{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"nbsphinx": "hidden"
},
"source": [
"# Characterization of Systems in the Time Domain\n",
"\n",
"*This Jupyter notebook is part of a [collection of notebooks](../index.ipynb) in the bachelors module Signals and Systems, Communications Engineering, Universität Rostock. Please direct questions and suggestions to [Sascha.Spors@uni-rostock.de](mailto:Sascha.Spors@uni-rostock.de).*"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Convolution\n",
"\n",
"As shown in the previous Section, the convolution is an important operation in the theory of signals and systems. It also shows up in a wide range of other physical and mathematical problems. The [convolution operation](https://en.wikipedia.org/wiki/Convolution) is therefore of general interest and well known. The properties of the convolution are reviewed, followed by a widely used graphical interpretation of the operation.\n",
"\n",
"The convolution of two signals $x(t)$ and $h(t)$ is defined as\n",
"\n",
"\\begin{equation}\n",
"(x * h)(t) = x(t) * h(t) = \\int_{\\tau = -\\infty}^{\\tau=\\infty} x(\\tau) \\cdot h(t - \\tau) \\; d\\tau = \n",
"\\int_{\\tau=-\\infty}^{\\tau=\\infty} x(t - \\tau) \\cdot h(\\tau) \\; d\\tau\n",
"\\end{equation}\n",
"\n",
"where $*$ is a common short-hand notation of the convolution."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Properties\n",
"\n",
"For the signals $x(t)$, $h(t)$, $g(t) \\in \\mathbb{C}$ the convolution shows the following properties \n",
"\n",
"1. The Dirac impulse is the [identity element](https://en.wikipedia.org/wiki/Identity_element) of the convolution\n",
" \\begin{equation}\n",
" x(t) * \\delta(t) = x(t)\n",
" \\end{equation}\n",
"\n",
"2. The convolution is [commutative](https://en.wikipedia.org/wiki/Commutative_property)\n",
" \\begin{equation}\n",
" x(t) * h(t) = h(t) * x(t)\n",
" \\end{equation}\n",
"\n",
"3. The convolution is [associative](https://en.wikipedia.org/wiki/Associative_property)\n",
" \\begin{equation}\n",
" \\left[ x(t) * h(t) \\right] * g(t) = x(t) * \\left[ h(t) * g(t) \\right] \n",
" \\end{equation}\n",
"\n",
"5. The convolution is [distributive](https://en.wikipedia.org/wiki/Distributive_property)\n",
" \\begin{equation}\n",
" x(t) * \\left[ h(t) + g(t) \\right] = x(t) * h(t) + x(t) * g(t)\n",
" \\end{equation}\n",
"\n",
"5. Multiplication with a scalar $a \\in \\mathbb{C}$\n",
" \\begin{equation}\n",
" a \\cdot \\left[ x(t) * h(t) \\right] = \\left[ a \\cdot x(t) \\right] * h(t) = x(t) * \\left[ a \\cdot h(t) \\right]\n",
" \\end{equation}\n",
"\n",
"6. Derivative of the convolution\n",
" \\begin{equation}\n",
" \\frac{d}{dt} \\left[ x(t) * h(t) \\right] = \\frac{d x(t)}{dt} * h(t) = x(t) * \\frac{d h(t)}{dt}\n",
" \\end{equation}\n",
"\n",
"The first property is a consequence of the sifting property of the Dirac pulse, the second to fifth property can be proven by considering the convolution integral and the sixth property follows from the properties of the derivative of the Dirac delta function."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Graphical Interpretation\n",
"\n",
"The convolution is commonly [interpreted in a graphical manner](https://en.wikipedia.org/wiki/Convolution#Visual_explanation). This interpretation provides valuable insights into its calculation and allows to derive a first estimate of the result. The calculation of the convolution integral\n",
"\n",
"\\begin{equation}\n",
"y(t) = \\int_{\\tau = -\\infty}^{\\tau = \\infty} x(\\tau) \\cdot h(t-\\tau) \\; d\\tau\n",
"\\end{equation}\n",
"\n",
"\n",
"can be decomposed into four subsequent operations:\n",
"\n",
"1. substitute $t$ by $\\tau$ in both $x(t)$ and $h(t)$,\n",
"\n",
"2. time-reverse $h(\\tau)$ (mirroring at vertical axis),\n",
"\n",
"3. shift $h(-\\tau)$ by $t$ to yield $h(t - \\tau)$, i.e. a shift to **right** for $t>0$ or a shift to **left** for $t<0$,\n",
"\n",
"4. check for which $t = -\\infty \\dots \\infty$ the mirrored & shifted $h(t - \\tau)$ overlaps with $x(\\tau)$, calculate the specific integral (i.e. the area of the overlap) for all these relevant $t$ to yield $y(t)$\n",
"\n",
"The graphical interpretation of the convolution is illustrated by means of the following example."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Example**\n",
"\n",
"The convolution $y(t) = x(t) * h(t)$ is illustrated using the particular signals\n",
"\n",
"\\begin{align}\n",
"h(t) &= e^{-t} \\\\\n",
"x(t) &= \\frac{3}{4} \\cdot \\text{rect} \\left(t - \\frac{1}{2}\\right)\n",
"\\end{align}\n",
"\n",
"Before proceeding, helper functions for the rectangular signal and plotting of the signals are defined"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import sympy as sym\n",
"sym.init_printing()\n",
"\n",
"t, tau = sym.symbols('t tau', real=True)\n",
"\n",
"\n",
"class rect(sym.Function):\n",
"\n",
" @classmethod\n",
" def eval(cls, arg):\n",
" return sym.Heaviside(arg + sym.S.Half) - sym.Heaviside(arg - sym.S.Half)\n",
"\n",
"\n",
"def plot_signals(x_axis, x, h, ylabel, xlabel):\n",
" p1 = sym.plot(x, (x_axis, -5, 5), show=False,\n",
" line_color='C0', ylabel=ylabel, xlabel=xlabel)\n",
" p2 = sym.plot(h, (x_axis, -5, 5), show=False, line_color='C1')\n",
" p1.extend(p2)\n",
" p1.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now lets define and plot the signals. In the following, the impulse response $h(t)$ is illustrated by the blue graph and the input signal $x(t)$ by the orange graph."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1NS4yMjUgMzU2LjE1OTI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nK1aTY8ctxG996/gcQ1YFL9ZPFpQLCA3WYvk4ouhyLIFrQxHdpyfn/f6Y6aHVat1kHghY6beK5JNFln1OB3dhyW69y64D/j3h4vuFf69XwK+PSylVp9SxeePl8+5Nh/rwKePYJ2//bQsPy7Pv4H7Z3i8WrpPLmXfswBGY6X5gE8X08eLKafuy94Kvc7f91bT1up7jA4j9YKxog9altZ9yKP37HL3teTO3k7G4sNq/LgsL/Cwfyy/4v/BPQtoqw7feqpSUwI1JT+qe/uwvLh3z7+NLgZ3/+MiPncZoa0Tcf+P5a585e4/LH+5R0PBB7aFv+MDvOH67OW7Dz/87fc3P3z6/Ozh50+/f3Yvf1le428d+hLx4JJazO085rP1S4OOeWB6ZBSRBu6fHHX6n0edUvMtcr2uY77a1IhvhpOw7CUnIXUbMMcUOCaHMW0d5NB8Hniqcu7ibP1yJzlkn+KInXNYTv2kqR9B1K5rftPPyfpEP5J9CLUywMC+9lOOfk6rVUpZg3z41NfHX1eKO8wPWTuB5/Nv09723W/HOn152rOPN7ZHph0z0tcgyPhQmvR94v009ZdORvJ9xJriuZer8aluRPwYpfFP8t5VeqSrWISbNI187utkfaqziKlNJZXYR27Hg5VHeqNbEjiWc28n65O9DWy7ESI2Xiiy99Ye662Kr7kI9ue5t6v1qd5SLTgn+2hBeo57b/JIbznCDUdH6DexcbU+GR1hIBprzymXWNbe4jVEcGIgkJ8xpOPovm3bOIeKuB83EV3W1m4D+qc1oLGHbw+k6zDuvr9bKdljdnPrkVEazG0BSgqy7xvVzFePNHP39Q7ELj2GcXG+c48Ap47/vVLwqIiyJla3/9fRrxv/V3eTPEsWL+uMw4JN+M937u/uk4u+Mg36mGJt0hIb9aXt/3UESQ9VJOWahvvulXv+8t2/fn777rtXL9zbzwtyLBJOHfHmDEwcYu+3B8sbyw7y8CKCHmaytiP9IwBijylNZMP+sNTopQ3F1WZQO1ZmID/MXG1HVYA9hYCNE1ebH5bOI76V3iauYX9YJDCCUu0T2bCDXH2oETM/k7X9YRnIEqli5ieyYQcZc1mQ//JM1nZUGyF6HADISRPbAkjnsRyxAxRdA6BHptASZV5DCwA9IXJjSUENxgBIbzi1c0tF0TUAOsI35xrGvJgWQHr3GXklzDFlASzbkpdam1ojCyAdKTKnVudVsgDQa/a1IzzV2A2AdDSScmhqZgwA9FYRGq1WRTcA0DvOlF6Z/ia6AZAuOGMS6j5F1wDoUlCASRH1qAYA+uBpl8dQE2kApENsoGpL89lmAcii2AWSeph3qWEnGYJloCCcw9cCQI8IO4Sp2ksWQHr3PZYxNF0DzP/YYb1lFY8WsFXwpcWi4tECNnotSZ91FrDTkQyKmhkD2OVERopEVY3irqckWx345hFoc5FQApWQ4aIhuiD3IQuXarhY0OYyQkUGNl00RJfhcwvN6sRA4JArdnRuLWoPE4JLYTQi2w7tYkJ0waQ0HNeWiwXBBYk3oziKxqqYEF0Y+Ch1jF5MCC4t8cvoxhSbEF2Q2Wo05ssANnqpVaznMKHdZQi2je2ioM0F8Zz10WEAGx1lnj7gLYB0BGjr1DszXQMbHXVQqbp1DZA+fK1IE2q7GgDovaLkR/Gmzg4DAF1wvIWKam+mGwDpUEshQHgqugZAHxV1S+iq/LEAXisk7PQcVP1jAaQLChGJeV5VCwAdZU6CWNJ0A2DdnVD8laCWyQJIF27UUOaJtADQ8TmgvCjzmW0BoJeMY1N6V60bAOkIDRyAejAGAHrldQ7CdC45LAD0RmEFwanGbgCgoxCRLqGpiTQA0gX1IhS9WiYD2K6IApKQXiYDoEDCELHdo3pUA4BECsFDqoU5fg07yZit3pIWVAYAOiqLkIeKAMNOMmtFqWqfWgDoSLOhS1EH3mv33wjZSPWK8zQP6NnOu8nK6xbegCx/Wr2WLqra1GauJDTqUA+ozby4RhWPHTU/nWGHHIXiqw1ia5aj2g5yxSwMmddbm6FcWRgmBNgsXbUd5MEaBpJsJms7hG7FTKL+nUds2KFdES1tQK/P2lXbQR4s2GqYN4thX7Ur78XKTDbsFKPoT3pUFbEFbNqVlzdqVSxg064Q+F3rPwMgfSABhNaVsDAAalcoq9iyij0LoBhFgSWhDtW6AZCO1IjzXD+qAVCMZt8iJkzpbgMgffAWGUGk6BqgGEUkr1taiVENUIziiVIV/agGQDrOlla7uvqxAIpRJN4eVFIz7JSiwbfeWlNsAyC94yxow6BrgFI0o9jEHlCzbgBUl4HyF2NU6lIDpFcc6RBiqsoyAKpLPFHBVlclnwGQDhmGylplEgvYLqNDgXCZF8kCSIfOiUNf/VnAri5jb7rUNoCdPrBx9GA0cIjRGFk3RmyHesNXyO7QoALKamYiwwCuHgra1WsKPfC6Hmd54Z3LSb0qaFevyJ4sHnhtn0vLZ/WqoM0Fp1bhkYvygELq5KEQStGEcj9GhApL+dprSO2QohZEF7SE8yhR1vG2P+Z+PLwJUYoWlJ+R2Z7RE1GM9KMXE6KuDOs8puIQ+R6f6mW+TIguWNyOb8PxZBDeU12kqAVRBmEfFpQf2SGecZhIrf0QQha0KacosDteKjLVp3KVTgqhdoI3SmRxeEroE5ws8RBPBkI5hOobFS9yfeSvVk3SMSYLoQMO5R6SGzjhGnKiHHRlp3pCokWRXLMTrCpUajnoFrLpJ5qzQ6ksGXXaVT5N9k09SU2CNezJt4G4Llf5pBDqJ5xVLP2Sw8I0loKHftIAK7+ItV8TCtYnZClH8wZAOi/OME+NbwBgNVm473wDoYLi5XxosTumrp6L9ENCGQhFUeA1YcNOrNjuscrlASyEDpjljnxbXY1YfgxcDgcDoY5KPkE4i0PuzYM/Kx46SgOko9QpCRreFc7bkHhMkYVswos34wVlOwcAUXlSXgqhw8DKYH+gHVQyYdR4cTAQii/svhRwOkAY+DECM9OuvgyERTtK7tF4qpfke+NpupftGqD8SvytBprPlehHbCghDv1lIHQYaAZKfjVjt6J4OxwMhCIMSx4y1r4wVzJzHyJMA9RVkcHFn7ZhxjEtRxSZyC7EeFGOrMc9C3s+KbEZuZViCF8E5nHQU4sl99ftTZ/1/ZlJUF1+ub6+snP9ffn0Qg7aurzks76Eo9/seTDf7Fk+Xd7jOd7f2d72OUut3e0mO0/d3b4h9Ghfr5f/AEZfQEYKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoyNDQ4CmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMyA+PgpzdHJlYW0KeJw9UDGSAzEI6/0KngAIsP2evbkq+X8bYWdS7IpBSEYUQlSQ/GWVzFL5s5E5BVB5j9gg9RqhXywyPk+1BeES06hPIgRknxEzBXOzU4K1Lu48TEk4NZyLgEQqv90M2ikklPPLqb/4jN6jK2+nSvGkDiDjRhdVsR3cYIotojZjnmdbXLCFk+w1fP4q48plXYE228SZP9mFuuR5AGQyGY+LJVVhF7lu+e3sLRmccmrdyGQyCMP2NSPXRTtM9Rk4zxBY1FQc52YYuPQ4Iuj0Pf8z/j+cDk48CmVuZHN0cmVhbQplbmRvYmoKMTcgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNzggPj4Kc3RyZWFtCnicPZBLEgMhCET3nqKPID/R8ySV1eT+2zTOmIX2EyhssKXoGM7L1ZBd8ZZWGJ74Nu8LnomrqfWHJBUy+6YOGYtn8hQnJBSvJmNA3LHV1qNxMsIMuywmZmCuiq9ELqhQAupR8mpmo+BqpoK+fcRWmfUWFwhFAiYsZyv+nwPT6xYdDBaY7TfLszz2CtN0LMx7hnkPRSN+BuVabmBlrYOfhh2a97ZoKP/kJ3sWeLXPD96rQqEKZW5kc3RyZWFtCmVuZG9iagoxOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMDQgL2ggMTE2IC90IDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvaCAxNiAwIFIgL3QgMTcgMCBSIC94IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NiA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcaQBNOBH1CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NCAvY29tbWEgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lCi90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvY29tbWEgMjMgMCBSIC9laWdodCAyNCAwIFIgL2ZvdXIgMjUgMCBSIC9vbmUgMjcgMCBSIC9wYXJlbmxlZnQgMjggMCBSCi9wYXJlbnJpZ2h0IDI5IDAgUiAvcGVyaW9kIDMwIDAgUiAvc2l4IDMxIDAgUiAvc3BhY2UgMzIgMCBSIC90d28gMzMgMCBSCi96ZXJvIDM0IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMjYgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozNSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwNDI3MTU1NzAyKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy40LCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy40KSA+PgplbmRvYmoKeHJlZgowIDM2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEwMDc2IDAwMDAwIG4gCjAwMDAwMDk4NDMgMDAwMDAgbiAKMDAwMDAwOTg4NiAwMDAwMCBuIAowMDAwMDA5OTg1IDAwMDAwIG4gCjAwMDAwMTAwMDYgMDAwMDAgbiAKMDAwMDAxMDAyNyAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTUgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyOTE4IDAwMDAwIG4gCjAwMDAwMDQxNzggMDAwMDAgbiAKMDAwMDAwMzk3MCAwMDAwMCBuIAowMDAwMDAzNjQwIDAwMDAwIG4gCjAwMDAwMDUyMzEgMDAwMDAgbiAKMDAwMDAwMjkzOSAwMDAwMCBuIAowMDAwMDAzMjI1IDAwMDAwIG4gCjAwMDAwMDM0NzYgMDAwMDAgbiAKMDAwMDAwODYxMiAwMDAwMCBuIAowMDAwMDA4NDEyIDAwMDAwIG4gCjAwMDAwMDgwMTYgMDAwMDAgbiAKMDAwMDAwOTY2NSAwMDAwMCBuIAowMDAwMDA1MjgzIDAwMDAwIG4gCjAwMDAwMDU0MjEgMDAwMDAgbiAKMDAwMDAwNTg4NiAwMDAwMCBuIAowMDAwMDA2MDQ4IDAwMDAwIG4gCjAwMDAwMDYyMTggMDAwMDAgbiAKMDAwMDAwNjM3MCAwMDAwMCBuIAowMDAwMDA2NTkwIDAwMDAwIG4gCjAwMDAwMDY4MTIgMDAwMDAgbiAKMDAwMDAwNjkzMyAwMDAwMCBuIAowMDAwMDA3MzIzIDAwMDAwIG4gCjAwMDAwMDc0MTIgMDAwMDAgbiAKMDAwMDAwNzczMyAwMDAwMCBuIAowMDAwMDEwMTM2IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzUgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM2ID4+CnN0YXJ0eHJlZgoxMDI5MwolJUVPRgo=\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"h = sym.exp(-t) * sym.Heaviside(t)\n",
"x = sym.Rational(3, 4) * rect(t - 1/2)\n",
"\n",
"plot_signals(t, x, h, r'$h(t)$, $x(t)$', r'$t$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The **first step** is to substitute $t$ by $\\tau$ to yield $h(\\tau)$ and $x(\\tau)$. Note, the horizontal axis of the plot represents now $\\tau$, which is our temporal helper variable for the integration"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1Ni43MjUgMzU4LjE1OTI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nKVaTY8ctxG996/gUQYiil9FVh0tyBaQSyBbSC6+KMpalqBV4CiK8/Pzqj9meli1XhnZxS5m6r0i2WQVWa+7c/iw5PAupPABf7+FHF7i792S8O1+adTjKITPHy+fK3HMJPj0Eazzt1+W5efl2bdw/wyPl8uIJZQaR2XAaKz1mPDpYvp4MdUyYttbUa/z973VsrX6DqPDSCNjrOhDLUsfMVUZo4Y6IrU6tLeTscW0Gj8uy3Nc7G/Lr/ifwtOEtkhix1UxlQJqKVEovL1fnr8Oz77PIafw+ueFYx0sqa8T8fofy5P2TXj9YfnuNRpKMWlb+D0+wBuuT1/cfXjz1y8/vvn0+en9+09fPocX/1xe4Xcd+pJx4Vx6rv085rP19wadq2B6WBpzB/crR13+71GX0mPPul7XMV9tZsQ3wylY9lYLK3UbsI4p6ZgCxrR1UFOPVXBV7dzF2fr7ndRUY8mSh85hO/VTpn64x7yu+U0/J+sj/XCNKRFpgIF97acd/ZxWq7USCVctsYz18teVWhcimIWIVHfKs+/LeTn+8veP73/9cvf032++fM2i1JhvbA8sCuZrrCFS8aF1HvuyxGlhLp1IiZy6jHLu5Wp8rBsWXGdK0ntGum1dlQe6yo1jGilLPfd1sj7WWW4NU15r5lJb33trD/SmbrXWlm/m72R9tDcRLF5HTDBl2XvrD/WGbZMwC8jec29X62O9FWpxiCDQW5ey98YP9FZzjUwYF9/ExtX6aHRkREQvwjVx30IkX0ME+wnC/KnGb5YR+5bkmouy7uFbvGtwt7U1uCO4906e/LJuS8jw2+3qOownPz1ZKRKlZI3QbTv76ZvVik4Skn2ckD/tQB48cpJ6AcIDwGk0/10pFLGHSOfxBwfj5DRmrlTMwpb6xxR8RX7PDdWbKfr6drSlm5O4VY68L9AoOfzrLvwtfAo5kp6pMZdMnXsZay99/xmIqZGIkUpUJPzwMjx7cfef92/vfnj5PLz9vODARiSS5JsNtUWEC+V6sw/96NlRHuQovMb+LdmxgzyiDGTbmMnWfr8gVYTWwL0lO3bUDdism9gxO/b7ZSQcTHreTGTHDjL2PsndDMOx3y84ipBvMk+GNd8vgoAuujIT17GDLBGBKGkehGNHPZII1RGVMV+fB4COWJdGCPWZ7gBK18UqiChDtwDoBcslPac20x0A9JpRAOGYMHQHUDrqJUS2vVQH0EoNE4BjwbbuAKATghjbBZuZcQClYxcVtGHpFgC9I5GxX4080x0AdI1OyqnPweUBSkfd32TIHDIeADqXWDNVOxgHUDrHTpm7uVQHAF0I2xAKX5npDoCzLqEyS9g259zwAKXz2ojMY/cA0DNFQgE4D92xb8duLURlnkYPUDrprkB25A6w0RnHEc/h6wFb0Y5itBdzoQ6w0VvHUpsrdYCNTtRT8lqfgV1BpNKS1/oM7PRGKCJDQYE3OHHNJwcDqYuqvF7Rr3XxILhUbSqNXqyLC8EFdT6XlLCRGxcXUpehpyrhoLAuHgQXwkFELVXnWlxIXbBr1IIS2Ho4CBxw2NWG3LYOHqIODXuqFHYu3YXUhbRc1pSyLh60uUAGFm6ui4XUBfHcGXWy4+JBm0tllEquh0E2h4bKpzih4kK7C2qP9ICLgTYXwvX1+bT0ANAH6rmcqjnPPEDpHYK2cTOtOwDojPKfaiKT4Q6g9KGnHHVLtwDoouobO/98QHmA3h5AnYrtk+az2AO2uwmFu9A8Mx4Aeka5gKq7zSeOBygdgag/82bmAaAXnP9pUDODcQClo5JHDmbTugOArrcxRgMw0x1Ay3VolczVzowDKL1HPYdM4ekBoKPUySzNBIEHKB3VBXQamXl3ANBR6lBv3RQGHqB0rXehni3dAqAPVBfMZE40D9AbSdgluTaTTR6g9BGRYNVIHw8AHYV9R1gPM3YHgFRCFnRspibEPEDpiCQUvKbw8ABVbdjeMw7DOSI9APQCGUnczER6gNKx+wxY50t9Ff6IqM2qZIUTdDjiUuU0pFzK0hMvX6lkMbMQPN2EurXrFKL842ayzrGDjFxpbMtlxw4lW1AQUWvzTufYQYauxNY9jOy1dsheSHJpTeaJduxQskhY0hvQs5K1dpB5naL5+qwZohdCLiE55hE7dihZrCkqkTnFrBlURBH1asSaY1fRmyOnZrcGD1C6SjLspVYjW0BFL6p9yGwjpqxdyRJbqWwmzwNUIeOIgfgUq5AtsClkFEDZ6m8HULrehW+OhnUAVcjIvVaQ0jPdAbZHH5lbljnDPEAVcoG1sL0Z4ACboB5SzYoa8yamGzPamckOoHTWpK7mro4HqJiuWn2ZvdixK5mj1F7MiekBKqVbVJsV6g6gdCgfHItkbgM4gCrvqsXosAvkAErH1DZGEhi6BXahTlXMBusBSsfmj0LQimkHUKFesTExmeLW2lUspogqwB5RHrBL6TpKn4PLA3YpTaikzFgcYJfSLT8gpSdgpzPX6knpGTikNP7z+jCg0w3fIJuDoA7UoNbyNyEpTtrbQuqiTwSkQgJpgY0tTlo9XDxok+tYGhxooWCLbgUhdpLrFlK5DulbG+szXC3JUDmNQ607iDowshnNwQxxjohM/RiWC6lYxwaAeiZByWacXpBohQ+x7kHqgkTtOI708RDFWlORY1wupGId082o+krIA6mCRLlcigupNMTBJKXlHPR+Yke5my5q0oPUBb03tCIhV30gUlWj7i4etElEHJWw5q73W9M4HBxANZ8+/mGcUQFqE80QpYvq8yB1EQSBZHxRoafTLoeHg6hQRAjgBMfmwIT4xqnSD6XoIPfr8+E+pKOcwQQSVozKIf4cROUclE/BCHtQ3YzFZT70nIOoA2N83EfohEIkjdwOvgVU0HUNyYbo7ChLEw6uY0Aeckg6HgEqCDFW5EbR3dg3QadinHMgffrOuZ8UnUE2SUeITK4B0YINr/erpJsB1WhIDxRxyNom+phLb7/uIs1BVHYlnM5YvxwaNmpCAT4O3eUg6qB3wTpOsNB0Hfsxm9a+qTRBNMKmQcJER+MOcL8+xMc6VJQKSHMsfS8H30NUeCGZekPxEvShVEUIHNPjIeogMSeBJlNzSe0SDA6guoH0LiFhH8Dy9Do0Q3bl4CAqvgrEqiQoCpgzTsl8iC8LKB2Vf+tVdblgeVBR88F3kFv5JZpPRPWqv0r48/ba0PoyziSiLg+6r+//XB9Hn97uQVuXN4bWN3rsa0L37mtCy6fLS0HHy0Dbq0MnaXW43RyFU3e3rxs92Ner5X8xSFq2CmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjQ2NAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTMgPj4Kc3RyZWFtCnicPVAxkgMxCOv9Cp4ACLD9nr25Kvl/G2FnUuyKQUhGFEJUkPxllcxS+bOROQVQeY/YIPUaoV8sMj5PtQXhEtOoTyIEZJ8RMwVzs1OCtS7uPExJODWci4BEKr/dDNopJJTzy6m/+Izeoytvp0rxpA4g40YXVbEd3GCKLaI2Y55nW1ywhZPsNXz+KuPKZV2BNtvEmT/ZhbrkeQBkMhmPiyVVYRe5bvnt7C0ZnHJq3chkMgjD9jUj10U7TPUZOM8QWNRUHOdmGLj0OCLo9D3/M/4/nA5OPAplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1jrsNA0EIRPOtYkqAAZalnpMc2f2nBt85ek+a4bOMBRXBZ5kljsOikBtWMbiW2xl5L6dBmrbrpkqTKdAAQ+DZdfa+LJAb2krvuM4E1Y3IHuwjt6gQ4WNb9mNx6knt8G82S2yMbR74UfvZ5/trvb79XSYoCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA0IC9oIDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PiAvRmlyc3RDaGFyIDAKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvaCAxNiAwIFIgL3ggMTggMCBSID4+CmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDY2ID4+CnN0cmVhbQp4nDM2tFAwUDA3V9A1NDRVMDIyUDA0MlFIMeQyNDQHM3O5YII5YJaJAZBhCCTBGnK4YFpzwDogslCtOVxpAE04EfUKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM5MiA+PgpzdHJlYW0KeJw9UktuBTEI288puECl8E1ynqne7t1/W5vMVKoKLwO2MZSXDKklP+qSiDNMfvVyXeJR8r1samfmIe4uNqb4WHJfuobYctGaYrFPHMkvyLRUWKFW3aND8YUoEw8ALeCBBeG+HP/xF6jB17CFcsN7ZAJgStRuQMZD0RlIWUERYfuRFeikUK9s4e8oIFfUrIWhdGKIDZYAKb6rDYmYqNmgh4SVkqod0vGMpPBbwV2JYVBbW9sEeGbQENnekY0RM+3RGXFZEWs/PemjUTK1URkPTWd88d0yUvPRFeik0sjdykNnz0InYCTmSZjncCPhnttBCzH0ca+WT2z3mClWkfAFO8oBA7393pKNz3vgLIxc2+xMJ/DRaaccE62+HmL9gz9sS5tcxyuHRRSovCgIftdBE3F8WMX3ZKNEd7QB1iMT1WglEAwSws7tMPJ4xnnZ3hW05vREaKNEHtSOET0ossXlnBWwp/yszbEcng8me2+0j5TMzKiEFdR2eqi2z2Md1Hee+/r8AS4AoRkKZW5kc3RyZWFtCmVuZG9iagoyNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvQkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJzjMjQwUzA2NVXI5TI3NgKzcsAsI3MjIAski2BBZNMAAV8KCgplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggODAgPj4Kc3RyZWFtCnicRYy7DcAwCER7pmAEfiZmnyiVs38bIErccE+6e7g6EjJT3mGGhwSeDCyGU/EGmaNgNbhGUo2d7KOwbl91geZ6U6v19wcqT3Z2cT3Nyxn0CmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDcgPj4Kc3RyZWFtCnicPU+5DQMxDOs9BRc4wHosW/NckOqyfxvKRlIIIkDxkWVHxwpcYgKTjjkSL2k/+GkagVgGNUf0hIphWOBukgIPgyxKV54tXgyR2kJdSPjWEN6tTGSiPK8RO3AnF6MHPlQbWR56QDtEFVmuScNY1VZdap2wAhyyzsJ1PcyqBOXRJ2spH1BUQr10/5972vsLAG8v6wplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ5ID4+CnN0cmVhbQp4nDWPSw4DIQxD9zmFLzBSfoRwHqqupvffNmFaCQkL2y/BFoORjEtMYOyYY+ElVE+tPiQjj7pJORCpUDcET2hMDDNs0iXwynTfMp5bvJxW6oJOSOTprDYaooxmXsPRU84Km/7L3CRqZUaZAzLrVLcTsrJgBeYFtTz3M+6oXOiEh53KsOhOMaLcZkYafv/b9P4CezIwYwplbmRzdHJlYW0KZW5kb2JqCjMwIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNDkgPj4Kc3RyZWFtCnicMza0UDBQMDQwB5JGhkCWkYlCiiEXSADEzOWCCeaAWQZAGqI4B64mhysNAMboDSYKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDMxNyA+PgpzdHJlYW0KeJw1UktyQzEI279TcIHOmL99nnSyau6/rYQnK7AtQEIuL1nSS37UJdulw+RXH/clsUI+j+2azFLF9xazFM8tr0fPEbctCgRREz34MicVItTP1Og6eGGXPgOvEE4pFngHkwAGr+FfeJROg8A7GzLeEZORGhAkwZpLi01IlD1J/Cvl9aSVNHR+Jitz+XtyqRRqo8kIFSBYudgHpCspHiQTPYlIsnK9N1aI3pBXksdnJSYZEN0msU20wOPclbSEmZhCBeZYgNV0s7r6HExY47CE8SphFtWDTZ41qYRmtI5jZMN498JMiYWGwxJQm32VCaqXj9PcCSOmR0127cKyWzbvIUSj+TMslMHHKCQBh05jJArSsIARgTm9sIq95gs5FsCIZZ2aLAxtaCW7eo6FwNCcs6Vhxtee1/P+B0Vbe6MKZW5kc3RyZWFtCmVuZG9iagozMiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3ID4+CnN0cmVhbQp4nDM2tFAwgMMUQy4AGpQC7AplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjQ4ID4+CnN0cmVhbQp4nC1ROZIDQQjL5xV6QnPT77HLkff/6QrKAYOGQyA6LXFQxk8Qlive8shVtOHvmRjBd8Gh38p1GxY5EBVI0hhUTahdvB69B3YcZgLzpDUsgxnrAz9jCjd6cXhMxtntdRk1BHvXa09mUDIrF3HJxAVTddjImcNPpowL7VzPDci5EdZlGKSblcaMhCNNIVJIoeomqTNBkASjq1GjjRzFfunLI51hVSNqDPtcS9vXcxPOGjQ7Fqs8OaVHV5zLycULKwf9vM3ARVQaqzwQEnC/20P9nOzkN97SubPF9Phec7K8MBVY8ea1G5BNtfg3L+L4PePr+fwDqKVbFgplbmRzdHJlYW0KZW5kb2JqCjM0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEwID4+CnN0cmVhbQp4nDVQyw1DMQi7ZwoWqBQCgWSeVr11/2tt0DthEf9CWMiUCHmpyc4p6Us+OkwPti6/sSILrXUl7MqaIJ4r76GZsrHR2OJgcBomXoAWN2DoaY0aNXThgqYulUKBxSXwmXx1e+i+Txl4ahlydgQRQ8lgCWq6Fk1YtDyfkE4B4v9+w+4t5KGS88qeG/kbnO3wO7Nu4SdqdiLRchUy1LM0xxgIE0UePHlFpnDis9Z31TQS1GYLTpYBrk4/jA4AYCJeWYDsrkQ5S9KOpZ9vvMf3D0AAU7QKZW5kc3RyZWFtCmVuZG9iagoyMSAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMgL0NoYXJQcm9jcyAyMiAwIFIKL0VuY29kaW5nIDw8Ci9EaWZmZXJlbmNlcyBbIDMyIC9zcGFjZSA0MCAvcGFyZW5sZWZ0IC9wYXJlbnJpZ2h0IDQ0IC9jb21tYSA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUKL3R3byA1MiAvZm91ciA1NCAvc2l4IDU2IC9laWdodCBdCi9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udERlc2NyaXB0b3IgMjAgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTkgMCBSID4+CmVuZG9iagoyMCAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgMzIKL0ZvbnRCQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRm9udE5hbWUgL0RlamFWdVNhbnMgL0l0YWxpY0FuZ2xlIDAKL01heFdpZHRoIDEzNDIgL1N0ZW1WIDAgL1R5cGUgL0ZvbnREZXNjcmlwdG9yIC9YSGVpZ2h0IDAgPj4KZW5kb2JqCjE5IDAgb2JqClsgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAKNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCAzMTggNDAxIDQ2MCA4MzggNjM2Cjk1MCA3ODAgMjc1IDM5MCAzOTAgNTAwIDgzOCAzMTggMzYxIDMxOCAzMzcgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNgo2MzYgNjM2IDMzNyAzMzcgODM4IDgzOCA4MzggNTMxIDEwMDAgNjg0IDY4NiA2OTggNzcwIDYzMiA1NzUgNzc1IDc1MiAyOTUKMjk1IDY1NiA1NTcgODYzIDc0OCA3ODcgNjAzIDc4NyA2OTUgNjM1IDYxMSA3MzIgNjg0IDk4OSA2ODUgNjExIDY4NSAzOTAgMzM3CjM5MCA4MzggNTAwIDUwMCA2MTMgNjM1IDU1MCA2MzUgNjE1IDM1MiA2MzUgNjM0IDI3OCAyNzggNTc5IDI3OCA5NzQgNjM0IDYxMgo2MzUgNjM1IDQxMSA1MjEgMzkyIDYzNCA1OTIgODE4IDU5MiA1OTIgNTI1IDYzNiAzMzcgNjM2IDgzOCA2MDAgNjM2IDYwMCAzMTgKMzUyIDUxOCAxMDAwIDUwMCA1MDAgNTAwIDEzNDIgNjM1IDQwMCAxMDcwIDYwMCA2ODUgNjAwIDYwMCAzMTggMzE4IDUxOCA1MTgKNTkwIDUwMCAxMDAwIDUwMCAxMDAwIDUyMSA0MDAgMTAyMyA2MDAgNTI1IDYxMSAzMTggNDAxIDYzNiA2MzYgNjM2IDYzNiAzMzcKNTAwIDUwMCAxMDAwIDQ3MSA2MTIgODM4IDM2MSAxMDAwIDUwMCA1MDAgODM4IDQwMSA0MDEgNTAwIDYzNiA2MzYgMzE4IDUwMAo0MDEgNDcxIDYxMiA5NjkgOTY5IDk2OSA1MzEgNjg0IDY4NCA2ODQgNjg0IDY4NCA2ODQgOTc0IDY5OCA2MzIgNjMyIDYzMiA2MzIKMjk1IDI5NSAyOTUgMjk1IDc3NSA3NDggNzg3IDc4NyA3ODcgNzg3IDc4NyA4MzggNzg3IDczMiA3MzIgNzMyIDczMiA2MTEgNjA1CjYzMCA2MTMgNjEzIDYxMyA2MTMgNjEzIDYxMyA5ODIgNTUwIDYxNSA2MTUgNjE1IDYxNSAyNzggMjc4IDI3OCAyNzggNjEyIDYzNAo2MTIgNjEyIDYxMiA2MTIgNjEyIDgzOCA2MTIgNjM0IDYzNCA2MzQgNjM0IDU5MiA2MzUgNTkyIF0KZW5kb2JqCjIyIDAgb2JqCjw8IC9jb21tYSAyMyAwIFIgL2VpZ2h0IDI0IDAgUiAvZm91ciAyNSAwIFIgL29uZSAyNyAwIFIgL3BhcmVubGVmdCAyOCAwIFIKL3BhcmVucmlnaHQgMjkgMCBSIC9wZXJpb2QgMzAgMCBSIC9zaXggMzEgMCBSIC9zcGFjZSAzMiAwIFIgL3R3byAzMyAwIFIKL3plcm8gMzQgMCBSID4+CmVuZG9iagozIDAgb2JqCjw8IC9GMSAyMSAwIFIgL0YyIDE0IDAgUiA+PgplbmRvYmoKNCAwIG9iago8PCAvQTEgPDwgL0NBIDAgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PgovQTIgPDwgL0NBIDEgL1R5cGUgL0V4dEdTdGF0ZSAvY2EgMSA+PiA+PgplbmRvYmoKNSAwIG9iago8PCA+PgplbmRvYmoKNiAwIG9iago8PCA+PgplbmRvYmoKNyAwIG9iago8PCAvRjEtRGVqYVZ1U2Fucy1taW51cyAyNiAwIFIgL0YyLURlamFWdVNhbnMtT2JsaXF1ZS10YXUgMTcgMCBSID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozNSAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwNDI3MTU1NzAyKzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy40LCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy40KSA+PgplbmRvYmoKeHJlZgowIDM2CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDEwMTA5IDAwMDAwIG4gCjAwMDAwMDk4NDIgMDAwMDAgbiAKMDAwMDAwOTg4NSAwMDAwMCBuIAowMDAwMDA5OTg0IDAwMDAwIG4gCjAwMDAwMTAwMDUgMDAwMDAgbiAKMDAwMDAxMDAyNiAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDAzOTUgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyOTM0IDAwMDAwIG4gCjAwMDAwMDQxODcgMDAwMDAgbiAKMDAwMDAwMzk3OSAwMDAwMCBuIAowMDAwMDAzNjU2IDAwMDAwIG4gCjAwMDAwMDUyNDAgMDAwMDAgbiAKMDAwMDAwMjk1NSAwMDAwMCBuIAowMDAwMDAzMjQxIDAwMDAwIG4gCjAwMDAwMDM0OTIgMDAwMDAgbiAKMDAwMDAwODYxMSAwMDAwMCBuIAowMDAwMDA4NDExIDAwMDAwIG4gCjAwMDAwMDgwMTUgMDAwMDAgbiAKMDAwMDAwOTY2NCAwMDAwMCBuIAowMDAwMDA1MjgyIDAwMDAwIG4gCjAwMDAwMDU0MjAgMDAwMDAgbiAKMDAwMDAwNTg4NSAwMDAwMCBuIAowMDAwMDA2MDQ3IDAwMDAwIG4gCjAwMDAwMDYyMTcgMDAwMDAgbiAKMDAwMDAwNjM2OSAwMDAwMCBuIAowMDAwMDA2NTg5IDAwMDAwIG4gCjAwMDAwMDY4MTEgMDAwMDAgbiAKMDAwMDAwNjkzMiAwMDAwMCBuIAowMDAwMDA3MzIyIDAwMDAwIG4gCjAwMDAwMDc0MTEgMDAwMDAgbiAKMDAwMDAwNzczMiAwMDAwMCBuIAowMDAwMDEwMTY5IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzUgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM2ID4+CnN0YXJ0eHJlZgoxMDMyNgolJUVPRgo=\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"h1 = h.subs(t, tau)\n",
"x1 = x.subs(t, tau)\n",
"\n",
"plot_signals(tau, x1, h1, r'$h(\\tau)$, $x(\\tau)$', r'$\\tau$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The **second step** is to time-reverse $h(\\tau)$ to yield $h(-\\tau)$"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1Ni43MjUgMzYyLjE1OTI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nKWaS48VyRGF9/UraslIJsn3Y2mEB8kbiwF5NrPBDMOAaKwxxuOf7y/qcW/dimgaaxp1c2+cE/nOyDhZFeYPU5jfzX7+wO/vc5if8/tu8ny7m3KprsXC54+Xz6lGF8rg00dYx2+/TtMv05M/4/4Zj+dTc3GOybXUgSksV+f5dDF9vJhSbC5vpYjX8ftWalxLfUfraKnrtJU6xDLV5nwaraU5NVdyalLbwZidX4wfp+kpnf19+o2/fn7sKasMV+lVLzFCjdGNMr+5m56+mp98H+bg51e/TN2l1oevy0C8+nl6lL+bX32Y/vKKgrzzUhb/9g944/r42dsPr//+5eXrT58f373/9OXz/Oyf0wv+LU2fAh3vsYZUj20+Wr/W6JAGw9NH7r3C/cZWxz/c6hirq0Hm69rmq021+KY5kWnPKXahrg2WNnlp00yb1gqSry4NepWPVRytX68k+eRiGKHJGOZDPfFUT68uLHN+U8/B+kA9PTnvS5EFBvtaT97rOcxWztEVej1cbEv3l5laJmJWE+FK2ihPvo/H6fjbPz6+/+3L28f/fv3lWyYluXBju2dSGK+2LJHEh1x726bFnSbmUsmIrvuUw00tV+ND1fTBuFUZtzD6VlW8p6qQu/M1+TaOdR2sD1UWcnax1uhzTqNuteV7ahO3xNTnfKztYH2wtjFkmnsdxMO01Vbvq610V3rM/qZvB+tDtcWSXeuswNTbCFtt/Z7aUkiu5+jbTd8O1gdXR2BF5MKcldHHUlu4LhHiCcv8sazfMJqr2yZnPMYSw9f1Los7L6XhzuLeKnn06xKW2OG34erajEc/PVoogYjm/bqF1oj203cLkNzw7PcWZPmuyJ82ILTegh/pAsz3AIcG/XehFEcYGbW3e9tD9+Khyq0xxrZm8GJiILamb6Pw1YiriujMZA91db0p4utR4lwQW6KFunfs28uRkm7O85y6k/8l5LYY5n+9nX+cP83BFTmZXYih1F7jWkvdfhors/nSe0wljvmH5/OTZ2//8/7N2x+eP53ffJ449jkDCwv6GJaJtSnkeBPMXhpmqJyLNbTWzlxtl3yEqFXzGCeyYb+bSmDx1Z7LiWzYIXOM90ERZ7K2k6hE53tt6dw/ww6ZEsZg7M9kbb+bGm0rEiROZMMOuZEv5NHOJRv2u6lnFxJx5zzOhv1uGkSj1LPPJ7Jhh0ySGbxXk2LYyZd8dKmHnuuJbQFCJyfsDGpQdA1AJz6G4Vs5t8UChD5Y24kfRdcA9FhcWA6nM90AoCcmrdFI1VUDELosiCib7EzXgCSeJGc5hHBeKhYAvRDR2Nv+PP8WIHQ+h9ySKt0AoFd2dgwtqa4agNA5d4kZuqsGAL0VTvTuddsNAHonlo0wynlfWIDQOTdSSVmVbgDQB5M3SvZqzRiA0Cv5wQhqyWg757wPBGhOuHPZFiB0kt+U07lsww6ZI210Aup5iixA6Ozemns4bzwLkAyF3cs8+/OYW4DQi6uVhFDTNbAKltKbV6HcAjZ9wznTSfPl8KwEw3R10NDmwjeClemioNWlIeaC7aIhcWminVu2GmZBq0uOfDM9FCIOgwOZv5aHBeFCgAmhZVIC5WJCuGTRT8TspF1MCBcCjZeszxgvExKXwhFCjDcaZkK4VNKZkX03GmZC4kL2EEVFGi4WJC5Fcqoeu+FiQeJSSSklHzRcLGh1SWNUo/cWsjpkEk62g+WhodWFEEdQPG8tA1jpXRLjc+S2AKGTBDPuQ4UoA4DeMrqg+HhOrCwAeo+cdB1teqYbgNCX9DerfMkCoI+C1hpV0w3gbrnHKKjIdg6YFgA9BEevvAreFiD05kYdOZ67agHQY0Zx+6QG0gIkXfdO0jqVHFqA0CXyDKPtBgCdhCSOGINqjAEInaUxmhp2ww4ZTR09+cJ5PVoA9Eqyk8m/zqvdAoROHM9ZjbkyQ20i7htL9Ew2ALm3kmSBhXc+jS1A6MxyGKohyix6iuUWqVWRDQBFRdrNeqgqwbYA6CQLLcTklQIzAKF3l0mJ4nm8LQA656ZvPavSX8z/j5QNol9H94wj6aqI6JI5XUb1ffqafkVxwkxpFbAkxqkmsZIby4XNLmEVIPMjt5BZEvrhxpBLkX2GNLDI2ExsJSfKtBTlEOpFxyoAOq61RRJLrD3HnHa6ASxSNo6KxJ1zoEejtHrRsgpAn5JahkbIFOvo7OG4CVQDgE4OIXcwNDEijYvvO90A0KjF5ZYLkZjN3ki9U9tEqgGgUqkzU9Vy69Ebyns7vywAepNHAZ7jWZ5KpEC1G90AUKrJ1V472iUTqNjt6z3aSxMQ8Rmc58SU6ZC1gZBJu/o0EHGocq9FeJ0LUbz3fuFrQOQnmVJspDCFrZk8idYuPzUgdLlqbJ3cleSHiU/7ojQR0auEHt/b8siEs7OEsetVDYgA9eTeA2vl+Ow5lL14AxA6xyAHD3uUlGdQ51WwGogoVorxLKRZVF4mWOzdNYD1yQqpV0fcEUI5PkVDbHwDEc0aZBbrqHNjb7J2665ZNSB0yeslNMwIPUJRSnHnG4io1iB3QY1iRiRfZZHs42kh4tBcJ+PkOAyeDcrE+L3LJiRSV1aij3UOQbY0heZd6xqIONAj9jLrLyC1eqv8t3tYkAheSQVbYVIC8alkudvbJa8FiYplHbJZxxwKEY3AMS461kDEYXl0wmkzM9rs74as3z0sSNQswS/XyOSIOPY0otZd0FrQqmmljeQEojMjgrrt+a4JrbqWlUwzl/v4QoafwlXZami9fWcJZCYoDgmcMe/h3YZWbeg5fzgl/HByuqSLh4GsDim3Wkm02PwihWK/emhodcnEcHn0FeRilYz34KKhXUdLVoyV7PhWRt/Y96eEXd/MWsBGL72r1MoCVl1LwhXVnY4FCJ18IZaoMlQLEEVLXOhDt0XbRct6eZIx1HWuBQi9ydOsUpWmMQDRsFRZQlWZngWIYmKKWXp61A1gFVipchyp0g1ABBbilHNLXXhagCimwP7s3qtLIANYBdYgeDc1MgawCqzMDlL3oxYgAos62WpRpcwGIHTWEamaV6m+AYjA4sitRFVVugGseowtiXYx9NgZWPVYSHkMS4+dAck+6ZFsQy2wNLDqsdqHvquzgE2PFZ/VuFuA0DmUG3ZN14AoMkm4itx/nBWZBkRiMbzMRlB0AxCZxZbk5NOzagBCJ7/phD+tyjSwvk2QiJtdCy0NrFLL99L0rBqASC2SRnLAcqZbgNCrXD/LWXyma0CkViI3Q+Cdp8kChC7P17yW2RbwgDKL81/Xl5GWV3xO8ury+Pz6VtH1IffhnSHKuryHtLwnpF8+ujNfPpo+XV412l8xWl9IOrR+d7tp+qm625eY7q3rxfQ/W15u7wplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI1MjUKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEzID4+CnN0cmVhbQp4nD1QMZIDMQjr/QqeAAiw/Z69uSr5fxthZ1LsikFIRhRCVJD8ZZXMUvmzkTkFUHmP2CD1GqFfLDI+T7UF4RLTqE8iBGSfETMFc7NTgrUu7jxMSTg1nIuARCq/3QzaKSSU88upv/iM3qMrb6dK8aQOIONGF1WxHdxgii2iNmOeZ1tcsIWT7DV8/irjymVdgTbbxJk/2YW65HkAZDIZj4slVWEXuW757ewtGZxyat3IZDIIw/Y1I9dFO0z1GTjPEFjUVBznZhi49Dgi6PQ9/zP+P5wOTjwKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvQkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMTcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnicNY67DQNBCETzrWJKgAGWpZ6THNn9pwbfOXpPmuGzjAUVwWeZJY7DopAbVjG4ltsZeS+nQZq266ZKkynQAEPg2XX2viyQG9pK77jOBNWNyB7sI7eoEOFjW/ZjcepJ7fBvNktsjG0e+FH72ef7a72+/V0mKAplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTIgPj4Kc3RyZWFtCnicPYyxDcAwCAR7pvgFImGMbdgnSuXs3+YtJ2ng9A/X0qA4rHF2VTQfOIt8eEv1hI3ElKaVR1Oc3doWDiuDFLvYFhZeYRGk8mqY8XlT1cCSUpTlzfp/dz3Hqxu6CmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDEwNCAvaCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL2ggMTYgMCBSIC94IDE4IDAgUiA+PgplbmRvYmoKMjMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NiA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcaQBNOBH1CmVuZHN0cmVhbQplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI4IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjEgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjIgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NCAvY29tbWEgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lCi90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIwIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE5IDAgUiA+PgplbmRvYmoKMjAgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOSAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMiAwIG9iago8PCAvY29tbWEgMjMgMCBSIC9laWdodCAyNCAwIFIgL2ZvdXIgMjUgMCBSIC9vbmUgMjcgMCBSIC9wYXJlbmxlZnQgMjggMCBSCi9wYXJlbnJpZ2h0IDI5IDAgUiAvcGVyaW9kIDMwIDAgUiAvc2l4IDMxIDAgUiAvc3BhY2UgMzIgMCBSIC90d28gMzMgMCBSCi96ZXJvIDM0IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjEgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMjYgMCBSIC9GMi1EZWphVnVTYW5zLU9ibGlxdWUtdGF1IDE3IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzUgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDQyNzE1NTcwMyswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuNCkgPj4KZW5kb2JqCnhyZWYKMCAzNgowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMDE3MCAwMDAwMCBuIAowMDAwMDA5OTAzIDAwMDAwIG4gCjAwMDAwMDk5NDYgMDAwMDAgbiAKMDAwMDAxMDA0NSAwMDAwMCBuIAowMDAwMDEwMDY2IDAwMDAwIG4gCjAwMDAwMTAwODcgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjk5NSAwMDAwMCBuIAowMDAwMDA0MjQ4IDAwMDAwIG4gCjAwMDAwMDQwNDAgMDAwMDAgbiAKMDAwMDAwMzcxNyAwMDAwMCBuIAowMDAwMDA1MzAxIDAwMDAwIG4gCjAwMDAwMDMwMTYgMDAwMDAgbiAKMDAwMDAwMzMwMiAwMDAwMCBuIAowMDAwMDAzNTUzIDAwMDAwIG4gCjAwMDAwMDg2NzIgMDAwMDAgbiAKMDAwMDAwODQ3MiAwMDAwMCBuIAowMDAwMDA4MDc2IDAwMDAwIG4gCjAwMDAwMDk3MjUgMDAwMDAgbiAKMDAwMDAwNTM0MyAwMDAwMCBuIAowMDAwMDA1NDgxIDAwMDAwIG4gCjAwMDAwMDU5NDYgMDAwMDAgbiAKMDAwMDAwNjEwOCAwMDAwMCBuIAowMDAwMDA2Mjc4IDAwMDAwIG4gCjAwMDAwMDY0MzAgMDAwMDAgbiAKMDAwMDAwNjY1MCAwMDAwMCBuIAowMDAwMDA2ODcyIDAwMDAwIG4gCjAwMDAwMDY5OTMgMDAwMDAgbiAKMDAwMDAwNzM4MyAwMDAwMCBuIAowMDAwMDA3NDcyIDAwMDAwIG4gCjAwMDAwMDc3OTMgMDAwMDAgbiAKMDAwMDAxMDIzMCAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM1IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNiA+PgpzdGFydHhyZWYKMTAzODcKJSVFT0YK\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"h2 = h.subs(t, -tau)\n",
"\n",
"plot_signals(tau, x1, h2, r'$h(-\\tau)$, $x(\\tau)$', r'$\\tau$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In the **third step** the impulse response $h(-\\tau)$ is shifted by $t$ to yield $h(t - \\tau)$. The temporal shift is performed to the **right** for $t>0$ and to the **left** for $t<0$."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"h3 = h.subs(t, t-tau)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the **fourth step** it is often useful to split the calculation of the result according to the overlap between $h(t-\\tau)$ and $x(\\tau)$. For the given particular signals three different cases may be considered\n",
"\n",
"1. no overlap for $t<0$,\n",
"2. partial overlap for $0 \\leq t < 1$, and\n",
"3. full overlap for $t > 1$ (note that the chosen impulse response decays asymptotically)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The first case, no overlap, is illustrated for $t = -2$"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1Ni43MjUgMzY2LjE1OTI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nKVaXW8dtxF931/BRwWIaH4NOfNYw42BvgROhOalL66rODYkF4njJj+/Z3b3Xu3ljCQXtSDjiucMySWHM3N4N4ePSw7vQwof8ftHyOE1ft8vCX/dL416HIXw+e78ufYeMwk+3YF1/OuXZfl5efEXmH+GxetlxBJKjaMyYHTWekz4dG66OzfVMmLbe1Gr4997r2Xr9T1mh5lGxlwxhrYsfcRUZYwa6ojU6tDRDo0tprXxblle4mH/WH7F/ylcJ/RFEjueiqkUUEuJQuHd/fLyJrz4Loecws3PC8c6WFJfF+LmX8tV+ybcfFz+eoOOUkzaF35OH2AN0+tXtx/f/v3Lj28/fb6+//Dpy+fw6t/LG/ysU18yHpxLz7Uf53xsfWrSuQqWh6Uxd3C/ctbl/551KT32rPv1MOeHNjPji+kUbHurhZW6TVjnlHROAXPaBqipxyp4qnYc4tj69CA11Viy5KFr2A7jlGkchteue34xzqH1mXG4xpSI1MHAfhinncY57FZrJRKeWmIZ6+OvO7VuRDAbEanulBffleN2fP/Puw+/frm9/v3tl6/ZlBrzRdsjm4L1GquLVHxonce+LXHamPMgUuIYXI5jnJqeG4I5Cuda2sDK7cOUR4bJjbEgpTc5jnRofW6w3Bo8gcZoLSfZR2uPjKZmOi25GO3Q+uxoogcyldJyht9to/XHRiOOjTNdPtuh9bnRCrXYuXWNovn0bPzIaDXDDBH68tkOrc96RpIoOFOlkoZIHS0/uAdiCVz8Wn03y4h9P+BCOBFy9nV17Lb2BnM49j7I1S9rSMLpvgxVD9O4+sfVSqlREo70yOqhaerl95WCQ1hyH9IPlIduvnmkm6tvdyAPHvCUegbCI8Bh4D9XCh41PzbsNnssYDkMuU/GCQAZASgxYt16Zk9r9mRsnrvAvrdKtJ3lix6eDidzP4SgVdv5wb6+I+3qIvO3ypFXR0JLyeG32/BT+BRyJM3hMeOYdu5lG6Xv/wb8GHGCWd1Owg+vw4tXt//58O72h9cvw7vPCwoEZEuSfBHAa+TEyIoXce9Hrx3lSMZsGrx7IjvtIHMkSlTyTLbt9wsRkgdVGhPZaUedkjTwZmkT2Wlfi5qWO6c6k237/TIQvlBMjLlnpx1kjkU6vHQm2/b7BXmSEX1Sn8hO+/0iSKUdaXKehtOOCihlhDY43bwrHqB0xvkEZtimHeRMsVCXYvp2ANDhwGmkNkznDqB0gd8UkWLoFgC9opqGn9d5WTxAK0McRz0l8857gNJR/XEpxlE8AHTCyewIcvOGeoDS8USjsZiFdADQ4Z0ZZ9kupAOADv9sGNFukwOAzklrZmdlHEDpIzJq50GGbgHQ4aXcZch8lj0A+RVemivVNDuBBygdOb8TdtvQLQA60gMiHqLyTHeALdkjYzt0B1A6Iflo5jB0C2x1fyojVfOoDrDRCSsgdjIW2Om9mwjjtO8SpKSGGrSg7IOeE6iiM99Cm8lACBTXwiCbgSAXcXMtLASTihowZcQha+JCaoLMiezfnCdxIZg0lChpcGdr4kIwIU3nSJ/dmriQmqCsKBDKzrO4EEx6xdITkrs1cSE1QSBG0nee3kPUQBVbqd6uuNBmUhnFjLNeLrSZINrX4XiLC20mpIfAOLAD7PSBKtscJgdQ+kAlAW8wbNOuZJSfbZBJkh4A+iCI7WFnYttB5oxqs9lSxwOUzkjiSfXbTLcA6IixmB6TWUQHULrW2V1MDeMBeqtAOINQ8XOxaNtBzngeKWyKKQ9QOpJJxdmzdAuAXlALqcyY18UDlI7n6UgP8x55gFbFpFIumZTnAaBrAYwAUEwV7QBKR7wU6ibleQDohPXKxDR7owconSIlhL3ZBTxA6aJPVLtZdwcAHVElS4KfznQHAH0gapfOptTwAKWTCls8lKFbQG+fUK90hnfMdAfYLqtqYSyYoVsAdFF5XNgU1h6gdNZgZvWAB0AeJT2QqBaNmHIAlV4QN3rnauSUAyhd75hTS3OU8QDQCzyJhc3x8ACldz1jzQjBN+F/EbJZ1atAgoleO6mGpiYpS0+8PKFe4fVIGQQLPUqxN2itHqihWhyV+ukoWWAVsCUlGRwI3SFgST0rWANsEha1M0x7hvJqqLkeNOwMQMSicIL6phY0K6KqL2VXsQ4AZaoXoqiEwsjwvoxF3pWpbQeZo6D+zDUMxIhBkAw72wGgTaGbEbxbYK1b9Upg16a2Hdo0Rxb4xAiCcMUFIWgXpw4AOra0cUM8zqnEnFPvY+d7yCpnByQdMlXOBceYUPucBa1FVKPCp1Vc5pARzkkgHeUkUz1ITXRlmZBssdvwPuxlPpl4kIpbPBSpPAqZMF2kpFON4kNqArmOjUS5oEpMChinUVxIRS6ChSo2LArrDrXTXriIGqAjYWiTgPINvltSOT28C6kyRk/EMvT+XmJBezsN4kJqon7OJY/1bjQlVq/YTTxoE9SCxcyoWlX5we3kNDEXUhOKsK5aAqX1ixogJxMP2r/QQZXf2nrj2ukgxB1kN+jUTEbygI0O6TGscHcApaM+xDKzuaNwgI1eehayk7HARu84YM1caTiA0gXqvzhXPQ6glw7wEc49GyXuAHrpgHhTVdCbSwcLbHcUSdKwFyYOsN1RqDw3CcwDtjsKEehQMxkHULqg6O/ZrowD6B0FpoiUXM2VhgPcrzf7qIjFTMYDlI7KiZ07Ng/QO4qBNEhk7oY8YLujaNSH7d0BNklNGetlFIEDKF0FHeU0e6QHqJQuESUim8PnAUpnhBbRPDvTLaASer02FDG9O4DSWesJYUu3gKq8pnfcY1jBaQFVeTgFkroJHB6gdIxZvIV0ANV5+vUpQq+hO4AKt6TfZxVzRewBSmf9khe51tAtsOm8NOCpRqA4wKb0UOSSq/RmYFN6KemtjBV6U7sKtwLR0pHBjHCzwKbzMj43U+I7gOo8lInCPEzvDqB0iEWChpoDqgdocaopbi1vZp1ngU3nJZZu9INtVzKSW6qmvnfaVbShkINiMcfOA5Su36tC+JlFdAAVbajiIBSGmYsDqArLula5GknoAEqHh6Lk6VbjWUBVWEMlQs26rgOoCoO+gVAwecMDlI4sThAzlm4BlRtV39UhMxkPULq+75DsNb4HPKPCSvjb9oLS+trPJKXOX6s/vGn08OX34T0i9HV+N2l9d8i+kHTvvpC0fDq/fnR67Wh7Sekw+5PZxdSn4S5fbHp0rDfLfwG+EHPNCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjQyNQplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTMgPj4Kc3RyZWFtCnicPVAxkgMxCOv9Cp4ACLD9nr25Kvl/G2FnUuyKQUhGFEJUkPxllcxS+bOROQVQeY/YIPUaoV8sMj5PtQXhEtOoTyIEZJ8RMwVzs1OCtS7uPExJODWci4BEKr/dDNopJJTzy6m/+Izeoytvp0rxpA4g40YXVbEd3GCKLaI2Y55nW1ywhZPsNXz+KuPKZV2BNtvEmT/ZhbrkeQBkMhmPiyVVYRe5bvnt7C0ZnHJq3chkMgjD9jUj10U7TPUZOM8QWNRUHOdmGLj0OCLo9D3/M/4/nA5OPAplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTE3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDWOuw0DQQhE861iSoABlqWekxzZ/acG3zl6T5rhs4wFFcFnmSWOw6KQG1YxuJbbGXkvp0GatuumSpMp0ABD4Nl19r4skBvaSu+4zgTVjcge7CO3qBDhY1v2Y3HqSe3wbzZLbIxtHvhR+9nn+2u9vv1dJigKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMDQgL2ggMTE2IC90IDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvaCAxNiAwIFIgL3QgMTcgMCBSIC94IDE5IDAgUiA+PgplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NiA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcaQBNOBH1CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjMgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NCAvY29tbWEgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lCi90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIxIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIwIDAgUiA+PgplbmRvYmoKMjEgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMyAwIG9iago8PCAvY29tbWEgMjQgMCBSIC9laWdodCAyNSAwIFIgL2ZvdXIgMjYgMCBSIC9vbmUgMjggMCBSIC9wYXJlbmxlZnQgMjkgMCBSCi9wYXJlbnJpZ2h0IDMwIDAgUiAvcGVyaW9kIDMxIDAgUiAvc2l4IDMyIDAgUiAvc3BhY2UgMzMgMCBSIC90d28gMzQgMCBSCi96ZXJvIDM1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjIgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMjcgMCBSIC9GMi1EZWphVnVTYW5zLU9ibGlxdWUtdGF1IDE4IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzYgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDQyNzE1NTcwNCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuNCkgPj4KZW5kb2JqCnhyZWYKMCAzNwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMDMzOCAwMDAwMCBuIAowMDAwMDEwMDcxIDAwMDAwIG4gCjAwMDAwMTAxMTQgMDAwMDAgbiAKMDAwMDAxMDIxMyAwMDAwMCBuIAowMDAwMDEwMjM0IDAwMDAwIG4gCjAwMDAwMTAyNTUgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMjg5NSAwMDAwMCBuIAowMDAwMDA0NDA2IDAwMDAwIG4gCjAwMDAwMDQxOTggMDAwMDAgbiAKMDAwMDAwMzg2OCAwMDAwMCBuIAowMDAwMDA1NDU5IDAwMDAwIG4gCjAwMDAwMDI5MTYgMDAwMDAgbiAKMDAwMDAwMzIwMiAwMDAwMCBuIAowMDAwMDAzNDUzIDAwMDAwIG4gCjAwMDAwMDM3MDQgMDAwMDAgbiAKMDAwMDAwODg0MCAwMDAwMCBuIAowMDAwMDA4NjQwIDAwMDAwIG4gCjAwMDAwMDgyNDQgMDAwMDAgbiAKMDAwMDAwOTg5MyAwMDAwMCBuIAowMDAwMDA1NTExIDAwMDAwIG4gCjAwMDAwMDU2NDkgMDAwMDAgbiAKMDAwMDAwNjExNCAwMDAwMCBuIAowMDAwMDA2Mjc2IDAwMDAwIG4gCjAwMDAwMDY0NDYgMDAwMDAgbiAKMDAwMDAwNjU5OCAwMDAwMCBuIAowMDAwMDA2ODE4IDAwMDAwIG4gCjAwMDAwMDcwNDAgMDAwMDAgbiAKMDAwMDAwNzE2MSAwMDAwMCBuIAowMDAwMDA3NTUxIDAwMDAwIG4gCjAwMDAwMDc2NDAgMDAwMDAgbiAKMDAwMDAwNzk2MSAwMDAwMCBuIAowMDAwMDEwMzk4IDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzYgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM3ID4+CnN0YXJ0eHJlZgoxMDU1NQolJUVPRgo=\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_signals(tau, x1, h3.subs(t, -2), r'$h(t-\\tau)$, $x(\\tau)$', r'$\\tau$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From this it becomes clear that the convolution result for the first case is given as\n",
"\n",
"\\begin{equation}\n",
"y(t) = 0 \\qquad \\text{for } t < 0\n",
"\\end{equation}\n",
"\n",
"The second case, partial overlap, is illustrated for $t = \\frac{1}{2}$"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1Ni43MjUgMzY2LjE1OTI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nKVay64dtxHcz1fMUgYiimw+exnDsYBsAltCvMlGceSHoKvAkRXn81M1j/Ng99V1EAk2jljVJIdsdndxJq3vlrT+uMb1Hf77bU3rS/z34xLxr4el1Ba6VPx+f/mdWwupKn69B+v2Xz8tyw/Liz/C/CMsXi49yCo59DwAo7PSQsSvS9P7S1OWHsrRC61u/330KnuvP2J2mGkYmCvGYMvSeohZe89r7qGW3DnaTWMJcWt8vyxf4mF/W37B/+P6PKKvqqHhqUYVAVUkaF2/f1i+fL2++DqtKa6vf1hGyH1obNtCvP7H8qx8sb5+t/zpNTqKIbIv/D1/wBqmz796++7NXz+9evPh4/OHnz98+rh+9c/lG/zdpr4kPPiQlnK7nfNt6+cmnbJieYaWMRq4v3PW8n/PWqSFlrhf1zlf28yM76Yj2PaSZZC6T5hzipzTijntA+TYQlY8Vbkd4rb184PkmIMkTZ1rWG7GkWmcAa/d9vxunJvWJ8YZOcRYKx0M7Os45RznZrdKkVDx1Bqkb4+/7dS2EavZiFDzQXnxtdxux1/+/v7nXz69ff7rm0+/Z1NySHdtj2wK1qtvLpLxo7TRj20J08ZcBlEJvWku7XaUa+NTw4wRtEvpCXPSYyh5ZKhUelAtWvLtWDetTw2WSglJR2y919SP0cojo9FMJGJLb0e7aX1yNMWhFMTDkqS3Y7T22Gh1BAQ/nvTb0a6tT40mtYRWVFqsMZ+bNh4ZLaeMKJd6ljvfuLY+6R1Rw+hlVHiI5m20dHURxBO4+XP6b9Ie2nHIteJU6MXf6dxl6w3mcO5jkGc/bWEJJ/w+XF2n8exvzzZKDhqxND3RS+PUy68bBQdRUuvabijXbr54pJtnfziA1EdPUfMFWB8Bbgb+z0bBo6bHht1nr0HlZshjMk4QSAhCcSDebef2XLPPxue5C+x7ybXu5/muh8+HlLmfisCVy+XBfn9H7Oou+5c8wtgcCS2S1n+9Xb9bP6wpVObxkCTBtZrso7TjT4cf91jHkFxF129fri++evvvn79/++3LL9fvPy4oEpAxq6a7IC6IzE1V72LfK68d5B4GFir3mWzbUb/AcwZmUyey0w6y8uhJbDPZtj8sqKwkdZG5Z6cdhY0gzNTexkR22kEeIWpLZeaa5oel54DTOs/XtD4sI4acSk0T0zaDCkdsqanMXNv+sCCLVGVGnchOO8gDfiTwkZls21FXxRLG6Hdlxcb2ANCThCylzH077SALPLZojHlmOwDpPXSNd0570C0AemaYrzXNruEBLCATYnvpOjuHB5COMjtF6fP+eADotYY4FId1pjsA6PDIUVG8md4dAPSeQob/VkN3ANKRkujDZmUcAPTRsXdVhtkmBwBd4RgRfZjeHQA5NWKKHRF3jjoeQDqWt8UR5949AHQk6lgw6OyQHkA6kzWS1XyWPWAv4CsLZtO7Axz1fk6964qjgJ/a93Ll1SPQYTKkRPFNDLSbjFhQSrgmFqIJFB+K9uqN4kG7SWYc8p7Fg2gyoHdRc3kmHkQTLHvC+MUx8SCYoBzPaEYYMyYuBJOCoo/1mfP4LkQTJFAm+OaYeBBMakbAzB2Hy5i4EE00oKOYnVFcCCat4sTjSa2Fh9AARVNhqe9YeNBugrFr800stJsUZGPP9V3oMGkDKdQ3MdBuUhPEpYklDrDTUTklMcfXAUgfSNMxmgzhAaAj9rY+Yp6DsgeQzjG1yJxoPQD0UYIgsac5KHsA6Ao/Tkq9M9EdgHSUT7WXaBbSAXjLkBAdpZgiwQOOS4k2RpxXxgNATwk1OQoN07sDkI7zB0FuyHMzC94EaWEKTdtMKtQZKuZuJuEAoKNmLlmRIWe6A5CO39BWyZTeDgB6QRUQu9qHdADSBzRWjSaBewDo0MedRYCZuwOA3uLmn8PspgOQ3umfjnBwAMqMwpgtatbdAXgPhWIN6SrPZ9QDSK84ijGb4sMDQOdhyT1GM3cHIB0ZWrqt4jwAuidKgLpOphz2ANKhRCSWOq+MB4CeCsrYNtJcgXoA6CzBaxGzkB5AeguxDxswvln/FzmbqGGRcDIEP7wMShrlX0yKum75nIYdvInGn13E9tKzZLYOzDPJRcUagB6AErbzjjFriLkjOJ8eYAFexAflvTHacuz1JNtmKNPNJUrLbK0DGUoPaeoAoPPavirVlwatqJ/KQXcAqFNsGopj/EaFkhW9jEOfOgAUKr2/Qw6wVUus8ZiMB4DOPSpFVmif1mppR+J12jelmniTNlZEn4J1EL1IVQNAfkLzi9LdoP4rjkE6OvcAClAUbQp5h14qH+2Un3MzxSe8CMEv9bW0QE0V0yk/HYQGlLzKG05Ewo4KYchp4CCUoBV1RMK/Vu6i9H56gItQhEpQTahv1sqHgge2U4U6CA0U6SSjQq+ocXrhvh98C+yvPXDWk2a+jukVpZCeOtRBKESRIXjC1oblzvW4DH7lAqTD51JUlP8NxwCrcJm/h1C5olpBkmtjRYBWhNB2DuAhFKNMiDjHbR1xu+Ap5x54CA1401sqyifoT6Sjphf56iDUr5DYGD2tCLt1JBy+U79agPpVUMKiBugrdjMUBLV8brIL0UQDAm7hVTZqh65baD9MPGjXsaitExYt8aAiesSzunWhXcu2NBoq+MTb7tailKuatRD1U8TWK68A00ASadjYi37yIJpU+qVQVkZuQO3xHMWFKLkkRJRhyreA8FLGKD0llwfRBKeqR3S2CiIWMmeSs8R0IUquwndBmaNjURWxPMopuTyIJhVZRwcrbSbFOjSl08SDaIISFOmNiSwJa105T4gP7SZ4QEYIvhdA5hK5WhhkN2CExqJsLxLqtbz2kMNAm5ri0wN2OlxBzI2kB+z0oRBHRgY5AOnYR+3mWs1pp4LlzuSYzVQcYBe8XUYfRmI5ABUZ31LhBFtFZgHSFWIeAslMxgGoyCoKUqhMsy4OQEXG+yqx91i2nWRkdZVs76UcgHqML01jMYrJA0inJhGmu5luAeoxvoRFajFlrQOQjpBW+jAXyB5APVaYD5HajSKzAOmK+IXKfq5TPYDlHne6STQFvwOQjugYh87O67RTleWArJNsue8ApLOuTNlc73sAVRmyoG6vZ2ZVZgGqMpYwOItGxDkA6QhqUDHN0i1AVYZwGPfYNqkyC1CVUXkrX23NqswCpLOYVjHe7gEP+ycCXVlGz6rMAqQP1E84v0YNOwBVGSJPZJ1gVJkFSEdCQQFobu49gKoMwhHZ0VzjeABVGWoCRDUTTT2A9O0dmHUCD3hClcn65/3Tpe2DoElaXV62X79Bur4Sv/nCCH1dvlraviqynyo9uJ8qLR8uHyadHyTtny/dzP40u5v6NNz9J0+PjvXN8l8bxngwCmVuZHN0cmVhbQplbmRvYmoKMTEgMCBvYmoKMjUzMAplbmRvYmoKMTYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTMgPj4Kc3RyZWFtCnicPVAxkgMxCOv9Cp4ACLD9nr25Kvl/G2FnUuyKQUhGFEJUkPxllcxS+bOROQVQeY/YIPUaoV8sMj5PtQXhEtOoTyIEZJ8RMwVzs1OCtS7uPExJODWci4BEKr/dDNopJJTzy6m/+Izeoytvp0rxpA4g40YXVbEd3GCKLaI2Y55nW1ywhZPsNXz+KuPKZV2BNtvEmT/ZhbrkeQBkMhmPiyVVYRe5bvnt7C0ZnHJq3chkMgjD9jUj10U7TPUZOM8QWNRUHOdmGLj0OCLo9D3/M/4/nA5OPAplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTc4ID4+CnN0cmVhbQp4nD2QSxIDIQhE956ijyA/0fMkldXk/ts0zpiF9hMobLCl6BjOy9WQXfGWVhie+DbvC56Jq6n1hyQVMvumDhmLZ/IUJyQUryZjQNyx1dajcTLCDLssJmZgroqvRC6oUALqUfJqZqPgaqaCvn3EVpn1FhcIRQImLGcr/p8D0+sWHQwWmO03y7M89grTdCzMe4Z5D0UjfgblWm5gZa2Dn4Ydmve2aCj/5Cd7Fni1zw/eq0KhCmVuZHN0cmVhbQplbmRvYmoKMTggMCBvYmoKPDwgL0JCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTE3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nDWOuw0DQQhE861iSoABlqWekxzZ/acG3zl6T5rhs4wFFcFnmSWOw6KQG1YxuJbbGXkvp0GatuumSpMp0ABD4Nl19r4skBvaSu+4zgTVjcge7CO3qBDhY1v2Y3HqSe3wbzZLbIxtHvhR+9nn+2u9vv1dJigKZW5kc3RyZWFtCmVuZG9iagoxOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkyID4+CnN0cmVhbQp4nD2MsQ3AMAgEe6b4BSJhjG3YJ0rl7N/mLSdp4PQP19KgOKxxdlU0HziLfHhL9YSNxJSmlUdTnN3aFg4rgxS72BYWXmERpPJqmPF5U9XAklKU5c36f3c9x6sbugplbmRzdHJlYW0KZW5kb2JqCjE0IDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2Fucy1PYmxpcXVlIC9DaGFyUHJvY3MgMTUgMCBSCi9FbmNvZGluZyA8PCAvRGlmZmVyZW5jZXMgWyAxMDQgL2ggMTE2IC90IDEyMCAveCBdIC9UeXBlIC9FbmNvZGluZyA+PgovRmlyc3RDaGFyIDAgL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udERlc2NyaXB0b3IgMTMgMCBSCi9Gb250TWF0cml4IFsgMC4wMDEgMCAwIDAuMDAxIDAgMCBdIC9MYXN0Q2hhciAyNTUgL05hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAxMiAwIFIgPj4KZW5kb2JqCjEzIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyA5NgovRm9udEJCb3ggWyAtMTAxNiAtMzUxIDE2NjAgMTA2OCBdIC9Gb250TmFtZSAvRGVqYVZ1U2Fucy1PYmxpcXVlCi9JdGFsaWNBbmdsZSAwIC9NYXhXaWR0aCAxMzUwIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxMiAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzUwIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjggNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjE3IDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTcgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwOAo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTk1IDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoxNSAwIG9iago8PCAvaCAxNiAwIFIgL3QgMTcgMCBSIC94IDE5IDAgUiA+PgplbmRvYmoKMjQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA2NiA+PgpzdHJlYW0KeJwzNrRQMFAwN1fQNTQ0VTAyMlAwNDJRSDHkMjQ0BzNzuWCCOWCWiQGQYQgkwRpyuGBac8A6ILJQrTlcaQBNOBH1CmVuZHN0cmVhbQplbmRvYmoKMjUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzOTIgPj4Kc3RyZWFtCnicPVJLbgUxCNvPKbhApfBNcp6p3u7df1ubzFSqCi8DtjGUlwypJT/qkogzTH71cl3iUfK9bGpn5iHuLjam+FhyX7qG2HLRmmKxTxzJL8i0VFihVt2jQ/GFKBMPAC3ggQXhvhz/8ReowdewhXLDe2QCYErUbkDGQ9EZSFlBEWH7kRXopFCvbOHvKCBX1KyFoXRiiA2WACm+qw2JmKjZoIeElZKqHdLxjKTwW8FdiWFQW1vbBHhm0BDZ3pGNETPt0RlxWRFrPz3po1EytVEZD01nfPHdMlLz0RXopNLI3cpDZ89CJ2Ak5kmY53Aj4Z7bQQsx9HGvlk9s95gpVpHwBTvKAQO9/d6Sjc974CyMXNvsTCfw0WmnHBOtvh5i/YM/bEubXMcrh0UUqLwoCH7XQRNxfFjF92SjRHe0AdYjE9VoJRAMEsLO7TDyeMZ52d4VtOb0RGijRB7UjhE9KLLF5ZwVsKf8rM2xHJ4PJntvtI+UzMyohBXUdnqots9jHdR3nvv6/AEuAKEZCmVuZHN0cmVhbQplbmRvYmoKMjYgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MCA+PgpzdHJlYW0KeJxNjUESwCAIA++8Ik9QRND/dHrS/1+r1A69wE4CiRZFgvQ1aksw7rgyFWtQKZiUl8BVMFwL2u6iyv4ySUydhtN7twODsvFxg9JJ+/ZxegCr/XoG3Q/SHCJYCmVuZHN0cmVhbQplbmRvYmoKMjcgMCBvYmoKPDwgL0JCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzcKL1N1YnR5cGUgL0Zvcm0gL1R5cGUgL1hPYmplY3QgPj4Kc3RyZWFtCnic4zI0MFMwNjVVyOUyNzYCs3LALCNzIyALJItgQWTTAAFfCgoKZW5kc3RyZWFtCmVuZG9iagoyOCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagozMCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagozMSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMzMgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNyA+PgpzdHJlYW0KeJwzNrRQMIDDFEMuABqUAuwKZW5kc3RyZWFtCmVuZG9iagozNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDI0OCA+PgpzdHJlYW0KeJwtUTmSA0EIy+cVekJz0++xy5H3/+kKygGDhkMgOi1xUMZPEJYr3vLIVbTh75kYwXfBod/KdRsWORAVSNIYVE2oXbwevQd2HGYC86Q1LIMZ6wM/Ywo3enF4TMbZ7XUZNQR712tPZlAyKxdxycQFU3XYyJnDT6aMC+1czw3IuRHWZRikm5XGjIQjTSFSSKHqJqkzQZAEo6tRo40cxX7pyyOdYVUjagz7XEvb13MTzho0OxarPDmlR1ecy8nFCysH/bzNwEVUGqs8EBJwv9tD/Zzs5Dfe0rmzxfT4XnOyvDAVWPHmtRuQTbX4Ny/i+D3j6/n8A6ilWxYKZW5kc3RyZWFtCmVuZG9iagozNSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDIxMCA+PgpzdHJlYW0KeJw1UMsNQzEIu2cKFqgUAoFknla9df9rbdA7YRH/QljIlAh5qcnOKelLPjpMD7Yuv7EiC611JezKmiCeK++hmbKx0djiYHAaJl6AFjdg6GmNGjV04YKmLpVCgcUl8Jl8dXvovk8ZeGoZcnYEEUPJYAlquhZNWLQ8n5BOAeL/fsPuLeShkvPKnhv5G5zt8DuzbuEnanYi0XIVMtSzNMcYCBNFHjx5RaZw4rPWd9U0EtRmC06WAa5OP4wOAGAiXlmA7K5EOUvSjqWfb7zH9w9AAFO0CmVuZHN0cmVhbQplbmRvYmoKMjIgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zIC9DaGFyUHJvY3MgMjMgMCBSCi9FbmNvZGluZyA8PAovRGlmZmVyZW5jZXMgWyAzMiAvc3BhY2UgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NCAvY29tbWEgNDYgL3BlcmlvZCA0OCAvemVybyAvb25lCi90d28gNTIgL2ZvdXIgNTQgL3NpeCA1NiAvZWlnaHQgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDIxIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDIwIDAgUiA+PgplbmRvYmoKMjEgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoyMCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMyAwIG9iago8PCAvY29tbWEgMjQgMCBSIC9laWdodCAyNSAwIFIgL2ZvdXIgMjYgMCBSIC9vbmUgMjggMCBSIC9wYXJlbmxlZnQgMjkgMCBSCi9wYXJlbnJpZ2h0IDMwIDAgUiAvcGVyaW9kIDMxIDAgUiAvc2l4IDMyIDAgUiAvc3BhY2UgMzMgMCBSIC90d28gMzQgMCBSCi96ZXJvIDM1IDAgUiA+PgplbmRvYmoKMyAwIG9iago8PCAvRjEgMjIgMCBSIC9GMiAxNCAwIFIgPj4KZW5kb2JqCjQgMCBvYmoKPDwgL0ExIDw8IC9DQSAwIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4KL0EyIDw8IC9DQSAxIC9UeXBlIC9FeHRHU3RhdGUgL2NhIDEgPj4gPj4KZW5kb2JqCjUgMCBvYmoKPDwgPj4KZW5kb2JqCjYgMCBvYmoKPDwgPj4KZW5kb2JqCjcgMCBvYmoKPDwgL0YxLURlamFWdVNhbnMtbWludXMgMjcgMCBSIC9GMi1EZWphVnVTYW5zLU9ibGlxdWUtdGF1IDE4IDAgUiA+PgplbmRvYmoKMiAwIG9iago8PCAvQ291bnQgMSAvS2lkcyBbIDEwIDAgUiBdIC9UeXBlIC9QYWdlcyA+PgplbmRvYmoKMzYgMCBvYmoKPDwgL0NyZWF0aW9uRGF0ZSAoRDoyMDIxMDQyNzE1NTcwNCswMicwMCcpCi9DcmVhdG9yIChNYXRwbG90bGliIHYzLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZykKL1Byb2R1Y2VyIChNYXRwbG90bGliIHBkZiBiYWNrZW5kIHYzLjMuNCkgPj4KZW5kb2JqCnhyZWYKMCAzNwowMDAwMDAwMDAwIDY1NTM1IGYgCjAwMDAwMDAwMTYgMDAwMDAgbiAKMDAwMDAxMDQ0MyAwMDAwMCBuIAowMDAwMDEwMTc2IDAwMDAwIG4gCjAwMDAwMTAyMTkgMDAwMDAgbiAKMDAwMDAxMDMxOCAwMDAwMCBuIAowMDAwMDEwMzM5IDAwMDAwIG4gCjAwMDAwMTAzNjAgMDAwMDAgbiAKMDAwMDAwMDA2NSAwMDAwMCBuIAowMDAwMDAwMzk1IDAwMDAwIG4gCjAwMDAwMDAyMDggMDAwMDAgbiAKMDAwMDAwMzAwMCAwMDAwMCBuIAowMDAwMDA0NTExIDAwMDAwIG4gCjAwMDAwMDQzMDMgMDAwMDAgbiAKMDAwMDAwMzk3MyAwMDAwMCBuIAowMDAwMDA1NTY0IDAwMDAwIG4gCjAwMDAwMDMwMjEgMDAwMDAgbiAKMDAwMDAwMzMwNyAwMDAwMCBuIAowMDAwMDAzNTU4IDAwMDAwIG4gCjAwMDAwMDM4MDkgMDAwMDAgbiAKMDAwMDAwODk0NSAwMDAwMCBuIAowMDAwMDA4NzQ1IDAwMDAwIG4gCjAwMDAwMDgzNDkgMDAwMDAgbiAKMDAwMDAwOTk5OCAwMDAwMCBuIAowMDAwMDA1NjE2IDAwMDAwIG4gCjAwMDAwMDU3NTQgMDAwMDAgbiAKMDAwMDAwNjIxOSAwMDAwMCBuIAowMDAwMDA2MzgxIDAwMDAwIG4gCjAwMDAwMDY1NTEgMDAwMDAgbiAKMDAwMDAwNjcwMyAwMDAwMCBuIAowMDAwMDA2OTIzIDAwMDAwIG4gCjAwMDAwMDcxNDUgMDAwMDAgbiAKMDAwMDAwNzI2NiAwMDAwMCBuIAowMDAwMDA3NjU2IDAwMDAwIG4gCjAwMDAwMDc3NDUgMDAwMDAgbiAKMDAwMDAwODA2NiAwMDAwMCBuIAowMDAwMDEwNTAzIDAwMDAwIG4gCnRyYWlsZXIKPDwgL0luZm8gMzYgMCBSIC9Sb290IDEgMCBSIC9TaXplIDM3ID4+CnN0YXJ0eHJlZgoxMDY2MAolJUVPRgo=\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_signals(tau, x1, h3.subs(t, .5), r'$h(t-\\tau)$, $x(\\tau)$', r'$\\tau$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence, for the second case the convolution integral degenerates to\n",
"\n",
"\\begin{equation}\n",
"y(t) = \\frac{3}{4}\\int_{0}^{t} e^{-(t - \\tau)} d\\tau = \\frac{3}{4} (1 - e^{-t}) \\qquad \\text{for } 0 \\leq t < 1\n",
"\\end{equation}\n",
"\n",
"The third case, full overlap, is illustrated for $t = 3$"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1Ni43MjUgMzY2LjE1OTI1IF0gL1BhcmVudCAyIDAgUiAvUmVzb3VyY2VzIDggMCBSCi9UeXBlIC9QYWdlID4+CmVuZG9iago5IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTEgMCBSID4+CnN0cmVhbQp4nKVaS88VyQ3d96/oJSOFolwvVy0HkUHKJmJAmU02hGEYEB/RhCGTn59z+nFv37Y/PqKAQPf62OV6uGyfvi3zh0nmd3OcP+DfH7PMz/Hv3RTx7W4qtQVNFZ8/Xj7n1oLUgU8foXX89us0/TI9+R7mn2HxfNKQ5pSD5g4Yg5UWIj5dRB8vopw0lG0UWh2/b6OmddR3mB1mGjrmCh+UTE1DzEM1z1lDLVnp7SAsIS7Cj9P0FIv9Y/oN/8f5ccRYdYSGVfWaElRTCqPOb+6mp6/mJz/ILHF+9cvUQ9Y+Yls24tXP06Py3fzqw/TnVxgohsix8Hf/AGuYPn729sPrv315+frT58d37z99+Tw/++f0An+XqU+ChffUJLfjnI/Sr01a8sD29FF6b9D9xlmn/3vWKbXQhOd1nfNVZmZ8M52EYy85daquE+acIuc0Y06rgxxbyAOrKkcXR+nXneSYQ5Ihyj0sBz/p5Kcjapczv/FzkD7gp+cQY60MMGhf/ZTdz+G0SkmhYtUjJF2Wv5zUchCzOYhQ86by5Id0PI6//uPj+9++vH38++sv33IoOciN7J5DwX7pEiIZH0rruh1LOB3MxclIAYsYox+9XIUPuek9jF4lpZ7H5ind40lKR26IqbSjq4P0IV9SSoBdxjftm7NyjzNaIQuUUY7ODtIHnQ1cySYN8SO6OWv3Oas9lNG0yI2zq/QhZ6mW0LDdreXaNmf9HmdZmG7L6OMmLq7SByMjjjByFymyBblcowOpBBH+mKErQ0Pb7veouBDjEuqM67IMBnPE9ebj0a9LRsLlvs1U11k8+vujRSWHEXGjVRig8TTK74sK7mCSpqMdVK7DfHfPMI/+tAGiXSWOfAHme4CD4/8sKliq3Od2nT32Lx1cbpNx7r8g/0TcjL5c2X3Pvpqaz0Pg2Euudb3KNyN8PZucx6nIWblcFvbtA3Gom8Jfcg99iSNIksz/ejv/NH+aJVSW8CBJaustrV7a9kcRxhpr7ynXNOYfn89Pnr399/s3b398/nR+83lCf4BiWYfc5O+EtWcklmPWe+mImeqDiuC2nXWtnF0QnGlUOSk78rupSsixtPMkrBiq2KfUejlPwpGjn8GB9KqjnJQd+dL8VJEe81nZyu8mxc0pcbTz8hw5lHHJRxojnZWt/G7qCVe7a2onZUcOZUWY6DgVrZee/G4aaCYKJndWduRQRmKtCdF0VrZy9GDM+Uiw46ztAVRHJGaIz+fiAVAXCaotynlLPIDqWHyp1WyKB0Adl27gXtjJOADVR4haajFLdQCosynCoeVzvHoA1QcOrkdzFTxg7X1L0WQGt3Io4zohT8ZyjlkPoDrIQEojm31xAKi3jGCO2s9B7gFQV2SxNjQbdQegesUl7NFcIQ+AekemVDRMJmIcgOodVVhNTnHkUB7oI3KK5up7ALqHiCSGVJ3PacUDqK5sp9H+GnULQF1YnlEyjLoDsJWJDLrez2fqAWvnk1usZtc9gOo1RHSqyY5ugVV9aEkmH3nAypkQ0rna0S2wqiPD2yzgARsjy2gP+5zQAqOAo4xfDSy0mQzGh29ioNVkoNXAF8/EQjBBnugd/MZaeAgMivDxABoRa+FCNAGFHooezzHxIJjUHCoudXfm5UI0QU+nWj0vLgSTVpHg2YhYExeiSQspJ7bd1sSDVpNSetTmmlhoNakRvZSJLgfY1GtrwyQBB1jV0cqkau6dA1Bd0aypTeweQHWwLsistpFDGQ0Nlo9O9qztAFQHV0W5N0XDA6Dea8DuFjXqDgB1diopR9MbeQAfgQjIYUVDfG5YHYDqyPatxnwe3QOgLjUgmJoZ3MrZZScMMYbpGjwA6lkQqWjfTFvuAFQfSMdweT5SD4B60YBPzVQBD4A6iLP01k0F8wCotxhwHtXMxcqpjLY9lmyKqQdAXUsYPTnb6AAkLLI82RKzjQ5AdRAZJGDDADwA6qj3gm6yGXUHACGKESeN+3WejAdQHfVeSzcZxgOgznqfc8mGbzkA1fkIF7fXTMYBoI7ihIxu1V/M/wtxFbLVASYFal+VnBkZIYI5xj59na223EpMS6iHpLr1b60iG+c91C3AXcTnqGutb5rZEm+7aAGoIxunnusqZTne6oAHLLR1pCxrklLhRbsQVwNAHfkVsbFJK+Jv564OAD4Kn137mnXA5VCEN0LqACCZbMk0pmW/OkJ2yMYyHQDMkYkEaXbxichOss3dA6COYy29rhx/sLhvO+MBYI9LV57YH3acco+xbPTRAUgIUUxaWzrtjvYfvXHfGaGD0AB0qIO4dIrBi7rqbuAgJIWo/Vg50w8YbBxZ8s4KHYQ8L4UBTqSLY6yPTG0jeg6yEsOsDdyCYhDBrPsaPIRcD12x8tBRGhP6S9mpnpGvxBC7WxCAI4D3Sh9XYngGSAy5zyhcjeIMel/32XvISg4Rr1wTEoDg3PfxHYDqbKIVtY7ikWKMF3boIKSHCcyedGfG1UvKh207P3QQGuAwEOODUgULl317HGAliLF3PghGk5vRC4xyZYgGIedLbKW6tLlgAshHo+2sz0FoMJD5ElZGMQhqbnsEeQiJIh/o9rxkRe5EQ0e8MUUHIfdD3chwrDMOKaukPYJchOwP/XyM6GRmtulI9T3v9M9BaMAC34TjLM9x6n5sLrIyQHAMtDNzjaCrFTT0SgENQrqCPUYRGTqDBoBspP1iuggNBmaK+aUZkYMWLu0H7SIbWZGMlD2jo0BXEfu+Bg9ZqQryAJ9vtcL+JuZyZSoGWYkKenj2NYi1EbXmdOUpBln79ahSNM/oQ1B7aj7wB4OwTcaliqXAnSL3d4TAbuAhNCD7Z8rv/FlvkI9t+hZgX81fpgpLJkJNUottX7KHsLPG1UNeGn2WiAjL0vf86EM0wdJiYgnFHeEDpHpx4kLssBPKG7J+mpGBAgiH5L18u9DWlEvEnVp+mhpFSryYeBAbc9wpJGj+NBD5ZKClS2vuIDRAoKGPRckQbucocc+uPsR+vqJKdmStGRkOQ43Ude/oPYgmPM/CmERJJXeVPUX5EJudgquIO0Amjf1BKdivnw+xt48B1RgJciblqsxLuxcXogn4emcSWn6DqqNJvZh4EE2QUxufvKLRq3yM1S6n4kKrSWui7FoiiWYte3bzodWEEc2uC/msYY17P+ZDNOGv0YNPBXjYMZVLWveh1QRJgP0xxK0e2JAFVvWMLqSart8BNvWWhrrqJ4BcC4vJlS3ImWtZgOpYU4v2QboHkG2hntWU1fyC4wArOUMH3u0PPg6wkrNWi0SPnJ0Bsq2Iz6JW3QGozt8M2ScYdQuQnAkDiXXyTM4sQHWedU3FcjkLkFZIUHg0j109gOrsdaO285MFDyA5Q7VHhjYs1wNWLgfOEM3DJQ94gMul+S/rW03Lu0InQnb5Kf76etL1F/PDy0cY6/JC0/LCkX2L6c59i2n6dHlnaX9XaX2z6TD73exm6id3t29D3evrxfRfhwd+SQplbmRzdHJlYW0KZW5kb2JqCjExIDAgb2JqCjI2MTIKZW5kb2JqCjE2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMjEzID4+CnN0cmVhbQp4nD1QMZIDMQjr/QqeAAiw/Z69uSr5fxthZ1LsikFIRhRCVJD8ZZXMUvmzkTkFUHmP2CD1GqFfLDI+T7UF4RLTqE8iBGSfETMFc7NTgrUu7jxMSTg1nIuARCq/3QzaKSSU88upv/iM3qMrb6dK8aQOIONGF1WxHdxgii2iNmOeZ1tcsIWT7DV8/irjymVdgTbbxJk/2YW65HkAZDIZj4slVWEXuW757ewtGZxyat3IZDIIw/Y1I9dFO0z1GTjPEFjUVBznZhi49Dgi6PQ9/zP+P5wOTjwKZW5kc3RyZWFtCmVuZG9iagoxNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjE4IDAgb2JqCjw8IC9CQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExNwovU3VidHlwZSAvRm9ybSAvVHlwZSAvWE9iamVjdCA+PgpzdHJlYW0KeJw1jrsNA0EIRPOtYkqAAZalnpMc2f2nBt85ek+a4bOMBRXBZ5kljsOikBtWMbiW2xl5L6dBmrbrpkqTKdAAQ+DZdfa+LJAb2krvuM4E1Y3IHuwjt6gQ4WNb9mNx6knt8G82S2yMbR74UfvZ5/trvb79XSYoCmVuZHN0cmVhbQplbmRvYmoKMTkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA5MiA+PgpzdHJlYW0KeJw9jLENwDAIBHum+AUiYYxt2CdK5ezf5i0naeD0D9fSoDiscXZVNB84i3x4S/WEjcSUppVHU5zd2hYOK4MUu9gWFl5hEaTyapjxeVPVwJJSlOXN+n93PcerG7oKZW5kc3RyZWFtCmVuZG9iagoxNCAwIG9iago8PCAvQmFzZUZvbnQgL0RlamFWdVNhbnMtT2JsaXF1ZSAvQ2hhclByb2NzIDE1IDAgUgovRW5jb2RpbmcgPDwgL0RpZmZlcmVuY2VzIFsgMTA0IC9oIDExNiAvdCAxMjAgL3ggXSAvVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL2ggMTYgMCBSIC90IDE3IDAgUiAveCAxOSAwIFIgPj4KZW5kb2JqCjI0IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggNjYgPj4Kc3RyZWFtCnicMza0UDBQMDdX0DU0NFUwMjJQMDQyUUgx5DI0NAczc7lggjlglokBkGEIJMEacrhgWnPAOiCyUK05XGkATTgR9QplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzkyID4+CnN0cmVhbQp4nD1SS24FMQjbzym4QKXwTXKeqd7u3X9bm8xUqgovA7YxlJcMqSU/6pKIM0x+9XJd4lHyvWxqZ+Yh7i42pvhYcl+6hthy0ZpisU8cyS/ItFRYoVbdo0PxhSgTDwAt4IEF4b4c//EXqMHXsIVyw3tkAmBK1G5AxkPRGUhZQRFh+5EV6KRQr2zh7yggV9SshaF0YogNlgApvqsNiZio2aCHhJWSqh3S8Yyk8FvBXYlhUFtb2wR4ZtAQ2d6RjREz7dEZcVkRaz896aNRMrVRGQ9NZ3zx3TJS89EV6KTSyN3KQ2fPQidgJOZJmOdwI+Ge20ELMfRxr5ZPbPeYKVaR8AU7ygEDvf3eko3Pe+AsjFzb7Ewn8NFppxwTrb4eYv2DP2xLm1zHK4dFFKi8KAh+10ETcXxYxfdko0R3tAHWIxPVaCUQDBLCzu0w8njGedneFbTm9ERoo0Qe1I4RPSiyxeWcFbCn/KzNsRyeDyZ7b7SPlMzMqIQV1HZ6qLbPYx3Ud577+vwBLgChGQplbmRzdHJlYW0KZW5kb2JqCjI2IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggOTAgPj4Kc3RyZWFtCnicTY1BEsAgCAPvvCJPUETQ/3R60v9fq9QOvcBOAokWRYL0NWpLMO64MhVrUCmYlJfAVTBcC9ruosr+MklMnYbTe7cDg7LxcYPSSfv2cXoAq/16Bt0P0hwiWAplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2JqCjw8IC9CQm94IFsgLTEwMjEgLTQ2MyAxNzk0IDEyMzMgXSAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDM3Ci9TdWJ0eXBlIC9Gb3JtIC9UeXBlIC9YT2JqZWN0ID4+CnN0cmVhbQp4nOMyNDBTMDY1VcjlMjc2ArNywCwjcyMgCySLYEFk0wABXwoKCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA4MCA+PgpzdHJlYW0KeJxFjLsNwDAIRHumYAR+JmafKJWzfxsgStxwT7p7uDoSMlPeYYaHBJ4MLIZT8QaZo2A1uEZSjZ3so7BuX3WB5npTq/X3BypPdnZxPc3LGfQKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0NyA+PgpzdHJlYW0KeJw9T7kNAzEM6z0FFzjAeixb81yQ6rJ/G8pGUggiQPGRZUfHClxiApOOORIvaT/4aRqBWAY1R/SEimFY4G6SAg+DLEpXni1eDJHaQl1I+NYQ3q1MZKI8rxE7cCcXowc+VBtZHnpAO0QVWa5Jw1jVVl1qnbACHLLOwnU9zKoE5dEnaykfUFRCvXT/n3va+wsAby/rCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxNDkgPj4Kc3RyZWFtCnicNY9LDgMhDEP3OYUvMFJ+hHAeqq6m9982YVoJCQvbL8EWg5GMS0xg7Jhj4SVUT60+JCOPukk5EKlQNwRPaEwMM2zSJfDKdN8ynlu8nFbqgk5I5OmsNhqijGZew9FTzgqb/svcJGplRpkDMutUtxOysmAF5gW1PPcz7qhc6ISHncqw6E4xotxmRhp+/9v0/gJ7MjBjCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCA0OSA+PgpzdHJlYW0KeJwzNrRQMFAwNDAHkkaGQJaRiUKKIRdIAMTM5YIJ5oBZBkAaojgHriaHKw0AxugNJgplbmRzdHJlYW0KZW5kb2JqCjMyIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMzE3ID4+CnN0cmVhbQp4nDVSS3JDMQjbv1Nwgc6Yv32edLJq7r+thCcrsC1AQi4vWdJLftQl26XD5Fcf9yWxQj6P7ZrMUsX3FrMUzy2vR88Rty0KBFETPfgyJxUi1M/U6Dp4YZc+A68QTikWeAeTAAav4V94lE6DwDsbMt4Rk5EaECTBmkuLTUiUPUn8K+X1pJU0dH4mK3P5e3KpFGqjyQgVIFi52AekKykeJBM9iUiycr03VojekFeSx2clJhkQ3SaxTbTA49yVtISZmEIF5liA1XSzuvocTFjjsITxKmEW1YNNnjWphGa0jmNkw3j3wkyJhYbDElCbfZUJqpeP09wJI6ZHTXbtwrJbNu8hRKP5MyyUwccoJAGHTmMkCtKwgBGBOb2wir3mCzkWwIhlnZosDG1oJbt6joXA0JyzpWHG157X8/4HRVt7owplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTcgPj4Kc3RyZWFtCnicMza0UDCAwxRDLgAalALsCmVuZHN0cmVhbQplbmRvYmoKMzQgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIyIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIzIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgMzIgL3NwYWNlIDQwIC9wYXJlbmxlZnQgL3BhcmVucmlnaHQgNDQgL2NvbW1hIDQ2IC9wZXJpb2QgNDggL3plcm8gL29uZQovdHdvIDUyIC9mb3VyIDU0IC9zaXggNTYgL2VpZ2h0IF0KL1R5cGUgL0VuY29kaW5nID4+Ci9GaXJzdENoYXIgMCAvRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250RGVzY3JpcHRvciAyMSAwIFIKL0ZvbnRNYXRyaXggWyAwLjAwMSAwIDAgMC4wMDEgMCAwIF0gL0xhc3RDaGFyIDI1NSAvTmFtZSAvRGVqYVZ1U2FucwovU3VidHlwZSAvVHlwZTMgL1R5cGUgL0ZvbnQgL1dpZHRocyAyMCAwIFIgPj4KZW5kb2JqCjIxIDAgb2JqCjw8IC9Bc2NlbnQgOTI5IC9DYXBIZWlnaHQgMCAvRGVzY2VudCAtMjM2IC9GbGFncyAzMgovRm9udEJCb3ggWyAtMTAyMSAtNDYzIDE3OTQgMTIzMyBdIC9Gb250TmFtZSAvRGVqYVZ1U2FucyAvSXRhbGljQW5nbGUgMAovTWF4V2lkdGggMTM0MiAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMjAgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM0MiA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDIzIDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxMiA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjEyIDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDUKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk4MiA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMjMgMCBvYmoKPDwgL2NvbW1hIDI0IDAgUiAvZWlnaHQgMjUgMCBSIC9mb3VyIDI2IDAgUiAvb25lIDI4IDAgUiAvcGFyZW5sZWZ0IDI5IDAgUgovcGFyZW5yaWdodCAzMCAwIFIgL3BlcmlvZCAzMSAwIFIgL3NpeCAzMiAwIFIgL3NwYWNlIDMzIDAgUiAvdHdvIDM0IDAgUgovemVybyAzNSAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIyIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8IC9GMS1EZWphVnVTYW5zLW1pbnVzIDI3IDAgUiAvRjItRGVqYVZ1U2Fucy1PYmxpcXVlLXRhdSAxOCAwIFIgPj4KZW5kb2JqCjIgMCBvYmoKPDwgL0NvdW50IDEgL0tpZHMgWyAxMCAwIFIgXSAvVHlwZSAvUGFnZXMgPj4KZW5kb2JqCjM2IDAgb2JqCjw8IC9DcmVhdGlvbkRhdGUgKEQ6MjAyMTA0MjcxNTU3MDUrMDInMDAnKQovQ3JlYXRvciAoTWF0cGxvdGxpYiB2My4zLjQsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcpCi9Qcm9kdWNlciAoTWF0cGxvdGxpYiBwZGYgYmFja2VuZCB2My4zLjQpID4+CmVuZG9iagp4cmVmCjAgMzcKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDAwMDE2IDAwMDAwIG4gCjAwMDAwMTA1MjUgMDAwMDAgbiAKMDAwMDAxMDI1OCAwMDAwMCBuIAowMDAwMDEwMzAxIDAwMDAwIG4gCjAwMDAwMTA0MDAgMDAwMDAgbiAKMDAwMDAxMDQyMSAwMDAwMCBuIAowMDAwMDEwNDQyIDAwMDAwIG4gCjAwMDAwMDAwNjUgMDAwMDAgbiAKMDAwMDAwMDM5NSAwMDAwMCBuIAowMDAwMDAwMjA4IDAwMDAwIG4gCjAwMDAwMDMwODIgMDAwMDAgbiAKMDAwMDAwNDU5MyAwMDAwMCBuIAowMDAwMDA0Mzg1IDAwMDAwIG4gCjAwMDAwMDQwNTUgMDAwMDAgbiAKMDAwMDAwNTY0NiAwMDAwMCBuIAowMDAwMDAzMTAzIDAwMDAwIG4gCjAwMDAwMDMzODkgMDAwMDAgbiAKMDAwMDAwMzY0MCAwMDAwMCBuIAowMDAwMDAzODkxIDAwMDAwIG4gCjAwMDAwMDkwMjcgMDAwMDAgbiAKMDAwMDAwODgyNyAwMDAwMCBuIAowMDAwMDA4NDMxIDAwMDAwIG4gCjAwMDAwMTAwODAgMDAwMDAgbiAKMDAwMDAwNTY5OCAwMDAwMCBuIAowMDAwMDA1ODM2IDAwMDAwIG4gCjAwMDAwMDYzMDEgMDAwMDAgbiAKMDAwMDAwNjQ2MyAwMDAwMCBuIAowMDAwMDA2NjMzIDAwMDAwIG4gCjAwMDAwMDY3ODUgMDAwMDAgbiAKMDAwMDAwNzAwNSAwMDAwMCBuIAowMDAwMDA3MjI3IDAwMDAwIG4gCjAwMDAwMDczNDggMDAwMDAgbiAKMDAwMDAwNzczOCAwMDAwMCBuIAowMDAwMDA3ODI3IDAwMDAwIG4gCjAwMDAwMDgxNDggMDAwMDAgbiAKMDAwMDAxMDU4NSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9JbmZvIDM2IDAgUiAvUm9vdCAxIDAgUiAvU2l6ZSAzNyA+PgpzdGFydHhyZWYKMTA3NDIKJSVFT0YK\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_signals(tau, x1, h3.subs(t, 3), r'$h(t-\\tau)$, $x(\\tau)$', r'$\\tau$')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For the third case the convolution integral degenerates to\n",
"\n",
"\\begin{equation}\n",
"y(t) = \\frac{3}{4} \\int_{0}^{1} e^{-(t - \\tau)} d\\tau = \\frac{3}{4} (e - 1) e^{-t} \\qquad \\text{for } t \\geq 1\n",
"\\end{equation}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The overall result is composed from the three individual results. As alternative and in order to plot the result, the convolution integral is evaluated in `SymPy`"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/pdf": "JVBERi0xLjQKJazcIKu6CjEgMCBvYmoKPDwgL1BhZ2VzIDIgMCBSIC9UeXBlIC9DYXRhbG9nID4+CmVuZG9iago4IDAgb2JqCjw8IC9FeHRHU3RhdGUgNCAwIFIgL0ZvbnQgMyAwIFIgL1BhdHRlcm4gNSAwIFIKL1Byb2NTZXQgWyAvUERGIC9UZXh0IC9JbWFnZUIgL0ltYWdlQyAvSW1hZ2VJIF0gL1NoYWRpbmcgNiAwIFIKL1hPYmplY3QgNyAwIFIgPj4KZW5kb2JqCjEwIDAgb2JqCjw8IC9Bbm5vdHMgWyBdIC9Db250ZW50cyA5IDAgUgovR3JvdXAgPDwgL0NTIC9EZXZpY2VSR0IgL1MgL1RyYW5zcGFyZW5jeSAvVHlwZSAvR3JvdXAgPj4KL01lZGlhQm94IFsgMCAwIDQ1MC4wNDEwNDA4MDU4IDM0My42NTkyNSBdIC9QYXJlbnQgMiAwIFIgL1Jlc291cmNlcyA4IDAgUgovVHlwZSAvUGFnZSA+PgplbmRvYmoKOSAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDExIDAgUiA+PgpzdHJlYW0KeJyFmMuOHTUQhvf9FF6GBY6rfCsviYBI7AIjsWEXQiDKIHERiLfnqz7tM30ynomSTDT11++yy3VzS/iwSXgfUvjAv3+DhNf8e78lfrvfSk0xFeEvv348/5pLjq0OrYjTzW+/btsv28uvWOQvSK+3TVvUOqy3oDn2bGixcknRLEnKD9KPZ2nWHsux5MMKZ+lhSC+G3rNtjhCNQ2DWJew3Smoo5x5ryX03fJUVzuKyj9v2Ch/8u726Cy+/lSAp3P2yFYlDW3VN1ThquPt5e5G+CHcfwjd3225nk9RR6mX0s4Wz9HkbeDL20i2NVNvZjnxipyf0rJd8Y+ck/YydBqthpDbRcbKjt3Y0Z9cb42zmJHzeiuYU80g5qbRRTlbyJ1ZGQ080txszJ+ln7IwcVaRydKLiZKfc2sl1oKfFbrx2lj5vJ9cWEwE3qpqez1Nv7RSQlHPXG7edpZ+LNItWC1ll2exkp007t+rZ4pAhrVqqFjhNN9EL4+9PdraKf4ntVvaElzVq4Op7adaP6I/pifVHjd16b3I28CB8xsIgzUYyq7h5HFbkCStcOS6V3vVs5iR9xo5QujQXG5QpscOQPmGI+MCrtduNoZP0GUOaLJLSI1HTej8M5acMkcJVRh/5xtCD9DlDrcWuymmIm3YYuqbAH1RlCV963ZbqN0mQXQrn23sW8/oey24N4stv9Vj5xX++wFaJsD72i08XhWn6xU8vdo0cR5Lcupx0rov8PVVwxrA9yB4t88Wuw07fbH+Ea4EnY+ShIRQpsWlS7f4n5ASgEv58F34MvweJ1Wt9FMpAYTej4d5G4a1pWCo3SPj+dXj59bt/fnv77vvXr8Lbv5a5UbmBYqmVYF5ai9BxuIEflgDqFruwucAPrm5Um+oL4H5rBa+m3owbqbFxVjrErr9E7reuMVNGfB3SRMXw5oWwRCBYbNJrwoVct1Dq7NBfAPebFcKMUt2DEns0XWL7or9E7rdBJDdqFMWwSbRc6JAXwhKBUNlnbpVoZQsUU5knWCLeOyWmjr9YCBVy+3qGNXRpt5JFMMhPAkBt6KSsoAvF+vCsoLeVUXJ+IHwKHA2dBLKLvNWjav6wRg5Cr7SOXVxaTt1OjEeQU/BC86K+y5PlcbWxQC4EbYVrQqxRBqOKPTAeQxdKK8dKlJhKfugD5TEERbxsVveIJ58wpxw3vkScwKGUhkToEBSVmitlMlYQFKUqem2ilzcPbOO/g7KEnFKjpT1jlETWYc2ulBUEJVMv6PsYZ4ZUNnK9xBXihE5Ma02EKGflZnXMkywhKKVEkcZAJkMjsSpyEBYA6vSknnun5NG+8KaozStcQk5phM/Y5VQNSluSK2UFQcFx3Wwgroo3jRA8GCvECYRPaZ3NMtZrzaVMEyvEB9HsuYVXgjDrVCr+rGxryCm0I80+V4mP9CXXOiZlBUGxHG10fB1ERhwUYZ1pu4SgEGakl7BL8ebNPuadrxAneDOgvg/6FGvWnGyeZAkxt3r0M+uTYWiQp1mPgywRCERMskbV8OHHqtYZ7UvECQ3HMVlbsOZ1eSbUCkBdC2NK7kW9WRmddJbDJeIDPjVCteXQfWIrfd7ECnD14bFM7HchlGlvMtUfA6iThJlwkRyInlr2t8FFf4VAIPQb0csNNh/AR0lH+C0RJ/BySD6lh+ZPlVL73NEKgUDccxv+jKVZaRn1iIoV4OqDfVbMBRp7G1bbVH8MoN7ZWxmSLWCeV4qO6c8VAsF4KXgHDEyyyHgOHvoLwNWpBySUiymomJ/XuwDuL68lko56WH3Wttbm8ivECX4Zg8ky4G9TRrx53hXCiypRPLzHhELuYVUP968AV6cDVgaKEop5xRq5Tf0FAsH7RmnCOIyYadDmWLZEnIC5lHi4hEJNHKPPirdEINAzCg2PxEBMpkudR1ghEGgZNGK6TCCICas+C/cScYJ3FgZmhlre/EzNs0IuEQiFdkfDIKS8d/jr/UibJeKETkWjteALaq6/QOYZVog/hLl0ESnDxRyxzrheIk6gAg4bBcM0jkwrvxIWCIQ9nYq1HvY9s9HppRXiBOa1xCziUq6pzP65AlDvPpYLhSP422nkPOaGVogTSDtKTvenRaTFtGvorRAI5uto4tKL3ysvs3kLK8QJLdJGExOnf8oieeeEvEQgMA9QAn1GKT4TFZUZGCvECe5rYSpwsQ+0sx0sEZ6VqVAEs8chYpzIi+xCWCJOIEnUfOSnopOFrfdJWCD+cCU1eut1FzOhywy9JXL7bWTwDC3XyepN4DEYvrt8jty/5T3xajt/Sry+5E4fB1nr+g1y/yC4/OJ4/9QXx+3365fF+UXx/BXy9DnlxD99UHlkffUJ8znrb7b/AcNYQMYKZW5kc3RyZWFtCmVuZG9iagoxMSAwIG9iagoxNzcyCmVuZG9iagoxNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE3OCA+PgpzdHJlYW0KeJw9kEsSAyEIRPeeoo8gP9HzJJXV5P7bNM6YhfYTKGywpegYzsvVkF3xllYYnvg27wueiaup9YckFTL7pg4Zi2fyFCckFK8mY0DcsdXWo3Eywgy7LCZmYK6Kr0QuqFAC6lHyamaj4Gqmgr59xFaZ9RYXCEUCJixnK/6fA9PrFh0MFpjtN8uzPPYK03QszHuGeQ9FI34G5VpuYGWtg5+GHZr3tmgo/+QnexZ4tc8P3qtCoQplbmRzdHJlYW0KZW5kb2JqCjE3IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTM5ID4+CnN0cmVhbQp4nD2PsQ3FMAhEe6a4BZAAGxvPk+hX/vu3wXGSAvF0oDvwYRCw1SzpaFLgteNUshpgF/zJpIHVBNotoRVoXUooDlo66whE2xb16Qd9rpN45FKxpGovtb4pYrk79I7RbVrAo2dO9q7Q5uByT0ZBJk7KU9ahkzR9NpkH1CLJZTza+9D8/pn0uwC7vC3bCmVuZHN0cmVhbQplbmRvYmoKMTQgMCBvYmoKPDwgL0Jhc2VGb250IC9EZWphVnVTYW5zLU9ibGlxdWUgL0NoYXJQcm9jcyAxNSAwIFIKL0VuY29kaW5nIDw8IC9EaWZmZXJlbmNlcyBbIDExNiAvdCAxMjEgL3kgXSAvVHlwZSAvRW5jb2RpbmcgPj4gL0ZpcnN0Q2hhciAwCi9Gb250QkJveCBbIC0xMDE2IC0zNTEgMTY2MCAxMDY4IF0gL0ZvbnREZXNjcmlwdG9yIDEzIDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zLU9ibGlxdWUKL1N1YnR5cGUgL1R5cGUzIC9UeXBlIC9Gb250IC9XaWR0aHMgMTIgMCBSID4+CmVuZG9iagoxMyAwIG9iago8PCAvQXNjZW50IDkyOSAvQ2FwSGVpZ2h0IDAgL0Rlc2NlbnQgLTIzNiAvRmxhZ3MgOTYKL0ZvbnRCQm94IFsgLTEwMTYgLTM1MSAxNjYwIDEwNjggXSAvRm9udE5hbWUgL0RlamFWdVNhbnMtT2JsaXF1ZQovSXRhbGljQW5nbGUgMCAvTWF4V2lkdGggMTM1MCAvU3RlbVYgMCAvVHlwZSAvRm9udERlc2NyaXB0b3IgL1hIZWlnaHQgMCA+PgplbmRvYmoKMTIgMCBvYmoKWyA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMAo2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDMxOCA0MDEgNDYwIDgzOCA2MzYKOTUwIDc4MCAyNzUgMzkwIDM5MCA1MDAgODM4IDMxOCAzNjEgMzE4IDMzNyA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2CjYzNiA2MzYgMzM3IDMzNyA4MzggODM4IDgzOCA1MzEgMTAwMCA2ODQgNjg2IDY5OCA3NzAgNjMyIDU3NSA3NzUgNzUyIDI5NQoyOTUgNjU2IDU1NyA4NjMgNzQ4IDc4NyA2MDMgNzg3IDY5NSA2MzUgNjExIDczMiA2ODQgOTg5IDY4NSA2MTEgNjg1IDM5MCAzMzcKMzkwIDgzOCA1MDAgNTAwIDYxMyA2MzUgNTUwIDYzNSA2MTUgMzUyIDYzNSA2MzQgMjc4IDI3OCA1NzkgMjc4IDk3NCA2MzQgNjEyCjYzNSA2MzUgNDExIDUyMSAzOTIgNjM0IDU5MiA4MTggNTkyIDU5MiA1MjUgNjM2IDMzNyA2MzYgODM4IDYwMCA2MzYgNjAwIDMxOAozNTIgNTE4IDEwMDAgNTAwIDUwMCA1MDAgMTM1MCA2MzUgNDAwIDEwNzAgNjAwIDY4NSA2MDAgNjAwIDMxOCAzMTggNTE4IDUxOAo1OTAgNTAwIDEwMDAgNTAwIDEwMDAgNTIxIDQwMCAxMDI4IDYwMCA1MjUgNjExIDMxOCA0MDEgNjM2IDYzNiA2MzYgNjM2IDMzNwo1MDAgNTAwIDEwMDAgNDcxIDYxNyA4MzggMzYxIDEwMDAgNTAwIDUwMCA4MzggNDAxIDQwMSA1MDAgNjM2IDYzNiAzMTggNTAwCjQwMSA0NzEgNjE3IDk2OSA5NjkgOTY5IDUzMSA2ODQgNjg0IDY4NCA2ODQgNjg0IDY4NCA5NzQgNjk4IDYzMiA2MzIgNjMyIDYzMgoyOTUgMjk1IDI5NSAyOTUgNzc1IDc0OCA3ODcgNzg3IDc4NyA3ODcgNzg3IDgzOCA3ODcgNzMyIDczMiA3MzIgNzMyIDYxMSA2MDgKNjMwIDYxMyA2MTMgNjEzIDYxMyA2MTMgNjEzIDk5NSA1NTAgNjE1IDYxNSA2MTUgNjE1IDI3OCAyNzggMjc4IDI3OCA2MTIgNjM0CjYxMiA2MTIgNjEyIDYxMiA2MTIgODM4IDYxMiA2MzQgNjM0IDYzNCA2MzQgNTkyIDYzNSA1OTIgXQplbmRvYmoKMTUgMCBvYmoKPDwgL3QgMTYgMCBSIC95IDE3IDAgUiA+PgplbmRvYmoKMjIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDcgPj4Kc3RyZWFtCnicTVG7bUQxDOvfFFzgAOtreZ4LUl32b0PJCJDCIKEvKaclFvbGSwzhB1sPvuSRVUN/Hj8x7DMsPcnk1D/muclUFL4VqpuYUBdi4f1oBLwWdC8iK8oH349lDHPO9+CjEJdgJjRgrG9JJhfVvDNkwomhjsNBm1QYd00ULK4VzTPI7VY3sjqzIGx4JRPixgBEBNkXkM1go4yxlZDFch6oCpIFWmDX6RtRi4IrlNYJdKLWxLrM4Kvn9nY3Qy/y4Ki6eH0M60uwwuileyx8rkIfzPRMO3dJI73wphMRZg8FUpmdkZU6PWJ9t0D/n2Ur+PvJz/P9CxUoXCoKZW5kc3RyZWFtCmVuZG9iagoyMyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDkwID4+CnN0cmVhbQp4nE2NQRLAIAgD77wiT1BE0P90etL/X6vUDr3ATgKJFkWC9DVqSzDuuDIVa1ApmJSXwFUwXAva7qLK/jJJTJ2G03u3A4Oy8XGD0kn79nF6AKv9egbdD9IcIlgKZW5kc3RyZWFtCmVuZG9iagoyNCAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDgwID4+CnN0cmVhbQp4nEWMuw3AMAhEe6ZgBH4mZp8olbN/GyBK3HBPunu4OhIyU95hhocEngwshlPxBpmjYDW4RlKNneyjsG5fdYHmelOr9fcHKk92dnE9zcsZ9AplbmRzdHJlYW0KZW5kb2JqCjI1IDAgb2JqCjw8IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlIC9MZW5ndGggMTQ3ID4+CnN0cmVhbQp4nD1PuQ0DMQzrPQUXOMB6LFvzXJDqsn8bykZSCCJA8ZFlR8cKXGICk445Ei9pP/hpGoFYBjVH9ISKYVjgbpICD4MsSleeLV4MkdpCXUj41hDerUxkojyvETtwJxejBz5UG1keekA7RBVZrknDWNVWXWqdsAIcss7CdT3MqgTl0SdrKR9QVEK9dP+fe9r7CwBvL+sKZW5kc3RyZWFtCmVuZG9iagoyNiAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDE0OSA+PgpzdHJlYW0KeJw1j0sOAyEMQ/c5hS8wUn6EcB6qrqb33zZhWgkJC9svwRaDkYxLTGDsmGPhJVRPrT4kI4+6STkQqVA3BE9oTAwzbNIl8Mp03zKeW7ycVuqCTkjk6aw2GqKMZl7D0VPOCpv+y9wkamVGmQMy61S3E7KyYAXmBbU89zPuqFzohIedyrDoTjGi3GZGGn7/2/T+AnsyMGMKZW5kc3RyZWFtCmVuZG9iagoyNyAwIG9iago8PCAvRmlsdGVyIC9GbGF0ZURlY29kZSAvTGVuZ3RoIDQ5ID4+CnN0cmVhbQp4nDM2tFAwUDA0MAeSRoZAlpGJQoohF0gAxMzlggnmgFkGQBqiOAeuJocrDQDG6A0mCmVuZHN0cmVhbQplbmRvYmoKMjggMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMTcgPj4Kc3RyZWFtCnicNVJLckMxCNu/U3CBzpi/fZ50smruv62EJyuwLUBCLi9Z0kt+1CXbpcPkVx/3JbFCPo/tmsxSxfcWsxTPLa9HzxG3LQoEURM9+DInFSLUz9ToOnhhlz4DrxBOKRZ4B5MABq/hX3iUToPAOxsy3hGTkRoQJMGaS4tNSJQ9Sfwr5fWklTR0fiYrc/l7cqkUaqPJCBUgWLnYB6QrKR4kEz2JSLJyvTdWiN6QV5LHZyUmGRDdJrFNtMDj3JW0hJmYQgXmWIDVdLO6+hxMWOOwhPEqYRbVg02eNamEZrSOY2TDePfCTImFhsMSUJt9lQmql4/T3AkjpkdNdu3Csls27yFEo/kzLJTBxygkAYdOYyQK0rCAEYE5vbCKveYLORbAiGWdmiwMbWglu3qOhcDQnLOlYcbXntfz/gdFW3ujCmVuZHN0cmVhbQplbmRvYmoKMjkgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAxMzEgPj4Kc3RyZWFtCnicRY/LDQQhDEPvVOES8hk+qYfVntj+r+swmkFC+EEiO/EwCKzz8jbQxfDRosM3/jbVq2OVLB+6elJWD+mQh7zyFVBpMFHEhVlMHUNhzpjKyJYytxvhtk2DrGyVVK2DdjwGD7anZasIfqltYeos8QzCVV64xw0/kEutd71Vvn9CUzCXCmVuZHN0cmVhbQplbmRvYmoKMzAgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAzMzggPj4Kc3RyZWFtCnicNVI5rt1ADOt9Cl0ggHbNnOcFqX7u34aUXwpDtFaKmo4WlWn5ZSFVLZMuv+1JbYkb8vfJCokTklcl2qUMkVD5PIVUv2fLvL7WnBEgS5UKk5OSxyUL/gyX3i4c52NrP48jdz16YFWMhBIByxQTo2tZOrvDmo38PKYBP+IRcq5YtxxjFUgNunHaFe9D83nIGiBmmJaKCl1WiRZ+QfGgR61991hUWCDR7RxJcIyNUJGAdoHaSAw5sxa7qC/6WZSYCXTtiyLuosASScycYl06+g8+dCyovzbjy6+OSvpIK2tM2nejSWnMIpOul0VvN299PbhA8y7Kf17NIEFT1ihpfNCqnWMomhllhXccmgw0xxyHzBM8hzMSlPR9KH5fSya6KJE/Dg2hf18eo4ycBm8Bc9GftooDF/HZYa8cYIXSxZrkfUAqE3pg+v/X+Hn+/AMctoBUCmVuZHN0cmVhbQplbmRvYmoKMzEgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyNDggPj4Kc3RyZWFtCnicLVE5kgNBCMvnFXpCc9PvscuR9//pCsoBg4ZDIDotcVDGTxCWK97yyFW04e+ZGMF3waHfynUbFjkQFUjSGFRNqF28Hr0HdhxmAvOkNSyDGesDP2MKN3pxeEzG2e11GTUEe9drT2ZQMisXccnEBVN12MiZw0+mjAvtXM8NyLkR1mUYpJuVxoyEI00hUkih6iapM0GQBKOrUaONHMV+6csjnWFVI2oM+1xL29dzE84aNDsWqzw5pUdXnMvJxQsrB/28zcBFVBqrPBAScL/bQ/2c7OQ33tK5s8X0+F5zsrwwFVjx5rUbkE21+Dcv4vg94+v5/AOopVsWCmVuZHN0cmVhbQplbmRvYmoKMzIgMCBvYmoKPDwgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAyMTAgPj4Kc3RyZWFtCnicNVDLDUMxCLtnChaoFAKBZJ5WvXX/a23QO2ER/0JYyJQIeanJzinpSz46TA+2Lr+xIgutdSXsypognivvoZmysdHY4mBwGiZegBY3YOhpjRo1dOGCpi6VQoHFJfCZfHV76L5PGXhqGXJ2BBFDyWAJaroWTVi0PJ+QTgHi/37D7i3koZLzyp4b+Ruc7fA7s27hJ2p2ItFyFTLUszTHGAgTRR48eUWmcOKz1nfVNBLUZgtOlgGuTj+MDgBgIl5ZgOyuRDlL0o6ln2+8x/cPQABTtAplbmRzdHJlYW0KZW5kb2JqCjIwIDAgb2JqCjw8IC9CYXNlRm9udCAvRGVqYVZ1U2FucyAvQ2hhclByb2NzIDIxIDAgUgovRW5jb2RpbmcgPDwKL0RpZmZlcmVuY2VzIFsgNDAgL3BhcmVubGVmdCAvcGFyZW5yaWdodCA0NiAvcGVyaW9kIDQ4IC96ZXJvIC9vbmUgL3R3byAvdGhyZWUgL2ZvdXIKL2ZpdmUgL3NpeCAxMTYgL3QgXQovVHlwZSAvRW5jb2RpbmcgPj4KL0ZpcnN0Q2hhciAwIC9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnREZXNjcmlwdG9yIDE5IDAgUgovRm9udE1hdHJpeCBbIDAuMDAxIDAgMCAwLjAwMSAwIDAgXSAvTGFzdENoYXIgMjU1IC9OYW1lIC9EZWphVnVTYW5zCi9TdWJ0eXBlIC9UeXBlMyAvVHlwZSAvRm9udCAvV2lkdGhzIDE4IDAgUiA+PgplbmRvYmoKMTkgMCBvYmoKPDwgL0FzY2VudCA5MjkgL0NhcEhlaWdodCAwIC9EZXNjZW50IC0yMzYgL0ZsYWdzIDMyCi9Gb250QkJveCBbIC0xMDIxIC00NjMgMTc5NCAxMjMzIF0gL0ZvbnROYW1lIC9EZWphVnVTYW5zIC9JdGFsaWNBbmdsZSAwCi9NYXhXaWR0aCAxMzQyIC9TdGVtViAwIC9UeXBlIC9Gb250RGVzY3JpcHRvciAvWEhlaWdodCAwID4+CmVuZG9iagoxOCAwIG9iagpbIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwCjYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgMzE4IDQwMSA0NjAgODM4IDYzNgo5NTAgNzgwIDI3NSAzOTAgMzkwIDUwMCA4MzggMzE4IDM2MSAzMTggMzM3IDYzNiA2MzYgNjM2IDYzNiA2MzYgNjM2IDYzNiA2MzYKNjM2IDYzNiAzMzcgMzM3IDgzOCA4MzggODM4IDUzMSAxMDAwIDY4NCA2ODYgNjk4IDc3MCA2MzIgNTc1IDc3NSA3NTIgMjk1CjI5NSA2NTYgNTU3IDg2MyA3NDggNzg3IDYwMyA3ODcgNjk1IDYzNSA2MTEgNzMyIDY4NCA5ODkgNjg1IDYxMSA2ODUgMzkwIDMzNwozOTAgODM4IDUwMCA1MDAgNjEzIDYzNSA1NTAgNjM1IDYxNSAzNTIgNjM1IDYzNCAyNzggMjc4IDU3OSAyNzggOTc0IDYzNCA2MTIKNjM1IDYzNSA0MTEgNTIxIDM5MiA2MzQgNTkyIDgxOCA1OTIgNTkyIDUyNSA2MzYgMzM3IDYzNiA4MzggNjAwIDYzNiA2MDAgMzE4CjM1MiA1MTggMTAwMCA1MDAgNTAwIDUwMCAxMzQyIDYzNSA0MDAgMTA3MCA2MDAgNjg1IDYwMCA2MDAgMzE4IDMxOCA1MTggNTE4CjU5MCA1MDAgMTAwMCA1MDAgMTAwMCA1MjEgNDAwIDEwMjMgNjAwIDUyNSA2MTEgMzE4IDQwMSA2MzYgNjM2IDYzNiA2MzYgMzM3CjUwMCA1MDAgMTAwMCA0NzEgNjEyIDgzOCAzNjEgMTAwMCA1MDAgNTAwIDgzOCA0MDEgNDAxIDUwMCA2MzYgNjM2IDMxOCA1MDAKNDAxIDQ3MSA2MTIgOTY5IDk2OSA5NjkgNTMxIDY4NCA2ODQgNjg0IDY4NCA2ODQgNjg0IDk3NCA2OTggNjMyIDYzMiA2MzIgNjMyCjI5NSAyOTUgMjk1IDI5NSA3NzUgNzQ4IDc4NyA3ODcgNzg3IDc4NyA3ODcgODM4IDc4NyA3MzIgNzMyIDczMiA3MzIgNjExIDYwNQo2MzAgNjEzIDYxMyA2MTMgNjEzIDYxMyA2MTMgOTgyIDU1MCA2MTUgNjE1IDYxNSA2MTUgMjc4IDI3OCAyNzggMjc4IDYxMiA2MzQKNjEyIDYxMiA2MTIgNjEyIDYxMiA4MzggNjEyIDYzNCA2MzQgNjM0IDYzNCA1OTIgNjM1IDU5MiBdCmVuZG9iagoyMSAwIG9iago8PCAvZml2ZSAyMiAwIFIgL2ZvdXIgMjMgMCBSIC9vbmUgMjQgMCBSIC9wYXJlbmxlZnQgMjUgMCBSCi9wYXJlbnJpZ2h0IDI2IDAgUiAvcGVyaW9kIDI3IDAgUiAvc2l4IDI4IDAgUiAvdCAyOSAwIFIgL3RocmVlIDMwIDAgUgovdHdvIDMxIDAgUiAvemVybyAzMiAwIFIgPj4KZW5kb2JqCjMgMCBvYmoKPDwgL0YxIDIwIDAgUiAvRjIgMTQgMCBSID4+CmVuZG9iago0IDAgb2JqCjw8IC9BMSA8PCAvQ0EgMCAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+Ci9BMiA8PCAvQ0EgMSAvVHlwZSAvRXh0R1N0YXRlIC9jYSAxID4+ID4+CmVuZG9iago1IDAgb2JqCjw8ID4+CmVuZG9iago2IDAgb2JqCjw8ID4+CmVuZG9iago3IDAgb2JqCjw8ID4+CmVuZG9iagoyIDAgb2JqCjw8IC9Db3VudCAxIC9LaWRzIFsgMTAgMCBSIF0gL1R5cGUgL1BhZ2VzID4+CmVuZG9iagozMyAwIG9iago8PCAvQ3JlYXRpb25EYXRlIChEOjIwMjEwNDI3MTU1NzA3KzAyJzAwJykKL0NyZWF0b3IgKE1hdHBsb3RsaWIgdjMuMy40LCBodHRwczovL21hdHBsb3RsaWIub3JnKQovUHJvZHVjZXIgKE1hdHBsb3RsaWIgcGRmIGJhY2tlbmQgdjMuMy40KSA+PgplbmRvYmoKeHJlZgowIDM0CjAwMDAwMDAwMDAgNjU1MzUgZiAKMDAwMDAwMDAxNiAwMDAwMCBuIAowMDAwMDA5MTc2IDAwMDAwIG4gCjAwMDAwMDg5NzEgMDAwMDAgbiAKMDAwMDAwOTAxNCAwMDAwMCBuIAowMDAwMDA5MTEzIDAwMDAwIG4gCjAwMDAwMDkxMzQgMDAwMDAgbiAKMDAwMDAwOTE1NSAwMDAwMCBuIAowMDAwMDAwMDY1IDAwMDAwIG4gCjAwMDAwMDA0MDIgMDAwMDAgbiAKMDAwMDAwMDIwOCAwMDAwMCBuIAowMDAwMDAyMjQ5IDAwMDAwIG4gCjAwMDAwMDMyNjQgMDAwMDAgbiAKMDAwMDAwMzA1NiAwMDAwMCBuIAowMDAwMDAyNzMzIDAwMDAwIG4gCjAwMDAwMDQzMTcgMDAwMDAgbiAKMDAwMDAwMjI3MCAwMDAwMCBuIAowMDAwMDAyNTIxIDAwMDAwIG4gCjAwMDAwMDc3NDUgMDAwMDAgbiAKMDAwMDAwNzU0NSAwMDAwMCBuIAowMDAwMDA3MTY1IDAwMDAwIG4gCjAwMDAwMDg3OTggMDAwMDAgbiAKMDAwMDAwNDM1OSAwMDAwMCBuIAowMDAwMDA0Njc5IDAwMDAwIG4gCjAwMDAwMDQ4NDEgMDAwMDAgbiAKMDAwMDAwNDk5MyAwMDAwMCBuIAowMDAwMDA1MjEzIDAwMDAwIG4gCjAwMDAwMDU0MzUgMDAwMDAgbiAKMDAwMDAwNTU1NiAwMDAwMCBuIAowMDAwMDA1OTQ2IDAwMDAwIG4gCjAwMDAwMDYxNTAgMDAwMDAgbiAKMDAwMDAwNjU2MSAwMDAwMCBuIAowMDAwMDA2ODgyIDAwMDAwIG4gCjAwMDAwMDkyMzYgMDAwMDAgbiAKdHJhaWxlcgo8PCAvSW5mbyAzMyAwIFIgL1Jvb3QgMSAwIFIgL1NpemUgMzQgPj4Kc3RhcnR4cmVmCjkzOTMKJSVFT0YK\n",
"image/svg+xml": [
"\n",
"\n",
"\n",
"\n"
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"y = sym.integrate(h.subs(t, t-tau) * x.subs(t, tau), (tau, 0, t))\n",
"sym.plot(y, (t, 0, 6), ylabel=r'$y(t)$', line_color='C2');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The entire process is illustrated in the following animation. The upper plot shows the integrands $h(t-\\tau)$ and $x(\\tau)$ of the convolution integral, the lower plot the result $y(t) = x(t) * h(t)$ of the convolution. The red dot in the lower plot indicates the particular time instant $t$ for which the result of the convolution is computed. The filled red area in the upper plot illustrates the area below $x(\\tau) \\cdot h(t-\\tau)$ for the same time instant. The area constitutes the result of the convolution integral. The time $t$ is varied in the animation."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"