{ "cells": [ { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "# Characterization of Systems in the Spectral Domain\n", "\n", "*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bode Plots\n", "\n", "The Fourier domain transfer function $H(j \\omega)$ characterizes the transmission properties of a linear time-incariant (LTI) system with respect to an [harmonic exponential signal](../continuous_signals/standard_signals.ipynb#Complex-Exponential-Signal) $e^{j \\omega t}$ with angular frequency $\\omega = 2 \\pi f$. In order to illustrate the characteristics of an LTI system, often the magnitude $| H(j \\omega) |$ and phase $\\varphi_H(j \\omega)$ of the transfer function is regarded separately. Decomposing the output signal $Y(j \\omega) = X(j \\omega) \\cdot H(j \\omega)$ into its magnitude $| Y(j \\omega) |$ and phase $\\varphi_Y(j \\omega)$ yields\n", "\n", "\\begin{align}\n", "| Y(j \\omega) | &= | X(j \\omega) | \\cdot | H(j \\omega) | \\\\\n", "\\varphi_Y(j \\omega) &= \\varphi_X(j \\omega) + \\varphi_H(j \\omega)\n", "\\end{align}\n", "\n", "where $X(j \\omega)$ denotes the input signal, and $| X(j \\omega) |$ and $\\varphi_X(j \\omega)$ its magnitude and phase, respectively. It can be concluded from above equations, that the magnitude $| H(j \\omega) |$ provides the frequency-dependent attenuation of the magnitude $| X(j \\omega) |$ of the input signal by the system, while $\\varphi_H(j \\omega)$ provides the introduced phase-shift. \n", "\n", "A commonly used graphical illustration of the system properties in terms of the magnitude and phase of the transfer function are [*bode plots*](https://en.wikipedia.org/wiki/Bode_plot). Here the logarithmic magnitude of the transfer function $20 \\log_{10} | H(j \\omega) |$ in [decibels](https://en.wikipedia.org/wiki/Decibel) is plotted against the logarithm of the frequency $\\omega$ or $f$. The phase $\\varphi_H(j \\omega)$ is plotted linearly against the logarithm of the frequency. A transfer function $H(s)$ which is a rational function in $s$ can be represented [in terms of its poles and zeros](../laplace_transform/definition.ipynb#Representation). Applying this representation to the transfer function $H(j \\omega)$ in the Fourier domain yields\n", "\n", "\\begin{equation}\n", "H(j \\omega) = K \\cdot \\frac{\\prod_{\\mu=0}^{Q} (j \\omega - s_{0 \\mu})}{\\prod_{\\nu=0}^{P} (j \\omega - s_{\\infty \\nu})}\n", "\\end{equation}\n", "\n", "where $s_{0 \\mu}$ and $s_{\\infty \\nu}$ denote the $\\mu$-th zero and $\\nu$-th pole of $H(s)$, and $Q$ and $P$ the total number of zeros and poles, respectively. The logarithm of the magnitude and the phase can then be expressed as\n", "\n", "\\begin{align}\n", "\\log_{10} | H(j \\omega) | &= \\sum_{\\mu=0}^{Q} \\log_{10} |j \\omega - s_{0 \\mu}| - \\sum_{\\nu=0}^{P} \\log_{10} |j \\omega - s_{\\infty \\nu}| + \\log_{10} |K| \\\\\n", "\\varphi_H(j \\omega) &= \\sum_{\\mu=0}^{Q} \\arg (j \\omega - s_{0 \\mu}) - \\sum_{\\nu=0}^{P} \\arg (j \\omega - s_{\\infty \\nu})\n", "\\end{align}\n", "\n", "where $\\arg(\\cdot)$ denotes the [argument](https://en.wikipedia.org/wiki/Argument_%28complex_analysis%29) (phase) of a complex function. It can be concluded from above result, that the individual contributions of the poles and zeros to the bode plot can be superimposed. This fact can be exploited to sketch approximated bode plots illustrating the properties of an LTI system for a given set of poles and zeros. Rules for the asymptotic behavior of the magnitude and phase for single poles and zeros are available in the [literature](https://en.wikipedia.org/wiki/Bode_plot#Rules_for_handmade_Bode_plot). For instance it is stated that a single pole/zero results in a magnitude response in the bode plot that decreases/increases with a slope of 20 dB per decade. These rules provide insights into the influence of the location and order of poles and zeros on the properties of systems. They are of benefit when designing systems with given magnitude and phase properties." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example - Second order low-pass filter**\n", "\n", "The bode plot of the [2nd order low-pass filter](../laplace_transform/network_analysis.ipynb#Example:-Second-Order-Low-Pass-Filter) is plotted. The transfer function $H(j \\omega)$ of the low-pass filter can be derived from its Laplace domain counterpart $H(s)$ by\n", "\n", "\\begin{equation}\n", "H(j \\omega) = \\frac{1}{C L s^2 + C R s + 1} \\bigg\\rvert_{s = j \\omega}\n", "\\end{equation}" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAALgAAAAtCAYAAAAdmKE3AAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGlklEQVR4Ae2c7XEUORCGbZcDAIdgMgCcwZEB3EVwkMFR/mX/c+EMOCI4IAMgAh9kACG4NgPf+8jqufke78xIM1vbXSVLo4/u1qtWq0fe3cO7u7sDpzwIXF5ePpWkT0rPVN7kkbrfUo73e/rpZy9DfiQpH5RulZ4rnSo5ZULADTwx0NFTv0KMyn8pw4s7ZULgKJMcF+MILIKAG/gisLvQXAi4gedC2uUsgoAb+CKwu9BcCLiB50La5SyCgBv4IrC70FwIuIHnQtrlLIKAG/gisLvQXAi4gedC2uUsgoAb+CKwu9BcCBz6h63SQ61/0fMBKz6TwmdRyH8p/VC6Udu1cqdECLiBJwLW2a4DAQ9R1rEOrkUiBNzAEwHrbNeBgBv4OtbBtUiEgBt4ImCd7ToQcANfxzq4FokQcANPBKyzXQcCbuDrWAfXIhECbuCJgHW260Dg8OLiwn83Yh1r4VokQMD/k5kAVGe5HgQ8RFnPWrgmCRBwA08AqrNcDwJ7+8M/+hQfn+o7j0txGvM/Vb9Zz/K4JlMR2FsDF3DvZMxvDECV36v8XemJ1Xm++wgke8mMHvK1IHqhVPaKX9T2txJe843yt3UYVcdPnJ0pvYxtfHaa3/b7xNhYNykTH26PXij/CiPl6PNTiR/GRF52klzm/UR5sfHqSqiNk2cKrqzHb5Evc2dt4Gn0XjI+28Ou5NK59YdNk3hwCWOhOP6vlF7puTBwlV8qvVM9xkveILWHLwEoxwh/KX/W6DS9AiP6dzqbWTmgU6dxCYc5cL2OuH5VjrEXpGeM5Lvyz0rh9xSLxhUWpCMbs/eHTWf14FEg317BG3b+RLD6EQ7ghfBWfLulQaoPYKuBBWl4+caAiRWSETad8lEhisbhFU+Vz3LClKcjnizk3Li+Fd/Gt4lU90WymEvn2pR1m1qWvFlwEx82P2v4WOXCoR5NVbA2/pue+VpWp3HH/izWRoq0Gnfsw8QhAE9K0oPNxIky5aTACEkpKAWuITRrUfakpS5lVUrcDo7n0lxGwu7BUCohSQd/4umPHW1W/QcF8e1aCOs3KRd/Tht0H9qUk+SMHZwQ18Z7hmSxfiTClz7nM3Y62cfNYuDRSDgiiJc7Y8jS7ACPMKWPALqxCG0DJJOXz86YMerHScDmK3jGem5TQiyqHJlDJ0ubCqPrJBMPFsI15T/1XIQNKrP5UuDacBpRFidrI/5W2yh8xWtxmsXANQt76x8y2jBhAbZRoTC0Ogpqt/CksRAtfQkt/qnXtzxjLPANcuOCoi+xKIYNMY/k8X6Q9P+fc8lHB3TDwAoDVzkVrgeSx8aBeOcAG5xOxQHomX6j8GXsGuhoJiUAARo0yPtug3/t7f4h8TdXfb2nhtpZPAynfOxy541RkVt6rb5sviwkWRjWTRTGCVTWj+pUuHI9y8s7mLChmbMZuYoVGotvhclSD8cI1kQ5JnmRIX8olXf7SRxUX6BWXshT6jMkDA+9ejeM2s3rVeSonrt22yTWxh13cWqo/bE1bJNrHF4/6FcbFzBQu3ndcvMP1beFULeqt81JmFI/PVLgWgnBJJ91YC25kj0v66C60fiKT4XEa07cKrz7Ho5plHAmOeUG4Vbjh4wWUcjCK7ERCmOjvkaEDJ3t4oExYPxPVS4f6fBnbNtG49pr8hWeeLQZMHKZF9eEFX1U10nqGzZ5HEu/un4pcLUNVegl+Y/iA168TLPhKxmz4VZWcKg8V4gSPK0mUQeoTf6Z+vUZr3nHvriaYxMjbruzZnwltHmgXm265qrDc/JyFwy+JDQFrhVsoizDnA1Vpp3Hdy4D55oNspjx/qn2VwtIv6tadf3RQovW8EQ8eDmyRcJj4rEDxTIyjMeB6vBOvLwNyQ08cv+J+jGHsKH1bFiiipXnwNVCpI8tczyLdYRxgaQHOu08viFEiXManQkMrgcBkOskYrzKUatnFggQr2gfEBQWU/0aXl51LDgGbvEzfb6pHnmcHngi0+NEZTzS70rcUgzJVbdF6DlSpR8enDmUjWwyruLJBocvOHRRIZMOGmMefefxTfGveowQQM2gMDIMv9Ujqw1AWYQPSowzj1yOFSv16o8R2zi8MwvCYvCyhFGwCTj2ITbVg+Pi+yHb/5UMNuZWMbhJ0VhOJFLDOdBH7eCzNa5xrJ0CPBpx3153QrwEgnOhR5SbFF/JGI0bk9F49AMfHAW5vd/dqO16VgMX872lqQu1r8Clxu1oX4FNMO+NeJKctkMgKW7/AaMtwxpin6WrAAAAAElFTkSuQmCC\n", "text/latex": [ "$\\displaystyle \\frac{1}{- C L \\omega^{2} + i C R \\omega + 1}$" ], "text/plain": [ " 1 \n", "──────────────────────\n", " 2 \n", "- C⋅L⋅ω + ⅈ⋅C⋅R⋅ω + 1" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import sympy as sym\n", "%matplotlib inline\n", "sym.init_printing()\n", "\n", "\n", "s = sym.symbols('s')\n", "w = sym.symbols('omega', real=True)\n", "R, L, C = sym.symbols('R L C', positive=True)\n", "\n", "H = 1/(C*L*s**2 + C*R*s + 1)\n", "H = H.subs(s, sym.I * w)\n", "H" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The bode plot is generated for the normalized values $R = 1$, $L = 0.5$ and $C = 0.4$" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMy42MTM3NSAzNjIuMTgzODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nNVbTbMVuQ3d96/oJbPAWLL8tRxqMqSySc0MlSySLAgwBIoHRSgym/z4HLXb/fFaj/voSrhhpoB3dfqoLVm2JPs+Gt8MNL4a/fgGf34b/zL+Df++GGl8gj+vBo9PN4NwcIlCjvj0dvMpJHZUQsGPb/Ho7uM/huHX4dH3UPIRrCfDEL3jOrGKK5n0KWj22QntpW+3Ui+udpWrhq10etGH0VAfYnbEI6fkCP/+8+X45/Hd+Oh71jHx+AdYCKtdWe0evEvVU00+F4ELHv3w8l+vn7/8+cnj8flH2wJ7UMMvw0/jh/4uDw8f3qVeUeSS2uhC98vwGJP12/ABf/vxoYdOUNpjmJMax+c3w+OnOmnOJ/GJ4/j0xfDoRxrJj09/HR7Qd+PTN0NymCkMN5VpRvHIAz8BxC5wYOHmPle40Kojb1T87ilcjrf4PGqItJ9AL+yDUsCtTQuGBC++efanT788e/fx4c3rd58+jj+8H37S/8evMm/MUB1ve3gjPTtzFxV/du6Y6vwc837yak7xiycvOYkF01Bm/xtz5/vcfTXXW+v75q71/SWuv6j488umlvm5/8q6uYfr6au7nuBaLzGltHPRVnwf5yfD+fdQndbdHO7/WiZj1qWUyLQf10Z82uTLqq9jMvTlmmPh/bg24tMmX1Z9HZNzdORRaMh+XBvxaZMvq76OyaU6Fi8h78e1EZ82+bLqq5jMnhxVwXayT64b8VmT76H6OiYTuShVatmPayM+bfJl1dcxmQGXwJVvlVCr+LTJl1Vfx+TCLvlD8tyKT5t8WfVVTA6khcEheW7FZ02+h+rrmIzXQuft5LkVnzb5surrmByDS+mQPLfi0yZfVn0dk1N2KPxvJ8+t+LTJl1Vfx+RcXY6H5LkVnzb5surrmFw9yr9D8tyKT5t8WfWVTNby75A8t+LzJl9UvTf5Vu8unl2dencQWsvd2vd+JkX9SGr6wcUwP7I9hvrj39++/vDp5cP3Ny9fPfvKx1HLK6A3BSnMu5OLVXryGHGnNqFXO2g9HkWx4xGbacFakyxEqfl0XM9Aigu51OlspB19cFxOAoeD1/8fjv2WV6B1c8HjubJz9EZ80tN7xd3Ve722r2t20YfAnErO9/C1/2Z8LdgWUow57H29is/6eqd48fVOr+1rEvR1qaSaawr1srPp2wnsUrCqkSduBfYqPuvsneLF2Tu9dzi7CHYRjCWw3MPV30xcc4B1iB9YtXX1RnzS1XvF3dV7vUdXFxdjexA/Sq2CXocSXfb4NxPbnCNWNqVa9w5fxWcdvlO8OHyntzl850kUJTVIe5SxnyCXIlkiny7XAGPzKsbwUN1JEcuB41IlrXcMoU3d/oqBL10xHIC3E8Au5xLma7cGvJ8ZRIXm64wGvOq3FRLmMTwkt7/w2N5WiJMYEgW9ztgNRlzm7ON04THe1jDb8+/pyYBhV9qM4dGP3J/4/fQEEiHVuI5+o+KvD2YdCBf0PbSYvlHypl1cYoeP3KbnoOW7O7TcNcQH4yynjCD3dVH64PVdHn/X5+jWartT04tOkPmqr4kf7y5XN6sTYVRofbiH0P+qqtVlRC7uFi0xRWRRVhucpPm/jA8IhYLVELmOP39mPSfnI+odLUvR0eH9PjUxRSGeCwMTuRlqQchFQZpXMcp+2N8IJnKDiGBUWJGlTnJsHlJzY9gQKBydYFalqYoV62feZWyoXf9EKp7bcHNGiTH3QzYEilYs3ueoqrLzKBQ5zRQT0huXihgQpN9JLpGx8maKCYGS0DNTijSJK0PTTDAAPe3HNCUvVSBGbmGqob/BhJQCuuh9P+QYRKYQqFMsCJSKgK/iKU/y4hE/3cEmpGfyFdkiYH6wCblAXuLMMBE93sXypKhRwyUg9vD2eUZsCBTMlE9VkubViGhGDzQHlw2BInq9PKVnRlHkq6qdKSYESkTWQI4OiIeCORAO/SUWogQEUPU1QlFFG4vFtwzLhJSCAi0KYMjJMfIOd+NNCJREcAqlJi5SS+2GWIgSAmY0F4bjK6t9OVFnWJBSxMWSciyTPASfenTZkFKw4BAQIpNcoke50CkWpBRd/lKQwVUOp8gyJyakFN0DEzdNWBSopjrDQBqhUMWWMckz6UXoyjhCSlHHw8RZXiK2g06xIKVgExSI4iQvXEQW4y2oUfBCNO9NHn2tcaUcIVAyFjb61NkpGEbfukykEWJNeoYwiXPR5bowjlCj1JQROk1epCzGm5BSdDWz+NlC6FpcbEKNkjBZvnR5ppVxQBoBKZ9jmMWIobwyjpBSUJBL1ZOR2cLaa34bahTdBxJ3N+YQV8oRapSKFF/7XCGvpZVyhJQStIrIfbKCxNUWC2oUBF2K89sp1L4P25BSxGH/DG09wIvMy0sMpBFQaYR5YWfda+PKOEJKwa7mS5xdD1OFlnm0IKWgRtApavKoQbtQLKhRcghCzY8SUL2WlXKElJJdKPBdsxEdsOdlVixIKdj6JYXa3o7WLJXFfAtqlOSpu95zoHV5WZBSKnIzinRuezR2xXUNW5DeBWo9mSrWgcqTT6jqZooJKYXUk2gFJjkqn8V6C2n3jRnb7eRHbAz61YnuYhNSCqLIy7Spaw7ExpYWigUpRQsx5LEyJdopc3R/mRAo6omKcn8qADIagqWasBAl6G1LDjBLgwPlL/HCsKCbIfiAjCZT3acpgVHGzXNiQ0pBkRQLESxEmvaIjkidYkF6vxnw9lb3CYIDI/HzdmRDSilYqGVaEKGikOPaTz5tCBSGV3zREiCof3wt/SUWogQ0vaVG3W9ZUMl7lm6JCSkFZmVN6CPrMLAt9rC3Ib3pROqoRXt1/QJDESicI9KGlCLqR3hlZB/R8Xjfa3sbUgpK8MqaMUi/Loi02+fRQpQA1wU914A4qM7qQ2dYECiC5SDwAyFifci9LDLk+jA2QTRv8DRpjYyCUfp0mJBS9HuOPnj0y7qzY5561WlDeqeqDR2WMlQl7a3WstOG2jWsVguoY1DFYuDYbPt8mJBS0OrEgEZv1BYGBRkKoU6xIKVkBCnp7oy2EAPB6BeKBSlFuw+MGDbq2KOsAWxCer9K2J19wfSQYBeJ2ES6+SakFDT4SJqhQs7TNyALd4oFKQWLAe0OFhwhmJDLY9+4bahd/Cb9SivcEvT7HJWWeTEhpWiLhEoZqrCUELBhWScmpHetNOV/KZCLw6BROc4UE1IK5jVjkvF2wv6cYozdySaklIgChnW7JdJq3qNK6RQLUgp8UTFMTLEubD1kWQZmQe3eOEQKBFW+OET5srwsBASkM1BF/ei1qsGP3RITUgoaSbxQg9Wjakb49erLhpSC8geKwEfTW0Ly/ezDRJSQ9N2UecTegZYXSboTDEQJSC5YDFgDVQ9bEbN9E7YQJWCdeU9oEfAANn/p+dpE9LKWnOixTxrVyhzWbcVClKAf9KBwhO91yL20MxElCKKNNOtrVRYprm8wECXAFzVWxBqiTtBN5D53FqIErJrEhGYIrQhaUB8WgoEooUxnuXgxFhxc0TtlC9Aza+2ickIm1Y41IvPNkWEiSiBsKllro6TdIHxPnWAgStBUgk5TxqhfkQhL7JmIEkRP7rDlx+Sw4XM/GrEAfTxNpx+IFv2iDZr0Kv15A9ldYk/NnfXlAL0TaCf0/jM34wt985swt9vB5ZeLJlVf+KsG74Z+a9DH8iW/oHR8u/VrQJ97+0/DfwASfv+QCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjc3OQplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4OCA+PgpzdHJlYW0KeJw9jbkRwDAIBHOqoASBeKR+PI7k/lOf8BMAO+zcXLpyY02sVMdMPoQkZuFFGqNokUpj6w3k+D0UGq/9wrCj83Y2rK6joVuCZNpHyG1XveuvW3TeyQsbzgplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyID4+CnN0cmVhbQp4nD1PyxFDIQi8W8U2wIwggtbzMjmZ/q8BTTyxsrgf8YEKYhaQVIe4w63ixYW1o6vjU6QdtAqLg+YGlr8SsYK8gevW6Rg9Zpt4iufGGDpjhrBwzJEMWdrFM+62L0WODYK7YVah6SmWPuR6YRsHUnqztF2hpnAupiJjhnHbaZ9bJdKO0y9K/ZquIr3D1JK1i8affX8BvPc2ZwplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4MQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1UDkOBCEM63mFP7ASucN7Rtpq9v/thjBToBgcBzuDSfEhwW9ENpCJFHiCw3GNZIgxiA2qAloO0yiClzS6B79cavUSKGaJpXpISyl1XOEMltjlGjL7LqYgXZAMSA25hpZ0o3uoHE5twglGeaS25gausyaXzza6//J2SvCIduOFj9PQfJxGZdxcpHWqCHpiRs3KPTZ6CUbctRyxnLXUUqRUizpRZbDVD3M2/+7xGt8/5jc/HgplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA3MiAvSCAxMDYgL2ogXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL0ggMTYgMCBSIC9qIDE3IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNTkgPj4Kc3RyZWFtCnicPVJJcsMwDLv7FXwCd0nvSacn5//XAvTUlxBjigAIpneLytn4aStZfuTHLjtLIrd8B22T+4qqB6RugswlxyVXiFnK50qQWLSUmVifqQ7KzzWoVfjCT8xMTIckEUvIST2KsH5eB/egfr2k81tk/KNjg9JbkkwFnRrulaOU2LBUnxrkHjTdlFafmXZlByyNN2SlJnX69dPjB0swpS8S0UGIxJ/kcocsCykH8Xau3kB4V7sg1VMrDztEmo+R3lIFqzkzAUtG0w4jYG3WmCBVArxFawi0FuLyhU4rIj45N3QwTVWehciwUuFYe89oDRe6hrzScHqScf/5H7wr3tfvH9rzZmQKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDU0ID4+CnN0cmVhbQp4nDM2NlcwUDA0MlfQNTI2VTAyNFAwNzNRSDHkgjFzwSywbA4XXCGECZLPgavM4UoDAEyQDxUKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIyNyA+PgpzdHJlYW0KeJw1TzuyAyEM6zmFLpAZjG1gz7OZVC/3b59ksg0S/kjy9ERHJl7myAis2fG2FhmIGfgWU/GvPe3DhOo9uIcI5eJCmGEknDXruJun48W/XeUz1sG7Db5ilhcEtjCT9ZXFmct2wVgaJ3FOshtj10RsY13r6RTWEUwoAyGd7TAlyBwVKX2yo4w5Ok7kiediqsUuv+9hfcGmMaLCHFcFT9BkUJY97yagHRf039WN30k0i14CMpFgYZ0k5s5ZTvjVa0fHUYsiMSekGeQyEdKcrmIKoQnFOjsKKhUFl+pzyt0+/2hdW00KZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0NyA+PgpzdHJlYW0KeJxNUbttRDEM698UXOAA62t5ngtSXfZvQ8kIkMIgoS8ppyUW9sZLDOEHWw++5JFVQ38ePzHsMyw9yeTUP+a5yVQUvhWqm5hQF2Lh/WgEvBZ0LyIrygffj2UMc8734KMQl2AmNGCsb0kmF9W8M2TCiaGOw0GbVBh3TRQsrhXNM8jtVjeyOrMgbHglE+LGAEQE2ReQzWCjjLGVkMVyHqgKkgVaYNfpG1GLgiuU1gl0otbEuszgq+f2djdDL/LgqLp4fQzrS7DC6KV7LHyuQh/M9Ew7d0kjvfCmExFmDwVSmZ2RlTo9Yn23QP+fZSv4+8nP8/0LFShcKgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nEVSS3LFMAjb5xRcIDPmZ+PzvE5X6f23lXA63Tz0DAgJMj1lSKbcNpZkhOQc8qVXZIjVkJ9GjkTEEN8pocCu8rm8lsRcyG6JSvGhHT+XpTcyza7QqrdHpzaLRjUrI+cgQ4R6VujM7lHbZMPrdiHpOlMWh3As/0MFspR1yimUBG1B39gj6G8WPBHcBrPmcrO5TG71v+5bC57XOluxbQdACZZz3mAGAMTDCdoAxNza3hYpKB9VuopJwq3yXCc7ULbQqnS8N4AZBxg5YMOSrQ7XaG8Awz4P9KJGxfYVoKgsIP7O2WbB3jHJSLAn5gZOPXE6xZFwSTjGAkCKreIUuvEd2OIvF66ImvAJdTplTbzCntrix0KTCO9ScQLwIhtuXR1FtWxP5wm0PyqSM2KkHsTRCZHUks4RFJcG9dAa+7iJGa+NxOaevt0/wjmf6/sXFriD4AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZcQL6piblCLhdIDMTKAbMMgLQlnIKIW0I0QZSCWBClZiZmEEk4AyKXBgDJtBXlCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0NSA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlyWEFYuF0wsB8wC0ZZwCiKeBgCffQy1CmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjM1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDggL3plcm8gL29uZSAvdHdvIDUzIC9maXZlIDY2IC9CCjEwMCAvZCAxMDMgL2cgMTA1IC9pIDEwOCAvbCAxMTAgL24gL28gMTI0IC9iYXIgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvQiAyMyAwIFIgL2JhciAyNCAwIFIgL2QgMjUgMCBSIC9maXZlIDI2IDAgUiAvZyAyNyAwIFIgL2kgMjggMCBSCi9sIDI5IDAgUiAvbiAzMSAwIFIgL28gMzIgMCBSIC9vbmUgMzMgMCBSIC9wYXJlbmxlZnQgMzQgMCBSCi9wYXJlbnJpZ2h0IDM1IDAgUiAvc3BhY2UgMzYgMCBSIC90d28gMzcgMCBSIC96ZXJvIDM4IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtT2JsaXF1ZS1vbWVnYSAxOCAwIFIgL0RlamFWdVNhbnMtbWludXMgMzAgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozOSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNDE1MTIyODU0KzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDQwCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDExNDUzIDAwMDAwIG4gCjAwMDAwMTExOTAgMDAwMDAgbiAKMDAwMDAxMTIzMyAwMDAwMCBuIAowMDAwMDExMzMyIDAwMDAwIG4gCjAwMDAwMTEzNTMgMDAwMDAgbiAKMDAwMDAxMTM3NCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAzMjUyIDAwMDAwIG4gCjAwMDAwMDQ1MDMgMDAwMDAgbiAKMDAwMDAwNDI5NSAwMDAwMCBuIAowMDAwMDAzOTczIDAwMDAwIG4gCjAwMDAwMDU1NTYgMDAwMDAgbiAKMDAwMDAwMzI3MyAwMDAwMCBuIAowMDAwMDAzNDMzIDAwMDAwIG4gCjAwMDAwMDM2NTggMDAwMDAgbiAKMDAwMDAwOTkzMiAwMDAwMCBuIAowMDAwMDA5NzMyIDAwMDAwIG4gCjAwMDAwMDkzMjIgMDAwMDAgbiAKMDAwMDAxMDk4NSAwMDAwMCBuIAowMDAwMDA1NTk4IDAwMDAwIG4gCjAwMDAwMDU5MzAgMDAwMDAgbiAKMDAwMDAwNjA1NiAwMDAwMCBuIAowMDAwMDA2MzU2IDAwMDAwIG4gCjAwMDAwMDY2NzYgMDAwMDAgbiAKMDAwMDAwNzA4NyAwMDAwMCBuIAowMDAwMDA3MjI3IDAwMDAwIG4gCjAwMDAwMDczNDQgMDAwMDAgbiAKMDAwMDAwNzUxNCAwMDAwMCBuIAowMDAwMDA3NzQ4IDAwMDAwIG4gCjAwMDAwMDgwMzUgMDAwMDAgbiAKMDAwMDAwODE4NyAwMDAwMCBuIAowMDAwMDA4NDA3IDAwMDAwIG4gCjAwMDAwMDg2MjkgMDAwMDAgbiAKMDAwMDAwODcxOCAwMDAwMCBuIAowMDAwMDA5MDM5IDAwMDAwIG4gCjAwMDAwMTE1MTMgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzOSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDAgPj4Kc3RhcnR4cmVmCjExNjY3CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyNi44MDEyNSAzMjUuMTgzODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nNVaTZMcNQy996/wMRzi2LIt28ekAqniQgW24AAcQtiEbGUDSyrw93mabve008r2pKF2WKgkM5Kltp4+LKvHm6vBm9fGmSv8+dv8aH7Gv78ab57hz+vB4dv1EIltcZ4Svr1dfAuUrC+h5ASy67/+NgyvhkePoeQ9pJ4NQwo2loNUsSV7WQXN3ll2PfXtkuqirU3lUcOSenjQjVHUh5StJ0PM1uPfPy/ND+adefSYZE9kvoaFsNqWo90Dnludr+xyiYDg0dPLv968vPz22RPz8r1ugb6p4bvhublpz3JAePUsQUU4W2qTDQ2X4Qmc9fdwg7+deeigM/ppGQVbk3l5PTy5EKdZx9Ex6Be/Do++8sY7c/FqeOC/MBdXA9vAhO2yaHWy5IE7MDzZQIEijfDZQgfdk468UPHlBSDHU1w2EiLjJ4gXcuGwa1vqqAVbAopXL77/8N2Ld+8fXr959+G9efr78Fz+N3fiN5hkXfwY4QV1r+c2Fd/qO4LPxnVEvfNq5vTZzmMbU4EbyoS/4jvXfHdn0Gv5ff2p/P4c6DcV3542zk/r/pO8OQF6f+fQe5ctheCZO4iW5FPAZwX8E1TzsZoD/rsyGao5syPf72tB3m3yturzmMwoFyW5Qv2+FuTdJm+rPo/JuVgqNYTY72tB3m3yturzmFzJRso15H5fC/Juk7dVn8VkgkGh+Jr6GrMk7zX5BNXnMdlHmwPXWvp9Lci7Td5WfR6Tcf6W7HLta8ySvNvkbdXnMbkki7z6+PBcknebvK36LCYHL43B6vBckveafILq85gcqk1xdXguybtN3lZ9HpMTHhtXh+eSvNvkbdXnMTlLL7Q6PJfk3SZvqz6PyQWX1bg6PJfk3SZvqz6PyTVYqqvDc0nebfK26rOYHB3av7A6PJfkvSafoLo3eXV3h42Hu3u1NF65x+t7m0n5NpI6fLApTEuWY6hvfnn75ubD5cPfry9fv7jjcdT8iJhkblAod5OLI3XnGLFTW+GklVZlFGVJZonMSDPyLtGIqTnOQIoNudTDbGQcfQQ7j5NuhhXs/4e53/yIgmYgJe9iB/SRuhPoTm0DutOqA12C+ILQlpEL20CTTfcFaE/VuuRD6YA+UncC3altQHdadaCxDM5AT4QeIcVTkL43Ie3RB5Qoc+Ie6iN5L9ad4hnsTu8n0OYMh8gUNCSXttH29yeuyZPliFM5dGgvyDvR7hU3tHu9OtrkinjEpQyvnIT2vYltpKyN6Adc7dE+kvei3Sme0e70fgLt5MQjuGn44ngbbXePYruyXJVj6SvJgrwX7U7xjHand0S7wzIAuyzrpB+sjGakpjyBeghhM4KKLTwUNH0S/1TfutGxGWSbKnOu47saq73U+enBwUXBAqTAI8puXENtzdX4XtRbnyjEcFxx1PJF90L0o+ZzfO4nms8/fnszOv1jSY/uP/O8p9u1/OsWVlyJWtwFjiefuDCNj+fpv4wvqDhoI0Oiar69JabIlpKnUTIxYorQ2htCdwS9vk49l86Sdwzo7Yt3JHRceLHpdqLpLBlYB+yt+GwoRwl8Jj9JaBwZ91abgE9AikOnixkldZTQWTI7JOuxRVDhIY/omkqRxpAXwVEOxJIK6geQjzXGaU86CyIx2sylRjgrZkRmlOAfRVQWRBKw5hTRSlKUF5hF4BxFVBZEGDlWnBdIkG7VIQOma5zOEhFcyhKhbUVBRK5xjqFJKBwIAGtHWR4NNEugVJvtGkcE8KWmCMf6ioLqXaVZQmONg82CWMjIV3xEHFHblMaBAMoE3JrgHp8R884DnklCZYkISkmhGlBoqs34xM0hGgd3d4ckwSlBbLxUvZRy6w90lojIq+UKBUh9ZGqEy0oT0Vgy4ISqhPyRRhjRkOCGSULjiEASbzIc631Bggeet6WyIEJSjQhxBjpKIJyWJ4/oLBEJkpK43KA+JkQcineTUDgikHEZqsQFZOjE/b8llc6SQSfOKPgWwFdsPKAeTeVE5YhAsKA6RwZ1CakHrU1A4YgAo2L4glQrSH/ETjsFVc44e62Ia3yRwMPVxDVsNQ4EIm51ANFluQ2Kg6eg0hiyPMo+czDFWxTzufBoDFmOTjw7pL9B5kSEXGwIaRwRQMFLkmEmowy7muP8AIUjk1c5b2vGrSonIIKK3BDSOCIQocdRLCbLicuBWoRrnHG2i3jB6W8y2YAadhRQOCJQgVfMeC4SoObq5/VrBpazt9KFIOhR4mOIpZ0wKkcE5EdNKCqGkSNI3Qbpmi6L2UZyCTvDJ0Rumh2scUQAhzXqHAfDCXikTLN+hTMOgrExRBMLfqg9NK1XGLI8IGEzstxgvyl6nkNa44gAkjQUOWcZtxFsYM59jSMCWZoLFDUDADMxzTmgcUSgyu3co1Dh0ME54I8mKBwZBMtPo0LNWchemsOGkcYRATQkOCzhScSAL3W+qakcERCEuaIJSThnEOzNZoUhy7NldgkBhQaLY8Tx3NYrHBGo0pdWdAoSxJldaUGqcWQQLPduJ00byCkhKls91TgigE4E0Y5skr4CNXQ+FzTOOGrGxR6FxqRDvoY5DzSOCMg7Yzy5CDm4HNsxrXJEgC1KMkqnQaoX1IbajNY4IoDCz3CnUGPONGe+wpDlRTrH6pKQParnDNGaIcvRTKCFRfiiX4WSOm9/zZC5NJoBVNZAQg2ugjCuVznjIFsOOkao4FPwnEsTUDgiEOXXJUk8ieLPXmrJJKBwRCBZdFkUWcjoiEJq69cMWS4BdahnqM2Fg6+1rVc4IiBNQMHtSchJXBqbgMIRgcMoHu0yqFTKnGYaY3nJxK0a9Ul7hyA32vF+6U4boGvXzoPS+TfIB1Wf+YvEd0O787a9fM7vmNdP134tfNvTnw//ADgBe/AKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyMTYwCmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE1MiA+PgpzdHJlYW0KeJw9T8sRQyEIvFvFNsCMIILW8zI5mf6vAU08sbK4H/GBCmIWkFSHuMOt4sWFtaOr41OkHbQKi4PmBpa/ErGCvIHr1ukYPWabeIrnxhg6Y4awcMyRDFnaxTPuti9Fjg2Cu2FWoekplj7kemEbB1J6s7RdoaZwLqYiY4Zx22mfWyXSjtMvSv2ariK9w9SStYvGn31/Abz3NmcKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxODEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicNVA5DgQhDOt5hT+wErnDe0baavb/7YYwU6AYHAc7g0nxIcFvRDaQiRR4gsNxjWSIMYgNqgJaDtMogpc0uge/XGr1EihmiaV6SEspdVzhDJbY5Roy+y6mIF2QDEgNuYaWdKN7qBxObcIJRnmktuYGrrMml882uv/ydkrwiHbjhY/T0HycRmXcXKR1qgh6YkbNyj02eglG3LUcsZy11FKkVIs6UWWw1Q9zNv/u8RrfP+Y3Px4KZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyODEKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicPZE5ckQxCAVznYILuEqsks4zVY7G90/d6I8daQEezWNEhcQK+RkRdm9hSyKnhG6J6fIani615T1830tHdpJUonpIiDNF40iqi02VRMJWl6Yf8eDHS/w4GSXh89YglEdi69P2A0JkoZQKUlreWxan8XtA20VOOVUxpVq/jpTZp2NNqKDLBZNyapDVsqUCX0yTL1VxX/d8DTtHvmwuBjSd/9fYN/4eup8KdW8BnfMRBEp5twv4AvoDcAwi/oz5vGPYunsugzHxyyBLPHGrOx0G0zZW97LNhKhbuxG4yIxBHdUzxNHR3ey0rvNpqBA0sxYTZ94MZUVEmIwSoxFra83qb8fK3iwLpUWyMMfYRvmz/jW+fwF7j2RQCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDEwNiAvaiBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvaiAxNiAwIFIgPj4KZW5kb2JqCjIzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIxIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIyIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgNTMgL2ZpdmUKXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvZml2ZSAyMyAwIFIgL29uZSAyNSAwIFIgL3BhcmVubGVmdCAyNiAwIFIgL3BhcmVucmlnaHQgMjcgMCBSCi9wZXJpb2QgMjggMCBSIC90aHJlZSAyOSAwIFIgL3R3byAzMCAwIFIgL3plcm8gMzEgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1PYmxpcXVlLW9tZWdhIDE3IDAgUiAvRGVqYVZ1U2Fucy1PYmxpcXVlLXBoaSAxOCAwIFIKL0RlamFWdVNhbnMtbWludXMgMjQgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMiAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjAwNDE1MTIyODU1KzAyJzAwJykKL0NyZWF0b3IgKG1hdHBsb3RsaWIgMy4xLjMsIGh0dHA6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChtYXRwbG90bGliIHBkZiBiYWNrZW5kIDMuMS4zKSA+PgplbmRvYmoKeHJlZgowIDMzCjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA5NDg4IDAwMDAwIG4gCjAwMDAwMDkxOTQgMDAwMDAgbiAKMDAwMDAwOTIzNyAwMDAwMCBuIAowMDAwMDA5MzM2IDAwMDAwIG4gCjAwMDAwMDkzNTcgMDAwMDAgbiAKMDAwMDAwOTM3OCAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTggMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyNjMzIDAwMDAwIG4gCjAwMDAwMDQxMzMgMDAwMDAgbiAKMDAwMDAwMzkyNSAwMDAwMCBuIAowMDAwMDAzNjA5IDAwMDAwIG4gCjAwMDAwMDUxODYgMDAwMDAgbiAKMDAwMDAwMjY1NCAwMDAwMCBuIAowMDAwMDAyODc5IDAwMDAwIG4gCjAwMDAwMDMxOTQgMDAwMDAgbiAKMDAwMDAwODAwMyAwMDAwMCBuIAowMDAwMDA3ODAzIDAwMDAwIG4gCjAwMDAwMDc0MzggMDAwMDAgbiAKMDAwMDAwOTA1NiAwMDAwMCBuIAowMDAwMDA1MjE4IDAwMDAwIG4gCjAwMDAwMDU1MzggMDAwMDAgbiAKMDAwMDAwNTcwOCAwMDAwMCBuIAowMDAwMDA1ODYwIDAwMDAwIG4gCjAwMDAwMDYwODAgMDAwMDAgbiAKMDAwMDAwNjMwMiAwMDAwMCBuIAowMDAwMDA2NDIzIDAwMDAwIG4gCjAwMDAwMDY4MzQgMDAwMDAgbiAKMDAwMDAwNzE1NSAwMDAwMCBuIAowMDAwMDA5NTQ4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzIgMCBSIC9Sb290IDEgMCBSIC9TaXplIDMzID4+CnN0YXJ0eHJlZgo5NzAyCiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "from sympy.plotting.plot import MatplotlibBackend\n", "\n", "def logx_plot(Hw, wrange, **kwargs):\n", " 'create plot with logarithmic x-axis'\n", " p = sym.plot(Hw, wrange, show=False, **kwargs)\n", " backend = MatplotlibBackend(p)\n", " backend.process_series()\n", " backend.ax[0].spines['left'].set_position(('axes', 0))\n", " backend.ax[0].spines['bottom'].set_position(('axes', 0))\n", " plt.xscale('log')\n", " plt.grid(which='both')\n", "\n", "def db(x):\n", " 'compute dB value'\n", " return 20 * sym.log(sym.Abs(x), 10)\n", "\n", "\n", "RLC = {R: 1, L: sym.Rational('.5'), C: sym.Rational('.4')}\n", "logx_plot(db(H.subs(RLC)), (w, 0.1, 10),\n", " xlabel='$\\omega$', ylabel='$20 \\log_{10} | H(j \\omega) |$ in dB')\n", "logx_plot(sym.arg(H.subs(RLC)), (w, 0.1, 10),\n", " xlabel='$\\omega$', ylabel=r'$\\varphi(j \\omega)$')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Example - Second order system**\n", "\n", "The bode plot of a second-order LTI system with the following transfer function\n", "\n", "\\begin{equation}\n", "H(s) = \\frac{(s - s_0)(s - s_0^*)}{(s - s_\\infty)(s - s_\\infty^*)}\n", "\\end{equation}\n", "\n", "with \n", "\n", "\\begin{align}\n", "s_0 &= \\sigma_0 + j \\omega_0 &\\text{with } \\quad &\\sigma_0 = 2000, \\omega_0 = 2 \\pi \\cdot 100 \\\\\n", "s_\\infty &= \\sigma_\\infty + j \\omega_\\infty & &\\sigma_\\infty = 20000, \\omega_\\infty = 2 \\pi \\cdot 4000\n", "\\end{align}\n", "\n", "is constructed in this example. First the contribution of the pair of complex conjugate zeros $s_0$ and $s_0^*$ to the magnitude of the transfer function $H(j \\omega)$ is computed and plotted over the frequency $f$ using $\\omega = 2 \\pi f$." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMS41OTgxMjUgMzY0LjE4Mzg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJzFW0tv3bYS3utXcOkuzAxfQ3JZo22Ku7lIa9wu2i7SxEljxAncoO2mP/5+I4kSdcQTnQioFcCxz4xmyPk4L5I6Rt13Rr1VpO7x87f6Wf2K36+VUc/x87YjfHrovDU65GRswMf39UfHXpvkUgyg0/Lj7133pnv2NdR8gtjzrvNJ2ziIJZ2ikcegnIJ2+YT8fkEmr3PRWimpyf1gj6o1hAtRG6ssszb4/ced+kl9UM++tjIxq/4DQ2G8TrP5HWnOZDJTTB5IPPvm7q93r+5+eH6jXn06Z0Z7Xt2P3Qv1WEYjQL0aTcARzrZiIFLg6W6wbn93j/if1DVBq8vlOet0DurVQ3dzKwuoiT0x6Levu2ffGWVI3b7prsxX6va+Y+3YYsYsakkeuaKR4UMiGkfWyfZ/jCpipeHb2+5Fb+NTYG84amdWGNXkvehfoPqz+JuQyoPWLhcgRw7/xgLYp18AmzDhsEKpJu9dgAtUf3YBbIzlwadaAPf0C9BMlw9n0+UX5Z9t1RsZiMuDT5WC/NMvQPKiJzpegFRRL4GfG/BvKua5OgL8J0u5WH6Knl1e5sWKvNfiC1QfZLPJOvvo/HItavJum7dVH2SzM9onF4xfTqwi77Z5W/VBNnvUBsqnJX+m7rZ4S/FR9orqFPKJ81Xk/RZvqj7I5hA0xsghLidWkXfbvK36IJvZiGoT3EkvO5N327yt+hibLTltwqp+1uS9Nl+g+iCbrXQHqwJak3fbvK36IJuhOqdVAa3Ju23eVn2QzYF0sKsCWpN327yt+iibpSM6LaEVdb/FG4oPspejzmZVQGvybou3VR9kc/TY1q0KaE3ebfO26oNsTmgCzaqA1uTdNm+rPsZmZ602eVVAa/Jemy9QfZDNXrqDVQGtybtt3lZ9kM0habKrAlqTd9u8rfogmznrwKsCWpN327yt+iCbo3REpyW0ou62eEvxQfYm1jmsCmhN3m3xtuqDbM5OJ14V0Jq82+Zt1UfZjCYwrApoTd5v86bqpc0nh+sem83xcH266JvP16vTdVtO198ccDkxj4FJOhfJnVwgTOTdV6O1Yq/jKXXC7uZWzVcN6Aas3F54x8kma4Pt7xmM628alID05BChKzMpYSYLhCbqXoBqtRM+tdZz8ES5vTHsA+LQD/D4A+Ex1mjjnXNpCVBF3wvRUvUE0lLzOZiMiRrthkfAsQkDTuFInNhqAjTh5K6uou/GaaF6xmmh+SxOch9OxsYcbY4DTnwgTnJaRwFTOQm4ir4Xp6XqCael5rM4oQLAlShzyjENOMUjcYIBRDAhn+A003fjtFA947TQfA4n60lbQxlJiXmAKR0JU0IjwJaJT2Ca6bthWqieYVpoPgtTQhLjEJ2xzpsBpzzh9NhJL3EtXYUJ8nSwpZ2ZmwkXsound/V2665+xXjfM6xM3yEUhrfHhPFxlDAmmfG9gIHxtlz7IwkPc7g2evnmQP3mkdeoVWycvBewmAwgs5FC/+aAOtUw2vNP/yR6Ku49qsyh6p++75+IOqAj7Wd/ZjKXj/nL1TgoHMzx4KGno973jxgjNwvY0M9PzFq+OqPlnE1XaqSbiLCgPCm9enduiT6URcXWK1+i6XUR8OOrNgP5pvSgj/ISiLgdDX8EbGERNbJzR7mdfA5OiIC7f/m/P398+eHT9X9/e//u8c+7648Pd29fqm8+Siu7L9Yl7owOizhHvQ+c2IoR2vP4L+IDFjIl65C71Q/nU0AgxGMc77+wXyPD7L0KLJrzGP8txkOHX5gkOWsVR+1zSjw+3+RAwBudsE9wWSWnvc2Zxzzc5Mh5NrpdcuytyqxRhNwk0OIMp8GEtsaLo2G/HQO7OEo0WXKYCk3iN2iKko4hpFjGaHHkJDJokz2HrNB66+iRzMay22ZBJFsdyFFySq7PibwE2CDSZIkInAvhwxjdZ8ycZ7CaLGzDSI6FUYPQ3QRZsBD8INHkQAARCv+nAEXsNT6msc9qckQAwtFFwwrlvd/zGVMkWiw5w0RcSJzBPjTnSOnGjna0WSLisRGKyFgKyVVnQ96VUZosEcECJcwYKSglDSqHSaTFgoizkqON9ehe0OOQIVtEmiwRQYUMcaDL0Qa6bFdEWiwRQaRhLxKkk0LNRKjGWERaLDkBhecYKEMaIDHXkynr2GSJCNKfDdGLKoweHZy7iLRYIhIkecHfFBoSnQjOXSbWZIkI4Mv9hsEajJ59LoC1OHKuiekmFPsMckSeAUpjhmizRMRq7PECyfuPGNvxDHGTJSKAnhCsAEUudj0h3RSRFktEsP1B5MHzrAUoBvm2OGWTJSKINJ+jJGeLZhfUSaLBkQNORIFP2IVah+TGTL6g1eKIAFqfYChgZOdQfHOmsiJNlog4lD1G5gQ9IIJyohLBTZaIABJEQBS6XJ2hZqUi0mKJCILTY30S6Bn+4LMtADdZIiK+jTIAuqR2H3xx4RZnOA6OsFBA9OgKbIx5sqTFkgNV9BcRWQPkAM/A51GgwZDHLZpipH5QYVzIeXKsFkcEgGD2BIMs0qyP8KRJosUSkYDNEsl6YrlQCtiWnUabJSLyZnC2KBl9H5vRCE6jtFgiEjWcJgMFG6SzRm4r6DZZIgIfxfaE4XMoAGzkPdQi0mLJ4S1pOdNLgAW7YM5w1uKOTZaISEo2iH0ENjQhCxTXanFEwCFZoM/HdOHiKGplUg2GPO5hHaqrUFGVcuTJSZqs4QiaEpEkWZZWMNMUIU2WiKBRyCBLGxaRPBHPBd4mS0RSv/2VDQ681cl5wWR5iyUi8BusrsAe+3yQp5TdZMkxK2BHTGPwKJhEXw5wmxwRMBKSUcmFMTKan0pPgzEcXdu+oNooXR5zsuX5BkcEADriqx83YcfGyK9FosUSkaCzcyQ5Bo6XIkcqEdJkiQjSsKMskQM3smiQZrtbLBGReoQ0IXRUjWDNVKqarOEMG/FMbtijGsw6lvVosgaRFBBgogobUaTlKcU3WbLHlgIe0A3LNwJ8IF8KYpMjAtiGocNDurdwPkYpK71QmyUi6F7YYz8BOjYWYSrTTY4IYLcVyUrswJGQPaYC2maJCGIMLZ/kZPiSxybEF4kGZ3m4kKWOx9btgxxmDAcLdOmx/HzgcKJ2+tJWr+yLv3LwoSsHHmU+X/bVr8YMWl+u+uwMXnT/B+PzWaUKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyMzY5CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg4ID4+CnN0cmVhbQp4nD2NuRHAMAgEc6qgBIF4pH48juT+U5/wEwA77NxcunJjTaxUx0w+hCRm4UUao2iRSmPrDeT4PRQar/3CsKPzdjasrqOhW4Jk2kfIbVe9669bdN7JCxvOCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDQgPj4Kc3RyZWFtCnicPY87EgMhDEN7TqEj4D+cZzOpNvdvoyWQBr+xsCVbKDpy8PEaqOx4STv4aZ5ONXA3Y2+TxyJTQbJrvZAZuJpORXKjDio6oeWIuRTuCS9Ou+gmm5OmD2nIJoknyt3yVySPULFhjD0udVYK7WJFk2lIp7EwIo3VE8WYDMDh4m/TXKcZfz71+h97t/cXTLgz1gplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyID4+CnN0cmVhbQp4nD1PyxFDIQi8W8U2wIwggtbzMjmZ/q8BTTyxsrgf8YEKYhaQVIe4w63ixYW1o6vjU6QdtAqLg+YGlr8SsYK8gevW6Rg9Zpt4iufGGDpjhrBwzJEMWdrFM+62L0WODYK7YVah6SmWPuR6YRsHUnqztF2hpnAupiJjhnHbaZ9bJdKO0y9K/ZquIr3D1JK1i8affX8BvPc2ZwplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4MQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1UDkOBCEM63mFP7ASucN7Rtpq9v/thjBToBgcBzuDSfEhwW9ENpCJFHiCw3GNZIgxiA2qAloO0yiClzS6B79cavUSKGaJpXpISyl1XOEMltjlGjL7LqYgXZAMSA25hpZ0o3uoHE5twglGeaS25gausyaXzza6//J2SvCIduOFj9PQfJxGZdxcpHWqCHpiRs3KPTZ6CUbctRyxnLXUUqRUizpRZbDVD3M2/+7xGt8/5jc/HgplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA3MiAvSCAxMDIgL2YgMTA2IC9qIF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9IIDE2IDAgUiAvZiAxNyAwIFIgL2ogMTggMCBSID4+CmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1OSA+PgpzdHJlYW0KeJw9UklywzAMu/sVfAJ3Se9Jpyfn/9cC9NSXEGOKAAimd4vK2fhpK1l+5McuO0sit3wHbZP7iqoHpG6CzCXHJVeIWcrnSpBYtJSZWJ+pDsrPNahV+MJPzExMhyQRS8hJPYqwfl4H96B+vaTzW2T8o2OD0luSTAWdGu6Vo5TYsFSfGuQeNN2UVp+ZdmUHLI03ZKUmdfr10+MHSzClLxLRQYjEn+RyhywLKQfxdq7eQHhXuyDVUysPO0Saj5HeUgWrOTMBS0bTDiNgbdaYIFUCvEVrCLQW4vKFTisiPjk3dDBNVZ6FyLBS4Vh7z2gNF7qGvNJwepJx//kfvCve1+8f2vNmZAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzY2VzBQMDQyV9A1MjZVMDI0UDA3M1FIMeSCMXPBLLBsDhdcIYQJks+Bq8zhSgMATJAPFQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE2MSA+PgpzdHJlYW0KeJxFkEsSwyAMQ/ecQkfwRwZ8nnS6Su+/rSFNs4CnsUAGdycEqbUFE9EFL21Lugs+WwnOxnjoNm41EuQEdYBWpONolFJ9ucVplXTxaDZzKwutEx1mDnqUoxmgEDoV3u2i5HKm7s75R3D1X/VHse6czcTAZOUOhGb1Ke58mx1RXd1kf9JjbtZrfxX2qrC0rKXlhNvOXTOgBO6pHO39BalzOoQKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMyMCA+PgpzdHJlYW0KeJw1UbtxxTAM6zUFF/Cd+JU0j3Ovytu/DUA7FWEaBECqvGRKuVzqklWywuRHh+oUTfk+YKb8DvWQ4+ge2SG6U9aWexgIy8Q8pY5YTZZ7uAWBLwxNibmF8/cI6CsGozATgbrF3z9AsyQwaXDwU5BrrVpiiQ48LBZYsyvMrRopVMhVfDs2uQcFcnGz0KccmhS33ILwZYhkR2qxr8tlKfK79QkYhBXmiE8UiYXngQ5mIvEnA2J79tliV1cvqhEZ1kmHB1IE0mxuEjA0RbLqgxvYV8c1P09H2cHJQb+Kwfg2OJkvSXlfBaEQjxf+Ds/ZyLGSQyQU8n21wIgjbIARoU/tIxBlIDRF9+6ZUj4mVYrvAEYhHH2qVzK8F5HZaobN/xld2SoKBlVZH59GcCaDSTjzZKMK01K107/73OPzB2NjeoAKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxNCA+PgpzdHJlYW0KeJw9ULsRQzEI6z0FC+TOfO03z8uly/5tJJykQjZCEpSaTMmUhzrKkqwpTx0+S2KHvIflbmQ2JSpFL5OwJffQCvF9ieYU993VlrNDNJdoOX4LMyqqGx3TSzaacCoTuqDcwzP6DW10A1aHHrFbINCkYNe2IHLHDxgMwZkTiyIMSk0G/61y91Lc7z0cb6KIlHTwrvnl9MvPLbxOPY5Eur35imtxpjoKRHBGavKKdGHFsshDpNUENT0Da7UArt56+TdoR3QZgOwTieM0pRxD/9a4x+sDh4pS9AplbmRzdHJlYW0KZW5kb2JqCjM2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjM4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjggPj4Kc3RyZWFtCnicMzM2UzBQsDACEqamhgrmRpYKKYZcQD6IlcsFE8sBs8wszIEsIwuQlhwuQwtjMG1ibKRgZmIGZFkgMSC60gBy+BKRCmVuZHN0cmVhbQplbmRvYmoKNDAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKNDEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iago0MiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iago0MyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjMgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyCi9maXZlIC9zaXggL3NldmVuIC9laWdodCAvbmluZSA2NiAvQiAxMDAgL2QgMTAzIC9nIDEwNSAvaSAxMDggL2wgMTEwIC9uIC9vCjEyNCAvYmFyIF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMCAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjAgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjMgMCBvYmoKPDwgL0IgMjQgMCBSIC9iYXIgMjUgMCBSIC9kIDI2IDAgUiAvZWlnaHQgMjcgMCBSIC9maXZlIDI4IDAgUiAvZm91ciAyOSAwIFIKL2cgMzAgMCBSIC9pIDMxIDAgUiAvbCAzMiAwIFIgL24gMzMgMCBSIC9uaW5lIDM0IDAgUiAvbyAzNSAwIFIgL29uZSAzNiAwIFIKL3BhcmVubGVmdCAzNyAwIFIgL3BhcmVucmlnaHQgMzggMCBSIC9zZXZlbiAzOSAwIFIgL3NpeCA0MCAwIFIKL3NwYWNlIDQxIDAgUiAvdGhyZWUgNDIgMCBSIC90d28gNDMgMCBSIC96ZXJvIDQ0IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjIgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtT2JsaXF1ZS1vbWVnYSAxOSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQ1IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA0MTUxMjI4NTYrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgNDYKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTMxNTkgMDAwMDAgbiAKMDAwMDAxMjkyMSAwMDAwMCBuIAowMDAwMDEyOTY0IDAwMDAwIG4gCjAwMDAwMTMwNjMgMDAwMDAgbiAKMDAwMDAxMzA4NCAwMDAwMCBuIAowMDAwMDEzMTA1IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDI4NDMgMDAwMDAgbiAKMDAwMDAwNDMxOCAwMDAwMCBuIAowMDAwMDA0MTEwIDAwMDAwIG4gCjAwMDAwMDM3ODEgMDAwMDAgbiAKMDAwMDAwNTM3MSAwMDAwMCBuIAowMDAwMDAyODY0IDAwMDAwIG4gCjAwMDAwMDMwMjQgMDAwMDAgbiAKMDAwMDAwMzI0MSAwMDAwMCBuIAowMDAwMDAzNDY2IDAwMDAwIG4gCjAwMDAwMTE1ODMgMDAwMDAgbiAKMDAwMDAxMTM4MyAwMDAwMCBuIAowMDAwMDEwOTM4IDAwMDAwIG4gCjAwMDAwMTI2MzYgMDAwMDAgbiAKMDAwMDAwNTQyMyAwMDAwMCBuIAowMDAwMDA1NzU1IDAwMDAwIG4gCjAwMDAwMDU4ODEgMDAwMDAgbiAKMDAwMDAwNjE4MSAwMDAwMCBuIAowMDAwMDA2NjQ2IDAwMDAwIG4gCjAwMDAwMDY5NjYgMDAwMDAgbiAKMDAwMDAwNzEyOCAwMDAwMCBuIAowMDAwMDA3NTM5IDAwMDAwIG4gCjAwMDAwMDc2NzkgMDAwMDAgbiAKMDAwMDAwNzc5NiAwMDAwMCBuIAowMDAwMDA4MDMwIDAwMDAwIG4gCjAwMDAwMDg0MjMgMDAwMDAgbiAKMDAwMDAwODcxMCAwMDAwMCBuIAowMDAwMDA4ODYyIDAwMDAwIG4gCjAwMDAwMDkwODIgMDAwMDAgbiAKMDAwMDAwOTMwNCAwMDAwMCBuIAowMDAwMDA5NDQ0IDAwMDAwIG4gCjAwMDAwMDk4MzQgMDAwMDAgbiAKMDAwMDAwOTkyMyAwMDAwMCBuIAowMDAwMDEwMzM0IDAwMDAwIG4gCjAwMDAwMTA2NTUgMDAwMDAgbiAKMDAwMDAxMzIxOSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDQ1IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSA0NiA+PgpzdGFydHhyZWYKMTMzNzMKJSVFT0YK\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "f = sym.symbols('f', real=True)\n", "s = sym.I * 2*sym.pi*f\n", "s_0 = 2000 + sym.I * 2*sym.pi*100\n", "\n", "H1 = (s - s_0)*(s - sym.conjugate(s_0))\n", "Hlog1 = db(H1)\n", "logx_plot(Hlog1, (f, 10, 10000), xlabel='$f$',\n", " ylabel='$20 \\log_{10} |H_0(j \\omega)|$ in dB')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now the contribution of the pair of complex conjugate poles $s_\\infty$ and $s_\\infty^*$ is computed and plotted" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQyMi45NzMxMjUgMzY1LjE4Mzg3NSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJzVW89v3cgNvuuv0NF78ITk/D5usLspellk12gPbQ9p4qQ2Ygduml0U6B/fj9IbvZE8z3pRUQsJ4NiPFDnDjxySM6PH/W3H/Yee+lv8/N7/pf8bfr/ruX+Fnw8d4dNd50RMjpbF4+PH+qMN3nCyKXrQaf7xH133vnvxPdR8htirrvPBBD+KJZMi62NQztbEuCB/nJHJmVy0Vkpq8jDYQ98awvpoWHoJwTB+//O6/3N/37/4XnRi0v8RhsJ4k47md2RCJs6BYnJA4sUP17/dvL3+5dXL/u3nE2acmFf3a/e6fyijEaB+NJqCo5x1xd7YAk/3En77vXvA/9RfErS6WJ4Ta7Lv3951L6/UgYaCowD61bvuxU/cM/VX77sL/q6/uu2CsUEw46BqSR+5oAPD+UQAYBjZJBn+OKiIlYYfr7rXg43PgT0HZ5KN3s0gqqhbsV9V/CT27P34HFkC9Lo+agfkGPz/wwHy/A6QaA0JZx9mQNXkrS44Q/WTThA4a3jQB87P5gP7/D6wiY1QABQzoGryVh+cofpJH9go44OUJT1fJnLP74SUDWItxTwDqqKe44LQcMGq4nAsknDAs2VeSkYiCc3nVZO3WnyG6p1sFjYxhWDtfGIVebPN66p3stmKoo5JzCdWkTfbvK56J5sdHrYhh4UzKvJmm9dV72VzMhRRVWUxsSN5u82rqney2TtjvYVJ84lV5M02r6vey+ZsUoqSFwFYkbfbvKp6J5tzNI6c5EU3X5E327yueh+bhbVPckHmE6vJW20+Q/VONktGX8/k0nxiFXmzzeuqd7IZlcN5LzRPrjV5s83rqveyOevOzsaFMyrydptXVe9kMwaRYPNyYhV5s83rqneyOYjxwJzmBaUmb7Z5XfVeNmtXxJEWzqjI221eVb2PzZa88WgRFocMR+pWi1cV72SvOIOFRfP6WVE327umeCd7oZo9WoPFvCryZovXVe9kM3Y3AD3wfANQkzfbvK56J5uhT8jHRTNckzfbvK56J5uDM84lu9j01OTNNq+r3snmSCaKCM8LSU3ebPO66r1sRjfkAy82PTV5u82rqvexuXkVe3fyKvZrbD5D9dzm5e0mc3kwGxnvAo73CtWtgpRbhffPfydQjZGNDZ6tXdg4kTffDFeKvUXNe6z38cWYGNF7Gx+S+ERaMAbo+uMdTDJogvOA4nj1giRb8HuA0aTKhhuc8Q/Iw/TbN3/68uub+8+Xdzf3Xz73P3xSrHdAO5NBOxtQFGZoH8lb0a4VH9Ge6W2jnQIAtYmzuOjPQZu+HbT17DpHTH6xgCv6Vrxnqo+AzzW3EcdeHV7JNpGzVtYh5/wNBThnvRbihJU7h/xI3wx5rbqCfKb5BOQpohi47Fgv3M9A/BsKcnGCPWPUA6AZ4hV9K+Iz1UfE55rbiAtMj5k8CcL8jCzO6RsKcsnW2Iz/8wLyI30z5LXqCvKZ5hOQp2w85o6dFoA/B/LNUY7nMeqlPsheh/Zcmq1jq2N9tnH5BoWsvUHxiPFxYAgwTlbo8GqfMj4dJBhr//C2xsj4UF7GQH4d53DJZv4+R/1aGPYs3ga2+rbGbDIOjX1ECGsP1y81HOz5z/AknBMyV3Oours/DE8gSII4EutsnJ6ZtPz14qAG0WfDGL5LPbejHkZInNLy3Qktp2Z50R/oHLFmKE9KL25OgX5f3LQIppOa3hUBd3itaSS/nEJPI45iiT385ZLho3q4TkoPXcfjzf37m/ubf/17DMmHfh7AAWUYNXYMoxKJCw0///3jzcOX68tPd9cf3vxPyUQXNhs/SyQsjC42yDABFw7/YKdBSKUk1kvuf3kqxyAZOfFD/ywcAaDkMJAjS7KHVrHJ0RNywOYyFtNAz9a6cEhKbZYetqI11xeiQNYnECqHytHkQCAhPhCIOQ10zFukSDRZEEEaw1r1Tu0TQ9mFssNos/RIVN/TIuY40IEHMB1F2iyIYJGQ2jXSU6LowkGkyVIRwJgDXH2gx2nj2Gbp2SU+DMl2HJ1DLLa0WSoSTdIDEjfA4nNGPBWRFkuPC7UGBHSLQ34PHs6Qg0iTpSIRS0YEWEjSqCXrXRFpsfSADkMiPFFeEEBG4IhcQG6yVMSZhOiOiLyYDVomzLuItFgqEk30wFLpSK4EgKZRWiw9RYO/4FaCjUEPEZ2fRmmyVMQhf6QYMeHA8Jeb6nGbpSIBS8chP6GS6e7TkS0Ta7JUJMNGzx5IYu4Mm+M0sRZLT8fEWM5Jwcc2GEmNJvObrPFALSRsKDC6Fb3DRrgXkRZLRfR0AlPWF0s9Mj6CsURyk6UiGTlTnIUqTlhSLlGJsSZLT4AYaQfhCvAZyS4wpRJjTZaKIHqABHIHwk7vaWOYRFosFcEseeh60JQZ8kIlJ7VZKgLEXYri0PQjbSW0/JNIi6UiyeScPMBn5C2ffXaTSIulb5mS8Z71JQqOANUjFRVbmiwVQVLjDD+BDoQyB1v80mSpiB1epUTmYbgO9TBNIDdZKqIXKoDSgo7ES/BwibEmS0U8igDG1JfDUX7QQbpplBZLRaIhtAYRE/aIPaxvX1Jfk6UiGj3sCXQt8Ng/TH5pslQkG4e6q/5yiIqE3mUapcWCiNZAhCjqDta5Jl432dJkqQhaV5RAzBIrFX7wzJNIi6Ui2ufkbAGLZCTU4FPJME2WiqDLBJMQruKMJ0qT+U2WiiDdiOhFEdIBwlXQ9xWRFktFAjZm7DBLZrRcestU6kuTpSIRdEIDDDoiHJV6irEmS0WS+hUdDBpP+EGQE0skN1kqgg+MBI1w1SvOiO6nSDQ42FQRGUGZxm6dSbNbpJKS2qxRBEtVXwrIuhGSYI8CS4Y+zkOLgrgBNBE5KnB5vsFRAQwWMdfYw8n60njpdpocFcAaRUnGB+2zSLCtLAINjgqgPHGOwj1WEWouFlIRaHBGAQQoeoAei9sHuIiPAo84KuAhnbAv6tNwSu1K/9HkqABiBfsrjy2TNoGc3OSGBkcFsP7RISTfI/t5JNppgMeM8XHg4FFeUQMYRT+l4/OPOCqAUh+zB9YRkS/sjhNqcFQga0HRPjpE/UKAzROoDY7u51G00IYiHaHEau2nw4JockaBLFhcuQ96FIUmqxJ4xFEBTb+6X+7RKgC46YymyVEB0ZAnbB+QhrHbnXJnkzMKoIN02fceEYk6P0VSizM7xPCYc4itexM9MxnPL+jMC4Xmucagdvq23aDsq+9z7rtyrlLm83Xf2Xs8g+a34p6cwevuv+dAwyAKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyNDM1CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDg4ID4+CnN0cmVhbQp4nD2NuRHAMAgEc6qgBIF4pH48juT+U5/wEwA77NxcunJjTaxUx0w+hCRm4UUao2iRSmPrDeT4PRQar/3CsKPzdjasrqOhW4Jk2kfIbVe9669bdN7JCxvOCmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDQgPj4Kc3RyZWFtCnicPY87EgMhDEN7TqEj4D+cZzOpNvdvoyWQBr+xsCVbKDpy8PEaqOx4STv4aZ5ONXA3Y2+TxyJTQbJrvZAZuJpORXKjDio6oeWIuRTuCS9Ou+gmm5OmD2nIJoknyt3yVySPULFhjD0udVYK7WJFk2lIp7EwIo3VE8WYDMDh4m/TXKcZfz71+h97t/cXTLgz1gplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTUyID4+CnN0cmVhbQp4nD1PyxFDIQi8W8U2wIwggtbzMjmZ/q8BTTyxsrgf8YEKYhaQVIe4w63ixYW1o6vjU6QdtAqLg+YGlr8SsYK8gevW6Rg9Zpt4iufGGDpjhrBwzJEMWdrFM+62L0WODYK7YVah6SmWPuR6YRsHUnqztF2hpnAupiJjhnHbaZ9bJdKO0y9K/ZquIr3D1JK1i8affX8BvPc2ZwplbmRzdHJlYW0KZW5kb2JqCjE5IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE4MQovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1UDkOBCEM63mFP7ASucN7Rtpq9v/thjBToBgcBzuDSfEhwW9ENpCJFHiCw3GNZIgxiA2qAloO0yiClzS6B79cavUSKGaJpXpISyl1XOEMltjlGjL7LqYgXZAMSA25hpZ0o3uoHE5twglGeaS25gausyaXzza6//J2SvCIduOFj9PQfJxGZdxcpHWqCHpiRs3KPTZ6CUbctRyxnLXUUqRUizpRZbDVD3M2/+7xGt8/5jc/HgplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyA3MiAvSCAxMDIgL2YgMTA2IC9qIF0gL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250RGVzY3JpcHRvciAxMyAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDEyIDAgUiA+PgplbmRvYmoKMTMgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDk2Ci9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL0l0YWxpY0FuZ2xlIDAgL01heFdpZHRoIDEzNTAgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjEyIDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNTAgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyOCA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTcgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxNyA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA4CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5OTUgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjE1IDAgb2JqCjw8IC9IIDE2IDAgUiAvZiAxNyAwIFIgL2ogMTggMCBSID4+CmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI1OSA+PgpzdHJlYW0KeJw9UklywzAMu/sVfAJ3Se9Jpyfn/9cC9NSXEGOKAAimd4vK2fhpK1l+5McuO0sit3wHbZP7iqoHpG6CzCXHJVeIWcrnSpBYtJSZWJ+pDsrPNahV+MJPzExMhyQRS8hJPYqwfl4H96B+vaTzW2T8o2OD0luSTAWdGu6Vo5TYsFSfGuQeNN2UVp+ZdmUHLI03ZKUmdfr10+MHSzClLxLRQYjEn+RyhywLKQfxdq7eQHhXuyDVUysPO0Saj5HeUgWrOTMBS0bTDiNgbdaYIFUCvEVrCLQW4vKFTisiPjk3dDBNVZ6FyLBS4Vh7z2gNF7qGvNJwepJx//kfvCve1+8f2vNmZAplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNTQgPj4Kc3RyZWFtCnicMzY2VzBQMDQyV9A1MjZVMDI0UDA3M1FIMeSCMXPBLLBsDhdcIYQJks+Bq8zhSgMATJAPFQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjI3ID4+CnN0cmVhbQp4nDVPO7IDIQzrOYUukBmMbWDPs5lUL/dvn2SyDRL+SPL0REcmXubICKzZ8bYWGYgZ+BZT8a897cOE6j24hwjl4kKYYSScNeu4m6fjxb9d5TPWwbsNvmKWFwS2MJP1lcWZy3bBWBoncU6yG2PXRGxjXevpFNYRTCgDIZ3tMCXIHBUpfbKjjDk6TuSJ52KqxS6/72F9waYxosIcVwVP0GRQlj3vJqAdF/Tf1Y3fSTSLXgIykWBhnSTmzllO+NVrR8dRiyIxJ6QZ5DIR0pyuYgqhCcU6OwoqFQWX6nPK3T7/aF1bTQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ3ID4+CnN0cmVhbQp4nE1Ru21EMQzr3xRc4ADra3meC1Jd9m9DyQiQwiChLymnJRb2xksM4QdbD77kkVVDfx4/MewzLD3J5NQ/5rnJVBS+FaqbmFAXYuH9aAS8FnQvIivKB9+PZQxzzvfgoxCXYCY0YKxvSSYX1bwzZMKJoY7DQZtUGHdNFCyuFc0zyO1WN7I6syBseCUT4sYARATZF5DNYKOMsZWQxXIeqAqSBVpg1+kbUYuCK5TWCXSi1sS6zOCr5/Z2N0Mv8uCounh9DOtLsMLopXssfK5CH8z0TDt3SSO98KYTEWYPBVKZnZGVOj1ifbdA/59lK/j7yc/z/QsVKFwqCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzODQKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicNZJLcgQxCEP3fQqOYD7G9nmmKrvcf5sn92QxhcYgEKKfmm2+hv0+VdN8h1WGxXArXxZx7PPkUeZYrjJvt5z8p5pMunmk5RjmnhadN36e8HOROjpdfIJbGQ9ezjIf9K+4UXwyQpMZVJQ6wqncyuxhhcpAU214XTcyZ78vOTYxLKOpDGkrkNQytcC5qIx996Gbs+FA+Ym7aS4p0LRSp8kv1Um4yMxBHftP3Kk9bVKv+Hna66KevPS2lla4n2c5CCcXmuSZYhw5elGVqcLPy5GzdJvyixfHYw+bfW5EQX1fQrFt4paH5hS38Zx3b5eK701xZ1LD3r9Psq+Q/A3YuaWlrk/F9lxXN8d5cRRhR70vQ36hcFN5XfemQ2saHTPf+N5wrvcroCKU2ZqnzQIHfW++qb5K/rWx2cLpcFTOWBfVnYTTpb51d4ThG//RQb04ijjGvYT6TlvWdb4Tu+FwiSYbPd94/RdKHFNFKgPn3axT38WxHq+mf22f5+cP6pOXHwplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDUgPj4Kc3RyZWFtCnicMzK3UDBQsDQBEoYWJgrmZgYKKYZclhBWLhdMLAfMAtGWcAoingYAn30MtQplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNjEgPj4Kc3RyZWFtCnicRZBLEsMgDEP3nEJH8EcGfJ50ukrvv60hTbOAp7FABncnBKm1BRPRBS9tS7oLPlsJzsZ46DZuNRLkBHWAVqTjaJRSfbnFaZV08Wg2cysLrRMdZg56lKMZoBA6Fd7touRypu7O+Udw9V/1R7HunM3EwGTlDoRm9SnufJsdUV3dZH/SY27Wa38V9qqwtKyl5YTbzl0zoATuqRzt/QWpczqECmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMjAgPj4Kc3RyZWFtCnicNVG7ccUwDOs1BRfwnfiVNI9zr8rbvw1AOxVhGgRAqrxkSrlc6pJVssLkR4fqFE35PmCm/A71kOPoHtkhulPWlnsYCMvEPKWOWE2We7gFgS8MTYm5hfP3COgrBqMwE4G6xd8/QLMkMGlw8FOQa61aYokOPCwWWLMrzK0aKVTIVXw7NrkHBXJxs9CnHJoUt9yC8GWIZEdqsa/LZSnyu/UJGIQV5ohPFImF54EOZiLxJwNie/bZYldXL6oRGdZJhwdSBNJsbhIwNEWy6oMb2FfHNT9PR9nByUG/isH4NjiZL0l5XwWhEI8X/g7P2cixkkMkFPJ9tcCII2yAEaFP7SMQZSA0RffumVI+JlWK7wBGIRx9qlcyvBeR2WqGzf8ZXdkqCgZVWR+fRnAmg0k482SjCtNStdO/+9zj8wdjY3qACmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTQgPj4Kc3RyZWFtCnicPVC7EUMxCOs9BQvkznztN8/Lpcv+bSScpEI2QhKUmkzJlIc6ypKsKU8dPktih7yH5W5kNiUqRS+TsCX30ArxfYnmFPfd1ZazQzSXaDl+CzMqqhsd00s2mnAqE7qg3MMz+g1tdANWhx6xWyDQpGDXtiByxw8YDMGZE4siDEpNBv+tcvdS3O89HG+iiJR08K755fTLzy28Tj2ORLq9+YprcaY6CkRwRmryinRhxbLIQ6TVBDU9A2u1AK7eevk3aEd0GYDsE4njNKUcQ//WuMfrA4eKUvQKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjM5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iago0MSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjQyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzM4ID4+CnN0cmVhbQp4nDVSOa7dQAzrfQpdIIB2zZznBal+7t+GlF8KQ7RWipqOFpVp+WUhVS2TLr/tSW2JG/L3yQqJE5JXJdqlDJFQ+TyFVL9ny7y+1pwRIEuVCpOTksclC/4Ml94uHOdjaz+PI3c9emBVjIQSAcsUE6NrWTq7w5qN/DymAT/iEXKuWLccYxVIDbpx2hXvQ/N5yBogZpiWigpdVokWfkHxoEetffdYVFgg0e0cSXCMjVCRgHaB2kgMObMWu6gv+lmUmAl07Ysi7qLAEknMnGJdOvoPPnQsqL8248uvjkr6SCtrTNp3o0lpzCKTrpdFbzdvfT24QPMuyn9ezSBBU9YoaXzQqp1jKJoZZYV3HJoMNMcch8wTPIczEpT0fSh+X0smuiiRPw4NoX9fHqOMnAZvAXPRn7aKAxfx2WGvHGCF0sWa5H1AKhN6YPr/1/h5/vwDHLaAVAplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjQ0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMiAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMyAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIKL2ZpdmUgNTYgL2VpZ2h0IC9uaW5lIDY2IC9CIDEwMCAvZCAxMDMgL2cgMTA1IC9pIDEwOCAvbCAxMTAgL24gL28gMTI0IC9iYXIKXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIxIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIwIDAgUiA+PgplbmRvYmoKMjEgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMyAwIG9iago8PCAvQiAyNCAwIFIgL2JhciAyNSAwIFIgL2QgMjYgMCBSIC9laWdodCAyNyAwIFIgL2ZpdmUgMjggMCBSIC9mb3VyIDI5IDAgUgovZyAzMCAwIFIgL2kgMzEgMCBSIC9sIDMzIDAgUiAvbiAzNSAwIFIgL25pbmUgMzYgMCBSIC9vIDM3IDAgUiAvb25lIDM4IDAgUgovcGFyZW5sZWZ0IDM5IDAgUiAvcGFyZW5yaWdodCA0MCAwIFIgL3NwYWNlIDQxIDAgUiAvdGhyZWUgNDIgMCBSCi90d28gNDMgMCBSIC96ZXJvIDQ0IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjIgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0RlamFWdVNhbnMtT2JsaXF1ZS1vbWVnYSAxOSAwIFIgL0RlamFWdVNhbnMtaW5maW5pdHkgMzIgMCBSCi9EZWphVnVTYW5zLW1pbnVzIDM0IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKNDUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIwMDQxNTEyMjg1NiswMicwMCcpCi9DcmVhdG9yIChtYXRwbG90bGliIDMuMS4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAobWF0cGxvdGxpYiBwZGYgYmFja2VuZCAzLjEuMykgPj4KZW5kb2JqCnhyZWYKMCA0NgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMzQwMSAwMDAwMCBuIAowMDAwMDEzMTEwIDAwMDAwIG4gCjAwMDAwMTMxNTMgMDAwMDAgbiAKMDAwMDAxMzI1MiAwMDAwMCBuIAowMDAwMDEzMjczIDAwMDAwIG4gCjAwMDAwMTMyOTQgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk5IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjkwOSAwMDAwMCBuIAowMDAwMDA0Mzg0IDAwMDAwIG4gCjAwMDAwMDQxNzYgMDAwMDAgbiAKMDAwMDAwMzg0NyAwMDAwMCBuIAowMDAwMDA1NDM3IDAwMDAwIG4gCjAwMDAwMDI5MzAgMDAwMDAgbiAKMDAwMDAwMzA5MCAwMDAwMCBuIAowMDAwMDAzMzA3IDAwMDAwIG4gCjAwMDAwMDM1MzIgMDAwMDAgbiAKMDAwMDAxMTc5OCAwMDAwMCBuIAowMDAwMDExNTk4IDAwMDAwIG4gCjAwMDAwMTExNjIgMDAwMDAgbiAKMDAwMDAxMjg1MSAwMDAwMCBuIAowMDAwMDA1NDg5IDAwMDAwIG4gCjAwMDAwMDU4MjEgMDAwMDAgbiAKMDAwMDAwNTk0NyAwMDAwMCBuIAowMDAwMDA2MjQ3IDAwMDAwIG4gCjAwMDAwMDY3MTIgMDAwMDAgbiAKMDAwMDAwNzAzMiAwMDAwMCBuIAowMDAwMDA3MTk0IDAwMDAwIG4gCjAwMDAwMDc2MDUgMDAwMDAgbiAKMDAwMDAwNzc0NSAwMDAwMCBuIAowMDAwMDA4MjYzIDAwMDAwIG4gCjAwMDAwMDgzODAgMDAwMDAgbiAKMDAwMDAwODU1MCAwMDAwMCBuIAowMDAwMDA4Nzg0IDAwMDAwIG4gCjAwMDAwMDkxNzcgMDAwMDAgbiAKMDAwMDAwOTQ2NCAwMDAwMCBuIAowMDAwMDA5NjE2IDAwMDAwIG4gCjAwMDAwMDk4MzYgMDAwMDAgbiAKMDAwMDAxMDA1OCAwMDAwMCBuIAowMDAwMDEwMTQ3IDAwMDAwIG4gCjAwMDAwMTA1NTggMDAwMDAgbiAKMDAwMDAxMDg3OSAwMDAwMCBuIAowMDAwMDEzNDYxIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gNDUgMCBSIC9Sb290IDEgMCBSIC9TaXplIDQ2ID4+CnN0YXJ0eHJlZgoxMzYxNQolJUVPRgo=\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "s_inf = 20000 + sym.I * 2*sym.pi*4000\n", "\n", "H2 = 1/((s - s_inf)*(s - sym.conjugate(s_inf)))\n", "Hlog2 = db(H2)\n", "logx_plot(Hlog2, (f, 10, 20000), xlabel='$f$',\n", " ylabel='$20 \\log_{10} |H_\\infty(j \\omega)|$ in dB')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The (logarithmic) magnitude frequency response of the system is given by superposition of the individual contributions from the zeros and the poles" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQxNi42MTM3NSAzNjIuMTgzODc1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nNVby24duRHd36/opWchmlXF53KMSRxkE3hGSBZJFh5bdixIMhzDmU0+PqcuyX6Jcss9iBq2Yfneqj5FnkOy+GiKhusTDe8HO1zj32/D34d/4v+3Aw0v8e/9yeLb7clRMIEkeny7mX2TwIaSJHy8waOLr/86nd6dnv+IIJ+Benk6eWs4n1HJpEj6FCLbaBwtrTdzq3Umt5BThLn1XNCnoRNefDTEA4dgCP//+2r423A3PP+RtU48/BkMwdqkiffJmpAt5WBjcpDg+U9X//nw5urnly+GN5/7DPqVOv1yejV8amVZKHyvLFVFPVthvZGmy+kFGuu30yf8tMOFRUxH9TEWk/3w5vb04lIbzdjgbGA/XL49Pf8jDWSHy3enZ/TDcHl9CgYtheqGdG5RPPLMVofzyYI7ASkm8flDDRFnEf5weXp1JvgEqpMLJkn2binQ3LxX+UeE/qr66KL1QRtiGJiXbZBj8P+PNuAnbwN2YiR5cQudZta9LbAZ+Kv6s7jynCXx8mT6y5PrL5JNFgLLhU5z894WeETor7aBiK0PsuX8ZHnIPXkbxGzEhywLmSbjY/QPHf03woZpVoT2T0Q1o2V8TJYWlZpZ95LdDHwIXbLJOLZEy2rNzXsJPyL0MZQpmhiDhNXMNzPvprwd+hjK7FXznFZNMTPvprwd+hjKQiYl5xBrUa+ZeTfl7dAHUcbWIQnnVVPMzPspb4Y+hrJjdDNKftUUM/Nuytuhj6EcvcmWI69yzMy8m/J26GMoZ6xurfgclvWamXdT3g59CGVWQsFnu6zX3LyX8iNCH0OZsKNhplW1JutuwluBj6HLBL0D1gXLas3Muwlvhz6IMpZ+YtnGVb0m837Km6GPoYxtOvaGNq2aYmbeTXk79EGUE7pZDG7VFDPzfsqboY+hHLEocOulwsy6m/BW4GPopozys6xWg3PzbsLboQ+hLJaMxz5utX2fm/dSfkToYygTHg4x+9Xp2My8m/J26IMoJ2jOPq6aYmbeT3kz9DGU2elhsbXLFDM376a8HfoYymKNjy6tjizm5t2Ut0MfRNmjm4lzq6aYmfdT3gx9DOWARUF2QqscMzPvprwd+hjKCRv17Gm1Ipybd1PeDn0M5ZyMxdBa7d/n5t2Ut0MfQrl3b+D2oXsD30J4M/CS7vp1vPX1uWy4vL6aXoXNXoRxexH27slfY41FJEy6MZKTBb/JuvMSwyJsMDHfi3r/NS4bHpIzMVkO+OFzUW2Y3hgmIzHls4DlRaGzTblP4Gs11vl1Y/kAOFhfv/7rl19e332+uP1w9+Xz8NNHVfnJdSbJ+p7Ty1LomXmn0svATepl3L7WpPNSwN/o2fttseX7ETtbQy5m5qXYk3mv2IvAo9iLuA+InfT1JlkX2WG3uik2fzdis9NX/yK0FHtm3in2MnATexm3LzYLuEpwEnJwaVts+n7EzmS0CLsSezLvFXsReBR7EbeIvZASE2EWd340RZOZEjgn56ZrHENRFXW4UDnJa/v4cV6eJkbx5yKXV0R464rIPcfN2cEmxiRshcZG/lgRRInqdZTieN9umzipdbggs7ywMr/15ozzEkj0OsqiMpi6OFp/vrAyrCNUPv89PymodqZZHWZrgT+dn4jYMWQ/1X4W4h/Pagx0Fwmlv62DXJ8fITLkuTTPvSg/PBDloSo+G6qdIjq5zWPQZx8eUvyutdFquD0Y6W0DuHpnq5hfjKNzWI5OdKNE08OtC60G7F9+vfnw6cvVxcfbq/evf8/A1WFExi8GLTH5kAIrB+NC/RPxBV0hJRbPefj5wfGMDxmLnfHs1lvrsDXWV6uKz7mM574LkKAL0cAO9owZPxG6X4V0XXp+yMY6yYIsiZyQvAsV0HHg8cxGx3R0GLVsfEKHqmuVvkuP69C0bJ3NA8aDSVZYahl9VznuwmYRi2XkET0g8EmoQrouhQTDBDVQOuZWSp6CNEjPpcctyGbJR8zTeoqKtai+ACqQrkshSIX4JnzOheITNYH7Lt3uk/amKJo+WTu/c3X/0XcpRBNucHpzDna0msRGv+sCRO/8iiUqoVKK4iqi51EAEpckZmrmcVvUdykkmmAD2rjYnU42DdJzAYIOba2NroTCLGK5Mem6FIIvEqN1xY6E5VtDdl0KwfzhfQ6FYoAobiyl51JIRJ9gb/ls9zk537h0XQrBsHFYQ6dixxBKDdHx6KkHGYdeVEXBx5TqAO67FCJaR6/3VtXOlmMj33UpxKPfkVQdBelGxlJ6LoVEJEonFIsdw4Fax++6FJLRJ5DWio4YfhisDdJzAaIjWjAHFB0ZeTk0wbouhSDnYFFcdGQGw0al51GAQLzAqfQIyjxJ3HUpBLNEdtGVEUTBS+YG6bkU4tGJgstFFHI+TJCeSyHaiWK1svDYhzsOfTwZlz3bWrLFLNK6Y9elkGwCkrIroWziOCaJrkvPpCA7ipRqDw4zZYV0XQohve6BrlrsDnPbCOm5FKI5g5vwVrAca23SdSnEoXUT6l3slLEWaJCeq5yvEWabmqSs7qQaouNRAFI/0qfIOT9nLE5bhux5FIC532sViznmcafYdykkaeOmMgVgJo/Umr3nUUBWs81lbY2eFMe5sevSUzbkzWhHu4tYZlZI16UQrPww1+ZKECM2Nu5dV4HkZLFKK3Ys58fx3nUpBPk1YSDX0pmtb3p1XQrBGMWk4YpZN82tp/Q8CnCYzKB7Fd4mGpu961KIRx+g7EK1I6WNkJ6rQBKWPr6IoilhIt9zKSSYgDksFzNS4LiU6HkUgDW99y5VM6HbNkDHU05XMZu5WCTBlOzt2Ig9l0IyxhhWsrXsiGE9Uu+5CiRi9pNaevB5nBq6Lt12YkWWQ2hm1Lc2YtejAO1zHEMt24dgR0TPVSD6Zmy04yGZIPddCtHlEY2iIKHF2CA9l0LE+GBTM9PIvetRgNMdp3PVjgnEpobouRSCHW/wZaWkdm6DpOtRQNAcls9TBumvPYQw8ui5CgS7CGSZasc6w0+Q+6712UFiCvH+2YGeVJRzA/vwkcR8CzM7TlguMcdfATyH+saD+7tTO8todfmWXyO8X3rvl/W+Vvqr0/8AsY3dQQplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjIzMTUKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODggPj4Kc3RyZWFtCnicPY25EcAwCARzqqAEgXikfjyO5P5Tn/ATADvs3Fy6cmNNrFTHTD6EJGbhRRqjaJFKY+sN5Pg9FBqv/cKwo/N2Nqyuo6FbgmTaR8htV73rr1t03skLG84KZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NCA+PgpzdHJlYW0KeJw9jzsSAyEMQ3tOoSPgP5xnM6k292+jJZAGv7GwJVsoOnLw8Rqo7HhJO/hpnk41cDdjb5PHIlNBsmu9kBm4mk5FcqMOKjqh5Yi5FO4JL0676Cabk6YPacgmiSfK3fJXJI9QsWGMPS51VgrtYkWTaUinsTAijdUTxZgMwOHib9Ncpxl/PvX6H3u39xdMuDPWCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNTIgPj4Kc3RyZWFtCnicPU/LEUMhCLxbxTbAjCCC1vMyOZn+rwFNPLGyuB/xgQpiFpBUh7jDreLFhbWjq+NTpB20CouD5gaWvxKxgryB69bpGD1mm3iK58YYOmOGsHDMkQxZ2sUz7rYvRY4NgrthVqHpKZY+5HphGwdSerO0XaGmcC6mImOGcdtpn1sl0o7TL0r9mq4ivcPUkrWLxp99fwG89zZnCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTgxCi9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDVQOQ4EIQzreYU/sBK5w3tG2mr2/+2GMFOgGBwHO4NJ8SHBb0Q2kIkUeILDcY1kiDGIDaoCWg7TKIKXNLoHv1xq9RIoZomlekhLKXVc4QyW2OUaMvsupiBdkAxIDbmGlnSje6gcTm3CCUZ5pLbmBq6zJpfPNrr/8nZK8Ih244WP09B8nEZl3FykdaoIemJGzco9NnoJRty1HLGctdRSpFSLOlFlsNUPczb/7vEa3z/mNz8eCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDcyIC9IIDEwMiAvZiAxMDYgL2ogXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL0ggMTYgMCBSIC9mIDE3IDAgUiAvaiAxOCAwIFIgPj4KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjU5ID4+CnN0cmVhbQp4nD1SSXLDMAy7+xV8AndJ70mnJ+f/1wL01JcQY4oACKZ3i8rZ+GkrWX7kxy47SyK3fAdtk/uKqgekboLMJcclV4hZyudKkFi0lJlYn6kOys81qFX4wk/MTEyHJBFLyEk9irB+Xgf3oH69pPNbZPyjY4PSW5JMBZ0a7pWjlNiwVJ8a5B403ZRWn5l2ZQcsjTdkpSZ1+vXT4wdLMKUvEtFBiMSf5HKHLAspB/F2rt5AeFe7INVTKw87RJqPkd5SBas5MwFLRtMOI2Bt1pggVQK8RWsItBbi8oVOKyI+OTd0ME1VnoXIsFLhWHvPaA0Xuoa80nB6knH/+R+8K97X7x/a82ZkCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA1NCA+PgpzdHJlYW0KeJwzNjZXMFAwNDJX0DUyNlUwMjRQMDczUUgx5IIxc8EssGwOF1whhAmSz4GrzOFKAwBMkA8VCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMjcgPj4Kc3RyZWFtCnicNU87sgMhDOs5hS6QGYxtYM+zmVQv92+fZLINEv5I8vRERyZe5sgIrNnxthYZiBn4FlPxrz3tw4TqPbiHCOXiQphhJJw167ibp+PFv13lM9bBuw2+YpYXBLYwk/WVxZnLdsFYGidxTrIbY9dEbGNd6+kU1hFMKAMhne0wJcgcFSl9sqOMOTpO5InnYqrFLr/vYX3BpjGiwhxXBU/QZFCWPe8moB0X9N/Vjd9JNIteAjKRYGGdJObOWU741WtHx1GLIjEnpBnkMhHSnK5iCqEJxTo7CioVBZfqc8rdPv9oXVtNCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicRVJLcsUwCNvnFFwgM+Zn4/O8Tlfp/beVcDrdPPQMCAkyPWVIptw2lmSE5BzypVdkiNWQn0aORMQQ3ymhwK7yubyWxFzIbolK8aEdP5elNzLNrtCqt0enNotGNSsj5yBDhHpW6MzuUdtkw+t2Iek6UxaHcCz/QwWylHXKKZQEbUHf2CPobxY8EdwGs+Zys7lMbvW/7lsLntc6W7FtB0AJlnPeYAYAxMMJ2gDE3NreFikoH1W6iknCrfJcJztQttCqdLw3gBkHGDlgw5KtDtdobwDDPg/0okbF9hWgqCwg/s7ZZsHeMclIsCfmBk49cTrFkXBJOMYCQIqt4hS68R3Y4i8Xroia8Al1OmVNvMKe2uLHQpMI71JxAvAiG25dHUW1bE/nCbQ/KpIzYqQexNEJkdSSzhEUlwb10Br7uIkZr43E5p6+3T/COZ/r+xcWuIPgCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2OCA+PgpzdHJlYW0KeJwzMrdQMFCwNAEShhYmCuZmBgophlxAvqmJuUIuF0gMxMoBswyAtCWcgohbQjRBlIJYEKVmJmYQSTgDIpcGAMm0FeUKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ1ID4+CnN0cmVhbQp4nDMyt1AwULA0ARKGFiYK5mYGCimGXJYQVi4XTCwHzALRlnAKIp4GAJ99DLUKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTYxID4+CnN0cmVhbQp4nEWQSxLDIAxD95xCR/BHBnyedLpK77+tIU2zgKexQAZ3JwSptQUT0QUvbUu6Cz5bCc7GeOg2bjUS5AR1gFak42iUUn25xWmVdPFoNnMrC60THWYOepSjGaAQOhXe7aLkcqbuzvlHcPVf9Uex7pzNxMBk5Q6EZvUp7nybHVFd3WR/0mNu1mt/FfaqsLSspeWE285dM6AE7qkc7f0FqXM6hAplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjE0ID4+CnN0cmVhbQp4nD1QuxFDMQjrPQUL5M587TfPy6XL/m0knKRCNkISlJpMyZSHOsqSrClPHT5LYoe8h+VuZDYlKkUvk7Al99AK8X2J5hT33dWWs0M0l2g5fgszKqobHdNLNppwKhO6oNzDM/oNbXQDVocesVsg0KRg17YgcscPGAzBmROLIgxKTQb/rXL3UtzvPRxvooiUdPCu+eX0y88tvE49jkS6vfmKa3GmOgpEcEZq8op0YcWyyEOk1QQ1PQNrtQCu3nr5N2hHdBmA7BOJ4zSlHEP/1rjH6wOHilL0CmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMzOCA+PgpzdHJlYW0KeJw1Ujmu3UAM630KXSCAds2c5wWpfu7fhpRfCkO0VoqajhaVafllIVUtky6/7UltiRvy98kKiROSVyXapQyRUPk8hVS/Z8u8vtacESBLlQqTk5LHJQv+DJfeLhznY2s/jyN3PXpgVYyEEgHLFBOja1k6u8Oajfw8pgE/4hFyrli3HGMVSA26cdoV70PzecgaIGaYlooKXVaJFn5B8aBHrX33WFRYINHtHElwjI1QkYB2gdpIDDmzFruoL/pZlJgJdO2LIu6iwBJJzJxiXTr6Dz50LKi/NuPLr45K+kgra0zad6NJacwik66XRW83b309uEDzLsp/Xs0gQVPWKGl80KqdYyiaGWWFdxyaDDTHHIfMEzyHMxKU9H0ofl9LJrookT8ODaF/Xx6jjJwGbwFz0Z+2igMX8dlhrxxghdLFmuR9QCoTemD6/9f4ef78Axy2gFQKZW5kc3RyZWFtCmVuZG9iagozOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iago0MCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjMgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0OCAvemVybyAvb25lIC90d28gL3RocmVlIC9mb3VyIDY2Ci9CIDEwMCAvZCAxMDMgL2cgMTA1IC9pIDEwOCAvbCAxMTAgL24gL28gMTI0IC9iYXIgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIxIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIwIDAgUiA+PgplbmRvYmoKMjEgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMyAwIG9iago8PCAvQiAyNCAwIFIgL2JhciAyNSAwIFIgL2QgMjYgMCBSIC9mb3VyIDI3IDAgUiAvZyAyOCAwIFIgL2kgMjkgMCBSCi9sIDMwIDAgUiAvbiAzMiAwIFIgL28gMzMgMCBSIC9vbmUgMzQgMCBSIC9wYXJlbmxlZnQgMzUgMCBSCi9wYXJlbnJpZ2h0IDM2IDAgUiAvc3BhY2UgMzcgMCBSIC90aHJlZSAzOCAwIFIgL3R3byAzOSAwIFIgL3plcm8gNDAgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMiAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRGVqYVZ1U2Fucy1PYmxpcXVlLW9tZWdhIDE5IDAgUiAvRGVqYVZ1U2Fucy1taW51cyAzMSAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjQxIDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMDA0MTUxMjI4NTcrMDInMDAnKQovQ3JlYXRvciAobWF0cGxvdGxpYiAzLjEuMywgaHR0cDovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKG1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgMy4xLjMpID4+CmVuZG9iagp4cmVmCjAgNDIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTE0OTQgMDAwMDAgbiAKMDAwMDAxMTIzMSAwMDAwMCBuIAowMDAwMDExMjc0IDAwMDAwIG4gCjAwMDAwMTEzNzMgMDAwMDAgbiAKMDAwMDAxMTM5NCAwMDAwMCBuIAowMDAwMDExNDE1IDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5OCAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDI3ODggMDAwMDAgbiAKMDAwMDAwNDI2MyAwMDAwMCBuIAowMDAwMDA0MDU1IDAwMDAwIG4gCjAwMDAwMDM3MjYgMDAwMDAgbiAKMDAwMDAwNTMxNiAwMDAwMCBuIAowMDAwMDAyODA5IDAwMDAwIG4gCjAwMDAwMDI5NjkgMDAwMDAgbiAKMDAwMDAwMzE4NiAwMDAwMCBuIAowMDAwMDAzNDExIDAwMDAwIG4gCjAwMDAwMDk5NTkgMDAwMDAgbiAKMDAwMDAwOTc1OSAwMDAwMCBuIAowMDAwMDA5MzQ1IDAwMDAwIG4gCjAwMDAwMTEwMTIgMDAwMDAgbiAKMDAwMDAwNTM2OCAwMDAwMCBuIAowMDAwMDA1NzAwIDAwMDAwIG4gCjAwMDAwMDU4MjYgMDAwMDAgbiAKMDAwMDAwNjEyNiAwMDAwMCBuIAowMDAwMDA2Mjg4IDAwMDAwIG4gCjAwMDAwMDY2OTkgMDAwMDAgbiAKMDAwMDAwNjgzOSAwMDAwMCBuIAowMDAwMDA2OTU2IDAwMDAwIG4gCjAwMDAwMDcxMjYgMDAwMDAgbiAKMDAwMDAwNzM2MCAwMDAwMCBuIAowMDAwMDA3NjQ3IDAwMDAwIG4gCjAwMDAwMDc3OTkgMDAwMDAgbiAKMDAwMDAwODAxOSAwMDAwMCBuIAowMDAwMDA4MjQxIDAwMDAwIG4gCjAwMDAwMDgzMzAgMDAwMDAgbiAKMDAwMDAwODc0MSAwMDAwMCBuIAowMDAwMDA5MDYyIDAwMDAwIG4gCjAwMDAwMTE1NTQgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyA0MSAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgNDIgPj4Kc3RhcnR4cmVmCjExNzA4CiUlRU9GCg==\n", "image/svg+xml": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n" ], "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "Hlog = Hlog1 + Hlog2\n", "logx_plot(Hlog, (f, 10, 50000), xlabel='$f$',\n", " ylabel='$20 \\log_{10} |H(j \\omega)|$ in dB')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "**Exercise**\n", "\n", "* Examine the bode plots for the contributions of the zero and the pole:\n", " * What regions show approximately linear behavior over the frequency $f$? \n", " * What is the slope of these regions per octave/decade? \n", " * At which frequency is the transition between the regions of linear behavior? How is the frequency related to the imaginary part of the zero/pole?\n", "\n", "* Examine the bode plot of the system. How is it related to the bode plots of the individual zero/pole?\n", "\n", "* Move the pole and/or zero closer to the imaginary axis by changing the values $\\sigma_\\infty$ and/or $\\sigma_0$. What changes?" ] }, { "cell_type": "markdown", "metadata": { "nbsphinx": "hidden" }, "source": [ "**Copyright**\n", "\n", "This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Continuous- and Discrete-Time Signals and Systems - Theory and Computational Examples*." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 1 }