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Introduction
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The importance of Neural Networks Security

Deep neural networks have demonstrated high accuracy on various tasks in recent
years

* Image classification
* Malware classification
¢ Autonomous driving

Healthcare sSm Y

- =% ”
Malware Classification Fraud Detection Biometrics Recognition
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What is Adversarial Example?

x' is called adversarial if
* D(x,x")<e
* c(x') # c*(x)

—

king penguin adversarial perturbation chihuahua

Xie et al., 2018
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Types of Adversarial Examples

¢ Non-targeted attack

mgaxl(a: +9,y,0), subjectto [|d]|, <e

* Targeted attack

méinl(ac +4,t,0) , subjectto ||d][, <e
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Fast Gradient Sign Method

Tady = T + € . sign(Vl(z,y,0))

+.007 x

s x +
x sign(VaJ (0, x,y)) gV (0]
“panda” “nematode” “gibbon"’
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al., 2015
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K-step Projected Gradient Descent

P Olipz,e{wgdv + . sign(Vxl(l‘Zdw Y, 0))}

adv
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How can we defend?

Thermometer encoding X
Input transformations X
Stochastic activation pruning X
Leveraging generative modelsx
Using generative models X
Adversarial training v/
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K-PGD Adversarial Training Algorithm

Algorithm 1 Standard Adversarial Training (K-PGD)

Require: Training samples X, perturbation bound e, step size €, maximization iterations per
minimization step K, and minimization learning rate 7

1: Initialize @

2: for epoch =1... N, do

3: for minibatch B C X do

4 Build 244, for x € B with PGD:

5: Assign a random perturbation
6: 7 U(—¢€,€)
7
8

Tody 4 T+ T
for k=1...Kdo

9: Jadv + Vol(Taaw, y,0)
10: Zady < Tadv + € - $igN(Jadv)
11: Tady < clip(Xaqy, T — €,z +€)
12: end for
13: Update 6 with stochastic gradient descent:
14: 90+ E(z)eB[Vo T adn, y,0)]
15: 0+ 0—71ge
16: end for
17: end for
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Adversarial Training Problems

e Extra computations
¢ Time consuming
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What are the alternatives?

Replace the perturbation with a parameterized generator network X
Regularize the training loss using label smoothing, or logit squeezingX
Certified defenses X

Free adversarial training v
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Free Adversarial Training Algorithm

Algorithm 1 “Free” Adversarial Training (Free-m)

Require: Training samples X, perturbation bound e, learning rate 7, hop steps m
1: Initialize 6
2: 60
3: forepoch=1... Nep/m do
4 for minibatch B C X do
5 fori=1...mdo
6: Update # with stochastic gradient descent
7: 96 < Ezy)en[Vel(z +6,y,0)]
8: Jadw + Vaz E(I + (Sayve)]
9: 0« 6—T1gs

10: Use gradients calculated for the minimization step to update §
11: 8 < 6+ € sign(gadw)

12: § « clip(d, —¢, €)

13: end for

14: end for

15: end for
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The Effect of Mini-batch Replay

CIFAR-10 model accuracy (naturally trained CIFAR-100 model accuracy (naturally trained)

9501 9481 g357 o) sof TESU AT o)

Madry PGD-7 trained

e

g

validation accuracy (%)

validation accuracy (%)

20

m=l me2 m=d m=8 m=16 m=32 m=64 m=128 m=200 P me? met meS mel mes2 mebi me125 mom0
number of replay steps m number of replay steps m
(a) CIFAR-10 sensitivity to m (b) CIFAR-100 sensitivity to m

=] = =
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CIFAR-10

Table 1: Validation accuracy and robustness of CIFAR-10 models trained with various methods.

Training Evaluated Against S ?ain |
Nat. Images | PGD-20 ‘ PGD-100 | CW-100 ‘ PGD.20 (I::r‘g

[ Nawral || 95.01% | 0.00% | 0.00% | 0.00% | 0.00% | 780 ]
Freem = 2 9145% | 33.92% | 33.20% | 34.51% | 3341% || 816
Freem = 4 87.83% | 41.15% | 40.35% | 41.96% | 40.73% || 800
Free m = 8 8596% | 46.82% | 46.19% | 46.60% | 46.33% || 785
Freem =10 || 83.94% | 4631% | 45.19% | 45.86% | 4594% || 785

4553% || 5418 |

[7-PGD wrained || 87.25% | 45.84% | 45.29% | 46.52%
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CIFAR-100

Table 2: Validation accuracy and robustness of CIFAR-100 models trained with various methods.

Trainin \ Evaluated Against | Training Time |
g | Natural Images | PGD-20 | PGD-100 || (minutes)
Natural [ 7884% | 0.00% | 000% [ __ 8iI
Freem =2 69.20% 1537% | 14.86% 816
Freem =4 65.28% 20.64% | 20.15% 767
Freem = 6 64.87% 23.68% | 23.18% 791
Freem =8 62.13% 25.88% | 25.58% 780
Free m = 10 59.27% 25.15% | 24.88% 776
[ Madry et al. 2-PGD wrained) || 67.94% | 17.08% | 1650% || _ 2053 |
[ Madry et al. (7-PCD trained) | 59.87% | 22.76% | 22.52% || 5157
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Generative Behavior

cat cat

Figure 2: Attack images built for adversarially trained models look like the class into which they get
misclassified. We display the last 9 CIFAR-10 clean validation images (top row) and their adversarial
examples built for a 7-PGD adversarially trained (middle) and our “free” trained (bottom) models.
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Smooth Loss Surface

Val. example No. 2 Val. example No. 2

(b) 7-PGD adv trained

Val. example No. 2

(c) Free m = 8 both rad (d) 7-PGD adyv trained both rad
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Table 3: ImageNet validation accuracy and robustness of ResNet-50 models trained with various

replay parameters and € = 2.

Traini \ Evaluated Against |

raining | Natural Tmages | PGD-10 | PGD-50 | PGD-100 |

[ Nawral || 76038% | 0.166% | 0.052% | 0.036% |
Free m =2 71.210% 37.012% | 36.340% | 36.250%
Freem =4 64.446% 43.522% | 43.392% | 43.404%
Freem =6 60.642% 41.996% | 41.900% | 41.892%
Freem =8 58.116% 40.044% | 40.008% | 39.996%
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ImageNet

Accuracy on Clean Validation Accuracy on PGD-100

(a) Clean (b) PGD-100

Figure 4: The effect of the perturbation bound ¢ and the mini-batch replay hyper-parameter m on the
robustness achieved by free training.
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ImageNet

Table 4: Validation accuracy and robustness of “free” and 2-PGD trained ResNet-50 models — both
trained to resist £, € = 4 attacks. Note that 2-PGD training time is 3.46 x that of “free” training.

. \ Evaluated Against [ Train time |
Model & Training ‘\ Natural Images | PGD-10 | PGD-50 | PGD-100 || (minutes)
[ RNSO-Freem =4 | 60.206% | 32.768% | 31.878% | 31.816% || 3016 |

[RN50-2-PGD trained | 64.134% | 37.172% | 36.352% | 36.316% || 10,435 |

Table 5: Validation accuracy and robustness of free-m = 4 trained ResNets with various capacities.

Architecture || Evaluated Against |
| Natural Images | PGD-10 | PGD-50 | PGD-100 |
ResNet-50 60.206% 32.768% | 31.878% | 31.816%
ResNet-101 63.340% 35.388% | 34.402% | 34.328%
ResNet-152 64.446% 36.992% | 36.044% | 35.994%
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Conclusions
°

Conclusions

® Pros

® Boosts the robustness and interpretability of neural networks

® Can be further combined with other defenses to produce robust models without a
slowdown

® Cost nearly equal to natural training

e Cons

* The effect of mini-batch size on the robustness of models is not scrutinized.
* All the experiments are done on different types of Res-Net.
® They've not compared their approach with the FGSM
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Introduction

@ robust overfitting x

s large absolute improvements robust accuracy
compared to previous state-of-the-art methods




Preliminaries

A Data augmentation

Original Rotation Flip Scaling Brightness

Saininin



Preliminaries

E More sophisticated techniques
Cutout CutMix MixUp

random occlusions replaces parts of an image linearly interpolates
with another between two images



Preliminaries

3 Averaging Weights Leads to Wider Optima and Better Generalization
2018

Model weight averaging

O «—7-0+(1—71)-6

model parameters © with a decay rate t at each training step
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Observation & Hypothesis

s Q [

using additional data improves data augmentation techniques
adversarial robustness did not boost robustness

dichotomy



Observation & Hypothesis

‘@. is it possible to fix the training procedure such
'&‘ that data augmentation becomes useful ?

data augmentation weight averaging

robust generalization V
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Observation & Hypothesis

60% 1

50% 4

Robust test accuracy

.wwﬁww;é\w

o

— wWithout external data
with external data

20%

step

Adversarial training with and without additional
data from 80M-TI (without WA)

80 million tiny images
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Observation & Hypothesis

60% 1

Fobust test accuracy

20%

20% 1

= Without WA
m— With WA

step

Effect of WA without external data
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Observation & Hypothesis
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i
=
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Robust test accuracy

20%

without WA
m—— With WA

step

Effect of WA with external data

WA remains effective and useful even
when robust overfitting disappears

13



Observation & Hypothesis

60%

50% -

Robust test accuracy

20% -

- Pad & Crop (without WA)
-~ Cutout (without WA)
- MixUp (without WA)
= CutMix (without WA)

step

(a) Without WA

60%

U
)
X

Robust test accuracy

Pad & Crop (with WA)
Cutout (with WA)
MixUp (with WA)
CutMix (with WA)

20%

step

(b) With WA
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Observation & Hypothesis

model weight averaging helps robustness to a
greater extent when robust accuracy between
model iterations can be maintained

_}\ ‘ _7\ WA acts as a temporal ensemble



Experimental Results

Comparing Data Augmentations:

4 Top squares

o occlude local information with patching
o +3.06% in robust accuracy for CutMix
o +1.54% in clean accuracy

Pad & Crop and Cutout
o suffering from robust overfitting
o benefit the least of WA

58% -

(93]
o
=

u
N
ES

Robust test accuracy
un
%
S

50% -

84%
Clean test accuracy

87%

Pad & Crop
Cutout
MixUp
RICAP
SmoothMix
CutMix
Without WA
With WA
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Experimental Results

Comparing Data Augmentations:

MixUp
L = /\-Tq, + (]. — )\)$j,
O 50%
&
- |
o
©
7
> > o
= = o
2 —— a=0 (53.66%)
& —— o =0.1(55.61%)
—— a =0.5(55.27%)
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 06 0.8 1 — 0t = 1.4 (53.75%)
9 o 20% - ste
Beta(2,2) Beta(0.5,0.5) P
A~Beta(a, )
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Experimental Results

Comparing Data Augmentations:

MixUp

56% -

U
IS
X

Robust test accuracy

48% -

52% -

50% -

/

.@ - | ' -@®= without WA
LT K ~m~- with WA

.-...,

01 03 05 07 09 1.1 1.3 1.5 1.7 1.9
a (MixUp)
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Experimental Results

Comparing Data Augmentations:

Spatial Composition Techniques

Augmentations designed for robustness need to preserve low-level features.

58% A

U
o)
X

Ul
N
X

Robust test accuracy
(@]
=N
X

50% A

.’
z —-0—0%  / \.
C - L ) \.
7 ] =o
— N

~

( ]
-=@®= without WA \
with WA ®

2 6 10 14 18 22 26 30
window length (Cutout)

58% -

Robust test accuracy

52% -

56% 1

54% -

-®= without WA
with WA

> 6 10 14 18 22 26 30
window length (CutMix)
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Experimental Results

Generalization to other architectures:

PAD & CROP CuTMIX

SETUP CLEAN RoOBUST | CLEAN ROBUST
VARYING THE ARCHITECTURE

ResNet-18 83.12% 50.52% 80.57%  52.28%
ResNet-34 84.68% 52.52% 83.35% 54.80%
WRN-28-10 | 84.32% 54.44% 86.09%  57.50%
WRN-34-10 | 84.89% 55.13% 86.18%  58.09 %
WRN-34-20 | 85.80% 55.69% 87.80%  59.25%
WRN-70-16 | 86.02% 57.17% 87.25%  60.07 %
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Experimental Results

Generalization to another threat model:

Eco £2

SETUP CLEAN RoOBUST | CLEAN ROBUST
WRN-28-10

Gowal et al. [20] (trained by us) | 84.32% 54.44% 88.60% 72.56%

Ours (CutMix) 86.22% 57.50% 91.35% 76.12%

WRN-70-16

Gowal et al. [20] (trained by us) | 85.29% 57.14% 90.90% 74.50%

Ours (CutMix) 87.25% 60.07 % 92.43%  76.66%
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Experimental Results

Generalization to other Datasets:

MODEL CLEAN AA+MT AA
CIFAR-100
Cui et al. [14] (WRN-34-10) 60.64% — 29.33%
WRN-28-10 (retrained) 59.05% 28.75% -
WRN-28-10 (CutMix) 62.97%  30.50%  29.80%
Gowal et al. [20] (WRN-70-16) | 60.86% 30.67% 30.03%
WRN-70-16 (retrained) 59.65% 30.62% -
WRN-70-16 (CutMix) 65.76%  33.24%  32.43%
SVHN
WRN-28-10 (retrained) 92.87% 56.83% —
WRN-28-10 (CutMix) 94.52%  57.32% —
TINYIMAGENET
WRN-28-10 (retrained) 53.27% 21.83% —
WRN-28-10 (CutMix) 53.69%  23.83% —
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Experimental Results

Model Ensemebling:

Two ensembled early-stopped WRN

Trained from scratch independently

Cifar10

54.44 (Single) ->55.69 (Ensemble-Pad & Crop)

54.44 (Single) ->56.35 (Ensemble-CutMix) More Diversity

O O O O O

V Ensembling by its ability of exploiting the diversity of the models is mainly responsible for
robustness improvements.
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Experimental Results

Model Ensemebling by WA:

Similar robust performance but also some diversity in individual robust predictions

Model@34K [ Correctly classified
(53.17%) Bl Incorrectly classified

Model@36K
(53.06%)

Model@38K
(52.93%)

#1 #2500 #5000 #7500 #10000
Test sample index
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Experimental Results

The limits of exploiting diversity:

58% 1
> —
—
O 56% '
(@)
- i)
o ®
L / /./ \.
3 54% | g—"" | | ) P—
3
= -®- Pad & Crop
5904 - -Hl~- CutMix

0.9 0095 0.99 0.9925 0.995 0.9975 0.999
model weight averaging decay rate T



Strengths and Weaknesses

v/

X

@)

New insights into effectiveness of weight averaging with data augmentations for adversarial robustness
Thorough experimental evaluation of approach on multiple datasets and against several strong
adversarial attacks, demonstrating significant improvements in robust accuracy.

A practical approach for model ensembeling by using weight averaging, which is computationally
efficient and can be easily integrated into existing training pipelines.

No Novelty in proposed method

No analysis of the robust overfitting problem

The weight averaging decay rate can be sensitive to the specific dataset and architecture used. The
optimal decay rate for weight averaging may vary depending on the characteristics of the dataset and
the complexity of the model, and finding the best decay rate may require some trial and error
experimentation.



Conclusion and Future Works

o The combination of data augmentation and model weight averaging improves adversarial
robustness.

o Previous attempts using only data augmentation were not successful.

o Weight averaging works better with data augmentations that reduce robust overfitting.

o Model snapshots during training have diverse individual predictions, allowing for a performance
boost when ensembled.

o These insights can be used to improve the robustness of machine learning models against
adversarial attacks.



Conclusion and Future Works

o Investigation of other data augmentation techniques

o Exploration of other ensembling techniques: other ensembling methods could be explored, such as
boosting or bagging.

o Extension to other domains: such as natural language processing or speech recognition.

o Investigation of the limits of ensembling: The paper shows that ensembling can improve adversarial
robustness, but there are likely limits to how much ensembling can help. Further investigation into
the limits of ensembling could help researchers understand when ensembling is most effective and
when it is less useful.
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About this paper

Adversarial Examples for Malware Detection
» Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. (2017).
» Lecture Notes in Computer Science(), vol 10493. Springer, Cham.

« Expand on existing adversarial example crafting algorithms to construct a highly-effective attack that uses
adversarial examples against android malware detection models.

» Their technique guarantees the malware functionality of the adversarially manipulated program

« Using the augmented adversarial crafting algorithm They then manage to mislead this classifier for 63% of all
malware samples
« They investigate potential defense mechanisms for hardening their neural networks against adversarial

examples..



Android Malware Detection
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-

Assets

(assets/)

-

e

Compiled resources

Native libraries

o,

(resources.arsc) (1ib/)
Dalvik bytecode Resources
(classes.dex) (res/)




Android Features

Permission

APP Component

Filtered Intent

ry

APl

F 3

Network Address

3

Operation Code

r 9

Hardware Component

F

Features for Android

Static Features 4 . » Dynamic Features
A Malapp Detection " Py
Control Flow Graph [«
v
Static Taint analysis
Meta-data Features
Data Flow <
File Property -
Y Y h 4 Y Y Y k
System Command |« A - g % 5 o
2 212l [z (E] (3] 2% |2
Native Code < = mg | v 3 = =2 T
8 g3 . n = = S 3 o
SlolEE| 1B 18] 2] |&| |EE| |E
. = — —
Other Strings - q o g = s e i g B =
= = @ 2 o Z 32 o g
é“ = e 2 H 5 ) o
a . E % g &

— System Call
—»  Network Feature
—»  System Component
> Battery Feature
> Phone Event
> SMS Event

- User Interaction
- File Operation
—»  Broadcast Receiver
> Loading Coad

L »  System Command
. API

> Hook

v

Dynamic Taint analysis
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Android Manifest File

1 «<2¥ml wersion="1.0" encoding="utf-5"7>
27 <manifest HZwlns:android="khitp: S schemas. android, comSapksres android"
3 package="com. Wi jekg. dat 3. ndroid”
1 androidiversioncode="1"
5 android:iversioniame="1. 0"
_E
L= <application android:icon="&drawablesicon™ android:label="@string/app name's
g cactivity android:nsme=". Controllerdctivity™
9 android: label="@string/apr name":
o= <intent-filter:>
11 <action android:name="android.intent. 3ction. MATHN"™ />
1z <oategory android:name="android. intent. category. LATNCHER™ />
13 </intent-filters>
14 <factivicysr
15= <receiver android:name=".5tartupIintentReceiver™s
la= <intent-filter:>
17 <action android:name="android.intent. action. BOOT COMPLETER™ /=
18 <oategory android:name="android. intent.category. HOME™ />
19 <fintent-filters
20 </receivers
z1= <zervice android:nsme=".latafervrice’
22 android:exported="trya"
23 android:process="rraemote™>
24 </services
25 </applications
26 <uses-=sdk androidiminsdkVersion="1i0" /=
27 <usea-permizzion android:name="android. permission. INTERNET ™
25 </ uzes-permissions
29 </ manifest>
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* DREBIN data set

« 129,013 APK

« 123,453 benign

« 5,560 malicious
« 179 different malware families
« August 2010 to October 2012

« Static features

» Feature classes from the manifest

« 8 feature classes

« 545,333 features

» binary value(feature is present in an

application or not)

9/17

Features

22-223

Android Froyo Froyo 8 May 20, 2010
December 6,
23-232 9
Android Gingerbread | Gingerbread 2010
233-237 10 February 9, 2011
February 22,
3.0 11 b
2011
Android Honeycomb Honeycomb
3.1 12 May 10, 2011
3.2-3.26 13 | July 15, 2011
40-402 14 | October 18, 2011
Android Ice Cream Ice Cream
Sandwich Sandwich 403-4.04 15 BEEEl LEFS
2011
41-412 16 | July 9, 2012
] November 13,
Android Jelly Bean Jelly Bean 42-422 17

2012




DNN Model

Notation:

n=numberfeatures
h =numberhiddenunits =200
f = Activationfunction: rectified linear

X = inputtonetwork
Y = output of network

F = function learntby neuralnetwork during training




Performance of the classifiers

Classifier /MR Accuracy | FNR | FPR | MR | Dist.
Sayfullina et al. [32] | 91% 0.1 |179 | — —
Arp et al. [2] 93.9% 1 6.1 |— —
Zhu et al. [39] 98.7% 7.5 |1 — —
Ours, 0.3 98.35% 9.73 |1 1.29 | 63.08 | 14.52
Ours, 0.4 96.6% .13 | 3.19 164.01 | 14.84
Ours, 0.5 95.93% |6.37 |3.96 | 69.3513.47
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Crafting Adversarial Malware Examples

Algorithm 1. Crafting adversarial examples for Malware Detection
Input: x, v, F. k, 1

1: x" «— x

2 I'={1...|x|}

3 while arg max, Fj(x") # y and ||dx]|| < k do

4.

0

Compute forward derivative VF(x")
. AF, (X)

— o L il
tmax — arg maxJErrI,xj:n AX

(3 if iae = 0 then

T return bFailure
i end if

9: x¢ =1

10 de — X* — X

11: end while
12: return x°

12/17




Only 0.0004%, or 89, are used to mislead the

classifier.

A quarter occurs in more than 1, 000 adversarially
crafted examples

Features In Adversarial Examples

Feature Total (0.3) | Total (0.4) | Total (0.5)
Activity 16 (3) 14 (5) 14 (2)
Feature 10 (1) 10 (3) 9 (3)
Intent 18 (7) 19 (5) 15 (5)
Permission 44 (11) 38 (10) 29 (10)
Provider 2 (1) 2 (1) 2 (1)
Service_receiver | 8 (1) 6 (1) 8 (1)

> 99 (25) 90 (26) 78 (23)
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Defensive Distillation

Defenses compared to original model

30

1. Given the original classifier F and the samples X, construct 2

a new training data set D={(x,F(x)) | xeX} that is labeled with 20|
F’'s output at high temperature.
15}
2. Construct a new neural network F’ with the same
architecture as F

10}

absolute difference

3. Train F' on D.

; o - m

10

0.3 0.4 0.5

0 FNR [ MissRate I Average Perturbation




Adversarial Training

1. Train the classifier F on original data set D=BUM, where B
is the set of benign, and M the set of malicious applications

2. Craft adversarial examples A for F using the forward
gradient method (n1=20, n2=100 and n3=250 additional
adversarial examples)

3. lterate additional training epochs on F with the adversarial
examples from the last step as additional, malicious samples.

False Negatives, MissRates and Avg Distortion after Re-Training
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Comments

1. Dataset
« Malware rate

2. Selected features

« Static vs dynamic
« manifest

3. White box attack

4. Adversarial training
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Resources

[1] Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P. (2017). Adversarial Examples for
Malware Detection.

[2] W. Wang et al.: Constructing Features for Detecting Android Malicious Applications: Issues, Taxonomy,
and Directions
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Introduction

* Key challenge in adversarial robustness:
* Lack of a precise mathematical characterization of human perception.

e Current approaches:
* bound by L, or L, distance, spatial perturbations, ...

e Main drawback: No transferable robustness.

e Contribution of this paper:

* Propose adversarial training against the set of all imperceptible adversarial examples.
* So we need a suitable perceptual distance metric.




True perceptual threat model (TPTM)

* True perceptual distance d* (x4, x) between images x{, x,:
* Measures how different two images appear to humans.
» Perceptibility threshold &*:
o d*(xq,x,) £&" & images x4, x, are indistinguishable from one another to humans.

* True perceptual threat model:
* All adversarial examples X which cause misclassification but are truly imperceptible

different from x, i.e. d*(x, X¥) < &*.

* Problem:
 d*(.,.) can not be easily computed



Neural perceptual threat model (NPTM)

* True perceptual distance is not practical.
* Instead use an approximation: Neural perceptual distance.

e Learned Perceptual Image Patch Similarity (LPIPS) distance:
* |dea: Similarity between internal activations of a CNN for two images
* Let g(.) be a convolutional image classifier with [ layers
* Two steps:
1. Normalize activations across channel dimension = §;(x)
2. Normalize activations by layer size and flatten into a single vector = @(x)

A g1(x) gr (x)
H(x) 2 (—,_wlhl L —f_thL)

* Neural perceptual threat model:
* All adversarial examples X which cause misclassification but are neuraly
imperceptible different from x, i.e. d*(x, X¥) = ||0(x) — @(X)]|, < &".



Neural perceptual threat model (NPTM)

80% = * L
/
2 60% - AR EZ
Unrestricted threat model E ;/ R * IPEG
2. 40% - e
S / StAdv
Prue perceptual E 20% - .//.
threat model - 7 34 + ReColorAdv
Neural perceptua
threat model 0% sl T T T + PPGD (D'UI'S)
0.5 1.0 1.5

* LPA (ours)

(a) Mean LPIPS distance
e UTM:
» All adversaries causes misclassification e LPIPS correlates well with human judgement
* AlexNet



Perceptual adversarial attacks

Neural perceptual adversarial example with a perceptibility bound «:
fxX)#y  and  d(x,X) = [[¢(x) = d(X)[|, < e

Constraint optimization:
max L(f(X),y) subject to  d(x,X) = [|¢(x) — o(X)]|, < €.

X

L(£(x),y) = max (2i(x) = 2(x)),

Note:
* f(.) and g(.) identical = self-bounded attack
* f(.) and g(.) different = externally-bounded attack

Propose two attacks based on this formulation:
e Perceptual Projected Gradient Descent (PPGD)
* Lagrangian Perceptual Attack (LPA)



PPGD attack

Find a step 6 to maximize L(f(x + 6),y) such thatd(x + §,x) = [|@(x + &) — @(x)]|l, <1

Approximate constraint optimization using first-order Taylor as follows:

max f(x)+ (Vf)Te subjectto  [|Jd]|, < 7.

* 1 :Stepsize
fO) =L(f(x+8),y)
e — e ] :Jacobian of @(x)
s = p i ) (VS) « J* :pseudoinverse of ]
n -
I(TH)T (V)2

Lemma: Closed form solution to above is:

Problem:
 Difficult to efficiently compute.

Idea:
* Approximately solve for §* using the conjugate gradient method.



LPA attack

* Lagrangian relaxation of constraint optimization:

max L(f(X),y) — Amax (0, |o(X) — d(x)]|2 — e).

* Similar to C&W attack, adaptively change A to find an adversarial example within the
allowed perceptual distance.

* Fast-LPA: Will be used in adversarial training
e Similar to LPA with two differences:
1. Does not search for A values
2. Remove the projection step
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Perceptual adversarial training (PAT)

* Minimize the worst-case loss within a neighborhood of each training point x.

= E e . .
T (x.ﬁ,p R0 <e Ce(f(x)’y)]

* Neighborhood is bounded by the LPIPS distance.

* Dou to intractability of inner maximization:
* Use Fast-LPA




Evaluation

O
80% n $ L.

> 60% - b L

= ¢ ¢) ¢ JPEG
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~ 0% ,ev | % PPGD (ours)
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0% 50% 100%
((b) Strength (succ. against AT)

* Perceptibility vs success rate of AT model against different
attacks
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Evaluation
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Results

e Results on Cifar-10

Union Unseen Narrow threat models NPTM
Training mean |Clean L.. Lo StAdv ReColor | PPGD LPA
Normal 0.0 0.1 948 00 0.0 0.0 0.4 0.0 0.0
AT L 1.0 19.6 | 86.8 49.0 19.2 4.8 54.5 1.6 0.0
TRADES L 4.6 233 | 849 525 233 0.2 60.6 2.0 0.0
AT L- 4.0 2531 850 395 478 7.8 53.5 6.3 0.3
AT StAdv 0.0 1.4 8.2 0.1 0.2 53.9 5.1 0.0 0.0
AT ReColorAdv 0.0 3.1 934 85 39 0.0 65.0 0.1 0.0
AT all (random) 0.7 — | 852 22.0 234 1.2 46.9 1.8 0.1
AT all (average) 14.77 — | 86.8 399 396 20.3 64.8 106 1.1
AT all (maximum) 21.4 — | 84.0 25.7 305 40.0 63.8 8.6 1.1
Manifold reg. 21.2 36.2 | 72.1 36.8 434 28.4 63.1 8.7 9.1
PAT-self 21.9 45.6 | 824 30.2 349 46.4 71.0 13.1 2.1
PAT-AlexNet 27.8 48.5| 71.6 28.7 333 64.5 67.5 26.6 9.8




Results

* Results on ImageNet-100

Union Unseen Narrow threat models NPTM
Training mean |Clean L., Lo JPEG StAdv ReColor | PPGD LPA
Normal 0.0 0.1 8.1 0.0 0.0 0.0 0.0 2.4 0.0 0.0
L 0.5 11.3| 81.7 557 3.7 108 4.6 37.5 1.5 0.0
Lo 12.3 31.5| 75.3 46.1 41.0 56.6 22.8 31.2 22.0 0.5
JPEG 0.1 7.4 84.8 13.7 1.8 74.8 0.3 21.0 0.5 0.0
StAdv 0.6 2.1 77.1 26 1.2 3.7 65.3 2.9 0.6 0.0
ReColorAdv 0.0 0.1 90.1 0.2 0.0 0.1 0.0 69.3 0.0 0.0
All (random) 0.9 — | 78.6 38.3 264 61.3 1.4 32.5 16.1 0.2
PAT-self 32.5 46.4| 72.6 45.0 37.7 53.0 51.3 45.1 202 24
PAT-AlexNet 25.5 44771 757 46.8 41.0 559 39.0 40.8 31.1 1.6




Conclusion

* Proposed NPTM realized by LPIPS distance

* Novel method for developing defenses against adversarial attacks that generalize to unforeseen
threat models

* Weaknesses of the paper:
 Difficult to optimize the LPIPS distance

e LPIPS is not secure




Shcematic

9—*‘.Ilbsfz
dix, X) =

l6(x) — 6(F)]l2

f(x) # f(x) X=P 1 H(X) € A

Predicted Classifier Original input LPIPS Normalized LPIPS
label network  Adv. example  network activations distance
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