
Introduction Adversarial Training Results Conclusions References

Adversarial Training for Free!

Presenters: Mehdi Dousti & Erfan Zarinkia

Security and Privacy in Machine Learning
Instructor: Dr. Sadeghzadeh

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.) Adversarial Training for Free! Spring 2023 1 / 23



Introduction Adversarial Training Results Conclusions References

Table of Contents

1 Introduction

2 Adversarial Training

3 Results

4 Conclusions

5 References

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.) Adversarial Training for Free! Spring 2023 2 / 23



Introduction Adversarial Training Results Conclusions References

The importance of Neural Networks Security

Deep neural networks have demonstrated high accuracy on various tasks in recent
years

• Image classification
• Malware classification
• Autonomous driving
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What is Adversarial Example?

x ′ is called adversarial if
• D(x , x ′) < ϵ

• c(x ′) ̸= c∗(x)

Xie et al., 2018
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Types of Adversarial Examples

• Non-targeted attack

max
δ

l(x+ δ, y, θ) , subject to ∥δ∥p ≤ ϵ

• Targeted attack

min
δ

l(x+ δ, t, θ) , subject to ∥δ∥p ≤ ϵ
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Fast Gradient Sign Method

xadv = x+ ϵ . sign(∇xl(x, y, θ))

Goodfellow et al., 2015
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K-step Projected Gradient Descent

xn+1
adv = Clipx,ϵ{xnadv + α . sign(∇xl(x

n
adv, y, θ))}
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How can we defend?

• Thermometer encoding ✗

• Input transformations ✗

• Stochastic activation pruning ✗

• Leveraging generative models✗

• Using generative models ✗

• Adversarial training ✓
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K-PGD Adversarial Training Algorithm
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Adversarial Training Problems

• Extra computations
• Time consuming
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What are the alternatives?

• Replace the perturbation with a parameterized generator network ✗

• Regularize the training loss using label smoothing, or logit squeezing✗

• Certified defenses ✗

• Free adversarial training ✓
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Adversarial Training for Free!
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Free Adversarial Training Algorithm
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The Effect of Mini-batch Replay
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CIFAR-10
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CIFAR-100
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Generative Behavior
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Smooth Loss Surface
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ImageNet
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ImageNet
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ImageNet
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Conclusions

• Pros
• Boosts the robustness and interpretability of neural networks
• Can be further combined with other defenses to produce robust models without a

slowdown
• Cost nearly equal to natural training

• Cons
• The effect of mini-batch size on the robustness of models is not scrutinized.
• All the experiments are done on different types of Res-Net.
• They’ve not compared their approach with the FGSM

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.) Adversarial Training for Free! Spring 2023 22 / 23



Introduction Adversarial Training Results Conclusions References

References

[1] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. P. Dickerson, C. Studer, L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!,” in Proceedings of
annual Conference on Neural Information Processing Systems, NeurIPS, 2019

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial examples,” in Proceedings of the 3rd International Conference on
Learning Representations, ICLR (Poster), 2015

[3] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples,” in
Proceedings of the 35th International Conference on Machine Learning, ICML, 2018

[4] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards Deep Learning Models Resistant to Adversarial Attacks,” in Proceedings of the 6th
International Conference on Learning Representations, ICLR (Poster), 2018

[5] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating Adversarial Effects Through Randomization,” in Proceedings of the 6th International
Conference on Learning Representations, ICLR (Poster), 2018

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.) Adversarial Training for Free! Spring 2023 23 / 23



Questions?

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.) Adversarial Training for Free! Spring 2023 23 / 23



Data Augmentation Can Improve Robustness

NeurIPS 2021

Reihaneh Zohrabi, Masoud Khodaverdian

SPML Course Presentation

Spring 2023

1



Outline

• Introduction

• Preliminaries

• Related Works

• Observations & Hypothesis

• Experiments and Results

• Strengths and Weaknesses

• Conclusion and Future Works

2



robust overfitting

large absolute improvements robust accuracy 
compared to previous state-of-the-art methods
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Data augmentation
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More sophisticated techniques

random occlusions replaces parts of an image 
with another

linearly interpolates 
between two images

Cutout CutMix MixUp
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Averaging Weights Leads to Wider Optima and Better Generalization
2018

Model weight averaging 

model parameters θ with a decay rate τ at each training step
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using additional data improves 
adversarial robustness

data augmentation techniques 
did not boost robustness

dichotomy
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is it possible to fix the training procedure such 
that data augmentation becomes useful ?

data augmentation weight averaging

robust generalization
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80 million tiny images

Adversarial training with and without additional 
data from 80M-TI (without WA)

11

Observation & Hypothesis



Effect of WA without external data
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Effect of WA with external data

WA remains effective and useful even 
when robust overfitting disappears
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model weight averaging helps robustness to a 
greater extent when robust accuracy between 
model iterations can be maintained

WA acts as a temporal ensemble 
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Experimental Results
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Comparing Data Augmentations:

4 Top squares
o occlude local information with patching 
o +3.06% in robust accuracy for CutMix
o +1.54% in clean accuracy

Pad & Crop and Cutout 
o suffering from robust overfitting 
o benefit the least of WA 
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Comparing Data Augmentations:

MixUp

𝜆~𝐵𝑒𝑡𝑎(𝛼, 𝛼)
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Comparing Data Augmentations:

MixUp
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Comparing Data Augmentations:

Spatial Composition Techniques

Augmentations designed for robustness need to preserve low-level features. 
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Generalization to other architectures:
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Generalization to another threat model:
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25

Generalization to other Datasets:
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Model Ensemebling:

o Two ensembled early-stopped WRN
o Trained from scratch independently
o Cifar10
o 54.44 (Single) ->55.69 (Ensemble-Pad & Crop)
o 54.44 (Single) ->56.35 (Ensemble-CutMix) More Diversity

Ensembling by its ability of exploiting the diversity of the models is mainly responsible for 
robustness improvements. 
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Model Ensemebling by WA:

Similar robust performance but also some diversity in individual robust predictions 
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The limits of exploiting diversity:



Strengths and Weaknesses
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o New insights into effectiveness of weight averaging with data augmentations for adversarial robustness
o Thorough experimental evaluation of approach on multiple datasets and against several strong 

adversarial attacks, demonstrating significant improvements in robust accuracy.
o A practical approach for model ensembeling by using weight averaging, which is computationally 

efficient and can be easily integrated into existing training pipelines.

o No Novelty in proposed method
o No analysis of the robust overfitting problem
o The weight averaging decay rate can be sensitive to the specific dataset and architecture used. The 

optimal decay rate for weight averaging may vary depending on the characteristics of the dataset and 
the complexity of the model, and finding the best decay rate may require some trial and error 
experimentation.



Conclusion and Future Works
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o The combination of data augmentation and model weight averaging improves adversarial
robustness.

o Previous attempts using only data augmentation were not successful.
o Weight averaging works better with data augmentations that reduce robust overfitting.
o Model snapshots during training have diverse individual predictions, allowing for a performance

boost when ensembled.
o These insights can be used to improve the robustness of machine learning models against

adversarial attacks.
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o Investigation of other data augmentation techniques
o Exploration of other ensembling techniques: other ensembling methods could be explored, such as 

boosting or bagging.
o Extension to other domains: such as natural language processing or speech recognition.
o Investigation of the limits of ensembling: The paper shows that ensembling can improve adversarial 

robustness, but there are likely limits to how much ensembling can help. Further investigation into 
the limits of ensembling could help researchers understand when ensembling is most effective and 
when it is less useful.
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About this paper

Adversarial Examples for Malware Detection
• Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. (2017).

• Lecture Notes in Computer Science(), vol 10493. Springer, Cham.

• Expand on existing adversarial example crafting algorithms to construct a highly-effective attack that uses 

adversarial examples against android malware detection models.

• Their technique guarantees the malware functionality of the adversarially manipulated program

• Using the augmented adversarial crafting algorithm They then manage to mislead this classifier for 63% of all 

malware samples

• They investigate potential defense mechanisms for hardening their neural networks against adversarial 

examples..
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Android Malware Detection



Input Domains In DNN
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APK Structure
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Android Features

W. Wang et al.: Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy, and Directions
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Android Manifest File
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Features

• DREBIN data set

• 129,013 APK

• 123,453 benign 

• 5,560 malicious

• 179 different malware families

• August 2010 to October 2012

• Static features

• Feature classes from the manifest

• 8 feature classes

• 545,333 features

• binary value(feature is present in an 

application or not)
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DNN Model
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Performance of the classifiers
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Crafting Adversarial Malware Examples
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Features in Adversarial Examples

Only 0.0004%, or 89, are used to mislead the 
classifier. 
A quarter occurs in more than 1, 000 adversarially
crafted examples
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Defensive Distillation

1. Given the original classifier F and the samples X, construct

a new training data set D={(x,F(x)) | x∈X} that is labeled with

F’s output at high temperature.

2. Construct a new neural network F′ with the same 

architecture as F

3. Train F′ on D.
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Adversarial Training

1. Train the classifier F on original data set D=B∪M, where B

is the set of benign, and M the set of malicious applications

2. Craft adversarial examples A for F using the forward

gradient method (n1=20, n2=100 and n3=250 additional

adversarial examples)

3. Iterate additional training epochs on F with the adversarial

examples from the last step as additional, malicious samples.
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Comments 

1. Dataset

• Malware rate

2. Selected features

• Static vs dynamic

• manifest

3. White box attack

4. Adversarial training



Resources

[1] Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. (2017). Adversarial Examples for 

Malware Detection. 

[2] W. Wang et al.: Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy, 

and Directions



18/17

Questions

؟



PERCEPTUAL ADVERSARIAL ROBUSTNESS:
DEFENSE AGAINST UNSEEN THREAT MODELS

Hamidreza Amirzadeh
Ali Abdollahi

SPML – Presentation1
Spring 2023



Introduction

• Key challenge in adversarial robustness:
• Lack of a precise mathematical characterization of human perception.

• Current approaches: 
• bound by 𝐿2 or 𝐿∞ distance, spatial perturbations, …
• Main drawback: No transferable robustness.

• Contribution of this paper:
• Propose adversarial training against the set of all imperceptible adversarial examples.
• So we need a suitable perceptual distance metric.
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True perceptual threat model (TPTM)

• True perceptual distance ⅆ∗ 𝒙𝟏, 𝒙𝟐 between images 𝒙𝟏, 𝒙𝟐:
• Measures how different two images appear to humans.
• Perceptibility threshold 휀∗:
• ⅆ∗ 𝑥1, 𝑥2 ≤ 휀∗ ⇔ images 𝑥1, 𝑥2 are indistinguishable from one another to humans.

• True perceptual threat model:
• All adversarial examples 𝑥 which cause misclassification but are truly imperceptible 

different from 𝑥, i.e. ⅆ∗ 𝑥, 𝑥 ≤ 휀∗.

• Problem:
• ⅆ∗ . , . can not be easily computed
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Neural perceptual threat model (NPTM)

• True perceptual distance is not practical.
• Instead use an approximation: Neural perceptual distance.

• Learned Perceptual Image Patch Similarity (LPIPS) distance:
• Idea: Similarity between internal activations of a CNN for two images
• Let g(.) be a convolutional image classifier with 𝑙 layers
• Two steps:

1. Normalize activations across channel dimension ⇒ ො𝑔𝑙 𝑥
2. Normalize activations by layer size and flatten into a single vector ⇒ ∅ 𝑥

• Neural perceptual threat model:
• All adversarial examples 𝑥 which cause misclassification but are neuraly

imperceptible different from 𝑥, i.e. ⅆ∗ 𝑥, 𝑥 = ∅ 𝑥 − ∅ 𝑥 2 ≤ 휀∗.
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• LPIPS correlates well with human judgement
• AlexNet

Neural perceptual threat model (NPTM)

• UTM:
• All adversaries causes misclassification
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Perceptual adversarial attacks

• Neural perceptual adversarial example with a perceptibility bound ε:

• Constraint optimization:

• Note:
• f(.) and g(.) identical ⇒ self-bounded attack
• f(.) and g(.) different ⇒ externally-bounded attack

• Propose two attacks based on this formulation:
• Perceptual Projected Gradient Descent (PPGD)
• Lagrangian Perceptual Attack (LPA)
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PPGD attack

• Find a step δ to maximize 𝐿 𝑓 𝑥 + δ , 𝑦 such that d(𝑥 + δ,x) = ∅ 𝑥 + δ − ∅ 𝑥 2 ≤ η

• Approximate constraint optimization using first-order Taylor as follows:

• η : Step size

• መ𝑓 𝑥 = 𝐿 𝑓 𝑥 + δ , 𝑦
• 𝐽 : Jacobian of ∅ 𝑥
• 𝐽+ : pseudoinverse of 𝐽

• Lemma: Closed form solution to above is:

• Problem:
• Difficult to efficiently compute.

• Idea: 
• Approximately solve for 𝛿∗ using the conjugate gradient method.
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LPA attack

• Lagrangian relaxation of constraint optimization:

• Similar to C&W attack, adaptively change λ to find an adversarial example within the 
allowed perceptual distance.

• Fast-LPA: Will be used in adversarial training
• Similar to LPA with two differences:

1. Does not search for λ values
2. Remove the projection step
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Perceptual adversarial training (PAT)

• Minimize the worst-case loss within a neighborhood of each training point x.

• Neighborhood is bounded by the LPIPS distance.

• Dou to intractability of inner maximization:
• Use Fast-LPA 
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Evaluation

• Perceptibility vs success rate of AT model against different 
attacks
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Evaluation

• Perceptibility vs distance models
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Evaluation
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Results
• Results on Cifar-10 
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Results
• Results on ImageNet-100 
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Conclusion

• Proposed NPTM realized by LPIPS distance

• Novel method for developing defenses against adversarial attacks that  generalize to unforeseen 
threat models

• Weaknesses of the paper:
• Difficult to optimize the LPIPS distance
• LPIPS is not secure
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Shcematic

Perceptual adversarial robustness               Sharif U.T SPML-Presentation



References

• Perceptual adversarial robustness: Defense against unseen threat models 
Laidlaw, S Singla, S Feizi - arXiv preprint arXiv:2006.12655, 2020

• Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and RobFergus. Intriguing properties of neural 
networks. In International Conference on Learning Representations,2014.

• Cihang Xie, Jianyu Wang, Zhishuai Zhang, Yuyin Zhou, Lingxi Xie, and Alan 
Yuille. Adversarial examples for semantic segmentation and object 
detection. In Proceedings of the IEEE International Conference on 
Computer Vision, pages 1369–1378, 2017.

Perceptual adversarial robustness               Sharif U.T SPML-Presentation




