{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# System Properties\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Causality\n", "\n", "The [principle of causality](https://en.wikipedia.org/wiki/Causality) states that an effect temporally has to follow its cause. A systems may violate this fundamental principle which limits its practical realization. Causality is hence an important aspect for the practical realization of systems. Conditions for causal linear time-invariant (LTI) systems for both the impulse response as well as the transfer function are derived in this section." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Condition for the Impulse Response\n", "\n", "The output signal $y(t) = \\mathcal{H} \\{ x(t) \\}$ of an LTI system is given by convolving the input signal $x(t)$ with its impulse response $h(t)$\n", "\n", "\\begin{equation}\n", "y(t) = \\int_{-\\infty}^{\\infty} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau = \\int_{-\\infty}^{\\infty} x(t - \\tau) \\cdot h(\\tau) \\; d\\tau\n", "\\end{equation}\n", "\n", "Analyzing the first integral reveals that the computation of the output signal $y(t)$ for some time instant $t=t_0$ requires knowledge of the input signal for all time instants. This includes also future time instants $t > t_0$. While this does not pose a problem for signals and impulse responses given in closed-form, this is not feasible in practice. Without imposing further restrictions, this would require the knowledge of the input signal for all future time instances.\n", "\n", "Causality is not violated if we modify the integration limits of the convolution integral\n", "\n", "\\begin{equation}\n", "y(t) = \\int_{-\\infty}^{t} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau = \\int_{0}^{\\infty} x(t - \\tau) \\cdot h(\\tau) \\; d\\tau\n", "\\end{equation}\n", "\n", "Now the output signal $y(t)$ for a given time instant $t=t_0$ depends only on the input signal $x(t)$ for $t \\leq t_0$. Comparing the second equality with the second equality of the original convolution integral yields that the modified integration limits are equal to the assumption that $h(t) = 0$ for $t < 0$.\n", "\n", "A system is termed *causal system* [iff](https://en.wikipedia.org/wiki/If_and_only_if) its impulse response $h(t)$ is a causal signal\n", "\n", "\\begin{equation}\n", "h(t) = 0 \\qquad \\text{for } t < 0\n", "\\end{equation}\n", "\n", "Only causal systems can be realized practically due to above reasoning." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Condition for the Transfer Function\n", "\n", "The transfer function $H(j \\omega) = \\mathcal{F} \\{ h(t) \\}$ of a causal system shows specific symmetries. A causal impulse response $h(t)$ has to fulfill the following relation\n", "\n", "\\begin{equation}\n", "h(t) = h(t) \\cdot \\epsilon(t)\n", "\\end{equation}\n", "\n", "Fourier transformation of the left- and right-hand side yields\n", "\n", "\\begin{equation}\n", "H(j \\omega) = \\frac{1}{\\pi} H(j \\omega) * \\frac{1}{j \\omega}\n", "\\end{equation}\n", "\n", "by application of the [multiplication theorem](../fourier_transform/theorems.ipynb#Multiplication-Theorem) in conjunction with the [Fourier transform of the Heaviside signal](../fourier_transform/theorems.ipynb#Transformation-of-the-Heaviside-signal). Decomposing this result into the real and imaginary part of $H(j \\omega)$ derives the following symmetry relations for a causal system\n", "\n", "\\begin{align}\n", "\\Re \\{ H(j \\omega) \\} &= \\frac{1}{\\pi} \\Im \\{ H(j \\omega) \\} * \\frac{1}{\\omega} \\\\\n", "\\Im \\{ H(j \\omega) \\} &= - \\frac{1}{\\pi} \\Re \\{ H(j \\omega) \\} * \\frac{1}{\\omega}\n", "\\end{align}\n", "\n", "The convolution of a spectrum with $\\frac{1}{\\omega}$ is known as [Hilbert transform](https://en.wikipedia.org/wiki/Hilbert_transform). Above result states that the real and imaginary part of the spectrum $H(j \\omega)$ of a causal system are related by the Hilbert transform. The Hilbert transform is used for instance in the theory of [single-sideband modulation](https://en.wikipedia.org/wiki/Single-sideband_modulation) in order to express the [analytic signal](https://en.wikipedia.org/wiki/Analytic_signal)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Stability\n", "\n", "The stability of a system can be evaluated with respect to various different criteria. The most common ones are [Lyapunov stability](https://en.wikipedia.org/wiki/Lyapunov_stability) and [bounded-input bounded-output stability](https://en.wikipedia.org/wiki/BIBO_stability). The latter is introduced in the following." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bounded-Input Bounded-Output Stability\n", "\n", "With respect to the bounded-input bounded-output (BIBO) principle, an LTI system is termed stable if its output signal $y(t) = \\mathcal{H} \\{ x(t) \\}$ is bounded for a bounded input signal $x(t)$. A signal is bounded if its magnitude does not exceed a given finite value. For the in- and output this condition is formulated as\n", "\n", "\\begin{align}\n", "|x(t)| &< B_x \\\\\n", "|y(t)| &< B_y\n", "\\end{align}\n", "\n", "where $B_x, B_y < \\infty$ denote constant finite bounds. The BIBO criterion is illustrated in the following\n", "\n", "![Criterion for Bounded-Input Bounded-Output stability](BIBO_stability.png)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "#### Condition for the Impulse Response\n", "\n", "In order to derive a condition for the impulse response $h(t)$ of an LTI system that conforms to the BIBO criterion, the magnitude of the output signal $y(t)$ is expressed by convolving the input signal $x(t)$ with the impulse response\n", "\n", "\\begin{equation}\n", "|y(t)| = \\left| \\int_{-\\infty}^{\\infty} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau \\right|\n", "\\end{equation}\n", "\n", "An upper bound for the magnitude of the output signal is found by applying the [triangle inequality](https://en.wikipedia.org/wiki/Triangle_inequality) together with the upper bound for $|x(t)|$\n", "\n", "\\begin{equation}\n", "|y(t)| \\leq \\int_{-\\infty}^{\\infty} |x(\\tau)| \\cdot |h(t-\\tau)| \\; d\\tau < \\int_{-\\infty}^{\\infty} B_x \\cdot |h(t-\\tau)| \\; d\\tau\n", "\\end{equation}\n", "\n", "Since the output signal $|y(t)|$ shall be bounded, it can be concluded that the impulse response needs to be an [absolutely integrable function](https://en.wikipedia.org/wiki/Absolutely_integrable_function)\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} |h(t)| \\; dt < B_h\n", "\\end{equation}\n", "\n", "where $B_h < \\infty$ denotes a constant finite bound.\n", "\n", "An LTI system is stable in the sense of the BIBO stability criterion iff its impulse response is absolutely integrable. Since absolute integrability of a signal is sufficient for the [existence of its Fourier transform](../fourier_transform/definition.ipynb#Definition), this implies that the transfer function $H(j \\omega) = \\mathcal{F} \\{ h(t) \\}$ exists for stable systems." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Conditions for Rational Transfer Functions\n", "\n", "For a rational transfer function $H(s) = \\mathcal{L} \\{ h(t) \\}$, the BIBO stability of an LTI system implies constraints on the locations of its poles. These are derived in the following.\n", "\n", "The inverse Laplace transform of a right-sided signal can be computed in closed form [using the partial fraction decomposition](../laplace_transform/inverse.ipynb#Basic-Procedure) of its Laplace transform. Applying this to the transfer function $H(s)$, the impulse response $h(t) = \\mathcal{L}^{-1} \\{ H(s) \\}$ is given as\n", "\n", "\\begin{equation}\n", "h(t) = A_0 \\cdot \\delta(t) + \\epsilon(t) \\sum_{\\mu = 1}^{L} e^{s_{\\infty \\mu} t} \\sum_{\\nu = 1}^{R_\\mu} \\frac{A_{\\mu \\nu} \\, t^{\\mu - 1}}{(\\nu -1)!}\n", "\\end{equation}\n", "\n", "where $s_{\\infty \\mu}$ denotes the $\\mu$-th unique pole of $H(s)$, $R_\\mu$ its degree, $L$ the total number of different poles $\\mu = 1 \\dots L$, and $A_0$ and $A_{\\mu \\nu}$ the coefficients of the partial fraction decomposition. Above formula for the inverse Laplace transform holds if the order $M$ of the numerator is smaller or equal to the order $N$ of the denominator. In this case one has to check under which conditions the impulse response $h(t)$ is absolutely integrable. The first term $A_0 \\delta(t)$ does not pose a problem for $A_0 < \\infty$. Under the assumption $A_{\\mu \\nu} < \\infty$, the absolute integrability of the second term is checked by evaluating\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} |\\epsilon(t) t^{\\mu - 1} e^{s_{\\infty \\mu} t}| \\; dt = \\int_0^{\\infty} t^{\\mu - 1} e^{\\sigma_{\\infty \\mu} t} \\; dt\n", "\\end{equation}\n", "\n", "where $s_{\\infty \\mu} = \\sigma_{\\infty \\mu} + j \\omega_{\\infty \\mu}$. It can be concluded that above integral is absolutely integrable if $\\sigma_{\\infty \\mu} < 0$. \n", "\n", "If $M > N$, the system is not stable in the BIBO sense. This statement can be proven by a counterexample. If $M > N$, a polynominal in $s$ with positive powers can be split off from the transfer function $H(s)$ by polynominal division. Lets consider one of these terms, for instance $H(s) = s$. It follows by application of the derivation theorem that $h(t) = \\frac{d}{dt} \\delta(t)$. For the bounded input signal $x(t) = \\cos(\\omega_0 t \\cdot t)$, the output signal $y(t) = \\cos(\\omega_0 t \\cdot t) * \\frac{d}{dt} \\delta(t) = \\frac{d}{dt} \\cos(\\omega_0 t \\cdot t) = - 2 \\omega_0 t \\sin(\\omega_0 t \\cdot t)$ is not bounded for $t \\to \\infty$. The same argumentation holds for positive powers of $s$ by repeated application of the derivation theorem.\n", "\n", "Combining the results it can be concluded that a system with rational transfer function $H(s)$ and right-sided impulse response $h(t)$ is stable with respect to the BIBO criterion if\n", "\n", "1. the order $M$ of its numerator is smaller or equal to the order $N$ of its numerator and \n", "1. all poles are located in the left $s$-half-plane\n", " \\begin{equation}\n", " \\Re \\{ s_{\\infty \\mu} \\} < 0 \\qquad \\forall \\mu\n", " \\end{equation}\n", "\n", "The locations of the zeros of the transfer function have no influence on the stability of a system.\n", "\n", "In order to investigate the stability of a given system, the poles of its rational transfer function $H(s)$ have to be determined. This can be performed by computing the roots of the denominator polynomial. However, in order to avoid the computationally complex computation of roots, several stability tests have been developed. These determine the stability of a system from the coefficients of the denominator polynomial. An example of such a test is the [Routh–Hurwitz stability criterion](https://en.wikipedia.org/wiki/Routh%E2%80%93Hurwitz_stability_criterion)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example**\n", "\n", "The impulse response $h(t) = \\mathcal{L}^{-1} \\{ H(s) \\}$ of a 2nd-order system with transfer function\n", "\n", "\\begin{equation}\n", "H(s) = \\frac{1}{(s-s_\\infty)(s-s^*_\\infty)}\n", "\\end{equation}\n", "\n", "is computed. First the case of a **stable system** is considered with $s_\\infty = -1 + j$, hence $\\Re \\{ s_\\infty \\} < 0$. Its impulse response $h(t)$ is computed by inverse Laplace transform of the transfer function $h(t) = \\mathcal{L}^{-1} \\{ H(s) \\}$" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAHkAAAAYCAYAAADeUlK2AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFIElEQVRoBe2Z61EbMRDHD4YCgHQAHfCoINABkAoCHSTDN74xSQfQQQIdQCog0EHoIMEdkP9PkQ5JluSzrbswiXdGXj12tSvtQ9J56fn5uRkCzs7O7iXnUPhxCHkLGS87sDSEkWXYVYl8El56Eb2oDbUDywMJ2pOch4FkLcREO9CrkRW5GyqfJJPSUFfZinR4VU3pt9FFoa50XebqQtNVXoqubyM/SuhHLWKkck5d5dVGtHT7ID27OiEODH3vMK9eQ53J3O7WpCzGngnES4RxecNRLmeapMCkOQ80vCuMU3YC0WJkHPm6C4OlfyNa1oLTT3R40cyt11RGlkC83KTeCYs6Ea25RQtzHl8Jr03gKQ7beW5EdKn6SZF4ykHNx8Xwm/B2itWO42D7qgevA7XpfytcdGCNozv7gP7IuxfeFM6CpZtbr5WshMSAhOJ5+4mhUheOcQuBVXpdONioErMbE8+tylzZwM2VwDjuRaLfdeGopOeU3vDBn3U88bk7iclAao9UmG9LpRTNVfTq9Uy2O4S33tn6qRaV2ig7XEbiLUZLmbs4eqS5S0cAjp00huWDn+gcA/Xj5KR1Y+iIgLRdgip6DWHkK61iU4s9Fv5SWtHfGJNeROkkx4PGZKOMjvAfZcZO1c+53fJbw0O+nuFpauoVpGtNjDei1E8rnCjkojNzBImXxbULtPOOIdHh8WwmslxUvFP/tgoej7OASduHwo0wPPSzWV9ViBYuKsCuyp1oPptW/oe5xvQTH7qQgtEFuaRWZKXmhJ9oD7KB6OFFn/gyx3xAybmq6dUa2S6K84VPjyY1CbOJGD1WUl31wG4Gb+jgvFfbnHPCbAbG/uFLVRs9yRJPwhj6QHVjVGF053JzrVLazB3Rse4AxGOcUxgj7QkHugXETYNeOEUMZC8gdiIcEBhEL2NkLQDP4vbHrdg/e1Cc/r6Bjd6R7FUVItlB/DTJbcp3MWAIvN8A61ChzhqCCKPTA6Ltl9eOq9nz2COEn3licI7BXcQfw3G4fOXWA201vVasZOfJbDKXBN5ywI3asRf+Gan4iwwVNorv28jDsYjAaTIIhk5BavN9OjLAyO+I6jhJ7GwRiYlIl4L9MZy3PV4Y0JrQByOf0y5ANb2ckc1CpMCk86ug09xDvFE5GtCFs5X0Xf1NrHk7gzWIy3IlvpxBMGicCd0FrZRdSrKaafVa9mYrpQ6PrH5VSpsoEOaSh7H5cMJ5fKw2Z2ufwLpz0U4kNtKhzWaqp2jpC1K+R/fAHB6QnXDekdeXqlbTyxk5a2ApQ2rpGzCku6Q0bIAKnk6aNBvdowIYxzhZQkZwHtu9IGpjoC/YQ9YQE3n8XY6hano5I5MeSZMtSCHOZ87q2BNbmsoVLidxlNBuo8jKi2noTm28JZ+IWJ+77cbEGN8Yz+qW++pF9onTMnPhpMaBLD/7PPETKIyCanqZM1kKmO+pwijh3siN2uYJY0T2+4PXE7n+lyMuf5zLfEgg0tHNpU82lJs0G0g/40Q//UQJdO6mzYuBPx5cW0MBwOMunsGAGsx1IV6TZYRzdxZ3j4j536uDNXCZ5ZvD2LfvmMFrV9Nrqj8oPAX+qaqMwDu3/T4wzeLEi6PxCin+2TDNnI62ll7LbsL/HJMNZs1aRDv8fUAVvRZGlmkUMRwVnLdEZWew9PDN/BwqCaul18LIL7vMmZ07m1+owhr0ubM+pJy9NbdeizPZ23wbmXwenRiZouEyxtes4OnkTVetOq9evwGdD03K2JCHRAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle e^{- t} \\sin{\\left(t \\right)} \\theta\\left(t\\right)$" ], "text/plain": [ " -t \n", "ℯ ⋅sin(t)⋅θ(t)" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sympy as sym\n", "sym.init_printing()\n", "\n", "s = sym.symbols('s', complex=True)\n", "t = sym.symbols('t', real=True)\n", "s_inf = -1 + sym.I\n", "\n", "H = 1/((s - s_inf)*(s - sym.conjugate(s_inf)))\n", "h = sym.inverse_laplace_transform(H, s, t)\n", "h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The impulse response is plotted for illustration" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1MC43ODYwNjkyMTQ5IDM0MS45MTgwMjI4NjA0IF0gL1BhcmVudCAyIDAgUgovUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nIWYza4cNw6F9/UUtXQWkSXqj1qOkcTA7Jy5QDbZOY4zhm8AJ8Hk9edjVam72pfdsXGBLh5SR6JIilJaPy1p/bjG9RN/f69pfcvfxyXy9byUGkPXFtvg8/P5M5cURtIoGXm8/fxtWX5dXv+LYf7E7O2y5BS0RC2yphRqbHEMGxybuo92FX8+i7PUIHPU6yA34oNMdrKPTJ6FBGUpUJtkYdKl1SZ1zT3UknuF/CQsIW7Cz8vyBl/8vbx5Wl//kNYU16dfl9KDaB2mIBJGXZ9+WV7Fb9anT+v3T8vGtCQpYbTSaz9TnKWPOZIk/IoHRs+pnHjkK54xmHVWHTc8J+k/8IzGYopEfoieeMotj/TMzHMUOfOcpY95pFuc5ExUDPbrytNueXJRZi6pljPPWfqYJxcCQaW0VqS2E4/e8hRDWhJtZ56z9B9iILXQcFpKic280qRLHHzBKK7fRsKv5HHEr6Qy1hGkayLO3j8zqOVVGLpxMcLrH+SgePWXDbUw1Ltj0m7YlsaUb4V3tiAFtimHXpr2I2hD/CpurxR92KxGazccV+kDkt5CUo0j9h7bJKr3iBLeK9KSyg3TSfyAKiUNTUaOrZaUDq50d1GplaCt59Fvua7iR1wthdhjFckp9cl1d10Se8hRW8o3XCfxAy6JOVRYskYlu3YuubsuKYN9HSrjlusqfsRFzowqo2at1ICD6/66hgQCP5bb6DuJH3GphjzIHspNzgdXPiWN5cu3ljmpBoqgRWrmZ7fiTl7GcsqaEo34Nml+25KmhZy7jg2Pu8acxqufX20qVK6YcusbRXRTDxWJeuTmi2G+uabnl3UeRVbd0uXwshnoWqLtAmHT7T+q5GBKQzIeb+sfH9af1t9XLHBYtDXXpk2MEY8f/zofRJ6qZDZq/fHt+vq7D//77/sPP759s77/886BlkMkMdgQtia2VLed+Y8nR7mGMrIwocQQlOm+naWm7iEYaBCRklmtkt5ZGz93Aw95XlokomNUQiVF08jxMHARDGggZAtekRZqi731w8BDMMgBN1MGpBCLjRxqh74DoF6D9riJUWBHRi+HvodgoNDm1DknlRHZ76SHgYc8L515Rjad5MBzPcZ4+NQDUMfTncLAKWdFoo1Rjgm5CAZW/GId1HUcN6rmceg7wPOiidyrFpImba2OQ90DUC+hS6UxgJTTbiQZx4a5yPMyyHCCdViac06I1eTdwEUw6FtUV/axWZTx63Coi9DYRBoo8olOkPJBbPUixxp8CBOSMadW2RCJYnGTpoWHmMEIRDpOoOJT3mJtdRo4iHV1jeNNrd+wDKkdxxzr9iFMslh5r4RtohyQLPlYuIuYgQZNsVIzSdrG4SpT/yWAupV0yqyd2ARw197njDwEg1osDgdxQr5Tl1qfi/YQDJqds0o5WDkDaLvmznmAqWMbCRlCbNA50Q9e9B0EAxpGbSVuHR8OoQId+g5g6tQBhrKIDC1TTvpUfwmgrlQ+qrVtvQbrU+QoFS5iBp20zm0rCTRztaY8DRzEWvCM26xbWLmbqERq6GHgIXvPzjwLmYSYIOuXFXsIzTcBT39Vd+KkNc9UcBEzsDaUvCgmVqFotmngIBgk2qJMFaGRJh+5veQjKFwEA7EDTOuW55SInsuxDS5iBuRHkUxXLFYXOo3BNHAQDEgPgiVTLzlyU+lk7mHgIWZAotbcae1QIFHSxUseggFHREu0BdYrp0IdmUtwAFPvnBVY71ct453qLwHUq9Ao1LHfALkIzhPBA0x9hFxr54jOpMlolwrvIhhYJzuKUslYHt1In4HtImZg3uUSV03cCLKm08BB7M5H2jV6J5NyMM464chN2WZJObO+hA4xyxzcAVDn8MyDMbbbXxll9LlcDzEDSgZVtaqJO7VyrtYBUB/cDiVue8LuUCwP7ZdyLp1xOznr3lTBl2dCuogZmF/ZE1ygW4s1g9lFMLBOkLNfdRPXMlfrAaiTQ5nmcOyj0P3OBspFzMAOKUnWBiCORS8EHoJBtvtvhXhbWB2XY8NFzADrIfurAAHSZlX0ALvHc6sZquYH/NyUC86h7yH7xR+vNdm2nXt9nYe3i2BAGtGaxI2XG0Aqc88cwNTVDretLUdM4yx96jsIBmRRqbRi2zj0YVS+w8BDzIAswhF9e2hoLZcLg4dgQK/HoU753sQ45rLLHoIBTXbNpZXNdS1qvDjVQ8yAaKdS7k85ymE6feoAqNO82cvN7rpKG5fnCjzEDPp2Aej7G06lh54T8hAukVx2W9lnWQsxdiSxI0fZGto2pjhzSEx1DzEDCkbcHlxMTKG96L8Enr9+GWJ/9Khw79Yvq6z/3h9Gt/fEe5ew85vm6Wp2fqRkvMt76PYw6T9+Pt99/Fx+v7xxzrfN84Po6YHoNMDphegFv/ua+pD/3fJ/AuJeNAplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjE4MTEKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEzID4+CnN0cmVhbQp4nD1QMZIDMQjr/QqeAAiw/Z69uSr5fxthZ1LsikFIRhRCVJD8ZZXMUvmzkTkFUHmP2CD1GqFfLDI+T7UF4RLTqE8iBGSfETMFc7NTgrUu7jxMSTg1nIuARCq/3QzaKSSU88upv/iM3qMrb6dK8aQOIONGF1WxHdxgii2iNmOeZ1tcsIWT7DV8/irjymVdgTbbxJk/2YW65HkAZDIZj4slVWEXuW757ewtGZxyat3IZDIIw/Y1I9dFO0z1GTjPEFjUVBznZhi49Dgi6PQ9/zP+P5wOTjwKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMDQgL2ggMTE2IC90IF0gL1R5cGUgL0VuY29kaW5nID4+IC9GaXJzdENoYXIgMAovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9oIDE2IDAgUiAvdCAxNyAwIFIgPj4KZW5kb2JqCjIyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyCi9maXZlIC9zaXggNTYgL2VpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2VpZ2h0IDIyIDAgUiAvZml2ZSAyMyAwIFIgL2ZvdXIgMjQgMCBSIC9vbmUgMjUgMCBSIC9wYXJlbmxlZnQgMjYgMCBSCi9wYXJlbnJpZ2h0IDI3IDAgUiAvcGVyaW9kIDI4IDAgUiAvc2l4IDI5IDAgUiAvdGhyZWUgMzAgMCBSIC90d28gMzEgMCBSCi96ZXJvIDMyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjAgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjMzIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTA0MDkxMDUzNDYrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjQsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjQpID4+CmVuZG9iagp4cmVmCjAgMzQKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMDk1NjIgMDAwMDAgbiAKMDAwMDAwOTM1NyAwMDAwMCBuIAowMDAwMDA5NDAwIDAwMDAwIG4gCjAwMDAwMDk0OTkgMDAwMDAgbiAKMDAwMDAwOTUyMCAwMDAwMCBuIAowMDAwMDA5NTQxIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDQwNyAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDIyOTMgMDAwMDAgbiAKMDAwMDAwMzM4MiAwMDAwMCBuIAowMDAwMDAzMTc0IDAwMDAwIG4gCjAwMDAwMDI4NTEgMDAwMDAgbiAKMDAwMDAwNDQzNSAwMDAwMCBuIAowMDAwMDAyMzE0IDAwMDAwIG4gCjAwMDAwMDI2MDAgMDAwMDAgbiAKMDAwMDAwODEyNyAwMDAwMCBuIAowMDAwMDA3OTI3IDAwMDAwIG4gCjAwMDAwMDc1NDQgMDAwMDAgbiAKMDAwMDAwOTE4MCAwMDAwMCBuIAowMDAwMDA0NDc3IDAwMDAwIG4gCjAwMDAwMDQ5NDIgMDAwMDAgbiAKMDAwMDAwNTI2MiAwMDAwMCBuIAowMDAwMDA1NDI0IDAwMDAwIG4gCjAwMDAwMDU1NzYgMDAwMDAgbiAKMDAwMDAwNTc5NiAwMDAwMCBuIAowMDAwMDA2MDE4IDAwMDAwIG4gCjAwMDAwMDYxMzkgMDAwMDAgbiAKMDAwMDAwNjUyOSAwMDAwMCBuIAowMDAwMDA2OTQwIDAwMDAwIG4gCjAwMDAwMDcyNjEgMDAwMDAgbiAKMDAwMDAwOTYyMiAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDMzIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNCA+PgpzdGFydHhyZWYKOTc3OQolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-04-09T10:53:46.318901\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.4, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sym.plot(h, (t, 0, 10), xlabel='$t$', ylabel='$h(t)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It can be observed that the amplitude of the impulse response decays exponentially with increasing time $t$. The absolute integrability of the impulse response is confirmed by noting that\n", "\n", "\\begin{equation}\n", "\\int_{-\\infty}^{\\infty} | \\epsilon(t) e^{-t} \\sin(t) | \\; dt = \\int_{0}^{\\infty} | e^{-t} \\sin(t) | \\; dt < \\int_{0}^{\\infty} | e^{-t} | \\; dt = 1\n", "\\end{equation}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the impulse response of an **instable system** is investigated with $s_\\infty = 1 + j$, hence $\\Re \\{ s_\\infty \\} > 0$. Its impulse response is given as" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAGwAAAAYCAYAAAAf1RgaAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE7UlEQVRoBe2Z7VEVMRSGF4YCRDuADvioQOgAsAKgAx1+wT9GO4AOVDqADhA6gA6U2wG+T0x2siHJTfbmKjKcmZBN9pzkPTlfucvC4+NjV0snJyc3ktlVf18r+8o/2wks1BpMRnqjLR/UL8y29av0mBNYHCG0JZnbEXKvIg1OoNhgiqgVtc/ak9bxrLbWAMPclhC+lZLFS/lK1irhKd0vxldjsHst8EmAJmqnPKs920gTto/CWepQOCP8c6dZcY2pYdxSlrUxhhtFksXzubhg9PNRi2SEtOaOXm+qx8GKSLwYDKe8KBGw/O/Eiy448FTnFc/MuIojDCW0IfVron60sVhHhJJcXtYZtCRhY90j9VFj8V7tTg0MPWn8RQPkkM+SeC7FwDmwx77a96yAXtp1Z8ZVZTDtS4q5AhwA1AZKM19CkmMNovSwhL+Shxp7lpHB6UiBsZ8kyJkanZKXnKvhJjNojPOy3rT02wRXrcFWBe7aKoO3xJRO6TqYt4oO5hoN9rR2Ls1ua59o+rJyyEejTPMYhdQZM+o0522Cq9ZghP6qgB+o/6r2rEi4iJ5pTgSPyRIJ8MjvJd4daZ4618tbI8L+NiHTtcS15G+ihU3+19xPO09EcTEg7NkYoD1Y5mIkPjyRg0HOeesHza+r4YkYnv5K4131nXpkmEfxb2p4MUUa2lS7Fg91Jkes9QSf5MBC+gUL+65pjr1iayJPFA6iVPzIgiesjawH5RylGa7eYFYpcjifnEzKUM8h4lUhSE3FySrGbzSU7kljU6/UoxiGu+tf6kFj9iR6H9RjtB09GwOpB8eN+gu13MFsiA8dBiQZ42jqOfAt9QNsA+auAxcGDomsAoUOgTNBfwWXMZgUwEu4+Rzq2c/vAGe+hji0Da3DpYQIcxRel1MK/pAAh4pXGgKTGs/gGXg+kx4RBb+8cfiYrF8eI/KsE5IzMrXbf4cTcGNM6QNvM1xLdmfnlRwyRZXfF9ClxqFH/XmT+Au/GkrzvRFZDE5kFEep+DFajGIH6fMRmRN/InjG4KHjBCwmUlya89/hiH0K54V0Ag8GO2WcoWa4nMGMIgIwrUZkMA1e8fuKVMq61CJS5LnaPK7xWn462cN1mSQnkDpcjBNmG3c5yUV9bq+uFteit1oupD22/KMAGO9Uz2UFwy2rYagDjalF8yR0SEUhEdIJQ58x9BzjZW6QVj2+W9bwiKyBI068udhjM1zOYEljCQwhX0MYxRXoDmXU8EBSkTm0msUqeTlo4zARuUH9snoRTSExNzgPdAiZPPmSVN8MlzMYaYv01ZMAUc+obaFX9TyZh9gnHjy3924ry1xIsUMMeVJjsLpbW8iDIY0h0E3Pqa8dZIUw9bEWDmecwcpzZu/1/MSYMAfUDJepYdqUsMZAgHC/wTqNx9QcFCCi/C8GXGKoY/zoJALZx6UoDocbIYfBPO+JSubxXvjcjZFbLB913VivBoSMu0ANXmjAWmeSNdGvPlWvXd0N5fc1gQ5cyvh9uq3nQSSGAt64HS7+4/yS2vHx8Z3a2hidJLeC/BjZaTKtcLmU6DnDf/9IlI7JDChOFCI/D2qC68UZTGmKdEx9MvWm9OQtP3Kjr+i5vVrhenEGs4dGjUvVstS5wp+qjSmZ2vmZcVX/x7kW4b/itxHDJ66pESMeLiJ8xSi9RIxWa1ZcvwEXIVquVfhmeAAAAABJRU5ErkJggg==\n", "text/latex": [ "$\\displaystyle e^{t} \\sin{\\left(t \\right)} \\theta\\left(t\\right)$" ], "text/plain": [ " t \n", "ℯ ⋅sin(t)⋅θ(t)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s_inf = 1 + sym.I\n", "\n", "H = 1/((s - s_inf)*(s - sym.conjugate(s_inf)))\n", "h = sym.inverse_laplace_transform(H, s, t)\n", "h" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Again the impulse response is plotted for illustration" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1MS41OTk5ODk2Njk0IDM0Ny41MjUgXSAvUGFyZW50IDIgMCBSIC9SZXNvdXJjZXMgOCAwIFIKL1R5cGUgL1BhZ2UgPj4KZW5kb2JqCjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMSAwIFIgPj4Kc3RyZWFtCnicrZrLshTHEYb3/RS9RAuKqsys29IEFhHeSRD2xhsFRkgEBwfGsl7ff3bdek7n0WgBBMFM/v1VVdclL9Md9o9b2D/sfv+If7/vYX+Nfx82j28Pm8TgYsUffPt0+saSXaQImz99/mXbft5e/AX4V1z/eovexRR8oD070taEHB+8fv90+s7sXTnaWMyy9XaptfsB48NYXcFo0YtatlQc51By3AltxshcCzo8mbk638yftu0lbvn37eXb/cX3YQ9+f/vzlqILldq1lF2NNUkJNcv+9l/bM//d/vbj/te329HtFtBaCpHpUX9n+70OAycnHBPnGpisTum2Uwr4P5ac022nZ/u9Tslnl3L1pTAlsTqVR50WcsET0eNOT/a7nebiKlHkkrlmq9N02ylHdiwx5Xzb6dl+r1PGRgop1lJDpGp1Wm47FRIXcTU96vRsv9ephOKIao7kUwpWp2HupC/A/f7cYzeL+OMclJpSxaoEcYT1zHxg7x7QiZ5HV4sw9ifaefE99S6f/Vcb3NDgD/1GTptej6ugTT0K4spj67yJ01igounscs25csyc2gBOd6ntl+oTdrlvN0Xe+zGMLxiG1+Z0xP0DWgD+/NX7jz/9/bc3P33++vzh18+/fd1f/Rujvo47FicUAsnNuJf1yXFHcQmLJyUGX//EuP23HXeNjiTHXG7GvazmuOE8Y9VlrcFJ9NmzSKH7gy/fduzwQc5n8cw3gz+Z/3j0gbD1cw6xcInx/vDTNx4+PlbvpdzO/cl8Z/jq/z2nwExU7g9fvu3wyUeXCYf/dvZP5j8ePvngKnufCiWM4O7wv/GBvQ26a/jLbPvLGNHhESyLyzFF4qci7qmvXPGxlvhoqpb5qYCAGTr8J+UIjw43XQJyl5v5sDrkkBz8OfvbmzuZ73XIgZx4rCL7TDfbpwUCXcvnOvEBm7DlIAx/pmnEcv5yLN+t7//lWMPk+HZ51xie/fPZcQnjFCDhaCP3ZgTBJeRLDzGXZr5bUebLPnM0rikfuRzDeeHgI2YQ/mL07HQ0/3m//2P/vCPgaK6m9xZTSZh/TDIiUPuToWQfSyHWSP3j6/3Fq/f/+/Xd+x9fv9zffX1qm2XEw5BlRGvEWF2HN5YdF7Pz5KvmWYc1Bar9cksBgIPHnmPo5uJltG8pAMoxNOrtJI+17oClPGwFAQveFffSzJQDNcBUAOgiUoo9E0tRWih8YysAqoMx+G7OIYd+06bysFVxPnmcoW4u4nsPpgKgOvX4fSpKTu0wvDEFpMce8RmT11upqUhs15sKAKS2JJo4Hna0Iu18v3lCUgSHG8eyb5dEXrgMxJKAEPwejnPsdoZb6PdtS4pEh89wIM0uKGXqQCxJawOP2kCaMWbhvtqGXS9G0hkK0vpmT+obx/WWpAh8qJ6h3lSOMYzZNSUgwk5qGiMt6iA6YSkK4N6k+NCno6RQJmFJisA9VYnUh6s1wCAMRQGNasT9BCfcKXLQTliSIgW+pRYO3Y7TkAdiSQ1JGWuThn1tE1NSBKcGaU4e4625jm1iSg2JlDjWYYeHXMhVagjg1P1Lqn64BVMBAG/sU6iVhxn5bydMqSFYqzT2Q/U8F96UGqJ1TCrDrknqRK5SQ3AKUA4P+1pIU2pITSjDp/ncyUVRILgghNUa9jRX3pQaQphtmuYUFnFRGiCSS/eWaq+0iKvUkIgCLswpyUEWcpUaklGQyOw986mXq9SQkuBgll3qQq5SQ1Bn5jmNOS3gsaCXo8rHvqsn8wQsqSGE48bLnhdxURogCZlBXQ2diKvUELhKzuvu4mlYV6khRZJUWXNYFnKVGoKSfO1RXbNJXBQFGDsO+ZOxTwylAUgl4GjXjlvARWmAwHmn057mRVylhkS4ljLnMBZZyFVqSE5EI+jp6Tz1cpUUQYIQqpS5tiLzVFlSQxCBac4Jp7iIi9IARpET5pxQLou4Sg1BQY3YNF1mOCFXSRHUJDnKdMtlOnlLaYCwUJwRJs2sxpQagiMM5z8jTOCFXCVFEjpHIJNhn2HBUhqArG5kkYiVkusirpIi2QlOKI2Wcpp5kCkpUvSXK8kjUUiU5gRbkiIo1PS8dbMgPRyEoQBIcH/YQSNHQgyciY0pKZKQEWaf+sTDh4xM1paAZPgz5LXUh0uImqMXU1IkwWdiN/fMHjM/94opASmEQhe1QLcT2h6IKSlSnTqY0lZLUOqP+bIUADW5wEhaW0OE1C2N3WVKDxt5vcM83D8S/Vr7MtqSIgUhHJtIpz5oURzLRCxJf6iOmiVlT4cd9QQSoI6YEhDk30iR+Ij7qIhxTH1fFVtSRM9DRm5/2BH4ZDg8WwLCmO9AdNQSKEZRDg1fZEuK6E+kQX9mVLsg0xgR3paAYPoqtlFodpQWeWQetqRIcYR71GyMK6IUFV8HYklA9DfQGoMeO9j1+cLwLbYEJKGe50K6WWEXVHrDVdiSIggdWK3aHnSgpIrDVdhSQ7ATgsiwB84LuUodwYDDaErqiPO21JCimfFoCtlZWMhVaojOo4bBbg+ne7lKHcGZqDzsKdYTcpEUEf2hgXkOOA0vZksdQRRfvce1LpbUEJT1ARF22GNYyFXqSMR+nWY+AY+EdjkOuG62YaYTcJU6AhdQadnLCblIDWEcVVp2Oc3WVepI5CMrG1NyGthV6kg9SrA+7/7cyWOlAQjodW5UBKu8iKvUEYy2zGlM9bSIV6khkWRt7ZkQm0oDMECqeR6GkR3YUkN05mbf2uxCrlJDKnbQ3HMxp0VcFAWSI3wei1viaX4tCUhGCRYRO0pzUYgcIz7akiLJMWmWf/hB5E7j1g1BH1yi0Amo6KV5Z7iaOVempAgceko5tOAkGfXtWBBTAlLh0L2MWhI+kOdmNCVFMiqXxEdCit2nZ3UQhvKwoT7Ark75KEM0o+NZLduSIgVj5Fq0b7hzms7RVACEo0QI+sQVRQ8OnR8e2JYUAZ7gnLBOyBox4jIqLVsCoo9YxR91HjK6or/X9FW3JUWqQxGdEYyRxTgkQTJqFFsCwsgxYtS4lFnLdj8OoqkA0MeyWFt4Vn26oEX7SKRsSRHsa4QLdU7YGpLgRCZiSfpQG+Wn/qiF3pGeIRPikUjZkiJIrZEewtHqSgek/8Np2xIQPaIRqW7aWX85RR0zezElIDhwWrDo84uo05hGuWUqCmiBxBrG9eGI18c5AzCUBlQsFA6mmkNAQONFXCVFgFO7v8Mus+CwpY5keLEw7PNnTltqiP7Si3no9px5IVepIayPQEbvaPfUy1VqCPKE0p4lIXDSyKFMRQEk1kQa+nTiU9JXBgZhSUAK+kaJhNxCj3jOMlJuUwEA9+Q1EQ/HnkueyqjPbEkRfXqH7QxPoDvDH3ViRyzpYRMfEV+1ioRzRsIUEAD6ndgSkIBaDz7G866lEoJ+HRNsSw/tdYzm1PRxAfbTzCJs6fZtD40Gnoar/2H/stP+t/ai1PHy0VOPqdrLTqcHiPNFJjQzX486Xl569ErUg/lK1PZ5vvw0Xno6vSZ1FIvzZZWJn8xWv9fXrJ7s+4ft/5WqjWcKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyNjUzCmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMyA+PgpzdHJlYW0KeJw9UDGSAzEI6/0KngAIsP2evbkq+X8bYWdS7IpBSEYUQlSQ/GWVzFL5s5E5BVB5j9gg9RqhXywyPk+1BeES06hPIgRknxEzBXOzU4K1Lu48TEk4NZyLgEQqv90M2ikklPPLqb/4jN6jK2+nSvGkDiDjRhdVsR3cYIotojZjnmdbXLCFk+w1fP4q48plXYE228SZP9mFuuR5AGQyGY+LJVVhF7lu+e3sLRmccmrdyGQyCMP2NSPXRTtM9Rk4zxBY1FQc52YYuPQ4Iuj0Pf8z/j+cDk48CmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzggPj4Kc3RyZWFtCnicPZBLEgMhCET3nqKPID/R8ySV1eT+2zTOmIX2EyhssKXoGM7L1ZBd8ZZWGJ74Nu8LnomrqfWHJBUy+6YOGYtn8hQnJBSvJmNA3LHV1qNxMsIMuywmZmCuiq9ELqhQAupR8mpmo+BqpoK+fcRWmfUWFwhFAiYsZyv+nwPT6xYdDBaY7TfLszz2CtN0LMx7hnkPRSN+BuVabmBlrYOfhh2a97ZoKP/kJ3sWeLXPD96rQqEKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA0IC9oIDExNiAvdCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvaCAxNiAwIFIgL3QgMTcgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMSAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDggL3plcm8gL29uZSAvdHdvIDUyIC9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0Cl0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2VpZ2h0IDIyIDAgUiAvZm91ciAyMyAwIFIgL29uZSAyNSAwIFIgL3BhcmVubGVmdCAyNiAwIFIKL3BhcmVucmlnaHQgMjcgMCBSIC9zaXggMjggMCBSIC90d28gMjkgMCBSIC96ZXJvIDMwIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjAgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMjQgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwNDA5MTA1MzQ5KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy40LCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy40KSA+PgplbmRvYmoKeHJlZgowIDMyCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA5NjgzIDAwMDAwIG4gCjAwMDAwMDk0NTAgMDAwMDAgbiAKMDAwMDAwOTQ5MyAwMDAwMCBuIAowMDAwMDA5NTkyIDAwMDAwIG4gCjAwMDAwMDk2MTMgMDAwMDAgbiAKMDAwMDAwOTYzNCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDAgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMTI4IDAwMDAwIG4gCjAwMDAwMDQyMTcgMDAwMDAgbiAKMDAwMDAwNDAwOSAwMDAwMCBuIAowMDAwMDAzNjg2IDAwMDAwIG4gCjAwMDAwMDUyNzAgMDAwMDAgbiAKMDAwMDAwMzE0OSAwMDAwMCBuIAowMDAwMDAzNDM1IDAwMDAwIG4gCjAwMDAwMDgyNjIgMDAwMDAgbiAKMDAwMDAwODA2MiAwMDAwMCBuIAowMDAwMDA3Njk3IDAwMDAwIG4gCjAwMDAwMDkzMTUgMDAwMDAgbiAKMDAwMDAwNTMxMiAwMDAwMCBuIAowMDAwMDA1Nzc3IDAwMDAwIG4gCjAwMDAwMDU5MzkgMDAwMDAgbiAKMDAwMDAwNjEwOSAwMDAwMCBuIAowMDAwMDA2MjYxIDAwMDAwIG4gCjAwMDAwMDY0ODEgMDAwMDAgbiAKMDAwMDAwNjcwMyAwMDAwMCBuIAowMDAwMDA3MDkzIDAwMDAwIG4gCjAwMDAwMDc0MTQgMDAwMDAgbiAKMDAwMDAwOTc0MyAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDMxIDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzMiA+PgpzdGFydHhyZWYKOTkwMAolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-04-09T10:53:49.169478\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.4, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "sym.plot(h, (t, 0, 10), xlabel='$t$', ylabel='$h(t)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The impulse response shows an exponentially increasing amplitude for increasing time. The impulse response is clearly not absolutely integrable and hence the system not stable in the BIBO sense. This may also be confirmed by computing the output signal $y(t)$ for the bounded input signal $x(t) = \\epsilon(t) e^{s_0 t}$ with $\\Re \\{ s_0 \\} < 0$ via inverse Laplace transform of $Y(s) = H(s) \\cdot X(s)$ with $X(s) = \\mathcal{L} \\{ x(t) \\}$" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABCcAAAA4CAYAAADO+pL5AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAElEQVR4Ae2d67XdRNKGj1kOwOAIviEDAxGMyQCYCPBkAItfM/9mQQZmIoAhAyACxs4AMsBzMvD3Pjpqube2+iKppX17ey1tSX2prnqr+lZqaT96+/btnYMRMAJpBP75z39+ptTXOv+RzlWXIhpf6fiuLrdzGYFpBFraJDXYLqdxduw8BGyX8/BybiNgBIyAETACUwi0HE8vbY733hQgIQ5gdDwP97VnlXmi49v++I/OHE9qyztfOwTQQTtq3SJmkU205AFakuuVjr+0pjumpzpeKO5e59WOCWiLznc6Xo7rWXMvertgsYbHWym7hy5UR1ObRDeiabu8YiO1Xb5T7h5YvKvNV0bACBgBI7AEAfXVTdcvS3iYKrPHGKI6ms7zRK/5HG8Km1ZxSeeEBOFp8ac6/7KgMhwTX/fH5yr/RserBXRcZD0CP0gPP68n8+CYEJ2lNtGChY6G5MHR9UznJg6DFGN9PVvIi7Ou2OkqT9GJ0fO4ORYpjObGi98qh1Jtvrn1b5l/D130dWxhk0BjuywYiO1yGiDb5TQurWJr7a42Xyu+roXOpeK2Fd8luqX0a7GLuXJcIi5b8lyiXUoX/s3WL3N1mcovnjdff/R1bDHPq5rjpWSvja/Qa0cql2/SOdED843Of69lZpTvhcrGOy5YiP1Fcc9G+Xy7MQLC/LWqwCC/WlOVytMg19jEmurHZbEt5No6YLdFB8FcJoQlDr/nPaa54jUL+b2wyPFZldbbYG0fQH+xymarmGqbaQ9dbGKTwCC8bZdle7BdTmNku5zGZXXsDfSbqzFaQ2Amvmuqalp2Y75L/Vwpvamsl0BsY31sAsEOPJfsJJsu/pqsXxqDd7HzPOFZO8dbDNlMm0rq/9HUNydEnCftLGi/X8KhyrEd5Ued7ymvM4us33V8pOs9FpVU24W+7q/72491fqODXR278tHX3/Q0RzblDfh3OpnLiMqvsom59U3l7+XFYcauHuSgoeFZHXTZ5/mP4gnonZ07d4rvHG06M4kGiw91/Kn75PcflPa7DvIdhZ7On0qAjze6/+koUyaiL/9brpzSftbx6RQZxdOmslhMlUvF9fTY3UTbWNTuU7SJF0109onOoS3msndpyotz4g+dZ2FbJNw4g/gr6qLPs9ouRSdpk4ildOzbdlmpY+Flu9RY38O1uL+8NbusNK/V2a7BPiUD/fiHOi962KVy9K+bjE1L8I2VuiVvcT3j67V8j+lN3auO7PhbSp+iea1xa/Wh8pvZeArztTyn6I7jS3ZSSoee8qxav4x5WnIvHrLzvD599Vga5BW9ybVHn754nie6lM2uPfo6aP9PdSD3v1RuWGeRPhWUp9l86r1xBSIOIx/rvHiBQlkd8SKYQYlFRlG4MT9r7lUfsvCKyd/74yPdwwPv6OP9utiwQDZ2APx7icB9XatsYkm94zLiAxtiAo1t0ViOnEzkURp50D2BhtjZotKY4NAosU/yMGHCkXYUFE/52IaHPEoDSxwHODb+q+NvQ2L9xW/KOul4qCGhuotY1NCJ8iDvEx20kaZBvEKXXTdgfhRI18GiO+isy6N78KUc5c82iL+iLsgjAVbZpWgkbRJwlG67nGElwst2abucYTH7Zr0i+2T+d78CvU3GphK+8EseHUdjUyTLJrxF9I8ua/g+KrQgQvVkx99S+oIqL7JISR+k68jZEHLvakclnlsqQnW1sKPF65dWskiO7DyPdNW1ao4Hr6Kz9TyvuPYQDzyM5lt7yPOljuB00eV0UN6m86nHE9XAzGLHxJieGGYbN96UxYse0cCRwPaPuXyxMAXYIYgGC1oWpID9/pBwgosVcsHtXNnADkcNHeXciUJTm2gANTbFrolUeKME5Ax50Dll+DZD/BSeBsjEacqu6CCgMxVIA0s6THYIdbszyKhr0qBJB/CJjpeKm/o2Bjog79pQwqKKvnj8Rcf7OubaRg19bBWsUiG07ymcKEd5MF0UJFOgP6XnRTQThUq6WGuXOZuEJdtlQjGJ6JPaZYKnLaJtl+9QLWHxLufpr67CPtX/Jp8A1kCs8luNTSV8YS+MHVNj092GvOWgqeE7V35OWmn8LaUX6xKGAeOtx+ciLwszlPQR5Ju0Ieo8gR2VeF4IRbJYyU5K6WvWL0mmFibkxpC1czxY2nqel117yBaxDWyya48646Rg/c366TVpiVCyqVw7ONL/44lKWLgvfqIb00Mg3cMwr3OsWfQ8EQ2OuQEw/qe6x4suFq386wSAJzuMuZUtyL9ULqqaJRv468CwvtAxdxBoZhMwviZIBuRGlpI9jdM/7suNd0p0DXGCJ3QzphGy4az5VUfXoMQL9h3siNehgiPuJ12zWyPch/Kc6cSGoHzQor3Egd0qOFDiAP3QadRiEZdPXotuSt5kmcqEL0Q751ygv5ns9JBVB20YB9NS/tAlx2ZBvNXqYizDHLtEhnH5WCbbZYxG+frUdlnmcGUO2+W711NnYLES9WbFr94+a5Fa0ffnqijhS9nk2BQIb8RbID91ruF7qtzsOMmWHX9L6ZUVMq5xXGoo6aNoQwi+sx2VeG6qi5KdVKSvWb9MyqI6cTKk5v9xGXbed/N7nWvmeeM52pw5HvXSFsY0Yn7WzvMO1h4x4R4TXueY8gGwPpmcp/c0SjaVbAeq96ifeTzBGFFsVV8VVFnnmNC5E7IXGgMLi7hV9CsL44TA25NSNEZwqWGJbOiVp/zVzoleb2C02iYg0iAMXkvxhv4+SNjUuAHC/xPlrZUdOz2yD5XHrtnehcOLa3bgsDOIv+khP3FxwAFGvfdxpK47OiFO6UeLd8UlvznRl6vFIlSz+1ky0JmX2jx5fsowR/klTrUMyeZJtbpYY5eTNokkwtl2OUOltssjsGyXR5CcLuKG7PMkIFfiC2+lsWlX/mfw3ZKv0vhbSm/Jy1nRqtSHbehBayU7KaXPXr/kjEW6Y6E9tQjPFauZ560ZS6kbHI7WHiSI5xbzvIO1B3Sj8I2uWd+EXefUicyEDx5Ox7/K03ye/3hUTVeBKhovpEbZOpDwOPHhNcJTHXwDoCunM8LzJDhsp9dlty0bj89uQXwM2+1HlXZgKx3jPAiKS8p1kPHEN0tkE8t8VIZF3pxQZROtcBMdGiUNJNgWW0Ljp+bc88oEIfkdA6UdNCTRfa2D7aEvdISdB9SFt+/IYaE48mPH4xBeBYFWaMShIVPnuGPiHjpjWyMOfawJtVjciVdsHl3SRpGb8DfFs+sDXnCycEaurt30ZYhHrh910DZwxBB4ZYXvd/A+YS5AK+Az5FM5eMEhAy/UixORuqZoUp5B5EhPitsliDf4PKldioeUTYKB7fLBEmyXO/eX12iXmFLf5unz6DNDoH8aHKlRntCX0yezu23o83Sd7HsD0YnzRfebPS7sUgQP3rdPjhM5fJS21dg0iS96UJ1VY9MK3njowJNC6sE2CIxvvCo62E0Xe/yT5DvOKjot57Gl8beUHrPW/FqyMjZfbDsV/0ttfKkdncKG0HvJTkrps9YvvV3k5mxLbLFmzs18eQjio9XaA5ot5nnYWxivYj5pR8zvx+t08hNwmqTCpE1J9qq+tCd6oP/Ho5o+0X08EI+SH25VIQCxYOwWXD0DdA7h6S9b2RGU8xCUL6QPcXtfiAcGA8AeK+BOaSW59mZ3Vn052XpC6Iun+FNP8lN1FW2iFW6igyHj1Ppc18G20BcdTNAXC1jSmfj8oOMgKB7dYovICC0G/K5R6cz/BnNPeuf80HVy0qQ8OB/Gr/4E2uH1ECarwfHwRmUOOqb+fqpNMRlZ2x6yWIh+F8QfbRG5D7zEuu/q1xl8cFIcdFi6Ry4+Gvo/nZGLV6E6vHRGL3xYlldXcp0WW9rQw0FQGToiHCF0hs91PuDtIPNDR4ptnCSIt3OyyymbBBfbpUCQrmyXp+kvr8YuaUyyI8YR5i9f6rpzRuhMP4DjAVmZcGJr9MGMK0MfqGsWDThbw266ZN+rsqlw6f1m9+BAGHSYScjJcVbppxqbJvFFGeKpamxSvjXjJlVhR2E8ZY6ALZW+g5bkG4IE0Ww9j2VekBt/S+kdX1v8SNaLb6eSYW87OoUNof6SnZTSmY9WrV+Eac2cbYlJJufcvS2GedgWaw/4DfTXrD9Sa49Ak/4vDqwBCcMY93B78DtpU8Kkqi/tKR3o//EB+QeHAgusZOgV8FxnDCUEFo4orQtKK3WwIespzvCJ1/pgsKyR6xTMzqxzUraIRtAtHXqsvyjL0SWTh1DuKLEVbj2dziuo65g3Ohniu6C0ztjD/fisdBpQcqGr9ODkGBeduqcjYAE/lFH55NN7pd339ce0mIAcNGrdg+ndOD4uVHOt8lksIhp0HHy/YuyUGp4A9nkP+IzKs52ONo93tAu6ZnLONfpJYqK0rP0oHV3F+tbtUcD+OsyOUjaOkIy0lXOyyyObBALxmdSB0myXx3Ziu3ywm1b95TXZJdbCWErfHfeRoQ+6J4MCeaacs4wXOG7pn3Hq1vS9ynYQLtY+JTd95m+9NIwZqXGFLKcam0r4wlvN2ES+lHy5cZMHLPE8hbyMz+OHIdCPQ5bvHvvs/DwmVnldGn9L6ZXVLMp2De00CL6XHZ3ChpCxZCc16dDJrl/6NlCcs0FobhDt5Jxbaa3GUtjaZDwVj+j+rueVyziE/gjHchz/mW6m5pBxnqxNKWNNX3qg/8cxdV0zkKYayEFWMY/y6Rh4+hmEOsgz90Z08Dax2BkH+LpT+tSTZhZJw6JpXDC+7+nD7xSdLqvSsnIpHaMh8OT9qe6HhWsXO/GjPJvKRZV9HVnZlO2+Z6/Ds78unapsQvWvxS08XWeA5oMsvCpE4CkUHcLugXp1MIkoTRhi3siPjTA5w+M4ZZvfJOIVfRCq2uJBiYmbXg4aPh+WBEt0xaS6aLsROSZPU6Hr7KYS+jjsJ9jdVDbae7wAmMoDDgxI2SB5tmhnZ2WXvS7n2iS42S4PrWdPu6SN/Kqj1FZiDtHX6zhidG27HAGi21b9JXp6pmP8AIN+quurpBvS40W4bh8CetPBDa/NscN0Sd97yfb5RjKHPp2ncclxRvkYY5fgA74h/DdcjM659lbCF1I1Y9OoyqPbFG+ptp3jGeI1fN8J07XzsViQ0vhbSu9oiaem47PoXUs7jbFOXbe0o1PYEHKV7KSUft+DA/+5cFZjY47RVJpse8naA3Kled435EnUi6O4qzek920M58S/QlziXLKpmr70QP+PRxXR2BkokkHMhq1oLCCp8E5xbF9MDkBJYqME0Zh0GigecFggHkwWRsWztyrbbVnJ1FGUS2VZdP4Z+ND5uQ4Wz1nnjNI3kwuhRT8rWwRMVrdRvvgyaxOquxVunfGK3mIdx0y3uhY/fKmXbbnDN1VytJWPBhbaQpigDUWUjq6wmdDRDmnjC+WZtJtxvsp7/jGEjgmcsWNkYgdRyzpEtj6obmyLCT4TqVwodXxd2ZQsil/Tf5ydXSKnjmqbBBzlt13mLCxKE1at7ZK2PvWPPVGtsy9tlyPIpLdWfVlwhHav/o2qCbchT64ff9Znbtr3nrt9ir8OE53pdwnJXV0PyV3buNSxqRdh9ilnW7OJhQLCvNV8LJDkXBp/S+kdLfE22T57O1kyvw9tMIdlyHPO7TTGeu51Tva5tIKetrAhaJfspJReu345u7FxiSJoLzqazfNEq7T2eCI+x3Px8I3CUh+eFFH1Qpd2OKY9LnOg//dGqTRgMmSDKuNpwCNlYlHOk9ivegaGcroHVA7Swm6DIX3PC9XPIMm780PnqGs6w9BxdezoviQXyh2e4is/1zgoDuh0xHb6Ud1VsvXsBN3WNnKKFW2iIW4soM4uIF9Dpn4UvcGGGtJNklJ9nX32emKizGtXtIUXinuWLNgmAZ3SOU2Fj4kUDwMeup7KS9wcm52qa03c2dmlcGppk2Bju3xnIbbLd1jMuroGu5TAob3z8bNUCHmm+qtQhkn+0r73GvpNHA7s0LsPgIzPK/AZk5p7n8MXWrV9wNx61+Yv8X0nTFvPY0vjbyl9rcyp8qENXno7Tcm3VfwpbAhZSnZSSp+zfgm2sRWGu9ClLTesKDnHUz1gT3j9cBp+qZ+HmPdDzPRFzqZq+9ID/b83Xc90rBjE2cBHK7qga7aAHO0aIJ8ysMOATpIn4TwpLnlNHog2/lW9LL4+gZcR6c903y14lFaUS3mYZADeWEncb73AUxXHoUa2USn4J4xleIid+dsYt2RnonrQ1UmDeGiFWRM6M8HAPrvdNZRDFh14QtnZ0XUcxG8UaGPdBH2CPn3H0BmKJ/QcBqA4O3FJ+4gzbnCdrLfnd4Mq60iix7qc5VwtaZVrG3LYLgcoZl/YLmdDVlegbwv0S5N9I+1eB+m0v6n5D0/uCC91LLXxi+43hc+TXvYfAEL3qQdUS/GB7JqQwxe6tWPTGh6WlE3yDcY6svNzpS+Zx5bG31L6EjmLZSQL7Y92eOnttChr4wynsCFEKNlJKZ0+hYDec+Fsx8Yc06m03s5TydXxOTpTaYoL8/Hx2nmqzqRNKXNtX3qg/7FzAqUGA5higEGXAXcIvQBjz8pZ7DAQb3TEfBeD7xi8jA7i2DITjLxGroALSogD94C6a5ghW8xX4HMsQ5xnfJ2ziZa4MXkJk7qOB8nY6U03r8dM+X42AnzkJthwKMz9sGuhjxznITrYTZ9l1gnd8e2NqUD77AaSnrfUtz3Y7XES56bqtV1Oaa5dnO1yGZa2y2W41ZbivVz6o8GpS0Hdg3sYj/6qa/6K+hlpUSAPr7qGfLU2HpHo6rjkfrNbMAoDdk7Qzw+L5ljI/roWn5ZjU25cgq3asSmI05K3QHPqnOO75Xwsrrs0/pbSY1qtr6+hncaY7GFHp7AhZCzZSSk9zEPfxIBNXHtsnAClIoqHlfR7d+qzsUNw/Kuu74krhJxN1falB/p/PKqQj/ixFS8VvlTCczHL9yZC4CnswesSSkCwsUDcM4gnvVpKax1wQgDMwQSjrwQwQyjKFTJOnGkwyLt3qJUt5gss0NdYN3Ge8XXOJprhJp5wcOGMoEEM79HpfrCtMWO+r0YAfbNTgol0sNWnuudJC1uPaZfgHiaUOAK6Qb+PJx27IR4vKvlIJ+DkY2dSuH+IffdLmQOH5rukjtZLle3ap86p740w6YK/3YN4sl1uh7rtciG2tsuFwFUWE770i/+n7P/WmUlTGDPpr4JDlQ9fksYO0ZDOGMt9cPpmbVx5U+HS+0121XIwV2TsSL2znMVH5bYam3L4ohPGuezYtJI3HDLduKkzY1t4MIO9gVvqaWWO72bzMQCIQmn8LaVHpNpeCqeLb6eSYY2NL7GjU9gQii/ZSSm9av0iPD1nW9bM6D9YE9Bn86rUwV9kF0jmbKrYl/a0D/T/6O3bt0OdYopEKnlf12GwHdJrLlSOhvZqTEPxeM4RPDVIJcmrDNtLlnwwJ0lzboJ4oGEgA9+uGBwsugZAvpB69PHDUh0qs6tcqo9F4gc6pxaSRywr7yqbUPnmuB0x6YizRkA2QLuhjcQOwSqee/vhtbDce6VZWiq7azvLMuPEs0FAdnFSuzwbIMzIWSJg+9xWLWvw3ZazPPU1fKvsrPlYnz85/pbS85I8pIrGRY/P4n/xOFKDzxZ51vDc63zWWqgvs8qORGP2+mUL7ExzGoEGNnVgH+/F1Yg43n6cEh/H8Y2uPxCdJwtpwdMiZ8nC+o6KCRscEvAwJcPsRVdfwd5yoVecT9VhrU1shFs1/854FgjwZGjpDhi8rmt3Tezdzs4CdDNRRODUdllk0BluGgHb57bqX4PvtpzlqS/me8F8rDT+ltLzkjykXvr4vFgfNeBslGcxzwtsCBFKdlJKh8bs9QuFHHZDYLFNicMj/R84J3oRftT50xXi0NEQcEbE4Yluhh0HcULpmgWyjtk7Lkp0F6TDAzsJuiCeuGZr59nLJR7Bn10t6HduWGsTTXGby7zznxaBvu0e/TtOiSuV4ykP5Va1fZU/l/6jJLLTd0Tg1Ha5o6iu6gIRsH1uq7Sl+G7LVZl6A76r5mOqJzv+ltLLkjzkEJ2LHp8b6KMWqmb5GvBcZUMwrLpW25ForFm/NMPNhNIILLWplH1MOSfYOjP1jYY0V1GKKtpih0FUw+kuJRvenac6h/dyeD2Cj2JdQuD/arN/65URYq1NXDJuGVicNAMB2gp2NCeQv/oVpDmEndcI9AjYLm0K54yA7XNb7SzBd1uO6qgv5nvGPLY0/pbS6yS5jlyL9XFC8RfzPMOGEK9kJ6V0aKxZv1DeYR8EltjUpP4PvjkReJfh8bHFH3Se/R0FaKgc2zv4K9HuA3c6s8OABT0fj3I4AQLCnnfE5nzg5IBLlV9lEwfEfHOTCMiG8KDzQd3iTgjlwUHKE5VFu5JuEmALvQgB2+Ui2FxoJwRsn9sCPQffbTmZR31LvkU7O/6W0udJch25t9THVghtzXPJTkrpQW7lW7V+CXR83h6BOTaV03/KOcEWml9VcLEzQWVxUBD45wU+Zhd/0Zp4h50Q6A2Af8LonEVLqlXZ1TaxpF6XMQJGwAgYASNgBIyAETACRuC2EGixfrktxK5D2knnBKLJIPiCLk/al37I7joQunAppD+eVvOXWGu+I9KhYJu4cGMw+0bACBgBI2AEjIARMAJG4MwRaLl+OXNRzd4IgalvTnRZZBS80sFfewwfgByV9e1lIIBzifeAVgfbxGoITcAIGAEjYASMgBEwAkbACBiBPALN1i/5apx6bggkd06cG6PmxwgYASNgBIyAETACRsAIGAEjYASMgBG4TgSSOyeuU1xLZQSMgBEwAkbACBgBI2AEjIARMAJGwAicGwKP/vGPf7w9N6bMjxEwAkbACBgBI2AEjIARMAJGwAgYASNwOwj4tY7b0bUlNQJGwAgYASNgBIyAETACRsAIGAEjcJYI+LWOs1SLmTICRsAIGAEjYASMgBEwAkbACBgBI3A7CDy+HVEtqREwAkbACBgBIzAXAf1T0xOV+aYvx99TE75U/P3DpX8vCQHr85K0ZV6NgBEwAreFgJ0Tt6VvS2sEjIARMAJGYC4C32pBy9+6dUHXL3XxSseHDzH+vTAErM8LU5jZNQJGwAjcCgJ+reNWNG05jYARMAJGwAgsQ+CFHBLPo6Lf6vovinsWxfnychCwPi9HV+bUCBgBI3BTCNg5cVPqtrBGwAgYASNgBGYjwK6J/84u5QLnioD1ea6aMV9GwAgYgRtHwM6JGzcAi28EjIAROEcE9FQ+fNvgHNm7Kp5KWCv9ex3x9yVY3P6huNdzgCjVM4eW86YRKOGs9Cb6THPgFCNgBIyAETACyxCwc2IZbi5lBIyAETACGyGgxdNXIu1XBjbCd4Isr2iAeTEoH3r5TMdHxcxRBus0AmP7y831ub0IrsEIGAEjYARuEYFHb9++vUW5LbMRMAJGwAicIQJaxLLw/UTnr8+QvUUs9Qv6/6jwR7qOdyAsore2kHjAEfGhzvFHLoljN8RPKfpKYzcLH8P8XNfVcijvVelU8uCguVl9puzD8UbACBgBI2AE1iLgf+tYi6DLGwEjYASMQBMEtOh7IkLf6DzrqXyTyhsT6WX5t8i+0fGxjnN6TQWnxIETQvx+p+OVjl90HDkeFAf//MvDpzrf6cwC/V7nP7hPBaVfhU57OW5enyk9O94IGAEjYASMQAsE7JxogaJpGAEjYASMQAsE+BcInsyfRdCClH+oYIv893MZUhkW+J9TTtdn9ZqK+En9BSjYo4NhR0XPf9gx8bXKhtdtyFOzu+VsdCrez0qfa/hBLyHsrM9Qrc9GwAgYASNgBJoj8F5ziiZoBIyAETACRmAZAl9ooTXbEbCsqqpSPPXnuInQY48OxjK/EgAs7DmHg7+jxAFTCuek03PT56b8bKTPkr6dbgSMgBEwAkZgMQLeObEYOhc0AkbACBiBVghoIcXiN/uKQKu6TCeLADr4QsfgJJJu3s+WSCRapwlg9o1ups992XZtRsAIGAEjcIsI2Dlxi1q3zEbACBiB80OAVyB+qWFLi15eFfizz/tU538pruYpfg35q8wjfHhK/0IHr3T8rvvvEoKiA74rMTgnEvlqoqt0an3WQHmY50T6PGTCd0bACBgBI2AEGiPg1zoaA2pyRsAIGAEjsAgBPhr5e6mkFmU/K88PLK45dM09zgqHPAJ8aBS8+JeJbzJZ0QHfmGgRijq1PhfDfAp9LmbWBY2AETACRsAI1CDgnRM1KDmPETACRsAIbI0AT/b5Z4tk0EKWRfNznV9HmfgoIwvuISg9OCvYXfFU9zUfbhzKX9tFj9tvvVzsZsi9PoMO0EWLkNVpz5f1ORPpE+pzJqfObgSMgBEwAkZgHgJ2TszDy7mNgBEwAkZgGwQ+ENn7GtJanLFbAocEf3vZ/bVlKKf77pUPnbvXFnRm8fuzjoN8IT9npfEvFXzzYhzgifSDf6/oM71WfPdvHONCa+9Fl0X9rzrmOAk+V7nYaROz8UZp4a9DebUj56zBcdFq50SVTsXbteuztX2dSp+xTfnaCBgBI2AEjEBzBOycaA6pCRoBI2AEjMAWCGgR+4cOnA78NWfnTOBeR7zYZvH911C/0nBg4JzgL0Endwwofsr5cKf4z0SHcp2jI9Dc+qz6cNJ81Kqent6dzshDyH1Posqh8EBm3a/4uRV9NrWvc9XnOmtwaSNgBIyAETACd3fvGQQjYASMgBEwAmeAAI6D4k4BLcy+1vFIedkJwccbv9J9V05nnvhzzeI+Dtw/iyNu9JpvTfwknMb4xHCAX/b1mjhz4bqoU/FifRZAzCTvrc8MK04yAkbACBgBI7AeATsn1mNoCkbACBgBI7AeARbEydcJtIj9VsfwwUxdH73SofIsrAnjxTX33SsaXeoN/ggvsMFB8wPi6z58l4PbOIDT5A6TOFPldVKn1FCeok0AAAKGSURBVK/D+qwEcpxN2J1Cn2M2fG8EjIARMAJGoCkCdk40hdPEjIARMAJGYCECr1Xuk0xZXuPg3f0haIHGawrf63w/RE5fsOAOjovpHNcfyz9n3Akrdk7gBBocAyPReZ2Eb0C0CDmdWp/rED6FPtdx7NJGwAgYASNgBAoI+JsTBYCcbASMgBEwArsgwIL4wPkwqvVL3T/XwprvTYRwr/v4ff7gpMAZEa7Ji2Oi1W4A6FUF8cZHO6m7W0jq/EpxLNh/03nv71iw04QD/MAt9d0JnAapXRVKmhVyOrU+Z0F5mLnX5d76PGTCd0bACBgBI2AEGiNg50RjQE3OCBgBI2AE5iPQL7budH6mgwX8QejjjuLjTMrDBxZxSuAQGIds2XHmFvfiZZN/81jKm/hJ/mMJNJXevVajcxNHjuiweL7TcaRTxaGPrE6Ux/rMKFv47KrPDCtOMgJGwAgYASPQBAG/1tEERhMxAkbACBiBBgjwxD7eCbGEJDsCePrfBS3guOZvP5csuHF0cNxK4F9PWu2aCJit1ek163Nr+9pCn0GvPhsBI2AEjIARaI7Ao7dv3zYnaoJGwAgYASNgBJYgICcCrwL8faEzoatSZcMC+09FfKiDf4S4JSdDh8OcH+HDromXOmefxs+hGfKK5iqdqrz1GcCsPG+pz0oWnM0IGAEjYASMwGwE/FrHbMhcwAgYASNgBDZEgFch+FbD4kWyFmY8MXaYhwDf+9jqNZRVOrU+5ymyz72lPhcx5EJGwAgYASNgBEoIeOdECSGnGwEjYASMwK4I9E99+fhl6qONu/Jz7ZUJ5xeSke9DLHn1pQoe67QKpiaZ9tBnE0ZNxAgYASNgBIzACIH/B91x25012QhRAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle \\frac{\\left(s_{0}^{2} + 2 s_{0} + 2\\right) \\left(s_{0} e^{t \\operatorname{re}{\\left(s_{0}\\right)} + t} \\sin{\\left(t \\right)} + e^{t \\operatorname{re}{\\left(s_{0}\\right)} + t} \\sin{\\left(t \\right)} - e^{t \\operatorname{re}{\\left(s_{0}\\right)} + t} \\cos{\\left(t \\right)} - i \\sin{\\left(t \\operatorname{im}{\\left(s_{0}\\right)} \\right)} + \\cos{\\left(t \\operatorname{im}{\\left(s_{0}\\right)} \\right)}\\right) e^{- t \\operatorname{re}{\\left(s_{0}\\right)}} \\theta\\left(t\\right)}{\\left(s_{0} + 1 - i\\right)^{2} \\left(s_{0} + 1 + i\\right)^{2}}$" ], "text/plain": [ "⎛ 2 ⎞ ⎛ t⋅re(s₀) + t t⋅re(s₀) + t t⋅re(s₀) +\n", "⎝s₀ + 2⋅s₀ + 2⎠⋅⎝s₀⋅ℯ ⋅sin(t) + ℯ ⋅sin(t) - ℯ \n", "──────────────────────────────────────────────────────────────────────────────\n", " 2 \n", " (s₀ + 1 - ⅈ) ⋅(s₀ + 1 +\n", "\n", " t ⎞ -t⋅re(s₀) \n", " ⋅cos(t) - ⅈ⋅sin(t⋅im(s₀)) + cos(t⋅im(s₀))⎠⋅ℯ ⋅θ(t)\n", "────────────────────────────────────────────────────────────\n", " 2 \n", " ⅈ) " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s0 = sym.symbols('s_0')\n", "Y = 1/((s - s_inf)*(s - sym.conjugate(s_inf))) * 1/(s+s0)\n", "\n", "y = sym.inverse_laplace_transform(Y, s, t)\n", "y" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The output signal is plotted for illustration with $s_0 = -1 + 10 j$" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1MS4xNjgxNzE0ODc2IDM0NS41MzA1NjU4Mzk5IF0gL1BhcmVudCAyIDAgUgovUmVzb3VyY2VzIDggMCBSIC9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK2dzc/ttnGH9+9fcZbOwsf8/ljWcGOgO8dGu+kmcJw0hq8L102D/vf9jYaamffM3JsubOACfvnoESWKIocUpZMfP77lx18e6fEj/v39kR9f499f3hL++vDWen7msfLM+PMn+2dt/dlr6mMgPb3/8z/e3v789sU/YTe/Qvv67Q3aKDvv9pjP2lqdjfbd8nPzziT1J5tay37We5+6i3fJJ6vCWf0Fh47TeC6cCDKmlLeBrWdesz9Kn8+Uc0feNrE+OyX+9Pb2JUri729ffvf44vf5kdPjuz+/jfHMu/CWrTxbnrPtNdN6fPent8/S7x7f/fj45+/erizfch7PsfrYNiub+MmscgZOI6Wyy4xyKy+5jfrce0N5l51N/XR+A/vJe+VVe4vya+/zKzk/a661ZJvfu9RP5lfSemLDUetcOcpvvOTXFy75zHW+y8+mfjq/3p+tzdY2co7yW+/zQ5V67pZ2Lza/d6mfzm/vZ1+5TxxcWFvyS3Wp2F/pbY71LkOb+skMaxvPtXvdpY8SZvhSY1pKz466uKrN8F3qpzPc7VkSinPutcMMpcr88kYtxucJN2Sr+9zRbU3UyrKes/U126V9/wF5UGvz3AtNQKf9fPH7cnL87L9ph2/Y4TfnHPTOxe2S5nUz9+d6lyRHb46ilGd57GdB3SudczVntrDTtdMASteZ9IT/7rx/Qd6J9kSHef4He4D++Vc//PjHf/3bt3/8+dfPP/z157/9+vjqP3Go/mBHfq5R6rujvdM+erio6mn0VtqerfzjY26/8THnnJ6j7fG+iO/Ejx51TqiWvUwcdkOd+oeHXX/rw+772Sra23eHfSd+/LDRXAwUIQ67/H9qSPmND5uax4J76t1hS+JHD7uk9mxl1tLWRo/4Dw87/9aHbTpVPew7MW5H+gAt3PeW3EZpH+tRNR9qh9HsrHf5SOJH2is0bNdW5ZkSuvG2Wn9fCNxUUWF+TmefO0q0lsTxBVrEvU0D1a5ifN8+/e9VlOgi8kQbN08p6yF89u+fXVugU065Dj7sFDZy2ASX+7SCbje/04bwl4cEQyi9LdFTw/Wvmw5+7TlxA06cC6KpNfJGf1n3479+ePzb4+dHfnYUVXrmktHwozftdHbj/Dfxx0x9rVJ72Y8/fP344qsf/uev3//wh6+/fHz/a3ztJ64Xterad2a6KN+GAJuj60ART+352tk8ANgct+bOq7Q7FWd0to8IhPlEMzS35DpqOUJEIOBG2Thn3Q83zN/G5MPbQiSM+rQ11uu8fQSwOXqmjmKT1NOEfhuTS1i4aF2TVxfBEwgNdWJo8NLWOeMIYHMER2OutDTbc8VCAmGgnSlTg818H08AsPlEjcdNp8HiPJc4JBA2lTMCRCnndp9ARD68oaaPXerW5HWKNCQQUO/5epzkeTb36dfGG7HElss+U5bNPYFQcBvurtd97HWEiEC4gpXVsh7lqXIhuYRVEahpTbzrXEggoDnLe2S9meZ9SBGBgEs58xhVL/2dQ0QgzCdaCYxuJLndOUTkEhAVrCRl3XIVwRMICPc7br87ta47gwBg843be9c8NflsHoBr87ZwWnKUder2nlzCynpr1Lll89d0jMUQWaN/Xtkc5KmiMWKFhoBN0/dUxSNWMAqopkHIWRWPSEGVL4N8uTqiRIiU8swUYph2pN1KhEihlmr1qRVfDyxCpDSMoUYbWpOHlFiESEFdrntoiz6THFiEWOllmTZr5qmKR6zgArcqhT/LUMUjUsYTRTG0Rs9abyVCrLSE1jdr+lTFI1bGrtTCSfpQxSNWNnoxUyz2wDwiBbdzn6XoAZd+KxFipdeOv7QkjeIRK6v33mRX0obGiBQKkNHSaFs55epHiJXe0jQxQ1uqeMTKQidddVdFDUdI2BhId3OBu+YRIZonooCMQje5i+Z9VUJESkbPglGNZF7lBgsRK7ghpkZvRa59iEgpuFqb4ryTTpNzR4kQKwjRc5Gal5sajny45r5yx9BcCl565xix0tJKSQolp6yKR6yMtTUuSNIcR4SFPeiuk/TZ1fCIlIY2B22CtGxp7FuJECuIvovWIQSoqnjEyixbSzGNpYYjLGzUGr24SWtXhEjpKPg6sjlDOZMIsVJtrJnWVMMRFjpGZlMubtrG8IiVtXJLUoq5FFU84ilYDKLTklLEwd9KhFhBa5OW1uzVVfGIlY02Rm9sRMWqeEQKGkIau8sB1ywHFiFS1pOSmwZWWiUjRArNe+1m5qWb1PsIsTLQr5thm/T2IWJlY+iWTJducvEICkbaBcNtDRKHhCEhYqUlNB/aD8ilDBErffeedcg3mioesTLLmkvq95jmwDxiZWHMrAHpmFMVj0jJz1RX67qrJblEiBX0ME0rkgwaYsQKsk7VjzNixArCmZ5qqHjESu+4J3Z4Lh6xMtDomtzv4DtGrGBYlDXzWdRwhIW91tQOylz7CJGCaDbPVbVO9Lseh4iVAjuZymoUj1jBAKckPUPph0PESkeHruNUGr+J4hErq3ZzF3VpkENECnW3OEdNb1LGEWIFFQLDGY3/hyoekdKeiR7OmOGYVJcIsYL7xowoEaaq4hEp+AM9uQTASUcTIWKlNi17dNZTDUdYwDi07yXpTQVHWKAnbqlIclbBERLWMxWc431xk0ztxIgV1Joso1fEKVUVj1hBB60hEK6BUTxipc25JcxKTTq8ELEyMIiV2bSkY9UQsbJwPZeeowqvgDffs+0pB1u3ycEjUjbCawT9cml1mB4iVspCOS5NL6p4xEods0u9fq94xErrNa04F49YQe+cpUejXkQVj1iZo+vsUdL7KiAsLBT70Ly3KS+PoNSEm3rVprUu3UqIWCl5dxnwJmmHIsJCXag/WueqycMjVijGlJmL1LrJxCNW0LcUmetJTUKDELGyasom991U8YgU9P/0aFXqNsbLtxIhVgp6zLolfRrFI1Y6PXCQghwy3RAiVhYCviZVYmyTi0ekoEFHXKKdeZGxcIhYacXGy7UaxSNWJoql6BhZa1iEWNk96xRc0zIOCAkY9tSUuqbLPECIWEHBJx1Zat8YIlZQ7ksnmLsKr4A37xjwbZ3LTVsFj1gZZbds5uyXKh6xMnGXmsUfxZyHR6wshNZmeUM1peURK3vMrTOJXStkhEgZT/STTaP+Ls1XiFhBaqtajjLsCBErpdLSjlDxiJVa+7DRkhqOsNCuwZQ/94AcAaMX8ySumiw8YqWvPXWyjh7xieIRK2MjhtOjvR+NxYiVuTBe111pHY4QK2vuoldX796AsLDXqDqoMo1qhEjBH2s2LZQmQWeIWCk9TQ3faUgmikesID7aOoXatLwixArNuGvEX5dRPGJllTR0NlwvfUBIQNyHiEzbtCLxXYhYaWvOaubquioekYJ4aSDQlZ5m6VWJECso+CKTA0knAUIEpWUaVN0DyrS3hAYRIaFQ6zzvgRuqnwSFIWKlUuWWXWmzGiJWcILyGChtDUBCxMrcc919JjoDifBCREpFnzmkIUS6tMQhYiWX3u+rlWgyRhWPWCnoWUu904vEkSFipZaZ71lqpMukZIhYocUrtUu6xF8hYgVHK9Ub6dJMhoiVUebSWlFsiXnEysxoojX3bHLx6CgbsczQdGO8EhYQYI2ph5tMHh4dBeOXonknc1U8YmX3MYtmnsxxeUQKRWVoNuRqZXkME6KjrGu9iKRPozjECnY07pbtRfHoKLu0uWLFIVZK0xrxTngFZ3PUgdbDU/eIldrymnLTFRVewdl8bekAqdCt4BArrSE/veH09o3QUXYvWoI0KlHFIVZ6x1BE02UuOkSsoEW2B6x1PkKszFJldEz3qBqOsICmxtxtzQiOsLDRcCxta/pWwyNSOmr1opn/O31KAxEhVvJGVy61umr3ECFWat+1Su50G4niESu9pbwl9yqjrRCxgh5AxkfoaaQ7DREpiJPR1mrT0bXEIkTKem6aPZVB+9YbK0KkbHqg0WW0U7TTDggLC0PIZAKZqYZHUDrNJZjovUlbFxEWMGCfZqQnY9MQsVLp0YJEZE0moUPESksYVekAdJvj8ugoqDgmgE/mwDxiZWAE2s04bKriESsTjbN5liN3V4iOMuwDs3sRUkhYoPVqVQ9X5tNDdJRBd6qkD1NeHrGy8yxZMx8mF4+O0rddfi9PakNESsY9MMxCn67XPkJHwf1jVrt1Y7wSFiiarmZHQw2PjtJpHkXTp1EcOspC4FNixSFW0P3VlEPFo6OgvTEPGd4pDrGC9jKNGp6+R0fpe+vyCFlrGCNWUCbTrNK0F9Kjo7QxzDlqdYnQUegW0oH7MKfvESsdMahZHTnMuXh0lJHMAkxTXq+ANx+p6dqI3k2FdOQIHW2USTfCK2GBpsx1YqubU3DkCDvZRcLVCK+EhTVGtotOTcF6xMruZv0frdAVwxESyjPVtMwyW6khAWGBllvobIjODoaIlTLb0ufPTc8jQqw0msrWVYDaY0WIldGzWd1SZHohRKRgJJmKuTtp/c1RIsTKoA7j7vanrBaJCAkUsteks9JVm8YIkUJLL3a9++S0uiwsChEp80mrkyUaWxKnRYQFWlcq8fHUEDVErOBS7buWprkk5goRK7R8X6Yd5pxG8YiUhWpHDz4kXSKoELGSK0aSkpyN4QgLhV7Qkx2NtdTwiBUEPffkOpKnCq/gbD5zMsnDbP9KWMAoqsrgY45uTsKjo8wqTyKQrmFNhFihuQNJlUcBATibr9VG1XSz/SthYWCs0uWijmLO26OjYDio12gUc+IesTLrTEN3lbcqHh3FrAGhdHPFPWJl1bGr2ZW55h4dZbX9kVw8YgW3QTJXyp6LR0fBmC7FJeYRKRvjAu3CKF2ufIRYySlLA0hXOKvi0VHQiTXdlUxahYiVkuespqKaA/PoKGjONFn73YCwUAsGOVooWo0jdJRZbZ2YJhOPWGml6XwhGg5zJh4dZU1TjjOZIvaIFUTs9Lj5TrdXxSNWEH+noq3mNKfvESuo39k059mci0cfrtesE61SkAu8051LiFhBCCqv4CR5TBEA2hwBO9oPmS1cupYoRKQUWj6gw/ot3XtEPlyvlaOglwZi+hA3RKQ0tM64gSTE3XIRQ8QKGqkt61mu99tE8YiUTi/JJnk+VKqMFUPECqr2lqFa0UF/iFhB1yetei5dWpYQsYLIqskjktKXOTCPWLne8LiT7Zm8grM5Om4Z2xXttULECmIDfcumjGHOwyNWFiIrGRaUsYzi0VE2KoSmb3MmHrGyEe3KCjaZugjA2RxdgIxRMZS0gkOkDFpSWbQ2TJnfDNFRqH3Jmr6M4hArNESXxY5lypRoiI7SEe/prvRmjNBR9mgS6V8ve6riECsFgxZZUYp0cy4eHWXkLM+dXxSHjrJXnSVWHGKlokkbseLRUSa98KbpwygOsdJocU0NC9mjozSz4uD9pfToKKu3YWqFuS4esYIR6spa+NkcmEdH6ThJU8NNiXnEysAgytTwZM7Fo6O0Wqs2IdscmEdHQQ/TTHvQjeIQK8h6aLOuy6ZDdJTRdOFu0VWdIWKFvvugbYKuGg/RUVYxrWG1xithgZ4dm0JJ5rA8ImXS0jd9pa3oLFSIWKGXf7Ur0DUfIWIFw+Ihy2CKruwMESsDB6zVSF9lCBGUmWjaX0LypbNEESEhPwcGuVmiMl2wFSJS6E3aRtWA04c24SFipZelz4RHl94rRKwM6qIkXaKDiLCwEB/LM6JRt8nDI1b2lF4QybIIOCIkVMQyW3q1JC+0h4SF6+UfTZZGIkRHof5JTq9sqzh0lDXlnQukL6s4xAqtl0qSe5lG8ego9BUL3ZVMvYaIlVrLmlXTqyoeHWXufC/ooa89mAPziJWGDIsesNb6CB1ljjE12RyXIywgWMxLD7ebS+/RUVCvZWYL6c0oDrEySk7bnOFUxaOjYJC0WljEHrEyaaJ/hxfSo6Ogf8paLNMcmEdH2XPqja1rV0LEykI90tuuSMQaoqOgQxt6FxnhBfDmGN21rTd2Njl4dBQM92RxCu5sk4dHpDREsvSNLW0+pFGNECu0EO1+1kVNVFbFI1aKrAq37aNL540x0kkySTf0gU6IWFltYYR3p2/pfkJECgZuiRYp3F2GdNcRIQGR0kRvJotfuoQ3ISJl0aMFffGvNZmSCREpG2PjuiW07kvWRIUIysIYHwcs6wrHkCcVIWIFN3WWJxJjSQwZIlbQq0qtzijHpYpHrFDBy+rFsWXKOkRH2U3f3Z0pmQPziBWUib5eiN7AnL5HpOQnBvl76q6kNw3RUdArb02X2zdErNBb50lzl8cVITrKWFuWBs8kDVGIWCk1l6q5SywRoqMsNBlb04dRHGKlIs6XaHzqa7chOgrGH7Ic4n0uHrHSCsbVKzwXj44y6aNnWizmwDxipeeaZBGBDoYicoSuQyRcLHNUjhxhlyqfzbtm0dVwiJWBiEFPT+axInIE6ZaQWs1pvwLefPYx5aUZ3D3manjECiJXeeENt6ipvo6wsHFTylKLsaupvR6RUuh2a7Jugj4reCsRYoVewJYvPo2h90iEWMH/6cqJkbUqRogUWhrakozyMHiXAo4QKZ1e9mz6om+WJ1shIgUdx96jy6zxkmg4RKRgBIZeoEmwsKRPCRErtIBvS685tHJFiJWB/l5WoI4uDwJDxMrEEctyx6GTpCFiZdHHUzQo2Ubx6Cj0qSbZVbXGK2Fh1yld86jDnIgjR0DWZgRmC9gjUuityqkL+EaVYCJERxm5mKOVx0ghOsqWqT0K+rYxXgkLGYHoMulNDY+OMqY+9dInVRE5wm5bR7g6agwRKwXjjpFDxaOj9JFXnItHR1ko+BGdiSMs0LtStYWl5dFRemprhZfEo6PQS+SaucxEhogVdH15aX2opqp4dBTcozqgkIWQEWGh0/pOrabmqBw5Amq/DqXqNKXl0VFm610PVnv3CLGC27jKauXR7F3iESuTPhai6ebUHWFhoRnQcaSuuQoRKZsmN4aWydL+JEJQdqLlW7Jcd0nPGADanMbDqd+NUym6mChEpPQnQgNpZAt69LsyhoiVRp3RKZEy9eXqELEyZ59D0pfM2IaIlbWSvJuA1lCqSohYQUO77v6yLH2XN0Sk0COZnu+aXZZ+EydER5kYuSxJ13OJECv5+v7JnZ5lMX6IjoKQ6l56jPRsFYdYKQiJ7wad0rcqHh2laaOGdBn6h+go63p7SdKbURxipaIjvqeyKT2r4tFR9vUJJjlgc2AesdJqH3dX81LIHh1lTnmWTtfLlJhHrPSSStVLPE0uHn14QxJ9m7RlWQB2R54hYWHTm/1dkosxPDoK2jJZELPuh8AhIYGW1yGM0R3dywVidBT6YLjuyQgv4GyOJko6pmtBmwoOsZLNO4WUPlTx6Cgj66y/TEmEhIVCLebSEpxqeHQU6mO1QJopK4+OMls2pT7MyXvESq1LPliK+nbX3xixQh8g27Kr3c018egoOyfpZre0kTFiBbdlupeIpi3PgmJECs3olSILUZNW4ICQ0Knp0E8odnkRLkakIKymef9zuPVaRnOUCNGPCNDnp5uM1NvUMwkRKx1nddftdj1eE8UjVmZGFLDv9Ho/zo8RK4v8O/fd7tnnGLGyc5cv/mA8Zo7LkSN0HUzTe9vFGA4dZe6yJG8JcmLEv9OQaMWnZi4tUYiO0lq942RK30Zx6Cgzz7upbTqrGiNWMkbfpWj6VMWjo2BkWPSA79eiYnSUSdFfeC4esVL0s8BInsZw5AiNZlu16M1heXSU1aaeoDRgEbl/bgPNh+6oqODIERAsbCmQ1sxpeMQK2vOc5eLKN41iRErB4HD1e3IOd+n98bcYkTIRWuPa3rM7Vb6wFyNW6KO88oZRkT4lIixguKILFfIqVQ2PWJlrZ33HZmRzWB6xskZJ5tMUelEidBQM181XDcxxOcLCpnlZfXPCHpZHR5m5mA+NJlNcHpGy6I9pv+1+BA/O5m018+UPiVVCdJRN30cKziNCrOSqYY/5MEaMjjJ70RIZxRivhIXS89Yv0spSuhix0srWE9w5q+EICfs5VtVveS558zdGUOi7bvVae3ql99rvr8fEiJR+TfnfDeBCwd+5hIiV1pe8ZEOZd1U8YmV0+bQubp175WxIWJhpyCd/ER1L5BGio/QhCxsWNaBGcegoe/at6dMYr4SF1dq4B4aUbErLo6PQz+50STdH5QgLuD/TPe2A5GoMj44yu3wQjD5zto3iECkY4pZetUjq/Q5KjFgZY0oEs+gDG6p4RAq1NfI24VhJWrqIQKg0ktryNC3RR8+PESJSBs5wzLv1H1lewIkRKZuajjPFSh+jvRcvhARCo0+IlXLmQzL9nMV9WCFiBb3Fvc6XlixLABWio+x5v2xCDYGEECFiBW3HPH1yzvIViZAcoY97EQQly80boqOg20+6p3sxUYxYoe/9npvhytyciUdHmbVsPcNlFYdYGfJtaEpu5uQdYWG2ms5TVArgqzE8IoUeVmJkeF8rCbgCQJtPmgngBVyofPQBdineCNEvlNH6j3YvOEAvWyXiCtGH66fKkJDPA2T6xo90WCEihSY1MBi6D3dM6RpCRAr9kMaY14N9WpFYNH4KEZTR6CjTNREy6Csm/V5nHSNS6KOBqA/73HJbZrtiBGXSXNuo121Na15rlymMEJGC8C2dL8rQ17F0eiEiLGAoVetJLVvu3ogcAa3T9erXlb7uJf8xIoVew+s1S/qU0WKIjjLRkS3dVTWKQ6xc31uS9H1/riFGrJSFHMtJpwfpqnjEyqYPIHZOv56sieEIBHomPFJPvKO59OP9MSKlI3DZ+Y7Gqr6LHCNSFs1Q1cGZD1oueF/4EEHZ9H5K47mQTk+6k+QSIlIQwTWM6nhX1DZLEYeIfiewYVeb103Q2xqIlU+BxYiU60XPdc0X0wcHu6wSiBEUGkSPawkT5U4//XPPEsWIlPaklZsndB/ob+8eOEakLIr6+L1KxA4bkU+9lQhBKfRO9GjXG7v0K4FaX2JEyvVMgj+DRy8t9KFKhKBUWjVT+Vt7CJkrBeZHCREp9EgcYVW9cq/02ly/lQhBabQeIl8PGOg3+hDUnCoWEhLakx710NoGerWHlu/O24gQKajfc1yLeeiFlVRkTUmMPlw/95jmdVUpHX2J3GAxot+SzPTDEfx4gR7nDHlZPEak9Gu9Sefc6TH/vUQzRlDorTREctQTzHGNXu851RiRQj8H0NM1AKXXLPUXWGIEhX5JbF1fUaL2FxVWXhePESm0SnJdsy67PTvCgXs1UYxIoVcbeBp00ZsBc9/daoygLBqJ1XL/fma5ljmwEiJS9pPWj6AZoHtwXD+UeIyAQKCHcRjjU9GX66OLCB2PESL6WU/6gMCmr/pR07BpVHUyiREp9Eh10bA704+ZosW+++EYQaFpqtELpdd+jY7vdYQxIgWBA6oqDjjP61ei5MFxjEjZ9Cnt64WA64kZ4kVRIgSlNFp7QF/TuT70nu7R+TePXx7l8S/8g8fXLwV/7OftzG8Vm98htL8+jN3Jzxxfvzgc/qjxh4/+qPHbz/LbxfdvFpsfOjYzLWYH7ydmXrIPfyX5k/l/8/Z/4gWyjwplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjcxNzgKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzkgPj4Kc3RyZWFtCnicPY+xDcUwCER7prgFkAAbG8+T6Ff++7fBcZIC8XSgO/BhELDVLOloUuC141SyGmAX/MmkgdUE2i2hFWhdSigOWjrrCETbFvXpB32uk3jkUrGkai+1viliuTv0jtFtWsCjZ072rtDm4HJPRkEmTspT1qGTNH02mQfUIsllPNr70Pz+mfS7ALu8LdsKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTE2IC90IDEyMSAveSBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvdCAxNiAwIFIgL3kgMTcgMCBSID4+CmVuZG9iagoyMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIxIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIC9maXZlIC9zaXggNTYKL2VpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAxOSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxOCAwIFIgPj4KZW5kb2JqCjE5IDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTggMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjEgMCBvYmoKPDwgL2VpZ2h0IDIyIDAgUiAvZml2ZSAyMyAwIFIgL2ZvdXIgMjQgMCBSIC9vbmUgMjYgMCBSIC9wYXJlbmxlZnQgMjcgMCBSCi9wYXJlbnJpZ2h0IDI4IDAgUiAvc2l4IDI5IDAgUiAvdGhyZWUgMzAgMCBSIC90d28gMzEgMCBSIC96ZXJvIDMyIDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjAgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMjUgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwNDA5MTA1NDU3KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy40LCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy40KSA+PgplbmRvYmoKeHJlZgowIDM0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDE0OTA2IDAwMDAwIG4gCjAwMDAwMTQ2NzMgMDAwMDAgbiAKMDAwMDAxNDcxNiAwMDAwMCBuIAowMDAwMDE0ODE1IDAwMDAwIG4gCjAwMDAwMTQ4MzYgMDAwMDAgbiAKMDAwMDAxNDg1NyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDcgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDA3NjYwIDAwMDAwIG4gCjAwMDAwMDg2NzUgMDAwMDAgbiAKMDAwMDAwODQ2NyAwMDAwMCBuIAowMDAwMDA4MTQ0IDAwMDAwIG4gCjAwMDAwMDk3MjggMDAwMDAgbiAKMDAwMDAwNzY4MSAwMDAwMCBuIAowMDAwMDA3OTMyIDAwMDAwIG4gCjAwMDAwMTM0NTggMDAwMDAgbiAKMDAwMDAxMzI1OCAwMDAwMCBuIAowMDAwMDEyODg2IDAwMDAwIG4gCjAwMDAwMTQ1MTEgMDAwMDAgbiAKMDAwMDAwOTc3MCAwMDAwMCBuIAowMDAwMDEwMjM1IDAwMDAwIG4gCjAwMDAwMTA1NTUgMDAwMDAgbiAKMDAwMDAxMDcxNyAwMDAwMCBuIAowMDAwMDEwODg3IDAwMDAwIG4gCjAwMDAwMTEwMzkgMDAwMDAgbiAKMDAwMDAxMTI1OSAwMDAwMCBuIAowMDAwMDExNDgxIDAwMDAwIG4gCjAwMDAwMTE4NzEgMDAwMDAgbiAKMDAwMDAxMjI4MiAwMDAwMCBuIAowMDAwMDEyNjAzIDAwMDAwIG4gCjAwMDAwMTQ5NjYgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzQgPj4Kc3RhcnR4cmVmCjE1MTIzCiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " 2021-04-09T10:54:56.903979\n", " image/svg+xml\n", " \n", " \n", " Matplotlib v3.3.4, https://matplotlib.org/\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "y1 = y.subs(s0, -1+10*sym.I)\n", "sym.plot(sym.re(y1), (t, 0, 15), xlabel='$t$', ylabel='$y(t)$');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Realizability\n", "\n", "A system is said to be realizable if it is a causal and stable system. Realizability is a prerequisite for the practical implementation of systems. Causality implies that the impulse response $h(t)$ of the system has to be a causal signal. Hence the region of convergence (ROC) of its transfer function $H(s) = \\mathcal{L} \\{ h(t) \\}$ is the half-plane located right of all poles. Stability and causality of a system with rational transfer function $H(s)$ implies that its poles are located in the left $s$-half-plane.\n", "\n", "Summarizing, a system with rational transfer function $H(s)$ is realizable iff all poles of $H(s)$ are located in the left $s$-half-plane not including the imaginary axis and the order of the numerator is lower or equal to the order of the denominator. The ROC is given by a right-sided $s$-half-plane including the imaginary axis. The locations of the zeros of the transfer function have no influence on the realizability of systems." ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Continuous- and Discrete-Time Signals and Systems - Theory and Computational Examples*." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" } }, "nbformat": 4, "nbformat_minor": 1 }