYmROcqxpi1VO91AU07nDvQwQ9WxFQylzkdXqX8POC2uWbBZ4SvoFHqPdJksOVtnbqE7vrTzZ0PcfWtd0HwplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTYgPj4Kc3RyZWFtCnicMzY2VzBQMDQyV9A1MjZVMDI0UDA3M1FIMeSCMXPBLLBsDhdcIYQJks+Bq8zhyuBKAwBrOg+HCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzIgPj4Kc3RyZWFtCnicNVFJbsQwDLv7FfzAANbuvCfFoIf2/9dSyhQIQCW2uCViYyMCLzH4OYjc+JI1oyZ+Z3JX/CxPhUfCreBJFIGX4V52gssbxmU/DjMfvJdWzqTGkwzIRTY9PBEy2CUQOjC7BnXYZtqJviHhsyNSzUaW09cS9NIqBMpTtt/pghJtq/pz+6wLbfvaE052e+pJ5ROI55aswGXjFZPFWAY9UblLMX2Q6myhJ6G8KJ+DbD5qiESXKGfgicHBKNAO7LntZ+JVIWhd3adtY6hGSsfTvw1NTZII+UQJZ7Y07hb+f8+9vtf7D04hVBEKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIzMSA+PgpzdHJlYW0KeJw1TzmSBCEMy3mFPjBVGNtAv6entjbY+X+6kplOkPAhydMTHZl4mSMjsGbH21pkIGbgU0zFv/a0DxOq9+AeIpSLC2GGkXDWrONuno4X/3aVz1gH7zb4illeENjCTNZXFmcu2wVjaZzEOclujF0TsY11radTWEcwoQyEdLbDlCBzVKT0yY4y5ug4kSeei+/22yx2OX4O6ws2jSEV5/gqeoI2g6Lsee8CGnJB/13d+B5Fu+glIBsJFtZRYu6c5YRfvXZ0HrUoEnNCmkEuEyHN6SqmEJpQrLOjoFJRcKk+p+isn3/lX1wtCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicPVA7jkQhDOs5hS/wJPIjcB5Gqy1m79+uA5opUEx+tjMk0BGBRwwxlK/jJa2groG/i0LxbuLrg8Igq0NSIM56D4h07KY2kRM6HZwzP2E3Y47ARTEGnOl0pj0HJjn7wgqEcxtl7FZIJ4mqIo7qM44pnip7n3gWLO3INlsnkj3kIOFSUonJpZ+Uyj9typQKOmbRBCwSueBkE004y7tJUowZlDLqHqZ2In2sPMijOuhkTc6sI5nZ00/bmfgccLdf2mROlcd0Hsz4nLTOgzkVuvfjiTYHTY3a6Oz3E2kqL1K7HVqdfnUSld0Y5xgSl2d/Gd9k//kH/odaIgplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzk1ID4+CnN0cmVhbQp4nD1SS27FQAjb5xRcoNLwm895UlXdvPtva0NSqSq8iTHGMH3KkLnlS10ScYXJt16uWzymfC5bWpl5iLuLjSU+ttyX7iG2XXQusTgdR/ILMp0qRKjNqtGh+EKWhQeQTvChC8J9Of7jL4DB17ANuOE9MkGwJOYpQsZuURmaEkERYeeRFaikUJ9Zwt9R7uv3MgVqb4ylC2Mc9Am0BUJtSMQC6kAAROyUVK2QjmckE78V3WdiHGDn0bIBrhlURJZ77MeIqc6ojLxExD5PTfoolkwtVsZuUxlf/JSM1Hx0BSqpNPKU8tBVs9ALWIl5EvY5/Ej459ZsIYY6btbyieUfM8UyEs5gSzlgoZfjR+DbWXURrh25uM50gR+V1nBMtOt+yPVP/nTbWs11vHIIokDlTUHwuw6uRrHExDI+nY0peqIssBqavEYzwWEQEdb3w8gDGv1yvBA0p2sitFgim7ViRI2KbHM9vQTWTO/FOdbDE8Js753WobIzMyohgtq6hmrrQHazvvNwtp8/M+iibQplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTM2ID4+CnN0cmVhbQp4nE2PQQ4DMQgD73mFn0AgQHjPVlUP2/9fS9h20wseyYBsUQaBJYd4hxvh0dsP30U2FWfjnF9SKWIhmE9wnzBTHI0pd/Jjj4BxlGosp2h4XkvOTcMXLXcTLaWtl5MZb7jul/dHlW2RDUXPLQtC12yS+TKBB3wYmEd142mlx932bK/2/ADObDRJCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDkgPj4Kc3RyZWFtCnicTVFJigMwDLvnFfpAIV6TvKdDmUPn/9fKDoU5BAmvkpOWmFgLDzGEHyw9+JEhczf9G36i2btZepLJ2f+Y5yJTUfhSqC5iQl2IG8+hEfA9oWsSWbG98Tkso5lzvgcfhbgEM6EBY31JMrmo5pUhE04MdRwOWqTCuGtiw+Ja0TyN3G77RmZlJoQNj2RC3BiAiCDrArIYLJQ2NhMyWc4D7Q3JDVpg16kbUYuCK5TWCXSiVsSqzOCz5tZ2N0Mt8uCoffH6aFaXYIXRS/VYeF+FPpipmXbukkJ64U07IsweCqQyOy0rtXvE6m6B+j/LUvD9yff4Ha8PzfxcnAplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTQgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1OCA+PgpzdHJlYW0KeJxFkUtyBCAIRPeegiOA/OQ8k0plMbn/Ng3OZDZ2l6j9hEojphIs5xR5MH3J8s1ktul3OVY7GwUURSiYyVXosQKrO1PEmWuJautjZeS40zsGxRvOXTmpZHGjjHVUdSpwTM+V9VHd+XZZlH1HDmUK2KxzHGzgym3DGCdGm63uDveJIE8nU0fF7SDZ8AcnjX2VqytwnWz20UswDgT9QhOY5ItA6wyBxs1T9OQS7OPjdueBYG95EUjZEMiRIRgdgnadXP/i1vm9/3GGO8+1Ga4c7+J3mNZ2x19ikhVzAYvcKajnay5a1xk63pMzx+Sm+4bOuWCXu4NM7/k/1s/6/gMeKWb6CmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxOCA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQ1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUwID4+CnN0cmVhbQp4nD1POQ7DMAzb/Qp+IIB1WLbekyLokP5/reigHQQRoHjIsqNjBQ4xgUnHHImXtB/8NI1ALIOaI3pCxTAscDZJgYdBVklXPlucTCG1BV5I+NYUPBtNZIKex4gduJPJ6APvUluxdegB7RBVJF2zDGOxrbpwPWEENcV6Feb1MGOJkkefVUvrAQUT+NL5f+5u73Z9AWDFMF0KZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1MSA+PgpzdHJlYW0KeJw1j8sNwzAMQ++aggsE0M+yPE+KoId0/2slpwUMmDDJJ9kWg5GMQ0xg7Jhj4SVUT60+JCO3ukk5EKlQNwRPaEwMM5ykS+CV6b5lPLd4Oa3UBZ2QyN1ZbTREGc08hqOn7BVO+i9zk6iVGWUOyKxT3U7IyoIVmBfUct/PuK1yoRMetivDojvFiHKbGWn4/e+kN11f3Hgw1QplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTEgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQzID4+CnN0cmVhbQp4nE1Ru60DMQzrPYUWOMD62b55Lnh4xWX/NqScBKlEQxRJycNTumTKYX1KRkiOLg9tGktsujw3QlOHioKpa4nqlKuZpsxTLE3Q895ZruYY4HtVN9Tf9IheApFRglVhgQ6QO7hg+NlrJmxRCyIxhlAzgGnCCnO4EjEEGYy1ZxiUKgxO1c8qV/svp2XYKrB4MJ0iP7KaaKdfuhx46ykHQtjclbt6IU0I7o0GY8wsXHepsp0AHEx0mYmMWLwNx9MhDA1emgascNaNmCCxGyOlD14HGdOwd0UedbcY8b5bxpS71c99UX3mXe0fCMEbJ/h7AcobXV4KZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MCA+PgpzdHJlYW0KeJxFkDkSAzEIBHO9gidIXIL3rMu1wfr/qQfWR6LpAjQcuhZNynoUaD7psUahutBr6CxKkkTBFpIdUKdjiDsoSExIY5JIth6DI5pYs12YmVQqs1LhtGnFwr/ZWtXIRI1wjfyJ6QZU/E/qXJTwTYOvkjH6GFS8O4OMSfheRdxaMe3+RDCxGfYJb0UmBYSJsanZvs9ghsz3Ctc4x/MNTII36wplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM0ID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNTEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjAgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNTIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1NCA+PgpzdHJlYW0KeJwzNjZXMABCXUsjBWMg29zIUiHFkMvI1ATMzOWCCeZwWRiDVeVwGUBpmKIcrgyuNAD7hA4fCmVuZHN0cmVhbQplbmRvYmoKNTMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxOCA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNTQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago1NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MCA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjU2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjUxID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjU3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc0ID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago1OCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NAovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzj0jWyMFWwMDBQyOXSNTI0BjNzuHQtjRXMDM1ALEMzQxjTyMRSwdwYzDQ2NoeJmhiYwhVAzcrhyoCoNjWDGAxlgsTTAOv1FjIKZW5kc3RyZWFtCmVuZG9iago1OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc2ID4+CnN0cmVhbQp4nD2MOw6AMAxD95zCR2h+JAdCiIHef6UptIv99CTbxdFgWpECt8DJ5D6p03LPJDt8EJsh5FcbWrWuytKaDIuajL8N391N1wumOBfACmVuZHN0cmVhbQplbmRvYmoKNjAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTUgPj4Kc3RyZWFtCnicNVE5DgMhDOz3Ff5AJIwveE+iKM3+v82M0VYewVyGtJQhmfJSk6gh5VM+epkunLrc18xqNOeWtC1zgLi2vC+tksCJZoiDwWmYuAGaPAFD19GoUUMXHtDUpVMosNwEPoq3bg/dY7WBl7Yh54kgYigZLEHNqUUTFm3PJ6Q1v16LG96X7d3IU6XGlhiBBgFWOBzX6NfwlT1PJtF0FTLUqzXLGAkTRSI8+Y6m1RPrWjTSMhLUxhGsagO8O/0wTgAAE3HLAmSfSpSz5MRvsfSzBlf6/gGfR1SWCmVuZHN0cmVhbQplbmRvYmoKMjMgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjQgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIC9zbGFzaCAvemVybyAvb25lIC90d28KL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYgL2VpZ2h0IDY4IC9EIC9FIDgwIC9QIDgzIC9TIDk3IC9hIDk5IC9jIC9kIC9lIC9mCjEwNSAvaSAxMDkgL20gL24gL28gMTEzIC9xIC9yIC9zIC90IC91IDEyMiAveiAxMjQgL2JhciBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjIgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMjEgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjIxIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjI0IDAgb2JqCjw8IC9EIDI1IDAgUiAvRSAyNiAwIFIgL1AgMjggMCBSIC9TIDMwIDAgUiAvYSAzMSAwIFIgL2JhciAzMiAwIFIgL2MgMzMgMCBSCi9kIDM0IDAgUiAvZSAzNSAwIFIgL2VpZ2h0IDM2IDAgUiAvZiAzNyAwIFIgL2ZpdmUgMzggMCBSIC9mb3VyIDM5IDAgUgovaSA0MCAwIFIgL20gNDEgMCBSIC9uIDQyIDAgUiAvbyA0MyAwIFIgL29uZSA0NCAwIFIgL3BhcmVubGVmdCA0NSAwIFIKL3BhcmVucmlnaHQgNDYgMCBSIC9wZXJpb2QgNDcgMCBSIC9xIDQ4IDAgUiAvciA0OSAwIFIgL3MgNTAgMCBSIC9zaXggNTEgMCBSCi9zbGFzaCA1MiAwIFIgL3NwYWNlIDUzIDAgUiAvdCA1NCAwIFIgL3RocmVlIDU1IDAgUiAvdHdvIDU2IDAgUiAvdSA1NyAwIFIKL3ogNTkgMCBSIC96ZXJvIDYwIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjMgMCBSIC9GMiAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EzIDw8IC9DQSAwLjggL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMC44ID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLU9tZWdhIDI3IDAgUiAvRjEtRGVqYVZ1U2Fucy1QaGkgMjkgMCBSCi9GMS1EZWphVnVTYW5zLXVuaTAzMDIgNTggMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago2MSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjIwMTI0MTE1MjA5KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNC4zLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNC4zKSA+PgplbmRvYmoKeHJlZgowIDYyCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE4NjY1IDAwMDAwIG4gCjAwMDAwMTgzMzMgMDAwMDAgbiAKMDAwMDAxODM3NiAwMDAwMCBuIAowMDAwMDE4NTE4IDAwMDAwIG4gCjAwMDAwMTg1MzkgMDAwMDAgbiAKMDAwMDAxODU2MCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDEgMDAwMDAgbiAKMDAwMDAwMzc2NSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDM3NDQgMDAwMDAgbiAKMDAwMDAwNTUzNSAwMDAwMCBuIAowMDAwMDA1MzI3IDAwMDAwIG4gCjAwMDAwMDQ5OTIgMDAwMDAgbiAKMDAwMDAwNjU4OCAwMDAwMCBuIAowMDAwMDAzNzg1IDAwMDAwIG4gCjAwMDAwMDM5NDggMDAwMDAgbiAKMDAwMDAwNDM1OSAwMDAwMCBuIAowMDAwMDA0NzYyIDAwMDAwIG4gCjAwMDAwMTY4NzMgMDAwMDAgbiAKMDAwMDAxNjY3MyAwMDAwMCBuIAowMDAwMDE2MTc5IDAwMDAwIG4gCjAwMDAwMTc5MjYgMDAwMDAgbiAKMDAwMDAwNjY1MCAwMDAwMCBuIAowMDAwMDA2ODg3IDAwMDAwIG4gCjAwMDAwMDcwNDAgMDAwMDAgbiAKMDAwMDAwNzQxMyAwMDAwMCBuIAowMDAwMDA3NjU2IDAwMDAwIG4gCjAwMDAwMDgwMzYgMDAwMDAgbiAKMDAwMDAwODQ1MCAwMDAwMCBuIAowMDAwMDA4ODMwIDAwMDAwIG4gCjAwMDAwMDg5NTggMDAwMDAgbiAKMDAwMDAwOTI2MyAwMDAwMCBuIAowMDAwMDA5NTY3IDAwMDAwIG4gCjAwMDAwMDk4ODkgMDAwMDAgbiAKMDAwMDAxMDM1NyAwMDAwMCBuIAowMDAwMDEwNTY2IDAwMDAwIG4gCjAwMDAwMTA4ODggMDAwMDAgbiAKMDAwMDAxMTA1NCAwMDAwMCBuIAowMDAwMDExMTk4IDAwMDAwIG4gCjAwMDAwMTE1MjkgMDAwMDAgbiAKMDAwMDAxMTc2NSAwMDAwMCBuIAowMDAwMDEyMDU2IDAwMDAwIG4gCjAwMDAwMTIyMTEgMDAwMDAgbiAKMDAwMDAxMjQzNCAwMDAwMCBuIAowMDAwMDEyNjU4IDAwMDAwIG4gCjAwMDAwMTI3ODEgMDAwMDAgbiAKMDAwMDAxMzA5NyAwMDAwMCBuIAowMDAwMDEzMzMwIDAwMDAwIG4gCjAwMDAwMTM3MzcgMDAwMDAgbiAKMDAwMDAxNDEzMCAwMDAwMCBuIAowMDAwMDE0MjU2IDAwMDAwIG4gCjAwMDAwMTQzNDYgMDAwMDAgbiAKMDAwMDAxNDU1MiAwMDAwMCBuIAowMDAwMDE0OTY1IDAwMDAwIG4gCjAwMDAwMTUyODkgMDAwMDAgbiAKMDAwMDAxNTUzNiAwMDAwMCBuIAowMDAwMDE1NzQzIDAwMDAwIG4gCjAwMDAwMTU4OTEgMDAwMDAgbiAKMDAwMDAxODcyNSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDYxIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA2MiA+PgpzdGFydHhyZWYKMTg4ODIKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-01-24T11:52:09.529254\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import scipy.signal as sig\n", "\n", "\n", "N = 8192 # length of signals\n", "w = 8 # wordlength for requantization of multiplications\n", "\n", "\n", "def uniform_midtread_quantizer(x):\n", " \"\"\"Uniform mid-tread quantizer w/o limiter.\"\"\"\n", " return Q * np.floor(x / Q + 1 / 2)\n", "\n", "\n", "def no_quantizer(x):\n", " \"\"\"Dummy quantizer.\"\"\"\n", " return x\n", "\n", "\n", "def sos_df1(x, a, requantize=None):\n", " \"\"\"Realization of a recursive SOS with round-off of multiplications.\"\"\"\n", " y = np.zeros(len(x) + 2) # initial value appended\n", " for k in range(len(x)):\n", " y[k] = x[k] - requantize(a[1] * y[k - 1]) - requantize(a[2] * y[k - 2])\n", "\n", " return y[0:-2]\n", "\n", "\n", "# cofficients of the SOS\n", "p = 0.90 * np.array([np.exp(1j * np.pi / 3), np.exp(-1j * np.pi / 3)])\n", "a = np.poly(p)\n", "# quantization step\n", "Q = 1 / (2 ** (w - 1))\n", "\n", "# compute input signal\n", "x = np.random.uniform(low=-1, high=1, size=N)\n", "# compute output signals w and w/o requantization\n", "yQ = sos_df1(x, a, requantize=uniform_midtread_quantizer)\n", "y = sos_df1(x, a, requantize=no_quantizer)\n", "# compute requantization error\n", "e = yQ - y\n", "# Signal-to-noise ratio\n", "SNR = 10 * np.log10(np.var(y) / np.var(e))\n", "print(\"SNR due to requantization: %f dB\" % SNR)\n", "\n", "# estimate PSD of requantization error\n", "nf, Pxx = sig.welch(e, window=\"hamming\", nperseg=256, noverlap=128)\n", "Pxx = 0.5 * Pxx # due to normalization in scipy.signal\n", "Om = 2 * np.pi * nf\n", "# compute frequency response of system\n", "w, H = sig.freqz([1, 0, 0], a)\n", "\n", "\n", "# plot results\n", "plt.figure(figsize=(10, 4))\n", "plt.plot(Om, Pxx / Q**2 * 12, \"b\", label=r\"$\\hat{\\Phi}_{ee}(e^{j \\Omega})$\")\n", "plt.plot(w, np.abs(H) ** 2 * 2, \"g\", label=r\"$|H(e^{j \\Omega})|^2$\")\n", "plt.title(\"Estimated PSD and transfer function of requantization noise\")\n", "plt.xlabel(r\"$\\Omega$\")\n", "plt.ylabel(r\"$Q^2/12$\")\n", "plt.axis([0, np.pi, 0, 100])\n", "plt.legend()\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Small Limit Cycles\n", "\n", "Besides the requantization noise, recursive filters may be subject to periodic oscillations present at the output. These undesired oscillations are termed *limit cycles*. Small limit cycles emerge from the additive round-off noise due to requantization after a multiplication. The feedback in a recursive filter leads to a feedback of the requantization noise. This may lead to a periodic output signal with an amplitude range of some quantization steps $Q$, even after the input signal is zero. The presence, amplitude and frequency of small limit cycles depends on the location of poles and the structure of the filter. A detailed treatment of this phenomenon is beyond the scope of this notebook and can be found in the literature." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example - Small limit cycles of a SOS\n", "\n", "The following example illustrates small limit cycles for the system investigated in the previous example. The input signal is uniformly distributed white noise till time-index $k=256$ and zero for the remainder." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxNS40OTM3NSAyMjYuMTg4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCniczZ1Ls2XFcYXn91ecIRpwqPdjKIUsIhSeSCbsgUIDBUIYBMgYPcIR/vH+Vta+3HsyG5oO2wRIEN3ZedeunVUrX1W7Ot8+f8q3T2/p9jn//uOWbx/y76dPid99+TRyv7ddZ+d3X7z6XSnjntfiV1+g+fp3//709KenD34OxDf8zIdPTz3di/1Mnffe9Atg0/LCL14JS6r3NY702x9/LbSHfH2L0L2vWx7jXsvtPz+5/dvtq9sHPy8aSrn9mtfiFe+Ll0z3sVPeI83VGOMHv/zk7599/MlvP/zF7eNvnma/jz7rGq9H/CJ8PY6nf3n6ze3r52ckzPjqGRgSydvgarunywBPv2Am/vH0Nf9Nt/cTWLPc25xjLx7Ik8t999vHXz794qPbB7/Kt5xuH/3JJuqjPz797vZe+tnt97ePfv30Tx89/cbG9X9in6cPb4/2yb3d90qz5Ndv9Er6rhZ6K+D32ig3FmXLo6/Ve3+rkUr6kcxUGHVNLfWHiX8lfVczvRXwe81USrvP0fauq836VjO1H8tMNdf7KLPuh8l/JX1XM70V8HvNhCnvaa1a+FcPf4uZxo9mpq2RwIaHyX8lfWczvQ3w+8206r1lXopfpP1WM60fy0wNj1lmS+Nh8l9J39VMbwX8XjO1vu84pZpzLWW91Uw5/Vh26j3f+4YOD7P/Svqudnor4Pfaqdd1X3ONNmpubw902Tnx1wuTVOTYazNDK5cLRz99Z8L4PRgf/KpcoO/9+We3jz7/fzf3M2pfeKGUiPuvk6AX6Q809pvg2rjPiPaGOHAvN0LrKrXkhOFLMPS617m22erZ4v2Vvb9mNEl46eUXH3+pn3//l598/od//du//OGrb97/8rOv/vbN7Zd/uf3mx7Hsyvfa0677wbIv0ne07Gu4by37gPZmy05errPOSO16+yGWbT95y2YLiXnu8mDaV+J3tO0D4LfGfcR7s3VxkPey2s4z7xI9xBvMW3/65sVj4afwfY/mfRG/q3lfA76Y9wHvO8xbKnbpc6ae9/wh5i0/ffO2LVgS30fzvojf1byvAV/M+4D3HealUpltjEIKPvYPMW/+6Zv3ZEK1O+fwIn5X874GfDHvA15MR8d9V3u5PJZKZv6fZ/S/P3qt/PJau99T6iU5lr+I39VOrwFf7PSA94bq5t5NK99LWrWmnnKM/+mN609pljDeF1rurOfNWJKe+pJh1W7DsBTrGe69/7YUq97r2Lm9rO9XSdh/mUa/49j3UB/p/XwfD9naNL3fXHqTAi1VJXePet8+8nfXI5mZOmZeMz7zz89YO+PzXo3qW5DffwfId73Qe7dLnueaOV1tM/3BZ/YH5T5fBn7+4Cv7A9bYI/W/G+mPzz/Q5ngZ9Hu/+F9nsSTqtphzwRiLUrk/kTCP65/JnxAVFlljL/v2W7/OXzW0cqvYtLVmfa5xT6RDqfJw3qa1NFmYSFvnbRFOiNt3Hke6KKzqMF2skZek815aXR0ES2xHtvQLMRPf5i2zptsuLamymOvOglTqmwe84c1TOeKGhTWKNHmpNvKlTfWKRVh1vHdqxZQpHMrYNoxCybDzEeK2u0Yx272VtQx44YlLyoyC9ydkrtaOtPFmNgoe1/dal3jl2jSKhbVSH1nGIKkkEQcuL0oXZOUIRxpq+uUJqybLzyDKve69eB719+THaj1SaNMkJsIURldMGYPvmvW8ifZIZY8j7mtPGX/ftRp7P9JNvVfB6OVOktuaDa7dqRC2vXfnVWYd44jn3H0a8uqFAldSbDCZNWGw7srqox5xn2Vd742bXGMf8R676b1l0TY125iAJyQNo/I82GJLA/Fk6i/zL2rpZsjznvsuZxibhVH7ke5euq25ZGM2XcIriWM5Y6trbXseE9+YWOlqmB3jHTEqpECiDExaIx8pT+hmZ9A2A5cybrBS3vO8zY+N2WzISHnpVQy4pD5tgeJ4IX/T+7V8Xwu/0o4YtKF5ZYbbIg+WlF8zGzbdKEB3MxzimfPW+zUewlrW+21mOzEVN/VNsQ+/OdJOMmfTylRWQzMxTm3qtXmTtUvWotv84F71TB9JoK18hMySrTmMXHjcNARmEtra4oKWMmI54sZLM4oKjWpZtlyQQoGDPLAs5rIXwbaLJYvhIHld1wPHHe4k2T7zolvPQDpZOW2Y7RmGLLSPuE1cQLXV3Dov248Ya+5yfEa7vMMm6g4eB4Y6DA2kfcRjZOxjo1sbz2rj2LiuOaXcWBkq/I60MX/rGHRD6Hwprw6LhUGMHeISYqtXwCsmhqTd3AYB554as9WMyPjaZKtRctaGvNrQWOsBl3jhONaRU1vOdOQkRTVNPRVb8TBKz0uuXudJ6Evds52nkt3zO70/xsL0O7dLTt2Vr1fCAe0jZub5j9C1D1Fg85ErxZBj1XNWai2XS4xvG0I3f9uKzZDkC/dm70qQwR2mIx+4J5tQWb2yntslJocwZza0KkiX8yXfrFmNRuaAClbJyKFDT7kzNcILrq1eYmLtsz8j4coX/MJH7d2PyToTv/ol70RULS9YQMDL9RLvWc2l4f+g/OxnoraC/9Jo8E34jXm91IaQQ06taQm2ZtVszsTVUc2tEQV41XlMjLz3Pcw2kjfc+CUX3TV4iE+gm/auWf0HnMo0TwrMGOuSz7a7zdTUTOG8TF7wbkM+j8GXsfJZTojxc7Mev6LEprVLvuVDmy2zugk/R7/Kc8gb4nzxWKk8i6cMflYl07rM/ebc8HG7GBewWcM11EuOW178sB6LM2tn+SHfpZhPZJh7pnkNkx/GzV28hIr5GiY5G5KZbYWsNHo+b8uCgtgaTwFHQfVZ3hPZVTtRuhEd2yUHvWs8WHlaTSYxC4o31HBYuqXMeRmZjAM32A8MU05SaHJyDgKkhqNoSZA5JEROvNmXx1otHccp+SIEXkuHR+911ogo2YuZpyiQzuu1SD1WlvNETLJBbiZxSQqlzYYjuqVlkUvyhj+x4VSton2sj5xU0viGfmkjHdqWrJVRNRyqCJaFJQkSs453OTBkT0e53JPizVkKUwG1XfLWl7lQvEbr5pGPHCc3baq24nZuR45bQsmWjjLwDlEuOXlMulzOEIHOc9U8buN5NJ1/9iWX+7HxsBRY9jVfcgxm/nXIb0C3I2dCWZDXXOGuumU5kg8yJXNGeDdC2DzPJX1lAdh4mnKN2sclJ6hUjYes1XKoeclXSeZhC4GCWLnPc/FkrJrLBw44XPclJ3TmeSiRlFsc+7CmcGG2dnAFZFr5EuMKzCMz/DFnPUsNOa4oXeYhUqR51gJLKiVzyUMZp5o6RwybzSNb3rTH6Jdc24M2GuWtOE17WzJs3DNGMefY+OVxAMitPLn8BdHUkgtC4l3rtVyzzuI5VkDeSQPxTbmyAEbax8rI9xzmk3ktmHcCRyX94Q01HIZJYgblLjlTkjUc+M+6aIcRYDLb6xoOGcTJVSVX6DKeK9SXk1FITnKR6imMMGvpRw6LCQwaToNxLOwTtJGTMRWNh6Sp40XmGaecCjm+cJSctnJmC3lvo1+LmeqDPPqS70YNmE+Gs+csx2wqA4k2y+ofyiz5iCPnVY5bhmcKXja71HbYYpt9lGztsvYl54e7TRfkbuRg+ZLvMswvkwwvS7hMztzhNsshBbnCvJ67lH41jaer2irlmIGUmcTvcjzEo2ezsaoggIbT9ea403XJifhFw5GjGku/RM7CrqnvK2gRPa7Yp5yWqbDpwhVDluPGeZe0SfKXpfUDM5/nIsflHr8MKVipZ7qUX+9iflnpC2Q/ZtOcKvtfNk4iRi3tkg8qFgtbxFkedFYzzhvfan65s8Kq9s8vOTXL0niI+sS+elIGOXtGY9NV9dxx1EkrZjG/jJ+FKem4MOQs2mHmmVpItkWmQo7Adtyy3DvzVi45bsX88pRHXfUaJVlWlwO8ZVUe/Uo0eRTZAC96GpQkVvtZTtg0x6wuzlQuYXIRCkxgqHYwxjxpE3IKehJMM5r88onRynKod2w4S8s0nzXFmFlfpZ5Jn43A3y85VFwaTxfVlYOanGS75natZUJlK+OSNyX7yxytKrXrvfTuTTWVOJRGuxaVGh/EblvLem7q572QyxlrPMrX6jh1gmY6ZcWTkybif88iRM4bHsfc5Vb68SXIcSzzeTxTrSGTKzQ3lRmWlDeKj3nJcbvpcoV7nHCJlJg0NBoiFUn+PhkJ66tupW/mqZSpnDDR1VFJ5ph5an9OnGRBcjcbTBcj2nE8yLsKwG4rsKadzppSNkbMuNYIrmn0ZznircdO7EEudhhH1pUxsT1WufW+1qCyMWUny7JWSHNlMMjJGVc6xtyE332GLxpb0NCiIgkpz2LlzTYcbfhShJ7H8urMkIYDscjKL7+PXMv6Ct4swXHZnhwdt3Kt2YljONbZCkk9naU/WSOpX3LWhblfdWSots6U41TU5qvnrYhTV6KFXBWrhmNhYvXDOOS7bHO/DB/uKexLjvMow9zvsmJD3b4jn/gam5Uug9R09En2lAOSpasAP92BI+8ElMs8rLpxKhXkeMFkiySr/hsnpzpTbZUQZsC3P+NXvXx5Ng8vfPw4sYqFuc0+SY3GfcLTaBZjNB6Wfi1XlWyxjQVcz2ojcSr56JNTbUrYfkqkxHpvl3xQjGk8u9q+6cmdMGLSklnWhsZRrhNGkbPgh60eQgyjz8/6aBSzj2po/nfkU4Wz+d9N5EznbIHE2KCZx8vyVOmCJ6UaMKGcFJI4exa/9gtggpHI+mjpWg6EyIF1u3XgpsLx0SfUUmRqOFPTO0/mh05iBT8/dit+XPJGMWv1qfKZtc5qmGpPdnO0VY5HxDS5InYxR0vcX52otS+59pTL6SQsHHg5+mTkxGAL0mqcUISNS06OIUdLZMjPxkFKyGgaDYB463zWgjo7pZubVT7ex1UpTh2aysfNMv1aIuetyMcxYzndraFWc7nk+CZzs1PUfU5Q1bSjbrM1gvNY2p0xuVpjSy1PlgKESNfLdgs915xQyM1LztJhddmc4OMSZpqXnNwzaTjUsIWK52QwU9sibVxRSA38s3QUaEXLs2TBW8eTaPN+TeX+KvzJL+qz+l7M4rbhyFufzEbpD69l1lHxVvIal3zyj4aj1goO5iwddZmnsmGzGlTt61mu/kE//hqfv0+lOLcpTdtpgff1+Ee8UyUEaDjyZUsHbC75HOm4X2UYZTeDp7LA14r1jzDZTipoNIovLKuTqFirMZn7Vc+qWqEguTqTpKoeBtI0tVOt5aHE/Eytus9Y1tyLUp9xlTxqP5OUhdGQjFfS/W38IXKc5W0VtbWoLa3VTM1LPsvYYTCsdXIEDaZaREynJaEWNMHLWKV2+zpZjZooED2MZSj9k9uzkohcx7bTJJ/WZLMGA+S9Ol9qQ6chz2s5wdgnp1kacFVSrrqWuvCqF5BDJHO8WW3D1dYZjTYFhxzvI8wSwbTroRYEazKd8gVnTs5sfjdn1b5XlEfedHLLw/AoloRG86B+0j9zuw+LFfmYo/jRiKfTylenTsI0ttzuhmkqTW2eiFyUHMSBVxb+0sSDeMlDHwy/VdtDO6+tB20WtdNWEoDn89pkzioCvDZpKw4rYJMgExsD9lQelAI2aTDzF7CZOeYyYC81HnvAZoKS4q3Thsu4GYdNKLhrf8xhS7wVS7y2Glm5La+thtLKAZtUYuYasLWzOXfAJmEgMARsPHGfK2CTC/ScAraOQGjr0mkTFcg6A7b29WcP2Dga1m/AZuWVWQM2+SHPDdjkh/hzj61WbU7NY6tTm2by2OrIUm96bMRjk214bZXvKQdsovLC0Xttgu/cO2ATe2FdwCbEUnEHbDV+RwvY2pfdnpcSo1oDtvZgt+elxLaV6rVVr27PS4nJTTwvi9qb5I8eW+1N8iyPrS5m3p6XRU1MYpzHVrsS3YCtbd3ueYlvuKtdG7AJWLsHXqpw02cZXrspIgdeKl7MFXipPjXVTcDWdqdi1KMyYWa0QMui7U7thj0qqzXTAiuL9jvVIntU3tav8cjq+9VgD3X9agucVHOvzOmQ1dorLVBSLTxSL4/MBOQWGKk+XdIWxaPyt589PCprX3IWj2zfLQU+Vm1Aamf9UZk8etVAxzpPGHTKBPNZAxurGo1jeWRC9qiBjFVZwBgOmaJMGahHVhusqTn5qEz4Jd/3yOp11bBG1elSGjGdspqs5ExOudp+e/fK2hwcySNjfVxwQNYWYN8eWZ3z0gPysIa3R56k+KUFZKX1fXjkRR4PubwyHn+SWjpl4q6OUjhl28btnoNIqYG3R9b+Ue+eg71oe2cFZO09d89B9X70FZNXVpcs+A11eJjtgKx6vXkOqr1DMAnIhNzcPAdVOVBEBWQirjrtThnrp5wCso4UNM9BapWy1Yt6VB44+tU8B3VwA8N55IGfJ+w7ZKQUviMg4+ap/TwywZbiMiBXFeGegxS9lDA1IDftangOqhHSdHzWKRNqa8ix1O2AggGZSFuq56B6GoSmgEygzdVz0PY+duDgUDu3eA6qKQnbPLI6Hrt4Dk7t6+zAQcQUm56DU92OHTg4daateA5ObdHswEHbbsbTZ6etjZgVSKiuVC9qKD9qa7tlBRaqN0CsCdjaVFmBhmoBVF7ea2vrZAUe2nEySn2vrR2SFYioej5TyjttlfNpBSaqbE+U1F5bTacVqEh1jl1LwNaexgxcRLwWIdhrq36fgYx2mEtbMk5bOxQzsNEOt4npTlsbETPQ8ew/joCt7YYZ+KgSmVQgYGtTYQZCqhKuqXrsra2DqTMDD9oqeAlTHlv1bh4U707b2lUpYGsbQM05p61+/94Bu9pRoYDd7OBewNYxpNECtpr6ewRs9fRHCdjDDuMFbHXuRw7Yy/bCA7Ya9H0H7G0n7wK2+vB9Oeyqele7zY/aEmvzvXvtbKfsttcuOmbXA7Za58vzsqrezb0G7GYn6gK2Oo+2KfmorTb48ryUeGz1rZz2sHNyAXvooNwO2OppL8/LSmFLXjwD9rLDbwF76/Tb8NhZjevpeSlxoybw2DnbeTaPrXq36QyK01YTenpeSkxxkwP2t1/oPmoTg4mrAVst5el5WVXv4sAD9rAzawF76BCI52XN6g8Pz0uJux0AddrLTqAF7KUTaJ6XNduWluelxNtOUz1ql2TnyTw29W62AytO206J1lacdtE2vedlVb1re8lOu+p0WOCl6l3bxXPaOgZUAi9V79o2idPWuawSeKl611rUTnva9nzAnnZuK2AvndsKvKS2TTpf5LW3To0HXtZkh7A8dtU2Zw68pLqFftljI14zB15qn0cf4HvtqjNVgZdVB6vbCthNJ6cCL1X26sSF17arEQIvVfdShgbsoVNQgZcqfCkDAzax2GKd0z6ngQO2dvXlTZ32tpNLHlu1r/H1UdvOQmmH3GlnnU/qHpsyV8eQArY2a/VMp1112mgE7Ko9jRKwm50pCthNR4pywNaeWg28pNLN2mr12sPOBwXsqeNBK2AvnUkJvLQTSiQRXnvbWZ+ArW353T22amDKeY+tIjjpsw2nne3gjsem3CVJLAG76HhO4GXX4e6dAnazQzgBu+kMzg7YXWdtAi8RD31d5LWHHakJ2Np+XSNgT52cCbyk5k2wNWAvOx8TsHVea1WPrVqYCOaxVQyT4HtsFcPEOo+tajivwEtVw3jTgG1HCwIvVQ5rHXvtqoMrgZfUwxQTgZcUxNpzDdjd7nUJ2EOnUwIvqX2zDm947akzKIGXOodIkArYS0dNAi+HbmdIcNxpa9NvBF6qKKa+305bVTEP8NiqirWh7bWLTocEXqospsIP2FVnQAIvVRdT4gfsppMegZfa4paX8dpd5zkCL6e6n7sF7AkBR+ClTt0ykwF76WxG4KWOdumTOa+to7I98HIlO2nhsXXkqPfAy6UO6FoeW3Vx64GXqotJ2gJ21WmKwEvVxaQFAduO6wReqi4m8ARspiFTujtlNUFXCdBDJyDWcMrTzjkE5KljDtMjqwmK3CsvHWboHnnbkQWPrN/Mx5rmC5NuKnyPvHWiROf2HpWLnT4IyEWnD7JHVhN0BkKqIG66RORRudlJgoDcdJJgeWQ1QWego8phfWPilIedCwjIU+cCukdWE3QEMqoYTjpA8qi8bY8/IG/t8ZdHZGoe7eR7Kkq8lt8XwDHZfv32ykX79dsjqwk6PBEphbRbPz2ymqDd87DZQf8yPHK3E9MBudtnWB5ZTdDuWSjxogzxyAReavqAvLRTnz0ycZeSPiBj/lwcB5tKYCp6j6wSWJ9bOGXcvTIlr6yLbvL0yHh76vmAXLRL3z0yzp5yPiBXbdI3j2y3eXkO4mD4TS4emYirTyy88tAWffbIOoXcquv1S9yxn0de+uIlb6+ss8BpeeStU/MpIG/tzzsONlW+FPIeWZVvTo6DkuqjKo+swjel6pFx8spevbJOBSbPwaKPKavf+ZCYkO85SHmL9/JNdonX2J6DFL1D1x155amdec/Boq9byg7I+pJnew6q5OWPAvLWvrznoCreqq/pHpVV8eJMHLIKXp1Q9cpZu/Keg6p3ca4BGfOnnfyyU72ro8deu2lTfvlXRGw1hdfu2pSfAVvXU9oh60dtfVW2esDGzVO+B+ypTXkfshr1LggjYC/tygf3SL2rhoHH1gHctgIVVe/Cf4+tepekyWOr3rWz5E67aGN+Beyqs72BjKp38xwBm1hL+R6wm7bme8Am2KawZd8obMlaa8DWR7dhe7hR75ZFFee18fcrbEVK3ChMArZuAQvbXhKPQSbqtLtOxadASR24pdjw2F1Nzx04qXq36YNip62m5w6kVL1bdYrGaavpuQMrVe8W9WictpqeO9BS9W7W/5y2mp478FL1rg5ve201PXfgJWIdBg7YanruwEsd6F498LKr6bkCL4duPOiBl/rEeazAS/uMN6SSbajpuQIvEQMdeKkPrtoKvFS922KIVL1bV+Cl6t0a3bHqXX1s3Z22LuNogZeqdynfm9ee2q0PvFS9S/kesJe26wMv9Yk85XvA3tqvD7ycanpSlTltfSKyWuDlVNNzNo/9clHio7aanrME7Kot+8DLqaYnOZDXbnZwPmCr6Tl2wO7atA+8VL1L+R6wp3btAy9V71K+B+ylbfvAS/uUibXptbf27QMvVe9Svnts1bupBl7qLjrKd4+tD7pZbaM4bTU9qZm9tj7TKTN7bTU9+w7YTXv3PWCr6dlnwNZHLqUFbH3z3EfAHtq8LwGbWIzXC9hTm/c5YBOLKd8D9tLm/Q7Y+lioB17qN4V0wWnzm0357rFV9OoeVK9NLKZ+D9i6WiX3gE0QoIAP2FWb9zVgEwTUafTa+kAjl4BNEJgt8JISN82cAvbQJzOBl7qfg9UTsJdu9wm8REzMnAF76yafwEvVvnIQj9pdxa++tXzUllgfqw+vrQsFqudlV/Vr9y057aKbeDwvu8rfDGG9NrEYXxCw9QF5SgFbFwFVz0uJ+9qel51S1/rAXnto897zEpvqJh3PS4lJFTwvOzUwc+B5SemqzXvPS4l3L56XJH3avPe87KqCW/G8lLjLfXvtohtyPC8lnmV5XnbVwVT0D6XmlybeeXledhXCurvJa+urp+V5KTGlxwrYuuVneV52al4W/QzYU5v3npedote69F57afPe8xK/o5trWsAmFlNZemyqYWJ/8dhFlwZMz0uJeZnssXUJoa6T99pVl9HsgK1rH2bgpQpiSvuA3bR5H3ipipigFrC7Nu8DL1USU9wH7KnN+8BL1cQQM2Av3cQVeIl4U94H7K3Ne93W86BN+Wt7KE7b7s+zu2EetdX53NtjI9bnMQFbrc89A7a+gR0tYKv3uUfAbtq8LwFbzc/dAnbX5n0O2Op+7hqwhzbvd8BW+3MHXqouzvYF3aO2+p878FJ1ceojYKsBugIvKYD1XZzHbuqArsBL3XawGL3XVgt0BV42/d0KUMVrqwe6Ai8RM5UpYKsJugIvEevr54CtLugKvFRdTLkbsNUGnYGXqourffv8qK0+6Ay8VF1M8Raw1QidgZeqi3OrHlt1MWW+x1ZdnFr22C93fj9qZwjYUsBWL3QGXuqqhVUDL7uaoTPwUnebzRp42e3T/cBLXU8xauBlVzt0BF4invAqYKsfOgIvVRe3GnjZ7XKEwEv70LkGXqouBsJjqy4uJfBSdTHFxJ5OO2vzPvBSdXHS17VOWzeUlMBL3WCxderQaVdt3gdeDnVF1cN22l2b94GXiG132GsPbd4HXuqqF0qpgK37HEvgpa5PY2kF7KXN+8BL1cVUywFbl9fkwEvVxbro12mrLlZR57V1WVlbHlt1ccmBl6qLkQZs+9sWAi9VF1ORBOymzfvAS7vAjATca19XoHptfaetaxmdtr4sJrFqTluf/pJEeG19IZ8ev7D5wsSs4h2wdala6h6bAlhXTnnspbvTUvPYqosp8z226uKWSsAu+qK2BWzdhIYJo/YbxI/X9uo+1Zcre7/jNuDXf0XCm/5+IyDf8Fckffkdf0US2j/4L1l6rfuC8T3ISe9zXUWc7a0+fbjYWtdF2NW4+qDy/Nyr+4TL433C//yzm25dK7qmQP/c3vvk7598cfvLn25/+dtf/+Nvf71989mnX/3hi4e7mZ/+BybxVFAKZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iago3OTYwCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nD2RS27kQAxD9z6FLhCg9Hedp4NgFj33385TuTMLQwQll0iq75YlofKldktH85l86+V1OPl7efZBnk518dinvi6P/DDrqW6fjn0YrS1T9JZK+Cpwzz699xS7FRrgnpJLHLoRFAG9Afs+f2RQEZDbaOh2KXSab6neYkz2iiNJpW2L78dJ5D71dc0Lgwotrcl/S6pGbJvCruM+/UkhmKYDclS1LbGaefSzDyMEskcWK1CZJT07Mp8g31fEf/gb5fv6c81k1cQayw7yDLzc4uRUNkqtFZ+FOyJh3tZEM0r1TomJdCIibEWT7/Gtkx3blbWudar1eDgId4oK5ZSTndqkbpZyh8w6fLmfQoRwgHkfq9EhuobPeRYyk4eayunMZnktEEEXE4bwsjr3pOOgfo4VRHAqUumAksMWIhJLOSd99kzQwak1TkC/kb2I7+cftXaAGgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODkgPj4Kc3RyZWFtCnicNY3BDcAwCAP/TOERAgRI9qmqPtL9v4VE/dgnyxiLiQa1FGdBeMPFxEM3viRxaGUWUI6kPg3Wi+rkkPiADEsyrsVscdvOERCvDovtRI/9TxY9dH/sVho2CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDEgPj4Kc3RyZWFtCnicPY8xDsQwCAR7XrEfQAJsbPyenKIrfP9vD8dJCsRoQbvgwyBgq1nS0aTAa8dHyWqAXfAjkwZWE2i3hFagdSmhOGjprCMQbVvUux/0uk7ikUvFkqo91PqmiOXu0CtGt2kBj5452btCm4PLNRkFmTgpT1mHTtL02WQeUIskl3Frz0Pz/WfSl84/GAEuTQplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA4MSAvUSAxMDcgL2sgMTIxIC95IF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9RIDE3IDAgUiAvayAxOCAwIFIgL3kgMTkgMCBSID4+CmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI2NCA+PgpzdHJlYW0KeJw9UrmRAzEMy7cKlsBfUj2+uXFg958ewD07MTFLEQBB925RORs/bSXLj/zYZWdJ5Jb3oG3yuqLqBqmbIHPJcckVYpbyuBIkFi1lJtZnqoPycQ1qFb7wEzMT0yFJxBJyUo8irI+vg9f1HNxfN+n8GhkfdGxQekuSq6BUw75ytBI7lupdg+yDppvS6jPTruyApfGGrNSkTn8d9b8jLMKk3khFByEWv9PLHbIspBzU27l+A+Fd7YJYT6087BBp3lZ6SxXM5swETBltO6yAtVljwlQJ8BbNIdRaiMwXOq2I+eTc0cE0VXkaIsNShYPtPaM1XOgaEkvD+UnGBOa/8PqsyG1//wBwaGe6CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1NiA+PgpzdHJlYW0KeJwzNjZXMFAwNDJX0DUyNlUwMjRQMDczUUgx5IIxc8EssGwOF1whhAmSz4GrzOHK4EoDAGs6D4cKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDczID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhyuBKAwAeiRaVCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OSA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuDK40gD6qRZFCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzEgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5NSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzNiA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDk0ID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDEgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MiA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NyA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxOCA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM5ID4+CnN0cmVhbQp4nE1QyW0EMQz7uwo1MMDoHLseB4s8sv1/Q8oJkpdoS+Kh8pRblspl9yM5b8m65UOHTpVp8m7Qza+x/qMMAnb/UFQQrSWxSsxc0m6xNEkv2cM4jZdrtY7nqXuEWaN48OPY0ymB6T0ywWazvTkwqz3ODpBOuMav6tM7lSQDibqQ80KlCuse1CWijyvbmFKdTi3lGJef6Ht8jgA9xd6N3NHHyxeMRrUtqNFqlTgPMBNT0ZVxq5GBlBMGQ2dHVzQLpcjKekI1wo05oZm9w3BgA8uzhKSlrVK8D2UB6AJd2jrjNEqCjgDC3yiM9foGqvxeNwplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM0ID4+CnN0cmVhbQp4nC1SS3LFIAzbcwpdoDP4B+Q86XS6eL3/tpKTRUYOYPQx5YaJSnxZILej1sS3jcxAheGvq8yFz0jbyDqIy5CLuJIthXtELOQxxDzEgu+r8R4e+azMybMHxi/Zdw8r9tSEZSHjxRnaYRXHYRXkWLB1Iap7eFOkw6kk2OOL/z7Fcy0ELXxG0IBf5J+vjuD5khZp95ht0656sEw7qqSwHGxPc14mX1pnuToezwfJ9q7YEVK7AhSFuTPOc+Eo01ZGtBZ2NkhqXGxvjv1YStCFblxGiiOQn6kiPKCkycwmCuKPnB5yKgNh6pqudHIbVXGnnsw1m4u3M0lm675IsZnCeV04s/4MU2a1eSfPcqLUqQjvsWdL0NA5rp69lllodJsTvKSEz8ZOT06+VzPrITkVCaliWlfBaRSZYgnbEl9TUVOaehn++/Lu8Tt+/gEsc3xzCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjAgPj4Kc3RyZWFtCnicNVJLbgUxCNvPKbhApfBPzvOqqou++29rE70VTDBg4ykvWdJLvtQl26XD5Fsf9yWxQt6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPViZLxUi1M/06DqocEqfgVcItxQbvINJAINq+AcepTMgUOdAxrtiMlIDgiTYc2lxCIlyJol/pLye3yetpKH0PVmZy9+TS6XQHU1O6AHFysVJoF1J+aCZmEpEkpfrfbFC9IbAkjw+RzHJgOw2iW2iBSbnHqUlzMQUOrDHArxmmtVV6GDCHocpjFcLs6gebPJbE5WkHa3jGdkw3sswU2Kh4bAF1OZiZYLu5eM1r8KI7VGTXcNw7pbNdwjRaP4bFsrgYxWSgEensRINaTjAiMCeXjjFXvMTOQ7AiGOdmiwMY2gmp3qOicDQnrOlYcbHHlr18w9U6XyHCmVuZHN0cmVhbQplbmRvYmoKNDYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxOCA+PgpzdHJlYW0KeJwzNrRQMIDDFEOuNAAd5gNSCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzMgPj4Kc3RyZWFtCnicRY9LDgQhCET3nKKOwMcf53Ey6YVz/+2AnW4TYz2FVIG5gqE9LmsDnRUfIRm28beplo5FWT5UelJWD8ngh6zGyyHcoCzwgkkqhiFQi5gakS1lbreA2zYNsrKVU6WOsIujMI/2tGwVHl+iWyJ1kj+DxCov3OO6Hcil1rveoou+f6QBMQkKZW5kc3RyZWFtCmVuZG9iago0OCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MCA+PgpzdHJlYW0KeJw1UjluBDEM6/0KfSCAbtvv2SBIkfy/DanZFANxdFKUO1pUdsuHhVS17HT5tJXaEjfkd2WFxAnJqxLtUoZIqLxWIdXvmTKvtzVnBMhSpcLkpORxyYI/w6WnC8f5trGv5cgdjx5YFSOhRMAyxcToGpbO7rBmW36WacCPeIScK9Ytx1gFUhvdOO2K96F5LbIGiL2ZlooKHVaJFn5B8aBHjX32GFRYINHtHElwjIlQkYB2gdpIDDl7LHZRH/QzKDET6NobRdxBgSWSmDnFunT03/jQsaD+2Iw3vzoq6VtaWWPSPhvtlMYsMul6WPR089bHgws076L859UMEjRljZLGB63aOYaimVFWeLdDkw3NMcch8w6ewxkJSvo8FL+PJRMdlMjfDg2hf18eo4ycNt4C5qI/bRUHDuKzw165gRVKF2uS9wGpTOiB6f+v8bW+19cfHe2AxgplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjUxID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjUwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc0ID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago1MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago1MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYgL2VpZ2h0IDY2IC9CIDc2Ci9MIDkxIC9icmFja2V0bGVmdCA5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDEwMCAvZCAvZSAvZiAvZyAxMDUgL2kgMTA4IC9sIDExMAovbiAvbyAvcCAxMTUgL3MgL3QgL3UgL3YgMTI0IC9iYXIgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIxIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIwIDAgUiA+PgplbmRvYmoKMjEgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMyAwIG9iago8PCAvQiAyNCAwIFIgL0wgMjUgMCBSIC9hIDI2IDAgUiAvYmFyIDI3IDAgUiAvYnJhY2tldGxlZnQgMjggMCBSCi9icmFja2V0cmlnaHQgMjkgMCBSIC9kIDMwIDAgUiAvZSAzMSAwIFIgL2VpZ2h0IDMyIDAgUiAvZiAzMyAwIFIKL2ZpdmUgMzQgMCBSIC9mb3VyIDM1IDAgUiAvZyAzNiAwIFIgL2kgMzcgMCBSIC9sIDM4IDAgUiAvbiA0MCAwIFIgL28gNDEgMCBSCi9vbmUgNDIgMCBSIC9wIDQzIDAgUiAvcyA0NCAwIFIgL3NpeCA0NSAwIFIgL3NwYWNlIDQ2IDAgUiAvdCA0NyAwIFIKL3RocmVlIDQ4IDAgUiAvdHdvIDQ5IDAgUiAvdSA1MCAwIFIgL3YgNTEgMCBSIC96ZXJvIDUyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjIgMCBSIC9GMiAxNSAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzkgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago1MyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjIwMTI0MTE1MjA5KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNC4zLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNC4zKSA+PgplbmRvYmoKeHJlZgowIDU0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDIwNjMwIDAwMDAwIG4gCjAwMDAwMjAzOTcgMDAwMDAgbiAKMDAwMDAyMDQ0MCAwMDAwMCBuIAowMDAwMDIwNTM5IDAwMDAwIG4gCjAwMDAwMjA1NjAgMDAwMDAgbiAKMDAwMDAyMDU4MSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDAgMDAwMDAgbiAKMDAwMDAwODQ1NiAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDg0MzUgMDAwMDAgbiAKMDAwMDAwOTc5OSAwMDAwMCBuIAowMDAwMDA5NTkxIDAwMDAwIG4gCjAwMDAwMDkyNjIgMDAwMDAgbiAKMDAwMDAxMDg1MiAwMDAwMCBuIAowMDAwMDA4NDc2IDAwMDAwIG4gCjAwMDAwMDg4ODcgMDAwMDAgbiAKMDAwMDAwOTA0OCAwMDAwMCBuIAowMDAwMDE4OTkyIDAwMDAwIG4gCjAwMDAwMTg3OTIgMDAwMDAgbiAKMDAwMDAxODMxNyAwMDAwMCBuIAowMDAwMDIwMDQ1IDAwMDAwIG4gCjAwMDAwMTA5MDQgMDAwMDAgbiAKMDAwMDAxMTI0MSAwMDAwMCBuIAowMDAwMDExMzc0IDAwMDAwIG4gCjAwMDAwMTE3NTQgMDAwMDAgbiAKMDAwMDAxMTg4MiAwMDAwMCBuIAowMDAwMDEyMDI3IDAwMDAwIG4gCjAwMDAwMTIxNjggMDAwMDAgbiAKMDAwMDAxMjQ3MiAwMDAwMCBuIAowMDAwMDEyNzk0IDAwMDAwIG4gCjAwMDAwMTMyNjIgMDAwMDAgbiAKMDAwMDAxMzQ3MSAwMDAwMCBuIAowMDAwMDEzNzkzIDAwMDAwIG4gCjAwMDAwMTM5NTkgMDAwMDAgbiAKMDAwMDAxNDM3MyAwMDAwMCBuIAowMDAwMDE0NTE3IDAwMDAwIG4gCjAwMDAwMTQ2MzYgMDAwMDAgbiAKMDAwMDAxNDgwOCAwMDAwMCBuIAowMDAwMDE1MDQ0IDAwMDAwIG4gCjAwMDAwMTUzMzUgMDAwMDAgbiAKMDAwMDAxNTQ5MCAwMDAwMCBuIAowMDAwMDE1ODAyIDAwMDAwIG4gCjAwMDAwMTYyMDkgMDAwMDAgbiAKMDAwMDAxNjYwMiAwMDAwMCBuIAowMDAwMDE2NjkyIDAwMDAwIG4gCjAwMDAwMTY4OTggMDAwMDAgbiAKMDAwMDAxNzMxMSAwMDAwMCBuIAowMDAwMDE3NjM1IDAwMDAwIG4gCjAwMDAwMTc4ODIgMDAwMDAgbiAKMDAwMDAxODAyOSAwMDAwMCBuIAowMDAwMDIwNjkwIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNTMgMCBSIC9Sb290IDEgMCBSIC9TaXplIDU0ID4+CnN0YXJ0eHJlZgoyMDg0NwolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-01-24T11:52:09.846078\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYwOS4xMzQzNzUgMjI2LjE4ODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTIgMCBSID4+CnN0cmVhbQp4nO1aS08cRxC+z6/oIz7QVFW/j7aIkSxFETZKDpYPFsEEwiOAiZX8+lTP7G539Tb7cJyVpYAE7H5UfdX1zUxXVS+oLgdU5wrUJX9/UaiO+Pt8AH53PXhIGo01wfHbq/otkdcYI7+6Ytv63W/D8Gk4eMkkD+x0NAzW6DQ5maDd+CIz4xJ6VaMERkc/wYWhRsdAd6pD71xU6L02pO7P1C/qRh28pLweUm84O85UR84VtE+AyUOIlhd6cHj258Xp2dujV+r0ob/q/kKGd8OxupvHAFazisF6MrKOzlgNMw2GV3xBvgx3/BPUPjCXQU3oPGXVdXLq9Hp4daIOXqNCUCefxmt18uvwXu0hALxQH9TJm+GHk+F4XNa30Wc4UlIfdEFHxES+zqhCt1VoLeFKjdA6Dclg8EBgNxAKdyUUBdQ+JhtCnVeFbivUWsKVQpGLOgUIFMBC3EAo2pVQJjrtfACKdV4Vuq1QawlXP3WBdLSRQgSPtIFQZldC2ZS0tdaFJDaTgm69Oa0jXCmUjV4Hvq0oQUS/gVBWCCU2ujQXLGkWHmlGlN21hbwFMsnBa5qx7v3+Qp1c/veCb17Bvr4WcILLbMuPL2lSxuhgfS63rcxRmxDTKNRcb1PEvuOFQKaC8uL0OrvvH55dfvz58d3Hm4f964ubxwd1eKuOd6Wqd5r8kqoLdFtVK7qias3WV9Wjtn5TVen7VzXxgxiXVF2g26pa0RVVa7a+qpFbxripqvj9q4oEOsCSrAXeVteasAgr+JZrE2iXjdBrFrAnbtlvd1aVSkY2akvLEi3grSWqCCuJar4nJbJWe1ojEe5eosAD03IhKfDWElWElUQ135MScaNj+uUEevvdjiQqTcz1U3PhdhLVhEUiwfeURAS8B/VrQ5HIyK4mu+9nIuTKw8bz53l1Q/PX2NA4nTCkMd4+t/XCMIx2xzO7EA1nkBslaTdf3t770ZBFADQ+YKaEbhPFXInHIrfYjyuSD0+Q7B3M/mB8QguV64J8WigPcQF5PgvL3OrrW7h8tVG78Z7CPCJHT8ENkOv49BVUlt3FSMZRUm8329d7j9V4tznHiyA0wroDjsa84gApxqZmLFDZ34TI82vwVhgvQGnLNdVGZ5Jk7qGjeb73YjDoUNjXsEwTkSu3By4t0qGCGwcyfPdF75sIPXhyMDyuG2+xiVBgmTFaz3u9xdAEKHBjX44NhH0Pnhw89ymJH7kmQAU3KUfeGmKwpolQwY1D4j0sOP4lHXrw6JB3JuMpWRmhgmXOhFYHBzzZSvsCN/b50M5EHvCkfQ+eHPITSZ6wCVDBMmXiCp3QJN9EqODGwYM2wAWpidCDJ4dy6iEcCtzkHI2GEMg0AQrc2CfLm4lNseHvwaODAaejo2BlgBqWKRsMmizYJCPUcONAkTuaSE7uQl14crC5gfYAUToUWOZsHA9CbOSbAAVu7D3l0uGw4e/Bk0OwmssbhSZABTcplyMb4VDBjUPixthZLo7SoQePDhZ4GrEsnoxQwTJni0kHA5RkgApu7A1q5L3BNvw9eHKwpB0XLpAFoYZlytZxH5OMc0k6VHDjkFcY0WAToQdPDuzvuXXzTYQCNzlHrl5ck6kJUODGvpw3CfsePFVj5AJmyBgZoIab8p0nUu7looxQw42D4QKW+9QmQg+eHHjcSInVbiIUWObsHLc10fD1aVqKBdzY+6BDQJQ1pIdO5oHLF3c/vqGv4CbhxOWLuye5e1WoNO8OwOvm4m06vLqvU3VfN4i+7n7q/LHpBNWqTnDY0PL+fDYQjGednc4wn0r8COrwdmGFyFcvBMd3Iql97g/5RvkmVrDOYCOWbxPqOa/nvJ7zes7rOa//WV5ff/43P6uJJk2V1+QizEXWIpfTXIRn9dg63PSsZqMz+LyAciz4b/7Ro/ep36rzye0+Otz29BNyXqpqftS5+ACGRzye8NLkmWae1QkmyRPMnx4///H4WT1cnN98vFKfbu/V32f3L9iVr9j8S+3dqosbNhMHwsM/gkhiTAplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjE1MTEKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicPZFLbuRADEP3PoUuEKD0d52ng2AWPfffzlO5MwtDBCWXSKrvliWh8qV2S0fzmXzr5XU4+Xt59kGeTnXx2Ke+Lo/8MOupbp+OfRitLVP0lkr4KnDPPr33FLsVGuCekkscuhEUAb0B+z5/ZFARkNto6HYpdJpvqd5iTPaKI0mlbYvvx0nkPvV1zQuDCi2tyX9LqkZsm8Ku4z79SSGYpgNyVLUtsZp59LMPIwSyRxYrUJklPTsynyDfV8R/+Bvl+/pzzWTVxBrLDvIMvNzi5FQ2Sq0Vn4U7ImHe1kQzSvVOiYl0IiJsRZPv8a2THduVta51qvV4OAh3igrllJOd2qRulnKHzDp8uZ9ChHCAeR+r0SG6hs95FjKTh5rK6cxmeS0QQRcThvCyOvek46B+jhVEcCpS6YCSwxYiEks5J332TNDBqTVOQL+RvYjv5x+1doAaCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4OSA+PgpzdHJlYW0KeJw1jcENwDAIA/9M4RECBEj2qao+0v2/hUT92CfLGIuJBrUUZ0F4w8XEQze+JHFoZRZQjqQ+DdaL6uSQ+IAMSzKuxWxx284REK8Oi+1Ej/1PFj10f+xWGjYKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0MSA+PgpzdHJlYW0KeJw9jzEOxDAIBHtesR9AAmxs/J6coit8/28Px0kKxGhBu+DDIGCrWdLRpMBrx0fJaoBd8COTBlYTaLeEVqB1KaE4aOmsIxBtW9S7H/S6TuKRS8WSqj3U+qaI5e7QK0a3aQGPnjnZu0Kbg8s1GQWZOClPWYdO0vTZZB5QiySXcWvPQ/P9Z9KXzj8YAS5NCmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNyAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDgxIC9RIDEwNyAvayAxMjEgL3kgXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTQgMCBSID4+CmVuZG9iagoxNSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTQgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTcgMCBvYmoKPDwgL1EgMTggMCBSIC9rIDE5IDAgUiAveSAyMCAwIFIgPj4KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVQS64DMQjb5xS+QKVAEgjnmap6m95/+zCoixHW4B/x65g4hpcs+BL4VrxlrNgwU3zHUi2kdmDrQHXhXMUz5AqOXohN7LTgXLa5SaSuIEMiSiPbckOXULQpOiV/b5pbuim3J02abtPKwNTLkLMjiBhKBktQ07VowqLtqfid8oy/OosXfscOK3Tc4dNTEfU9w2c+iEu9xvao2ZlEui/IkNOaSwlNNNnR78gUzjw3pJDOIEFSXIJrZZD96ZejAxIwMbcsQHZXopwlacfSvzN40ucfYVxUjQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MyA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4crgSgMAHokWlQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjkgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrgyuNIA+qkWRQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzNiA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTQgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFkM7jSABXzCnwKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjM3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKMzkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjAgPj4Kc3RyZWFtCnicRZA5EgMxCARzvYInSFyC96zLtcH6/6kH1kei6QI0HLoWTcp6FGg+6bFGobrQa+gsSpJEwRaSHVCnY4g7KEhMSGOSSLYegyOaWLNdmJlUKrNS4bRpxcK/2VrVyESNcI38iekGVPxP6lyU8E2Dr5Ix+hhUvDuDjEn4XkXcWjHt/kQwsRn2CW9FJgWEibGp2b7PYIbM9wrXOMfzDUyCN+sKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzNCA+PgpzdHJlYW0KeJwtUktyxSAM23MKXaAz+AfkPOl0uni9/7aSk0VGDmD0MeWGiUp8WSC3o9bEt43MQIXhr6vMhc9I28g6iMuQi7iSLYV7RCzkMcQ8xILvq/EeHvmszMmzB8Yv2XcPK/bUhGUh48UZ2mEVx2EV5FiwdSGqe3hTpMOpJNjji/8+xXMtBC18RtCAX+Sfr47g+ZIWafeYbdOuerBMO6qksBxsT3NeJl9aZ7k6Hs8Hyfau2BFSuwIUhbkzznPhKNNWRrQWdjZIalxsb479WErQhW5cRoojkJ+pIjygpMnMJgrij5wecioDYeqarnRyG1Vxp57MNZuLtzNJZuu+SLGZwnldOLP+DFNmtXknz3Ki1KkI77FnS9DQOa6evZZZaHSbE7ykhM/GTk9Ovlcz6yE5FQmpYlpXwWkUmWIJ2xJfU1FTmnoZ/vvy7vE7fv4BLHN8cwplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzY2VzAAQl1LIwVjINvcyFIhxZDLyNQEzMzlggnmcFkYg1XlcBlAaZiiHK4MrjQA+4QOHwplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTggPj4Kc3RyZWFtCnicMza0UDCAwxRDrjQAHeYDUgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTMzID4+CnN0cmVhbQp4nEWPSw4EIQhE95yijsDHH+dxMumFc//tgJ1uE2M9hVSBuYKhPS5rA50VHyEZtvG3qZaORVk+VHpSVg/J4Iesxssh3KAs8IJJKoYhUIuYGpEtZW63gNs2DbKylVOljrCLozCP9rRsFR5folsidZI/g8QqL9zjuh3Ipda73qKLvn+kATEJCmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDAgPj4Kc3RyZWFtCnicNVI5bgQxDOv9Cn0ggG7b79kgSJH8vw2p2RQDcXRSlDtaVHbLh4VUtex0+bSV2hI35HdlhcQJyasS7VKGSKi8ViHV75kyr7c1ZwTIUqXC5KTkccmCP8OlpwvH+baxr+XIHY8eWBUjoUTAMsXE6BqWzu6wZlt+lmnAj3iEnCvWLcdYBVIb3TjtiveheS2yBoi9mZaKCh1WiRZ+QfGgR4199hhUWCDR7RxJcIyJUJGAdoHaSAw5eyx2UR/0MygxE+jaG0XcQYElkpg5xbp09N/40LGg/tiMN786KulbWllj0j4b7ZTGLDLpelj0dPPWx4MLNO+i/OfVDBI0ZY2Sxget2jmGoplRVni3Q5MNzTHHIfMOnsMZCUr6PBS/jyUTHZTI3w4NoX9fHqOMnDbeAuaiP20VBw7is8NeuYEVShdrkvcBqUzogen/r/G1vtfXHx3tgMYKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1MSA+PgpzdHJlYW0KeJwtUUlyA0EIu88r9IRmp99jlyuH5P/XCMoHBg2LQHRa4qCMnyAsV7zlkatow98zMYLfBYd+K9dtWORAVCBJY1A1oXbxevQe2HGYCcyT1rAMZqwP/Iwp3OjF4TEZZ7fXZdQQ7F2vPZlByaxcxCUTF0zVYSNnDj+ZMi60cz03IOdGWJdhkG5WGjMSjjSFSCGFqpukzgRBEoyuRo02chT7pS+PdIZVjagx7HMtbV/PTThr0OxYrPLklB5dcS4nFy+sHPT1NgMXUWms8kBIwP1uD/VzspPfeEvnzhbT43vNyfLCVGDFm9duQDbV4t+8iOP7jK/n5/n8A19gW4gKZW5kc3RyZWFtCmVuZG9iago0NyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3NCA+PgpzdHJlYW0KeJxNkEkOQyEMQ/ecwheohDPA5zy/qrpo77+tQwd1gfzkIHA8PNBxJC50ZOiMjiubHOPAsyBj4tE4/8m4PsQxQd2iLViXdsfZzBJzwjIxArZGydk8osAPx1wIEmSXH77AICJdj/lW81mT9M+3O92PurRmXz2iwInsCMWwAVeA/brHgUvC+V7T5JcqJWMTh/KB6iJSNjuhELVU7HKqirPdmytwFfT80UPu7QW1IzzfCmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3NiA+PgpzdHJlYW0KeJw9jDsOgDAMQ/ecwkdofiQHQoiB3n+lKbSL/fQk28XRYFqRArfAyeQ+qdNyzyQ7fBCbIeRXG1q1rsrSmgyLmoy/Dd/dTdcLpjgXwAplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVROQ4DIQzs9xX+QCSML3hPoijN/r/NjNFWHsFchrSUIZnyUpOoIeVTPnqZLpy63NfMajTnlrQtc4C4trwvrZLAiWaIg8FpmLgBmjwBQ9fRqFFDFx7Q1KVTKLDcBD6Kt24P3WO1gZe2IeeJIGIoGSxBzalFExZtzyekNb9eixvel+3dyFOlxpYYgQYBVjgc1+jX8JU9TybRdBUy1Ks1yxgJE0UiPPmOptUT61o00jIS1MYRrGoDvDv9ME4AABNxywJkn0qUs+TEb7H0swZX+v4Bn0dUlgplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDI0IDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQ3IC9zbGFzaCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIDc5IC9PIDkxIC9icmFja2V0bGVmdAo5MyAvYnJhY2tldHJpZ2h0IDk3IC9hIDEwMSAvZSAvZiAvZyAxMDUgL2kgMTA4IC9sIDExMCAvbiAvbyAvcCAxMTQgL3IgL3MgL3QKL3UgMTIyIC96IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMiAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMSAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjEgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjQgMCBvYmoKPDwgL08gMjUgMCBSIC9hIDI2IDAgUiAvYnJhY2tldGxlZnQgMjcgMCBSIC9icmFja2V0cmlnaHQgMjggMCBSIC9lIDI5IDAgUgovZiAzMCAwIFIgL2ZvdXIgMzEgMCBSIC9nIDMyIDAgUiAvaSAzMyAwIFIgL2wgMzQgMCBSIC9uIDM2IDAgUiAvbyAzNyAwIFIKL29uZSAzOCAwIFIgL3AgMzkgMCBSIC9yIDQwIDAgUiAvcyA0MSAwIFIgL3NsYXNoIDQyIDAgUiAvc3BhY2UgNDMgMCBSCi90IDQ0IDAgUiAvdGhyZWUgNDUgMCBSIC90d28gNDYgMCBSIC91IDQ3IDAgUiAveiA0OCAwIFIgL3plcm8gNDkgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMyAwIFIgL0YyIDE2IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzNSAwIFIgL00wIDEzIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0JCb3ggWyAtOCAtOCA4IDggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMSAvU3VidHlwZSAvRm9ybQovVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJxtkEEOhCAMRfc9RS/wSUtFZevSa7iZTOL9twNxQEzdNNC+PH5R/pLwTqXA+CQJS06z5HrTkNK6TIwY5tWyKMegUS3WznU4qM/QcGN0i7EUptTW6Hijm+k23pM/+rBZIUY/HA6vhHsWQyZcKTEGh98LL9vD/xGeXtTAH6KNfmNaQ/0KZW5kc3RyZWFtCmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTEgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iago1MCAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjIwMTI0MTE1MjEwKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuNC4zLCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuNC4zKSA+PgplbmRvYmoKeHJlZgowIDUxCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEyOTM4IDAwMDAwIG4gCjAwMDAwMTI0NDAgMDAwMDAgbiAKMDAwMDAxMjQ4MyAwMDAwMCBuIAowMDAwMDEyNTgyIDAwMDAwIG4gCjAwMDAwMTI2MDMgMDAwMDAgbiAKMDAwMDAxMjYyNCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDEgMDAwMDAgbiAKMDAwMDAwMjAwOCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDE5ODcgMDAwMDAgbiAKMDAwMDAxMjY4NCAwMDAwMCBuIAowMDAwMDAzMzUxIDAwMDAwIG4gCjAwMDAwMDMxNDMgMDAwMDAgbiAKMDAwMDAwMjgxNCAwMDAwMCBuIAowMDAwMDA0NDA0IDAwMDAwIG4gCjAwMDAwMDIwMjggMDAwMDAgbiAKMDAwMDAwMjQzOSAwMDAwMCBuIAowMDAwMDAyNjAwIDAwMDAwIG4gCjAwMDAwMTEwODIgMDAwMDAgbiAKMDAwMDAxMDg4MiAwMDAwMCBuIAowMDAwMDEwNDMyIDAwMDAwIG4gCjAwMDAwMTIxMzUgMDAwMDAgbiAKMDAwMDAwNDQ1NiAwMDAwMCBuIAowMDAwMDA0NzQ0IDAwMDAwIG4gCjAwMDAwMDUxMjQgMDAwMDAgbiAKMDAwMDAwNTI2OSAwMDAwMCBuIAowMDAwMDA1NDEwIDAwMDAwIG4gCjAwMDAwMDU3MzIgMDAwMDAgbiAKMDAwMDAwNTk0MSAwMDAwMCBuIAowMDAwMDA2MTA3IDAwMDAwIG4gCjAwMDAwMDY1MjEgMDAwMDAgbiAKMDAwMDAwNjY2NSAwMDAwMCBuIAowMDAwMDA2Nzg0IDAwMDAwIG4gCjAwMDAwMDY5NTYgMDAwMDAgbiAKMDAwMDAwNzE5MiAwMDAwMCBuIAowMDAwMDA3NDgzIDAwMDAwIG4gCjAwMDAwMDc2MzggMDAwMDAgbiAKMDAwMDAwNzk1MCAwMDAwMCBuIAowMDAwMDA4MTgzIDAwMDAwIG4gCjAwMDAwMDg1OTAgMDAwMDAgbiAKMDAwMDAwODcxNiAwMDAwMCBuIAowMDAwMDA4ODA2IDAwMDAwIG4gCjAwMDAwMDkwMTIgMDAwMDAgbiAKMDAwMDAwOTQyNSAwMDAwMCBuIAowMDAwMDA5NzQ5IDAwMDAwIG4gCjAwMDAwMDk5OTYgMDAwMDAgbiAKMDAwMDAxMDE0NCAwMDAwMCBuIAowMDAwMDEyOTk4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNTAgMCBSIC9Sb290IDEgMCBSIC9TaXplIDUxID4+CnN0YXJ0eHJlZgoxMzE1NQolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-01-24T11:52:10.070970\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# compute input signal\n", "x = np.random.uniform(low=-1, high=1, size=256)\n", "x = np.concatenate((x, np.zeros(1024)))\n", "# compute output signal\n", "yQ = sos_df1(x, a, requantize=uniform_midtread_quantizer)\n", "\n", "# plot results\n", "np.seterr(divide=\"ignore\")\n", "plt.figure(figsize=(10, 3))\n", "plt.plot(20 * np.log10(np.abs(yQ)))\n", "plt.title(\"Level of output signal\")\n", "plt.xlabel(r\"$k$\")\n", "plt.ylabel(r\"$|y_Q[k]|$ in dB\")\n", "plt.grid()\n", "\n", "plt.figure(figsize=(10, 3))\n", "k = np.arange(1000, 1050)\n", "plt.stem(k, yQ[k] / Q)\n", "plt.title(\"Output signal for zero input\")\n", "plt.xlabel(r\"$k$\")\n", "plt.ylabel(r\"$y_Q[k] / Q$ \")\n", "plt.axis([k[0], k[-1], -3, 3])\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Estimate the period of the small limit cycles. How is it related to the poles of the system?\n", "* What amplitude range is spanned?\n", "\n", "Solution: The period of the small limit cycles can be estimated from the second illustration as $P = 6$. The normalized frequency of a harmonic exponential signal with the same periodicity is given as $\\Omega_0 = \\frac{2 \\pi}{P} = \\frac{\\pi}{3}$. The poles of the system can be extracted from the code of the first example as $z_{\\infty 0,1} = 0.9 \\cdot e^{\\pm j \\frac{\\pi}{3}}$. The periodicity of the small limit cycles is hence linked to the normalized frequency of the poles. The amplitude range spanned by the small limit cycles is $\\pm 2 Q$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Large Limit Cycles\n", "\n", "Large limit cycles are periodic oscillations of a recursive filter due to overflows in the multiplications/additions. As for small limit cycles, large limit cycles may be present even after the input signal is zero. Their level is typically in the range of the minimum/maximum value of the requantizer. Large limit cycles should therefore be avoided in a practical implementation. The presence of large limit cycles depends on the scaling of input signal and coefficients, as well as the strategy used to cope for clipping. Amongst others, they can be avoided by proper scaling of the coefficients to prevent overflow. Again, a detailed treatment of this phenomenon is beyond the scope of this notebook and can be found in the literature." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Example - Large limit cycles of a SOS\n", "\n", "The following example illustrates large limit cycles for the system investigated in the first example. In order to trigger large limit cycles, the coefficients of the filter have been doubled. The input signal is uniformly distributed white noise till time-index $k=256$ and zero for the remainder." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxNS40OTM3NSAyMjYuMTg4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCniczZ1Pjy3HceX3/SnuklrwMv9EZkYuLWgswJiNbGJmYXghyJRGMkWZpmVjAH94nxNZ/borDsmnB88QFkChO97trN/NzDoZGRlRVR9/eKmP3z3K4w/4798f9fFL/Pe7l4Lf/vgy63ja7mvgt6/f/dbafFZ3/PQ1Pvn+t//z8vLbly/+Ck18h7/55cvLKM8Wf9PXcxh/QLPFs/Hrd8ZW+tPnsX748/fGuMi3D216DH/UOZ+9Pf7lq8f/fnzz+OKvGlHa42/wtfAVn44vWZ5zl7pnWW5g/OIXX/3b73/z1d/+8ueP33z3ssZzjtV9vid+M77nePm7l189vn29RkE3vrsGOhKWjzXX7VmuDnj5OUbi31++xf+Xx+cFba32tLXmdlwQV27PPR6/+ePLz798fPHX9VHL48vfxkB9+Y8vf//4rPzs8Q+PL//m5X98+fKr4Pp/0j8vv3zc+6cOe24vq9X33+id9VN76KMN/mgfVcOktDqH+xjjo53Uyk/UTQ3UvVgZt4F/Z/3Ubvpogz/aTa3Zc03bu7ut/tFusp+qm3rtz9lW37fBf2f91G76aIM/2k3oymdx7w3/8eIf6ab5k3XTJgnuhtvgv7N+cjd9rMEf7ybvT6v4Uvih7I92k/9U3WRQzLaszNvgv7N+ajd9tMEf7SYb+wlR6rX21vyj3VTLT9VPY9Tn2LgdbqP/zvqp/fTRBn+0n0b3py+fNnu1jy90NYn4+4kJV+T018YIeW1XO/zrJwYMv6ONL/66XY1+9k8/e3z5h//v3f3a6izohdmgLO+doDfrX9jZ39eczefS1r5nHXi2x0An2cai2fbo0tH+7Mt39NWbzr3197egKWyvvP3wmz/y7z//xVd/+PX/+vPf/fqb7z7/4++/+fN3j1/86fGrn6Zn98bHuq9569k36yf27PvmPvTsrbXv79k9nr4X7mNM5vWX9Kz9t+/Z2vezG+/L9z37Zv3Enn3f3IeevbX2/T1b+8C3s+H4ivaX9Gz779+zy+Hi7mL3PdE786f27fsG3zr31p6u5fO5u50PjmfdrXL+fk8f/8BO49sXtvI528P+ELcAaAqbexPePgIklPe1tc/+I5S3P/vc1d5G7p02/9/4xHjuuvbk9vLz+pw3EV/xuV9dn1vw20qn5t8/9+GSf39dEmPT56q+9Jr/9NrWrqWOd1QfGvmHH2jkh77QZ4/LjnFYtVy7af7D7+Mf2nO9gZ9/+Cb+AbPsPql/uKV/fP0DW/MN+rOf/5cXN6zfMZ1rQ2c4POjxgnV0Xv9b+JdVsPNqfbT9+Ns809/tc+taWOJLdef2dz7LwBajx9xsY8/pmJsw28DXBRI2K16trmPFlqX1GR/muHh8eGEN6471q0749h3/q8eMoYf21oWR6PC7og1/YkqW4MBtga9d9zEb+jg4KNzYHfVjhluLPuGHDV9gRhvwKBr0H22Eyte2LvPE1ycHrli9jGUwO3SmFXyBivvBvPY+jxWr7iIHXCOuFL6OGZ8wcjjMzeAI0VyfDT4hOBza1zDkdqyzTAYEKtwmwyws7A9vT3RoI8fAbdjWHuOY+964Chb75+irXZ/FHWVhxQgtGy3owL97JQYHAF6Zj2MeQAUGtuTDvPTrwxseYl9Bt3EflDBjO+rhVnC0MJjYdNIMZVmz8opwPjAWmNnHPIDEK2JOYsvVaj/mPbfxi5cn6GN2OKbpnCUuCAdxY/7XY16zzZgHDtnFYNC6nnXsxs9uCP62tY8V7rjH98ZnHaM5jnmPNkixDVPJfETLWFQMw/zAuvTEDJynQzEHDXOaI9swX+ll0ryf1TAP+L3h6kL4+2VGN25Ox0p96uuy4sqDHNae4IlZgInC+UqMgbsCF4lRgRld5C2YoTd7N1or7knexDGEbWN/X495oAlioOsGOrQRGqS9jsYL8gap9P6OeVVMUHza0HbDbo49vTEPig9eEQtZb32PYx1l1Oh/Y+dNDxDD1T04MDHpH+1jxQDGvMNeaWM+WbQ8ngW/xHhXfgJ39jEbvmGL0cKtNMZldbdoGoM80SktmobzCm24bnyItMUNBzNurLKi//GVakywvZ5l2fSDV9AfZR+zLdw4aAMbhmVt1HrMPtduoYkQcSvxDTEYE9dj07ir0QUxSWGes+LyMQLGzoumMd/GWtdtMYqdsd2YKpArjjhmCv6q1WPGXCu4ryvFefRzL8OC8V9UQsOkgMgFNc3oyHbdApCaGTqBlQouP0YMzWAuL/R1DC/tmCF2wCfWBZ+X2aE2MTiQOkx3O83Dz+plkWaiGQx7CDDtjJ20UDiOTsxA6AQkru9+upzSY692wxQkzab+8x8uu+M2WCGruE3rPK1jAmFW+flSuGq3V/vE/5XTvwsaeszoayhQ3H9QkoZZWC+7Qyt5Vd6AuOb1pSZELSYA5iRupPZqhU8SCgiYgclR+mWHslBoeaOMjtX0DMjCMExqIJVl4raal5k3dcx+LEIDzRwYh9ztHQOCgULjo112rCbjwGDw2nr9OHbJ9VJpK2tdA7XpTHjQYBUEzdqXfc156WN3m2d6VKzTs5eLBqMEvbzsGLMZA9I5gUcsc7RveAsrpjtWzXK+a61w2FqoJNcurNlnvGFfxhmNyUq1i9ub9oZfJnUSH9+4q9plxSQPncRkGvCJhl/2jTGOrsHswP0b6lJrx9i3o4lcIUrbB94gdLht8XnDerhG9XbZMbM4+BwpjML2189TDHldALeN60YfwzftAIzrTl7qmn6wL6xJq8adibG8cDBtagvFbJTdMVq/7KPQmQ6RhvdQ+77saHxcOOjgtU7zmDilHdVE/2EY+sHH4ohVMi7rXGtfuweN7rovpS4bt2O97O4+47oQL0a7z3XhlUCqeV3MNMMXv7ofbonXEM9Fh2Fcg9ugYNiUjDPBV581VnPabY1CnsFVAR9Zlx2+Ztw/Tq94HH2HPwhRhJd0htHgY4Qo0o6ZucmDuxYjVyMQga6EM1BDROEA8ERjvtrxZUJFuUiVedwn2iFLizzYG6JJLLlh75DJGkJKv3XWswrRDocmlHRy3e50QWhn3Mlm9A9uA9zas112sxpSGg6mnaWPdnRaSCntze2YscZCUYjDWwiO1lEX2Cc8psDhX3q5vi6laR0pxQSG+9fssnOMiIOlGhutS48ar1VCSytnM3zSc114ufBNLyGBg1qPsjeu4vCPa6yv+PzVO5hVEKWYPSDGrLFXO1QltJTLccGV7LJDXUrg0PsoI9wFDBv2cCVEtvOb+Gtvbsbz2rXQ9PL6beHPMDDCQcdgcTkN+o42cavAX+dlcTfVcIpojx2MxWSDn1zCtaJPwCkbg9UpJUc1Yd5rhppC1zj3T6d1TJjVR8wR+huXbZ1tBuWCKlnjm3b4NPBYogew/K1t9mof8Pjivh2ccvWIHezYvnMUqi2u6Ji8YcdKh2X36gGDC3N6sofD3KILMLXQyhHHjpsAQulnn4X9xT5aHdGMGWI6ubxite+XHU3WdiYa9wpnBDt3g1gkPOQRc3yucdlxE7/KacNG8owg3Gn0xV5HF/AdXvsS4gT3/OJp1s5tCPNuM1QW6gjPAn5A2HEvYdyiezD28GuPKndqIkD9zG94sOdb0beZIbJoHTdx+2AfmOPrEmvDbfVqR3+0mCBURyhH4NDrKeOoLNwD+CfHLzLuN9v4IPqY1PGtMNSFCuShItTMYZcdK9YaZ8nyBT9qX3YsaqG+UIti+P7n85il7jt6B14f3MXYAVXDPQ//lNflN8c0OvcD7Lac0hH7Smxkrnbg6uCqoSJYq6E5Z8Yavsxq5bpROr3YedkxOacffu54jvoa/GVsbWKW1NgdXN8LkjtrqCx+hHthp5+NUxjuoodqYhO42mkHQz2w7o8z+wf6cF/2CScvZgk3gnueRZFTnorox7Xb4ByX3bBFL+N8L8yeqz/hODOcXMNF3EA7q6KxE73FuOArtt3L4YeTjG8fq01hP1+zGXbMDW7wOV7wxKvVy45d8eJ1sfeAB7zPqsg/xuIa/VAZJtiHB/YJwn74MX2v1Qyb7oKf2Q+8K3ClI0iwG9yFGJdJv+LsF2OTTm/MY9XCOliPRwXVwr1i5OEWCWa7zHBoQk7pWA8ISL3sGwpGnNHD8Tw+CX5B37YYFvpImNvtsi/M+FhtGve0fhbXEbda6CkWHoynn7uR+3L0f+AsDi9oL/t1hM7hgsTXI0oDvhBWjOieiNZZhAVoX3T7x+X52YWPWxl9v45GYqNcj6MPOx2na5a0hXGzyw43xy8ciFO78LFkwIO5tBaK5Ed8YF8jVjwuSFhmPUKVdLAqXfARazeW9359XXjRmMLBw/gA79/LvrHXi7sXEwmL+j52Bpf7IA9ucLbzasaSWK/RwgKzz02BEWVk7xITeFL1iMzkhrr3GC3qk61zM8K+4WcunvfxXjxTmfdrmyG07DSM+BnbGU3GZpedA/YzdxiewY9xVe7PdumvdvrUvOrkjoi76rBj7pQdWxLsg/qHy/aQm0vf4Qq0s35QpeFSx5hwf4bOb5fd8MXbCS/AOZ0RhA9vBvdxP30JATg7lRNrWDFDqJXYbszLPh3uSwuhgibW0/VgMG8zblysAROC0S471uDWTnAFY29nKqBL0HoIKoMMGJQ1Lzu+qsVUqOEWX+0zxrS5CnAJ6wub9nXZjXu368Z9DWXR7th6kiduDuz7z3Whlrib2tlSYafcjz02/C2Ek8FtKPDpfdgxTVcExbhM25lSEFcsqaGPEYHCAmKXHTfEZPMt4oWXlwGviFvD+Lpch7DPeLXDCfBr0LGFWcehgp0uaexDayzwR68hulgaQjcjAAeJqJd9Mp4/YreCG+LaHXCHXOkrHK8HFzrrxKLrYkc34YhgctbXzzs6IKY+LsXQ2/le6JPiNSYhPTMyX3bM7NBNxmnnOdnhGglFDNmkFw1v5cg17Ni+UfwoQfge7cgy11Tc0XFPdG7A9xEAtImbJHQTAwc34HgN1FDG0uIYDt+1vX5407/fVwwa/zvskBp8qWstw1ag2Kudn2mpFXxkYZR3fLpR2tdlh3SFZPIPGZn3y85FLbFwuw6PNFggYl7m2SXCvmZxYeEgY0OUWGDFjqAIC+zYnk9hYQwYcyazwFOG3CgL5jOGSFkY+1k1s3Q6tUtZjNuJriwMwsydWbhVhCQJC+Pe2B8ICyPO0zMLplHl1i+zcOmOPUZiwTQqc2YWzCLs75RlxQmBsvDcbo7Mwlh0BAcSCzwf30tZuGDNnlng92CzIyw8Y4OzJiywQzNbYsF6AoV0YYGdGxhh4fozZ0ks1Hvot7JgSYVLoywMNY2dWSgTkFdhgceM23jMzGIRCc8sxl1mV5bBGC92rpmFIYoxMwukDxqoLJN7VVcWhi2HZRb4yg0qKCzwlc+pSGLBPMLKkFmc2/WtLJhHBfosLJhHZdTMshmvW8pCZxq7pcSClQpCOsqdhdaB2yuz0I6tUcssrdRYclZqpcYZXmbB7czzy6oscICWrcwC92dV0V3mJ8FH28rSmeY4Mgu8n1lFd2kfA9s2YcGiO8wyC9zmUUV3aV9x8JpZJqOkLbPAa7Yiuks7D2eVBX5Nt5pZGLwroruNkecG11pYcCnM9MwCjxn4ysLNKTaqwoJ5BJ8wsTDuXIvoLu0De3FhYdy50MO+t1IZUBLdpR07oC0sFb7TpvN0bwWeE0/mhYXnbFiQhaUzaNIzS+dmWHQX+0goKaRRWOA3LUrJvRV4TXOL7jZ6koxoCsvgmUDJLDws36K7tKOJrixwrQec9NQKj8u36C7t8PhFdxvj05i6mYUh7y26S7tja6csuBT+NLPQBd6iu42xaXjhwsLYdGuWWBiZxoInLIxMw2kSFkam8VtiYVwabSgLz2GG6C7tcFRrZuHJuYvu0j4gJMoCrwk3Xmah6+6qu0zdxpAqC7wmxxKTWuGZuqvuwg6/Q3W3wWtCm5mFx+reLaPw9MtUdhvDF3VkFB6sM9UikcDzZh6BkPAghKfo90Z41nQCtzeSzXQwFV3Goo0SeGuEkeiu48NAdDfVXAaisQNMJJ2H69w93EkYnm6mksvwNBQzk/B0ZQ0hwQzCV1cSzKDKDdG9EaYfLROSD7UAicR41JAFt/MwfjUhiSIf1dvOpJeS9bbzNH5VIYGr5F3lFpv0wihpaoTH8QwlJhJu17qqbXcGm7Ladp7HTxcSOEqzq9jCbvxMaoQH8nNmErsO5zOJMSy1s9YyGm1zZBIGo7GrFxKLcE+WWoai+9GCG0ljrlOJPIcbCffTOyst49OQXyGBs427baxMwqP4nYWWwenKI+ZEgumD+0xJeEC/s84yMo1lTEgwfaD5SsLz+Z1l1ng6zzPwRAIPCXegkvCIYGeVNXhIGGMhYYsQSSHh2bxnkeVR8WLaRCKBf7Tg32SSwZN5zxoL65hDNBZmRtCFZPBc3rPGDp6bDNHYAS97VFcSHst71lgGqG2IxjI+zdIqIeFZvWeNZXS667rD4DRmvZLwoN6zxjI03Uw0lpFpeGVKwmP6lTWWgelqorGMS0PUlYRHmStrLKPSxURjGZQutSgJD+7XBPmtEThG20RjB1rcjGJmEp7ar9HujTCj3000djKxsCwhmTyyXz2RTCZPdNFYJm3BVxKSyfN6bMZSI/CKZheNhZmpCUrCw3ooRGqEmTJdNHYya6d0JeFJ/dyZBL61ddFYxqexA1YSntPPlUmYaNJFYxm0hsQqCQ/p58wk8KxbF41lxBo+oZLwiH5aJsHsqV00luFqrNFKwvP52TMJZg8WASHh6fxWjeUhBoQmkcC6dhONXTya36qxsA+MfSKBdaOrMsnigf1WjWUKwxqeSZjo3ERjmYM2t2psHDxi458agUuEVdFqRuF5vavIMgUebn9GgU89GlNZEgtP611VlgFtG5ZZItWwKAvP6l1lNhKJ4HGmVuBUd4yFsPCo3lVn2SRWiczCj2DshYUn9a5Cy3h2hcDdW2E8u9YhLIxnw2kVFsazi3liYTy7VBMW5kJvV6l1uEbbstQ6T0qZcJRZeHa/VGtZwuiWtRZW91qVhQecS8U2Tqksi60PJiFsZeG5/VK1hd2nZbV1OEeTyp9ZeGq/VG59RVp9ZlmRVa8sPLNfqreMZ1vPest4NnYWysKT/KWCy3g2k+BSKzsy64WF8ezGbKjEwng2vODEwng2vEZhYTwbbhZrGm4sjGfDM0ksjGfXyGBKLDzEx5ooLJH3lTWX51JQV2XhEf4cymKRY59ZLFLslYVnlOh3YYGXhI7MLDy+31NZeH7P7N/MMiP7PrPMSL5XFp7ez6osiwn4WXc3z+636u7m2f3YyuKRg59ZdqTgKwuP7vFrYumMZ0N17yy0DuahJRbaN7btmaWXk2qzUis18vAzS2c8G/6psjSm4tfM0qJWQlk6M/S7svRI0c8sFhn6ymLM0W/KwpT46pmFh/kuukv73GhHWGZk77MS8n0rM5L3lWUyfX8ry2L+PhMNb63wgN9Fd3txJvAvZfHI4M8sHgn8yrKZwj+VhamltSWWykP/JbpLu0UJYmKBnVn8iYXZx4xqZBbGs3kQn1kYz8bGObMwE2CJ7tLuuLuUpUcOf2b58PSDxAKfG/6ysjDJKgrPbq0wC2CJ7nbGs+HAKMuIDP7MwiSAJbpLu0WRVmZhPiIrm+6tMAVgiu7SPqK2JrOsSOzPLB5p/crCJL8uutvrZtJYySzMAZiiu7TvyGlPLK1EWn9iaSXSVYWlVWb1i+7SPiIZ994KcwCY0JpYWmNSv+gu7StSJO+t9EjpZyXMnaUzqV91l/HsyGS7t8IcACZ8ZRZj/r3qbouE8ZZZRiT6K8tgor/qLuPZkR1yb4U5AEylyCyLef6quwxox0H9vZUVWf7K4szyV91tzALgkem9lc3cf1MW+ExxHJdZduT+J5ZeIvNfWGCfcTCSWDqzADzrbme2FoPuiaUzSbqq7vYWef+ZpUXWv7J0Zv2r7vZI4866C6tHcCqzMAW4qu4y6TsiIPdWRmT8Kws/U1V3GdeOXem9lcmE/6Eskwn/qrsMbMcG4d7KinR/ZVlMSi1lZxZmAaysu4xsh1uTWVjaSDcgs+zI9s8sO3L9hYWx7RDkxGIlnt2RWIwJl30Li1Wm+g9hYRJ+TKR7Ky0S/ZWl8RdTFmYBrKy71pn/P5WlP+PDwmJRA5BZLCoAlMVYAVCVhVkAM+surGt01V0m61tkliaWGfn/mWVG9r+yMAcAW2FhiRKerLuMcEMGlIU5ANiUCItH8n9m2ZH6ryzMAYB7mFkY464z6y5j3LWp7jLIzeP7zMIgdxlZdxnk5oBmFlaP7KjpTCzMAhhZd2HF11HdHcwBwOQVFnhNjqGe91YsagGUhTkAvpXFWAvACutbK4OVAKq7gzkAvpRlRiVAZplRB6AszAHwqSyLdQAtsyxWAajuDuYAuCkLfG8bJbN41AAoC3MAvCvLfsZtd2+Fse5eVXcZ7Oa2IbMw2N34kLx7KzXqAoSF0W46cJmF0W44PJmlsSpAdZfhbi6lwtKjKiCz9CgKUBbmACzV3RkFFz2zGEsCVHdZZMfpJSwjSgIyy4iCAGVhDsBS3YWd5syyWA+guht1nkt1F3bWA2QWj2oAZWEWwFLdnZsJ1SuzsGC8QPIzC9MApuoug96GGX9vhUFvK8xZv7Mw6g0gYWHUm2KfWoHv3UsRFoa921TdZdi7wadMrfQoEFAWZgJM1d0VlXI1szAVYC9lYSrAVN1l3Lu0nVlGVAcoC3MBpuru4tO3mmcWJgNsUxYmA0zVXdhZNJBZVpQMKAuzAYbqLuycjJmF6QC7KsuOJ30oy46CgcTiJcoFhIW1A2Oo7rJmAbKbWJwJAe7Cwrg3XE9hYdwb2/LM0qK2QFk6awtUdxn3pouRWmFKAJ+tlFmMlQWqu4x7w1XNLCPqCpQFn6mj1IwyWFaQZZdh7xJ1KwllsqjAZyZZUVSQSVaUFCjJYknBEhJnRUEWXedf4uNCwgcqSUpJ9x0VBZlkRz2BkOzCigLLJDBT/RIJK+txQwjJriwoaJmEtcXYdSUSVjNhC6wkjfUEVUg+PAvy1ghzApYKLgPexgKtRGJRTZBJLGoJlMRYTeBCMp7hz6ZGmBOwVG4Z7o5HHySSGbUEmWRGJYGSLNYSDCFZLCXIYstgd5kqtgx2l96FxKOSIJPsqCNQknjqXEskVpgUsJPU0oo7RKSWdveTv/SOBEte1BHgQrdGalQRZBL4Aawj2ELCpIDNCqJbI8wJmCK0VjrLCJaQ9KgiyCQWNQRKYqwimELCpIDdMkmU34nM0o5bx4RkRg1BJplRQaAkfC4Hy5USCZMCfGeSxQICEVljkBv+qpB4VBBkEo/6ASVBi7VljaUZSjATCUPcWJGEpJ4HfmSSWqJ+IJHUGtUDQlL51M+aNZbmzUfrpkYaiwdEY2lfLslyVuPpZzWT9KgdUJLO6oGssVaZFOAlk8QTkkVjsXCxeCBrLM2sHcgkIyoHlGSydiBrLM3gXplksXCg59wj2gcGVEhWVA5kEo+6gUgHuZE4KweyxhpD29ynp0bgXjcrSrJZOJA11hjZrqslEka2a3chYWS7lqyxNPNBJImEgW2W12cSBrZLyRpLM6sGMkmPmgEl6awaEI1tTAaYnkmMJQOSGUY7JpVobBtRM5BJRlQMKAkzAbZoLB9rix1EJpksGKhKwkSALRrbVlQMZJIV9QJKwjyALRrLkDZ2yplks1zAlYRpAFs0lhFtbP4SCSPa+FFIGNFuWzSWAe02ssYyoM3HJGQSBrTh4mUSxrPryBrLeDYupCTMAdhFbmPGs8vIIst4NnRdUZgD4D5rZrGoFsgsFrUCysIcAF/Kwgdhjiyzna9ogBgIC3MAfCjLjGqBzLKiVkBZmAPg4kJah2M0RxZaWAcfmSAszAHwpiw76gUyy45qAWEx5gC4Si3j2WZZahnPxjIhLIxnY/MnLIxnd8tay3h2r6q1jGfzAYHC0p4RiEytwLVuVcWW8WzsKpTFomYgs1hUDCgLcwDWUJbBooEst4xnFy0xMD6ba/OxUZllRtVAZplRM6AszAFYTVkWyway4JqzaEAF15gDsIqyeNQN4JdbKzuqBpSFOQBzC8soLBwY7d7K4ONPi0ruYA4AvObMMmpUDiSWUaNuQFgYzzY+VTCztPjbzMIcgK2iy3h2Z1VXZonnpJbMYlE5oCzMAeBZV2bhA1UY5bm3whyArbLLeDYfmyIsM6oHMsuM2gFlYQ7AVN1lPBtb5czCHICtujuYAzBUd4dH/UBm8ageUBbmAAzVXT7r37F+pVaYA+Cqu7OwgEB1F3ZWECSWWaN+QFhgH1O37rQzPJdYJnMAXHUX9jigEJYeNQSZpUcFgbJ01hCo7jKeDRc1szAHwFV3Gc/uprrLeHbHQp1aGVFDsEdm4SONTXWX8WweuqRWmAPAZzpllsUyAtVdxrMrJm9qxaOKQFmcdQSqu4xnY0ZnFuYArKUsm4UEqrt8fg8maWLh4z55iJRZVmUlgeou7ObFE0s8KA1LQGZ5e/tFYmlRS5BZelQSKEtnLYHq7uKbJ0rWXT5gCDedstgzjsWEZUQ1QWbhz3zQT2YZrCZQ3WU820rWXcazsX9UlsVyAtVdxrNZspVaWVFNoCzOegLVXcazedSXWmEOACRAWDYLClR3Gc/GdEksjGdjsRMWxrNLV92NxzLvrLvOHIDZhIUPvgT3bIklHsG1s+56i4oCZWmsKVi1ZRZmAeysu84cADgewmIsKhjKYlFVkFksagqUZbCqwJSFWQA7665P1hRMZZnPOIwVlhlVBZllRU2BssQD9aqyMAvAs+4ypN1HVxZnVcFWlh1VBZllR02BsOx4UrwLC4PaPGC+txKPix2quwxq8+VCmSWemOlZdxnVLqa6y6h2wfolLMwC8Ky7u7OmQHUXdkyLriwWVQWZxaKmQFmMVQVNWZgFsLLu7ngmu+oun3e84gGmiWVGVUFmmVFToCx8IFPZysIsgMXn+N9acdYUqO7CHikAwuJRVbBSKztqCpRlx4saMstgcLuvdmehFXtq0V3a+STazDIY3WaBamqlRk1BZhklnkTalYVZAHNnFj7WuYvuDoa3sawrS4+qgsxiUVOgLJhHpRRlYRYAbozUCl/b0UV3aR+Y6soyoqogs8yoKVAW5gBs0V0MPqsKemZZrCkQ3aUdewzR3VE8qgoyi0dNgbIwB2CL7tLOY9fMsllTILqL3fEzEk8yC6PcxgO/WyuMclsT3aV90H3JLAxzd/bBvZXGmgLRXdoh0aK7g3Fu1kWnVnrUFFwR4HcszAFw0d3BQDeTaVIrmEW1FZuZhTkALrpLO6sKMsuImgJlYQ6Ai+7SjglQMwsfcl2XsjAHwEV3aWdVQWbxqClQFuYAuOguVi5WFXhm2awpMGVhDoCL7o5WoqogsbR4IGgTlsYcgCW6SzsP+xNL42NaaxUWvguJ6U7C0qKqILP0qClQFuYALNVdBry7Zd1lwLtj3yAszAFYqruMeLMcP7UyoqZAWZgEsFR3GfJmCldqhW+CwIokLMwCWKq7jHljKcksK2oKlIVpAEt1F/axe9ZdWDecPWVhHsD02TPLjqqCxNJL1BQIS2ciwFy1JxbY9+pZdzsTAfYWlh4PwR7C0ltUFWSWFjUFysJUgGnKAt979Ky7nakAeyoLcwFmUxaLqoLMYlFToCxMBsBWTVj4SNmWdZdx77a7ssRjfreyzKgqyCwragqUhekAw5XFn5E4mFphOsBW3WXc+7zLI7HsqCrILDtqCoTFCqsKhrDAzufxJxZjQoCr7vIdC45eyCyws6ogsViLmgJl4YuL47G/iaWxqiDrrjElwFV3YcfULcpiUVWQWSxqCpTFWFWwlYWPMq6j3xthToCr7DLsbfGM9oQC19v4lNxbIzMqCpRksaZgKgkfkpwehDEY9MZWR0mcJQWmJB4lBYlkRz2BkmxWFHQhYcybLxa7NcKQd1kquQx58/HFmYQh7xztePcm0DsJ7FCtoiR8bxWH/tZIvOpABZeP4PWugsuHbQMxkfSoJVASYzWB6i3s+HhPJMwJmCq3fHzt7Cq3Y0QxQSKZUUmgJPHEYlXbwUcK861pt0aYEzBVbBns5meExKOUIJF41BEoyWYlgWotY90tPXWFRjjVKrUMdcOlEBKGuisr0t43wkh3nXWvRMJId22qtIx0F2aP3BqJN4mct8DdSBrLCFRo+R6pHFmjkTUEStJZRaA6O5kWQJm5NcKcgLGUZLCIQGWWb5Ja2LPdGxlRQaAkkzUEqrJ8m8+E83xvZLGAwJSEb7FoKrLxIHm+ee3WiEf9gJI4KwhUYyfTAjxpLEPcNqqS7GdkrGcShrjjzWTvG2GEG5s4IWGEm2HPTMIId0uP+KHRW7yD7E4SLyupqrEMcPOlAfdGetQOKEm8Ils1lvHteHz5rRFj6cBQEmPxgGos33GWo7hjjagcUJLrdZZCwpyAlTSWr8NyrDBCwrf28LW2mWRF6UAiWVE3oCR8L1Z5fVzcOxJmBKyksTBCNLaS8K1YZSjJjsKBO4mXqBoQEr4MaBQTEka2bSWNZWDb+hQSBrZZHZFJGNjuM2ks49odU1ZI+EIsjLGQfL/9/kJYvqfz7WWwP/Ce2fdv5H61pRd8v7199t2H34zp09/X8ve0cP/sWxs/0nLh97leclvjW/3u9ibgeLeOx9/t6+/evaa23V9T+z9/9uBrufhiCr4etD8+++rfvvr68affPv7053/95z//6+O73//um19/fXvl+st/AmTrmO0KZW5kc3RyZWFtCmVuZG9iagoxMiAwIG9iago5NTYyCmVuZG9iagoxMCAwIG9iagpbIF0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nD2RS27kQAxD9z6FLhCg9Hedp4NgFj33385TuTMLQwQll0iq75YlofKldktH85l86+V1OPl7efZBnk518dinvi6P/DDrqW6fjn0YrS1T9JZK+Cpwzz699xS7FRrgnpJLHLoRFAG9Afs+f2RQEZDbaOh2KXSab6neYkz2iiNJpW2L78dJ5D71dc0Lgwotrcl/S6pGbJvCruM+/UkhmKYDclS1LbGaefSzDyMEskcWK1CZJT07Mp8g31fEf/gb5fv6c81k1cQayw7yDLzc4uRUNkqtFZ+FOyJh3tZEM0r1TomJdCIibEWT7/Gtkx3blbWudar1eDgId4oK5ZSTndqkbpZyh8w6fLmfQoRwgHkfq9EhuobPeRYyk4eayunMZnktEEEXE4bwsjr3pOOgfo4VRHAqUumAksMWIhJLOSd99kzQwak1TkC/kb2I7+cftXaAGgplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODkgPj4Kc3RyZWFtCnicNY3BDcAwCAP/TOERAgRI9qmqPtL9v4VE/dgnyxiLiQa1FGdBeMPFxEM3viRxaGUWUI6kPg3Wi+rkkPiADEsyrsVscdvOERCvDovtRI/9TxY9dH/sVho2CmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDEgPj4Kc3RyZWFtCnicPY8xDsQwCAR7XrEfQAJsbPyenKIrfP9vD8dJCsRoQbvgwyBgq1nS0aTAa8dHyWqAXfAjkwZWE2i3hFagdSmhOGjprCMQbVvUux/0uk7ikUvFkqo91PqmiOXu0CtGt2kBj5452btCm4PLNRkFmTgpT1mHTtL02WQeUIskl3Frz0Pz/WfSl84/GAEuTQplbmRzdHJlYW0KZW5kb2JqCjE1IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTYgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA4MSAvUSAxMDcgL2sgMTIxIC95IF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxNCAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEzIDAgUiA+PgplbmRvYmoKMTQgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEzIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE2IDAgb2JqCjw8IC9RIDE3IDAgUiAvayAxOCAwIFIgL3kgMTkgMCBSID4+CmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI2NCA+PgpzdHJlYW0KeJw9UrmRAzEMy7cKlsBfUj2+uXFg958ewD07MTFLEQBB925RORs/bSXLj/zYZWdJ5Jb3oG3yuqLqBqmbIHPJcckVYpbyuBIkFi1lJtZnqoPycQ1qFb7wEzMT0yFJxBJyUo8irI+vg9f1HNxfN+n8GhkfdGxQekuSq6BUw75ytBI7lupdg+yDppvS6jPTruyApfGGrNSkTn8d9b8jLMKk3khFByEWv9PLHbIspBzU27l+A+Fd7YJYT6087BBp3lZ6SxXM5swETBltO6yAtVljwlQJ8BbNIdRaiMwXOq2I+eTc0cE0VXkaIsNShYPtPaM1XOgaEkvD+UnGBOa/8PqsyG1//wBwaGe6CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2MSA+PgpzdHJlYW0KeJwzNTVXMFCwtAASpqZGCuZGlgophlxAPoiVy2VoaQ5m5YBZFsZABkgZnGEApMGac2B6crgyuNIAyxUQzAplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1NiA+PgpzdHJlYW0KeJwzNjZXMFAwNDJX0DUyNlUwMjRQMDczUUgx5IIxc8EssGwOF1whhAmSz4GrzOHK4EoDAGs6D4cKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDczID4+CnN0cmVhbQp4nDO2NFAwULAwU9A1NDZUMLI0VjA3M1BIMeQCCoFYuVwwsRwwy8wSxDI0N0Ni6ZoZQmWRWCDjcrhgBufAzMvhyuBKAwAeiRaVCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OSA+PgpzdHJlYW0KeJwztjRQMFCwNFfQNTQ2VDA2MFEwNzNQSDHkgjFzwSywbA4XTB2EZQZiGBmaILHMgMaBJeEMkBk5cNNyuDK40gD6qRZFCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzEgPj4Kc3RyZWFtCnicNU85kgQhDMt5hT4wVRjbQL+np7Y22Pl/upKZTpDwIcnTEx2ZeJkjI7Bmx9taZCBm4FNMxb/2tA8TqvfgHiKUiwthhpFw1qzjbp6OF/92lc9YB+82+IpZXhDYwkzWVxZnLtsFY2mcxDnJboxdE7GNda2nU1hHMKEMhHS2w5Qgc1Sk9MmOMuboOJEnnovv9tssdjl+DusLNo0hFef4KnqCNoOi7HnvAhpyQf9d3fgeRbvoJSAbCRbWUWLunOWEX712dB61KBJzQppBLhMhzekqphCaUKyzo6BSUXCpPqforJ9/5V9cLQplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5NSA+PgpzdHJlYW0KeJw9UktuxUAI2+cUXKDS8JvPeVJV3bz7b2tDUqkqvIkxxjB9ypC55UtdEnGFybderls8pnwuW1qZeYi7i40lPrbcl+4htl10LrE4HUfyCzKdKkSozarRofhCloUHkE7woQvCfTn+4y+AwdewDbjhPTJBsCTmKULGblEZmhJBEWHnkRWopFCfWcLfUe7r9zIFam+MpQtjHPQJtAVCbUjEAupAAETslFStkI5nJBO/Fd1nYhxg59GyAa4ZVESWe+zHiKnOqIy8RMQ+T036KJZMLVbGblMZX/yUjNR8dAUqqTTylPLQVbPQC1iJeRL2OfxI+OfWbCGGOm7W8onlHzPFMhLOYEs5YKGX40fg21l1Ea4dubjOdIEfldZwTLTrfsj1T/5021rNdbxyCKJA5U1B8LsOrkaxxMQyPp2NKXqiLLAamrxGM8FhEBHW98PIAxr9crwQNKdrIrRYIpu1YkSNimxzPb0E1kzvxTnWwxPCbO+d1qGyMzMqIYLauoZq60B2s77zcLafPzPoom0KZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzNiA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTQgPj4Kc3RyZWFtCnicRY3BEcAgCAT/VEEJCgraTyaTh/b/jRAyfGDnDu6EBQu2eUYfBZUmXhVYB0pj3FCPQL3hci3J3AUPcCd/2tBUnJbTd2mRSVUp3KQSef8OZyaQqHnRY533C2P7IzwKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM0MSA+PgpzdHJlYW0KeJxFUktuRDEI279TcIFI4ZeQ87Squpjef1ubTNXN4AlgbHjLU6ZkyrC5JSMk15RPfSJDrKb8NHIkIqb4SQkFdpWPx2tLrI3skagUn9rx47H0RqbZFVr17tGlzaJRzcrIOcgQoZ4VurJ71A7Z8HpcSLrvlM0hHMv/UIEsZd1yCiVBW9B37BHfDx2ugiuCYbBrLoPtZTLU//qHFlzvffdixy6AFqznvsEOAKinE7QFyBna7jYpaABVuotJwqPyem52omyjVen5HAAzDjBywIglWx2+0d4Aln1d6EWNiv0rQFFZQPzI1XbB3jHJSHAW5gaOvXA8xZlwSzjGAkCKveIYevAl2OYvV66ImvAJdbpkL7zCntrm50KTCHetAA5eZMOtq6Oolu3pPIL2Z0VyRozUizg6IZJa0jmC4tKgHlrjXDex4m0jsblX3+4f4ZwvXPbrF0vshMQKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDcyID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXEC+qYm5Qi4XSAzEygGzDIC0JZyCiGeAmCBtEMUgFkSxmYkZRB2cAZHL4EoDACXbFskKZW5kc3RyZWFtCmVuZG9iagozNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ3ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp7BlQYAuWcNJwplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFkM7jSABXzCnwKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MyA+PgpzdHJlYW0KeJxFkDsSAyEMQ3tOoSP4IwM+z2YyKTb3b2PYbFLA01ggg7sTgtTagonogoe2Jd0F760EZ2P86TZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+UNw9V/1v2LdOZuJgcnKHQjN6lPc+TY7orq6yf6kx9ys134r7FVhaVlLywm3nbtmQAncUznaqz0/Hwo69gplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE4ID4+CnN0cmVhbQp4nD1QuY0EMQzLXYUaWMB67alnFotLpv/0SPn2ItEWRVIqNZmSKS91lCVZU946fJbEDnmG5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+uco+fXosbPsPxQxSRkg7mNf9Y/fJzDa9TjyeRbm++4l6cqQ4DERySmrwjXVixLhIRaTVBTc/AWi2Au7de/hu0I7oMQPaJxHGaUo6hv2twpc8v5SdT2AplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODMgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfib2PlGUwt6/DRAlbrgn3T1cHQmZKW4zw0MGngwshl1xgfSWMAtcR1COneyjYdW+6gSN9aZS8+8PlJ7srOKG6wECQhpmCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMzkgPj4Kc3RyZWFtCnicTVDJbQQxDPu7CjUwwOgcux4Hizyy/X9DygmSl2hL4qHylFuWymX3IzlvybrlQ4dOlWnybtDNr7H+owwCdv9QVBCtJbFKzFzSbrE0SS/ZwziNl2u1juepe4RZo3jw49jTKYHpPTLBZrO9OTCrPc4OkE64xq/q0zuVJAOJupDzQqUK6x7UJaKPK9uYUp1OLeUYl5/oe3yOAD3F3o3c0cfLF4xGtS2o0WqVOA8wE1PRlXGrkYGUEwZDZ0dXNAulyMp6QjXCjTmhmb3DcGADy7OEpKWtUrwPZQHoAl3aOuM0SoKOAMLfKIz1+gaq/F43CmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyMCA+PgpzdHJlYW0KeJw1UktuBTEI288puECl8E/O86qqi777b2sTvRVMMGDjKS9Z0ku+1CXbpcPkWx/3JbFC3o/tmsxSxfcWsxTPLa9HzxG3LQoEURM9WJkvFSLUz/ToOqhwSp+BVwi3FBu8g0kAg2r4Bx6lMyBQ50DGu2IyUgOCJNhzaXEIiXImiX+kvJ7fJ62kofQ9WZnL35NLpdAdTU7oAcXKxUmgXUn5oJmYSkSSl+t9sUL0hsCSPD5HMcmA7DaJbaIFJucepSXMxBQ6sMcCvGaa1VXoYMIehymMVwuzqB5s8lsTlaQdreMZ2TDeyzBTYqHhsAXU5mJlgu7l4zWvwojtUZNdw3Duls13CNFo/hsWyuBjFZKAR6exEg1pOMCIwJ5eOMVe8xM5DsCIY52aLAxjaCaneo6JwNCes6VhxsceWvXzD1TpfIcKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0NiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQ3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjUxID4+CnN0cmVhbQp4nC1RSXIDQQi7zyv0hGan32OXK4fk/9cIygcGDYtAdFrioIyfICxXvOWRq2jD3zMxgt8Fh34r121Y5EBUIEljUDWhdvF69B7YcZgJzJPWsAxmrA/8jCnc6MXhMRlnt9dl1BDsXa89mUHJrFzEJRMXTNVhI2cOP5kyLrRzPTcg50ZYl2GQblYaMxKONIVIIYWqm6TOBEESjK5GjTZyFPulL490hlWNqDHscy1tX89NOGvQ7Fis8uSUHl1xLicXL6wc9PU2AxdRaazyQEjA/W4P9XOyk994S+fOFtPje83J8sJUYMWb125ANtXi37yI4/uMr+fn+fwDX2BbiAplbmRzdHJlYW0KZW5kb2JqCjQ4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc0ID4+CnN0cmVhbQp4nE2QSQ5DIQxD95zCF6iEM8DnPL+qumjvv61DB3WB/OQgcDw80HEkLnRk6IyOK5sc48CzIGPi0Tj/ybg+xDFB3aItWJd2x9nMEnPCMjECtkbJ2TyiwA/HXAgSZJcfvsAgIl2P+VbzWZP0z7c73Y+6tGZfPaLAiewIxbABV4D9useBS8L5XtPklyolYxOH8oHqIlI2O6EQtVTscqqKs92bK3AV9PzRQ+7tBbUjPN8KZW5kc3RyZWFtCmVuZG9iago0OSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDc1ID4+CnN0cmVhbQp4nDO1NFIwUDA2ABKmZkYKpibmCimGXEA+iJXLZWhkCmblcBlZmilYWAAZJmbmUCGYhhwuY1NzoAFARcamYBqqP4crgysNAJWQEu8KZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0OCAvemVybyAvb25lIC90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgNjYgL0IgNzYgL0wgOTEKL2JyYWNrZXRsZWZ0IDkzIC9icmFja2V0cmlnaHQgOTcgL2EgMTAwIC9kIC9lIC9mIC9nIDEwNSAvaSAxMDggL2wgMTEwIC9uIC9vCi9wIDExNSAvcyAvdCAvdSAvdiAxMjQgL2JhciBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjEgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMjAgMCBSID4+CmVuZG9iagoyMSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjIwIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIzIDAgb2JqCjw8IC9CIDI0IDAgUiAvTCAyNSAwIFIgL2EgMjYgMCBSIC9iYXIgMjcgMCBSIC9icmFja2V0bGVmdCAyOCAwIFIKL2JyYWNrZXRyaWdodCAyOSAwIFIgL2QgMzAgMCBSIC9lIDMxIDAgUiAvZWlnaHQgMzIgMCBSIC9mIDMzIDAgUgovZm91ciAzNCAwIFIgL2cgMzUgMCBSIC9pIDM2IDAgUiAvbCAzNyAwIFIgL24gMzkgMCBSIC9vIDQwIDAgUiAvb25lIDQxIDAgUgovcCA0MiAwIFIgL3MgNDMgMCBSIC9zaXggNDQgMCBSIC9zcGFjZSA0NSAwIFIgL3QgNDYgMCBSIC90d28gNDcgMCBSCi91IDQ4IDAgUiAvdiA0OSAwIFIgL3plcm8gNTAgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMiAwIFIgL0YyIDE1IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAzOCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMSAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjUxIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMjAxMjQxMTUyMTArMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My40LjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My40LjMpID4+CmVuZG9iagp4cmVmCjAgNTIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMjE0NjMgMDAwMDAgbiAKMDAwMDAyMTIzMCAwMDAwMCBuIAowMDAwMDIxMjczIDAwMDAwIG4gCjAwMDAwMjEzNzIgMDAwMDAgbiAKMDAwMDAyMTM5MyAwMDAwMCBuIAowMDAwMDIxNDE0IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDQwMCAwMDAwMCBuIAowMDAwMDEwMDU4IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAxMDAzNyAwMDAwMCBuIAowMDAwMDExNDAxIDAwMDAwIG4gCjAwMDAwMTExOTMgMDAwMDAgbiAKMDAwMDAxMDg2NCAwMDAwMCBuIAowMDAwMDEyNDU0IDAwMDAwIG4gCjAwMDAwMTAwNzggMDAwMDAgbiAKMDAwMDAxMDQ4OSAwMDAwMCBuIAowMDAwMDEwNjUwIDAwMDAwIG4gCjAwMDAwMTk4NTIgMDAwMDAgbiAKMDAwMDAxOTY1MiAwMDAwMCBuIAowMDAwMDE5MTg0IDAwMDAwIG4gCjAwMDAwMjA5MDUgMDAwMDAgbiAKMDAwMDAxMjUwNiAwMDAwMCBuIAowMDAwMDEyODQzIDAwMDAwIG4gCjAwMDAwMTI5NzYgMDAwMDAgbiAKMDAwMDAxMzM1NiAwMDAwMCBuIAowMDAwMDEzNDg0IDAwMDAwIG4gCjAwMDAwMTM2MjkgMDAwMDAgbiAKMDAwMDAxMzc3MCAwMDAwMCBuIAowMDAwMDE0MDc0IDAwMDAwIG4gCjAwMDAwMTQzOTYgMDAwMDAgbiAKMDAwMDAxNDg2NCAwMDAwMCBuIAowMDAwMDE1MDczIDAwMDAwIG4gCjAwMDAwMTUyMzkgMDAwMDAgbiAKMDAwMDAxNTY1MyAwMDAwMCBuIAowMDAwMDE1Nzk3IDAwMDAwIG4gCjAwMDAwMTU5MTYgMDAwMDAgbiAKMDAwMDAxNjA4OCAwMDAwMCBuIAowMDAwMDE2MzI0IDAwMDAwIG4gCjAwMDAwMTY2MTUgMDAwMDAgbiAKMDAwMDAxNjc3MCAwMDAwMCBuIAowMDAwMDE3MDgyIDAwMDAwIG4gCjAwMDAwMTc0ODkgMDAwMDAgbiAKMDAwMDAxNzg4MiAwMDAwMCBuIAowMDAwMDE3OTcyIDAwMDAwIG4gCjAwMDAwMTgxNzggMDAwMDAgbiAKMDAwMDAxODUwMiAwMDAwMCBuIAowMDAwMDE4NzQ5IDAwMDAwIG4gCjAwMDAwMTg4OTYgMDAwMDAgbiAKMDAwMDAyMTUyMyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDUxIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA1MiA+PgpzdGFydHhyZWYKMjE2ODAKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-01-24T11:52:10.303062\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjExIDAgb2JqCjw8IC9Bbm5vdHMgMTAgMCBSIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDYxOC42ODEyNSAyMjYuMTg4NzUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMiAwIFIgPj4Kc3RyZWFtCnic7ZpNT103EIb351d4SRaYGdvjj2WiNEiRqioJahdRFhElFBpIgaRR++v7nsPlnvEA9yNKURbABXFe7PH4OePx+NzL7nRgd+zIneLnq2O3j5/jgXB1NmSuPlcOgquP6iqE7LnWIlCpu/pjGD4Me09h4gp99odBok9Tn1i8pIhGo1m24kclBoq+5mt12V2L0yAX7rZpkeo4Zx+Duzxyv7lzt/c0jK4E9xLTwhR9xSTJ50bcMpWa4OPe86O/Tw6PXu8/c4dXQ6m+plRr1h7PovZjeDO8chc3YxAwqjEAEso6czF5WgAYnuFOfB0u8JvcLsEWZsIhc8zjNzD7Ju7wbHh24PZesGNyBx+mG3Xw+/DW7TARPXHv3MHL4aeD4dXk2ndBNOy7HhHX4GNuLUY9KaVuC2mtwZWYODefhdG8JMxuPSd+IE6hiq8ttdL0tJS6Lae1BldyCiV6LjmExmETTOGBMMXafApEoVsjSt0W01qDKzHFkn0hDkUEDDbgFB+IU2pwJQmVoKel1G05rTW4klOq5JH6Y+DaQtqAU3ogTtKyT7iDXPW0lLotp7UGV3KSGn0RZPExP22SxqXjpCMztAWv5kOZ/pjsjL19ooxr2Nh7ERZGd/584g5O/3fcN1aToDwoElO3xc/qhrDvMpeab7et3c5wwQeXGNmQstRSY70FuvpYxn9PNc2CuFfAL+AOjQZp/uPwbDSw+/zo9P2vX968P7/aPTs5/3Llnn9yrx4GLUKIUsstd2hndUu02twSbWftbrQFcSehBkJ+aJugJS8/OloOWDtYxLCp2Sp5S7idwSXd3t7tTQekMDPm7DOnViNT5RVZgvxDJdPltKT4UhJ2xA7TUt2WkjI3Q9LW7mUEG60UThIKxZWM5KEZNfFI9KhEe0izvC0lbXDG1Nm7l1NjH2OLVFLE/rxix/FmwxmN7I7mWPy4l2SPHbOs22z+mTYb8Y1LG3M0TPjcNSxTu1eLdkjPMDvNp2t34+DO26khbjZhsoVHk3TnBgdbDVW9LDOPMvLuHiM77pv3xvF+sZcpKjhg2JpRLA6gkhdfBf8pJLWGKKG51zZg5vNflyyU3OAx7PKiREHpyq3Exn2HXm5NclqEWGuYRavNjDDLqfgUa62LAZgQXIQw6ZovVWy7TMuCaWwTYIdMsjO69ocRlFg8yUxAyaimohoiob+0xtYjpRtGLIh3Domb6dLrnVcZoZdR8EbTZdYtpxKwdZWEA1TfY9YNq/kQ23fo9c4rFOAlBASh6aL0ntZY0IJig4Wuh9YNrcAIeBSkyQxidO1XCChkCxRzE5VuaAUUxozkIyYMld7TCilhGaIKsUP0eueVJF8jKmsTjFo3tDLGrK3Zmc+yZVUEyyakYoLR6J1X85m87zLrlhWcHE1VO8is96wi8jJWQqsmFI2uvYooL5qE1Ewwar1nFUPBZYI100PphlZEBs3YgMgEo9E7v1LF6iEic0uUbmhFQbWJfM92kFk3tHL1hYXYhKLRO69Q7lIuEkwwat3Qmh8x9D2UbmkhJZcSxN6RTtZeJR53HaFoK81ZN6zS2Kzg0GRiUek9q4SsXCNRMqFo9M4rnLqQ0pD8TRel96wS0rJEITtzrRtWCWl5fM4sJhiN3vmFvBwSUbajzLqlhcQsLUg2sah0Q2t+XmJK/07XXuEu+dCKFDOG1ntagrSchcZDQd9D6YYW1rNHyImtMoze+YW8HEXI3MRZNqwEablQkWZiUek9KxHB0iE7Ca12/iAlJw6ZTCBq3XBCSi5Z+NYUlG451eyZS7alhtG1X1sWjLpMdLpMHLoy8fL6KMCmsOx62MJy2LDl5fHihDDW9ss6c3pfYckjVZQ804n8Z8IBfNkciQU2hFKOOHHsYuW0EqZX3KB19II1M73q+uYoiiJienqtbV3GvZSvX+sdR+uIdXL9+s6ePEJ5hPII5RHKI5RHKI9Qfmgo3/wg+OaRX43tuuKKY/GF4iqNVeJYfC3qMJxgNn7kd3fxaZ8Sjy7MT4jvefis35q861MzMHnHB2/O7vngzXQa2PCjO7rtbGOFZRrn41S5646795pSG48Pi55t0VM9wA79A+xfvnz+68tnd3VyfP7+o/vw6dL9e3T5BF1xr26+3M4nd3KOZt1bAsN/9U6DEQplbmRzdHJlYW0KZW5kb2JqCjEyIDAgb2JqCjE2MDgKZW5kb2JqCjEwIDAgb2JqClsgXQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicPZFLbuRADEP3PoUuEKD0d52ng2AWPfffzlO5MwtDBCWXSKrvliWh8qV2S0fzmXzr5XU4+Xt59kGeTnXx2Ke+Lo/8MOupbp+OfRitLVP0lkr4KnDPPr33FLsVGuCekkscuhEUAb0B+z5/ZFARkNto6HYpdJpvqd5iTPaKI0mlbYvvx0nkPvV1zQuDCi2tyX9LqkZsm8Ku4z79SSGYpgNyVLUtsZp59LMPIwSyRxYrUJklPTsynyDfV8R/+Bvl+/pzzWTVxBrLDvIMvNzi5FQ2Sq0Vn4U7ImHe1kQzSvVOiYl0IiJsRZPv8a2THduVta51qvV4OAh3igrllJOd2qRulnKHzDp8uZ9ChHCAeR+r0SG6hs95FjKTh5rK6cxmeS0QQRcThvCyOvek46B+jhVEcCpS6YCSwxYiEks5J332TNDBqTVOQL+RvYjv5x+1doAaCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4OSA+PgpzdHJlYW0KeJw1jcENwDAIA/9M4RECBEj2qao+0v2/hUT92CfLGIuJBrUUZ0F4w8XEQze+JHFoZRZQjqQ+DdaL6uSQ+IAMSzKuxWxx284REK8Oi+1Ej/1PFj10f+xWGjYKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0MSA+PgpzdHJlYW0KeJw9jzEOxDAIBHtesR9AAmxs/J6coit8/28Px0kKxGhBu+DDIGCrWdLRpMBrx0fJaoBd8COTBlYTaLeEVqB1KaE4aOmsIxBtW9S7H/S6TuKRS8WSqj3U+qaI5e7QK0a3aQGPnjnZu0Kbg8s1GQWZOClPWYdO0vTZZB5QiySXcWvPQ/P9Z9KXzj8YAS5NCmVuZHN0cmVhbQplbmRvYmoKMTYgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNyAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDgxIC9RIDEwNyAvayAxMjEgL3kgXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDE1IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTQgMCBSID4+CmVuZG9iagoxNSAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTQgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTcgMCBvYmoKPDwgL1EgMTggMCBSIC9rIDE5IDAgUiAveSAyMCAwIFIgPj4KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE1ID4+CnN0cmVhbQp4nDVQS64DMQjb5xS+QKVAEgjnmap6m95/+zCoixHW4B/x65g4hpcs+BL4VrxlrNgwU3zHUi2kdmDrQHXhXMUz5AqOXohN7LTgXLa5SaSuIEMiSiPbckOXULQpOiV/b5pbuim3J02abtPKwNTLkLMjiBhKBktQ07VowqLtqfid8oy/OosXfscOK3Tc4dNTEfU9w2c+iEu9xvao2ZlEui/IkNOaSwlNNNnR78gUzjw3pJDOIEFSXIJrZZD96ZejAxIwMbcsQHZXopwlacfSvzN40ucfYVxUjQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzA3ID4+CnN0cmVhbQp4nD2SS24DMQxD9z6FLhDA+tme86Qoupjef9snJemKHNkWRWqWukxZUx6QNJOEf+nwcLGd8jtsz2Zm4Fqil4nllOfQFWLuonzZzEZdWSfF6oRmOrfoUTkXBzZNqp+rLKXdLngO1yaeW/YRP7zQoB7UNS4JN3RXo2UpNGOq+3/Se/yMMuBqTF1sUqt7HzxeRFXo6AdHiSJjlxfn40EJ6UrCaFqIlXdFA0Hu8rTKewnu295qyLIHqZjOOylmsOt0Ui5uF4chHsjyqPDlo9hrQs/4sCsl9EjYhjNyJ+5oxubUyOKQ/t6NBEuPrmgh8+CvbtYuYLxTOkViZE5yrGmLVU73UBTTucO9DBD1bEVDKXOR1epfw84La5ZsFnhK+gUeo90mSw5W2duoTu+tPNnQ9x9a13QfCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MyA+PgpzdHJlYW0KeJwztjRQMFCwMFPQNTQ2VDCyNFYwNzNQSDHkAgqBWLlcMLEcMMvMEsQyNDdDYumaGUJlkVgg43K4YAbnwMzL4crgSgMAHokWlQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjkgPj4Kc3RyZWFtCnicM7Y0UDBQsDRX0DU0NlQwNjBRMDczUEgx5IIxc8EssGwOF0wdhGUGYhgZmiCxzIDGgSXhDJAZOXDTcrgyuNIA+qkWRQplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nD1QO45EIQzrOYUv8CTyI3AeRqstZu/frgOaKVBMfrYzJNARgUcMMZSv4yWtoK6Bv4tC8W7i64PCIKtDUiDOeg+IdOymNpETOh2cMz9hN2OOwEUxBpzpdKY9ByY5+8IKhHMbZexWSCeJqiKO6jOOKZ4qe594FiztyDZbJ5I95CDhUlKJyaWflMo/bcqUCjpm0QQsErngZBNNOMu7SVKMGZQy6h6mdiJ9rDzIozroZE3OrCOZ2dNP25n4HHC3X9pkTpXHdB7M+Jy0zoM5Fbr344k2B02N2ujs9xNpKi9Sux1anX51EpXdGOcYEpdnfxnfZP/5B/6HWiIKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzNiA+PgpzdHJlYW0KeJxNj0EOAzEIA+95hZ9AIEB4z1ZVD9v/X0vYdtMLHsmAbFEGgSWHeIcb4dHbD99FNhVn45xfUiliIZhPcJ8wUxyNKXfyY4+AcZRqLKdoeF5Lzk3DFy13Ey2lrZeTGW+47pf3R5VtkQ1Fzy0LQtdskvkygQd8GJhHdeNppcfd9myv9vwAzmw0SQplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ5ID4+CnN0cmVhbQp4nE1RSYoDMAy75xX6QCFek7ynQ5lD5//Xyg6FOQQJr5KTlphYCw8xhB8sPfiRIXM3/Rt+otm7WXqSydn/mOciU1H4UqguYkJdiBvPoRHwPaFrElmxvfE5LKOZc74HH4W4BDOhAWN9STK5qOaVIRNODHUcDlqkwrhrYsPiWtE8jdxu+0ZmZSaEDY9kQtwYgIgg6wKyGCyUNjYTMlnOA+0NyQ1aYNepG1GLgiuU1gl0olbEqszgs+bWdjdDLfLgqH3x+mhWl2CF0Uv1WHhfhT6YqZl27pJCeuFNOyLMHgqkMjstK7V7xOpugfo/y1Lw/cn3+B2vD838XJwKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDk0ID4+CnN0cmVhbQp4nEWNwRHAIAgE/1RBCQoK2k8mk4f2/40QMnxg5w7uhAULtnlGHwWVJl4VWAdKY9xQj0C94XItydwFD3Anf9rQVJyW03dpkUlVKdykEnn/DmcmkKh50WOd9wtj+yM8CmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNDEgPj4Kc3RyZWFtCnicRVJLbkQxCNu/U3CBSOGXkPO0qrqY3n9bm0zVzeAJYGx4y1OmZMqwuSUjJNeUT30iQ6ym/DRyJCKm+EkJBXaVj8drS6yN7JGoFJ/a8eOx9Eam2RVa9e7Rpc2iUc3KyDnIEKGeFbqye9QO2fB6XEi675TNIRzL/1CBLGXdcgolQVvQd+wR3w8droIrgmGway6D7WUy1P/6hxZc7333YscugBas577BDgCopxO0BcgZ2u42KWgAVbqLScKj8npudqJso1Xp+RwAMw4wcsCIJVsdvtHeAJZ9XehFjYr9K0BRWUD8yNV2wd4xyUhwFuYGjr1wPMWZcEs4xgJAir3iGHrwJdjmL1euiJrwCXW6ZC+8wp7a5udCkwh3rQAOXmTDraujqJbt6TyC9mdFckaM1Is4OiGSWtI5guLSoB5a41w3seJtI7G5V9/uH+GcL1z26xdL7ITECmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA3MiA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohngJggbRDFIBZEsZmJGUQdnAGRy+BKAwAl2xbJCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NyA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKewZUGALlnDScKZW5kc3RyZWFtCmVuZG9iagozNiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZDO40gAV8wp8CmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjMgPj4Kc3RyZWFtCnicRZA7EgMhDEN7TqEj+CMDPs9mMik2929j2GxSwNNYIIO7E4LU2oKJ6IKHtiXdBe+tBGdj/Ok2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlDcPVf9b9i3TmbiYHJyh0IzepT3Pk2O6K6usn+pMfcrNd+K+xVYWlZS8sJt527ZkAJ3FM52qs9Px8KOvYKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxOCA+PgpzdHJlYW0KeJw9ULmNBDEMy12FGljAeu2pZxaLS6b/9Ej59iLRFkVSKjWZkikvdZQlWVPeOnyWxA55huVuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rnKPn16LGz7D8UMUkZIO5jX/WP3ycw2vU48nkW5vvuJenKkOAxEckpq8I11YsS4SEWk1QU3PwFotgLu3Xv4btCO6DED2icRxmlKOob9rcKXPL+UnU9gKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgzID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4m9j5RlMLevw0QJW64J909XB0JmSluM8NDBp4MLIZdcYH0ljALXEdQjp3so2HVvuoEjfWmUvPvD5Se7KzihusBAkIaZgplbmRzdHJlYW0KZW5kb2JqCjQwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjM5ID4+CnN0cmVhbQp4nE1QyW0EMQz7uwo1MMDoHLseB4s8sv1/Q8oJkpdoS+Kh8pRblspl9yM5b8m65UOHTpVp8m7Qza+x/qMMAnb/UFQQrSWxSsxc0m6xNEkv2cM4jZdrtY7nqXuEWaN48OPY0ymB6T0ywWazvTkwqz3ODpBOuMav6tM7lSQDibqQ80KlCuse1CWijyvbmFKdTi3lGJef6Ht8jgA9xd6N3NHHyxeMRrUtqNFqlTgPMBNT0ZVxq5GBlBMGQ2dHVzQLpcjKekI1wo05oZm9w3BgA8uzhKSlrVK8D2UB6AJd2jrjNEqCjgDC3yiM9foGqvxeNwplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTEgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhyuDKw0A4bQNmAplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYwID4+CnN0cmVhbQp4nEWQORIDMQgEc72CJ0hcgvesy7XB+v+pB9ZHoukCNBy6Fk3KehRoPumxRqG60GvoLEqSRMEWkh1Qp2OIOyhITEhjkki2HoMjmlizXZiZVCqzUuG0acXCv9la1chEjXCN/InpBlT8T+pclPBNg6+SMfoYVLw7g4xJ+F5F3Fox7f5EMLEZ9glvRSYFhImxqdm+z2CGzPcK1zjH8w1MgjfrCmVuZHN0cmVhbQplbmRvYmoKNDMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzQgPj4Kc3RyZWFtCnicLVJLcsUgDNtzCl2gM/gH5DzpdLp4vf+2kpNFRg5g9DHlholKfFkgt6PWxLeNzECF4a+rzIXPSNvIOojLkIu4ki2Fe0Qs5DHEPMSC76vxHh75rMzJswfGL9l3Dyv21IRlIePFGdphFcdhFeRYsHUhqnt4U6TDqSTY44v/PsVzLQQtfEbQgF/kn6+O4PmSFmn3mG3TrnqwTDuqpLAcbE9zXiZfWme5Oh7PB8n2rtgRUrsCFIW5M85z4SjTVka0FnY2SGpcbG+O/VhK0IVuXEaKI5CfqSI8oKTJzCYK4o+cHnIqA2Hqmq50chtVcaeezDWbi7czSWbrvkixmcJ5XTiz/gxTZrV5J89yotSpCO+xZ0vQ0Dmunr2WWWh0mxO8pITPxk5PTr5XM+shORUJqWJaV8FpFJliCdsSX1NRU5p6Gf778u7xO37+ASxzfHMKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4ID4+CnN0cmVhbQp4nDM2tFAwgMMUQ640AB3mA1IKZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDEzMyA+PgpzdHJlYW0KeJxFj0sOBCEIRPecoo7Axx/ncTLphXP/7YCdbhNjPYVUgbmCoT0uawOdFR8hGbbxt6mWjkVZPlR6UlYPyeCHrMbLIdygLPCCSSqGIVCLmBqRLWVut4DbNg2yspVTpY6wi6Mwj/a0bBUeX6JbInWSP4PEKi/c47odyKXWu96ii75/pAExCQplbmRzdHJlYW0KZW5kb2JqCjQ2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzQwID4+CnN0cmVhbQp4nDVSOW4EMQzr/Qp9IIBu2+/ZIEiR/L8NqdkUA3F0UpQ7WlR2y4eFVLXsdPm0ldoSN+R3ZYXECcmrEu1ShkiovFYh1e+ZMq+3NWcEyFKlwuSk5HHJgj/DpacLx/m2sa/lyB2PHlgVI6FEwDLFxOgals7usGZbfpZpwI94hJwr1i3HWAVSG9047Yr3oXktsgaIvZmWigodVokWfkHxoEeNffYYVFgg0e0cSXCMiVCRgHaB2kgMOXssdlEf9DMoMRPo2htF3EGBJZKYOcW6dPTf+NCxoP7YjDe/OirpW1pZY9I+G+2Uxiwy6XpY9HTz1seDCzTvovzn1QwSNGWNksYHrdo5hqKZUVZ4t0OTDc0xxyHzDp7DGQlK+jwUv48lEx2UyN8ODaF/Xx6jjJw23gLmoj9tFQcO4rPDXrmBFUoXa5L3AalM6IHp/6/xtb7X1x8d7YDGCmVuZHN0cmVhbQplbmRvYmoKNDcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTEgPj4Kc3RyZWFtCnicLVFJcgNBCLvPK/SEZqffY5crh+T/1wjKBwYNi0B0WuKgjJ8gLFe85ZGraMPfMzGC3wWHfivXbVjkQFQgSWNQNaF28Xr0HthxmAnMk9awDGasD/yMKdzoxeExGWe312XUEOxdrz2ZQcmsXMQlExdM1WEjZw4/mTIutHM9NyDnRliXYZBuVhozEo40hUghhaqbpM4EQRKMrkaNNnIU+6Uvj3SGVY2oMexzLW1fz004a9DsWKzy5JQeXXEuJxcvrBz09TYDF1FprPJASMD9bg/1c7KT33hL584W0+N7zcnywlRgxZvXbkA21eLfvIjj+4yv5+f5/ANfYFuICmVuZHN0cmVhbQplbmRvYmoKNDggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzQgPj4Kc3RyZWFtCnicTZBJDkMhDEP3nMIXqIQzwOc8v6q6aO+/rUMHdYH85CBwPDzQcSQudGTojI4rmxzjwLMgY+LROP/JuD7EMUHdoi1Yl3bH2cwSc8IyMQK2RsnZPKLAD8dcCBJklx++wCAiXY/5VvNZk/TPtzvdj7q0Zl89osCJ7AjFsAFXgP26x4FLwvle0+SXKiVjE4fygeoiUjY7oRC1VOxyqoqz3ZsrcBX0/NFD7u0FtSM83wplbmRzdHJlYW0KZW5kb2JqCjQ5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNzYgPj4Kc3RyZWFtCnicPYw7DoAwDEP3nMJHaH4kB0KIgd5/pSm0i/30JNvF0WBakQK3wMnkPqnTcs8kO3wQmyHkVxtata7K0poMi5qMvw3f3U3XC6Y4F8AKZW5kc3RyZWFtCmVuZG9iago1MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNSA+PgpzdHJlYW0KeJw1UTkOAyEM7PcV/kAkjC94T6Iozf6/zYzRVh7BXIa0lCGZ8lKTqCHlUz56mS6cutzXzGo055a0LXOAuLa8L62SwIlmiIPBaZi4AZo8AUPX0ahRQxce0NSlUyiw3AQ+irduD91jtYGXtiHniSBiKBksQc2pRRMWbc8npDW/Xosb3pft3chTpcaWGIEGAVY4HNfo1/CVPU8m0XQVMtSrNcsYCRNFIjz5jqbVE+taNNIyEtTGEaxqA7w7/TBOAAATccsCZJ9KlLPkxG+x9LMGV/r+AZ9HVJYKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyNCAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIgL2ZpdmUgNzkgL08gOTEKL2JyYWNrZXRsZWZ0IDkzIC9icmFja2V0cmlnaHQgOTcgL2EgMTAxIC9lIC9mIC9nIDEwNSAvaSAxMDggL2wgMTEwIC9uIC9vIC9wCjExNCAvciAvcyAvdCAvdSAxMjIgL3ogXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIyIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIxIDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyNCAwIG9iago8PCAvTyAyNSAwIFIgL2EgMjYgMCBSIC9icmFja2V0bGVmdCAyNyAwIFIgL2JyYWNrZXRyaWdodCAyOCAwIFIgL2UgMjkgMCBSCi9mIDMwIDAgUiAvZml2ZSAzMSAwIFIgL2ZvdXIgMzIgMCBSIC9nIDMzIDAgUiAvaSAzNCAwIFIgL2wgMzUgMCBSIC9uIDM3IDAgUgovbyAzOCAwIFIgL29uZSAzOSAwIFIgL3AgNDAgMCBSIC9wZXJpb2QgNDEgMCBSIC9yIDQyIDAgUiAvcyA0MyAwIFIKL3NwYWNlIDQ0IDAgUiAvdCA0NSAwIFIgL3RocmVlIDQ2IDAgUiAvdHdvIDQ3IDAgUiAvdSA0OCAwIFIgL3ogNDkgMCBSCi96ZXJvIDUwIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjMgMCBSIC9GMiAxNiAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMzYgMCBSIC9NMCAxMyAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9CQm94IFsgLTggLTggOCA4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgL1N1YnR5cGUgL0Zvcm0KL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicbZBBDoQgDEX3PUUv8ElLRWXr0mu4mUzi/bcDcUBM3TTQvjx+Uf6S8E6lwPgkCUtOs+R605DSukyMGObVsijHoFEt1s51OKjP0HBjdIuxFKbU1uh4o5vpNt6TP/qwWSFGPxwOr4R7FkMmXCkxBoffCy/bw/8Rnl7UwB+ijX5jWkP9CmVuZHN0cmVhbQplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDExIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNTEgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIyMDEyNDExNTIxMCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjQuMykgPj4KZW5kb2JqCnhyZWYKMCA1MgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzM3NyAwMDAwMCBuIAowMDAwMDEyODc5IDAwMDAwIG4gCjAwMDAwMTI5MjIgMDAwMDAgbiAKMDAwMDAxMzAyMSAwMDAwMCBuIAowMDAwMDEzMDQyIDAwMDAwIG4gCjAwMDAwMTMwNjMgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwNDAwIDAwMDAwIG4gCjAwMDAwMDIxMDQgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyMDgzIDAwMDAwIG4gCjAwMDAwMTMxMjMgMDAwMDAgbiAKMDAwMDAwMzQ0NyAwMDAwMCBuIAowMDAwMDAzMjM5IDAwMDAwIG4gCjAwMDAwMDI5MTAgMDAwMDAgbiAKMDAwMDAwNDUwMCAwMDAwMCBuIAowMDAwMDAyMTI0IDAwMDAwIG4gCjAwMDAwMDI1MzUgMDAwMDAgbiAKMDAwMDAwMjY5NiAwMDAwMCBuIAowMDAwMDExNTA3IDAwMDAwIG4gCjAwMDAwMTEzMDcgMDAwMDAgbiAKMDAwMDAxMDg0NyAwMDAwMCBuIAowMDAwMDEyNTYwIDAwMDAwIG4gCjAwMDAwMDQ1NTIgMDAwMDAgbiAKMDAwMDAwNDg0MCAwMDAwMCBuIAowMDAwMDA1MjIwIDAwMDAwIG4gCjAwMDAwMDUzNjUgMDAwMDAgbiAKMDAwMDAwNTUwNiAwMDAwMCBuIAowMDAwMDA1ODI4IDAwMDAwIG4gCjAwMDAwMDYwMzcgMDAwMDAgbiAKMDAwMDAwNjM1OSAwMDAwMCBuIAowMDAwMDA2NTI1IDAwMDAwIG4gCjAwMDAwMDY5MzkgMDAwMDAgbiAKMDAwMDAwNzA4MyAwMDAwMCBuIAowMDAwMDA3MjAyIDAwMDAwIG4gCjAwMDAwMDczNzQgMDAwMDAgbiAKMDAwMDAwNzYxMCAwMDAwMCBuIAowMDAwMDA3OTAxIDAwMDAwIG4gCjAwMDAwMDgwNTYgMDAwMDAgbiAKMDAwMDAwODM2OCAwMDAwMCBuIAowMDAwMDA4NDkxIDAwMDAwIG4gCjAwMDAwMDg3MjQgMDAwMDAgbiAKMDAwMDAwOTEzMSAwMDAwMCBuIAowMDAwMDA5MjIxIDAwMDAwIG4gCjAwMDAwMDk0MjcgMDAwMDAgbiAKMDAwMDAwOTg0MCAwMDAwMCBuIAowMDAwMDEwMTY0IDAwMDAwIG4gCjAwMDAwMTA0MTEgMDAwMDAgbiAKMDAwMDAxMDU1OSAwMDAwMCBuIAowMDAwMDEzNDM3IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNTEgMCBSIC9Sb290IDEgMCBSIC9TaXplIDUyID4+CnN0YXJ0eHJlZgoxMzU5NAolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2022-01-24T11:52:10.469356\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.4.3, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def uniform_midtread_quantizer(x, xmin=1):\n", " \"\"\"Uniform mid-tread quantizer with limiter.\"\"\"\n", " # limiter\n", " x = np.copy(x)\n", " if x <= -xmin:\n", " x = -1\n", " if x > xmin - Q:\n", " x = 1 - Q\n", " # linear uniform quantization\n", " xQ = Q * np.floor(x / Q + 1 / 2)\n", "\n", " return xQ\n", "\n", "\n", "# compute input signal\n", "x = np.random.uniform(low=-1, high=1, size=256)\n", "x = np.concatenate((x, np.zeros(1024)))\n", "# compute output signal\n", "yQ = sos_df1(x, 2 * a, requantize=uniform_midtread_quantizer)\n", "\n", "# plot results\n", "plt.figure(figsize=(10, 3))\n", "plt.plot(20 * np.log10(np.abs(yQ)))\n", "plt.title(\"Level of output signal\")\n", "plt.xlabel(r\"$k$\")\n", "plt.ylabel(r\"$|y_Q[k]|$ in dB\")\n", "plt.grid()\n", "\n", "plt.figure(figsize=(10, 3))\n", "k = np.arange(1000, 1050)\n", "plt.stem(k, yQ[k])\n", "plt.title(\"Output signal for zero input\")\n", "plt.xlabel(r\"$k$\")\n", "plt.ylabel(r\"$y_Q[k]$ \")\n", "plt.grid()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Determine the period of the large limit cycles. How is it related to the poles of the system?\n", "\n", "Solution: The period of the large limit cycles can be estimated from the second illustration as $P = 6$. The normalized frequency of a harmonic exponential signal with the same periodicity is given as $\\Omega_0 = \\frac{2 \\pi}{P} = \\frac{\\pi}{3}$. The poles of the system can be extracted from the code of the first example as $z_{\\infty 0,1} = 0.9 \\cdot e^{\\pm j \\frac{\\pi}{3}}$. The periodicity of the large limit cycles is hence linked to the normalized frequency of the poles." ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Digital Signal Processing - Lecture notes featuring computational examples*." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 1 }