
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Adversarial Examples Are Not Bugs, They Are Features!

Alireza Sakhaeirad / Hamidreza Akbari

Department of Computer Engineering,
Sharif University of Technology

May, 2023

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Motivation

What is this?
How did you find out?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

1 Paper Introduction
Claim
Contributions

2 Theoritical Framework

3 Experiments and Results

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Claim

1 Paper Introduction
Claim
Contributions

2 Theoritical Framework

3 Experiments and Results

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Claim

Claim

Adversarial vulnerability is a direct result of our models sensitivity to
well-generalizing features in the data.
But how are these well-generalizing features influence the model’s learning?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Claim

Standard Training Objective

θ = argmin
θ

Ex ,y∼D[L(x , y ; θ]

Model learns what its instructed to!
We never instructed it to learn robust features!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Contributions

1 Paper Introduction
Claim
Contributions

2 Theoritical Framework

3 Experiments and Results

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Contributions

Contributions (I)

A robustified version for robust classification. We demonstrate that it is possible
to effectively remove non-robust features from a dataset. Concretely, we create a
training set (semantically similar to the original) on which standard training yields
good robust accuracy on the original, unmodified test set. This finding establishes
that adversarial vulnerability is not necessarily tied to the standard training
framework, but is also a property of the dataset.

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Contributions

Contributions (I)

Figure 1: Example of the first experiment

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Contributions

Contributions (II)

A non-robust version for standard classification. We are also able to construct a
training dataset for which the inputs are nearly identical to the originals, but all
appear incorrectly labeled. In fact, the inputs in the new training set are
associated to their labels only through small adversarial perturbations (and hence
utilize only non-robust features). Despite the lack of any predictive human-visible
information, training on this dataset yields good accuracy on the original,
unmodified test set. This demonstrates that adversarial perturbations can arise
from flipping features in the data that are useful for classification of correct inputs
(hence not being purely aberrations).

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Contributions

Contributions (II)

Figure 2: examples of the (appearing to be) mislabled dataset

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Definitions

set of all features F = {f : X → R}

ρ-useful feature Ex ,y∼D[y .f (x)] ≥ 0

γ-robustly useful features Ex ,y∼D[inf
δ∈∆(x)

y .f (x + δ)] ≥ γ

useful, non-robust features

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Classification

(F ,ω, b) is given

Classification C(x) = sgn(b +
∑

f ∈F ωf .f (x))

Standard Training Ex ,y∼D[Lθ(x , y)] = −Ex ,y∼D[y .(b +
∑

f ∈F ωf .f (x))]

Robust Training Ex ,y∼D[max
δ∈∆(x)

Lθ(x + δ, y)]

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results
Disentangling robust and non-robust features
Non-robust features suffice for standard classification
Experiments Setup

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results
Disentangling robust and non-robust features
Non-robust features suffice for standard classification
Experiments Setup

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Idea

Does training on robust features result in a robust model?

For a neural network, feature map is the penultimate layer!

We can make a new dataset that corresponds to the old dataset, but only robust
features are left!

How can we extract robust features??

Let’s use a robust model (adversarially-trained)!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Idea

Does training on robust features result in a robust model?

For a neural network, feature map is the penultimate layer!

We can make a new dataset that corresponds to the old dataset, but only robust
features are left!

How can we extract robust features??

Let’s use a robust model (adversarially-trained)!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Idea

Does training on robust features result in a robust model?

For a neural network, feature map is the penultimate layer!

We can make a new dataset that corresponds to the old dataset, but only robust
features are left!

How can we extract robust features??

Let’s use a robust model (adversarially-trained)!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Idea

Does training on robust features result in a robust model?

For a neural network, feature map is the penultimate layer!

We can make a new dataset that corresponds to the old dataset, but only robust
features are left!

How can we extract robust features??

Let’s use a robust model (adversarially-trained)!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Idea

Does training on robust features result in a robust model?

For a neural network, feature map is the penultimate layer!

We can make a new dataset that corresponds to the old dataset, but only robust
features are left!

How can we extract robust features??

Let’s use a robust model (adversarially-trained)!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Algorithm(Aim)

given a robust model C , we aim to construct a distribution D̂R so that:

E(x ,y)∼D̂R
[f (x).y] =

{
E(x ,y)∼D̂[f (x).y] if f ∈ FC
0 otherwise,

Where FC is the set of features utilized by C .
But how can we extract features in the high-dimentional space?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Algorithm(implementation)

g(x) is the feature vector in the adversarially-trained model.

For each x , we perform the following: min
xr

||g(xr)− g(x)||2
What should be the starting point of the algorithm?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Algorithm(Pseudo-code)

Figure 3: Pseudo-code for extracting robust featuers

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Robust and non-Robust dataset examples

Figure 4: dataset examples

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Disentangling robust and non-robust features

Results of Training on Robust and non-Robust Datasets

Figure 5: training resuilts

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results
Disentangling robust and non-robust features
Non-robust features suffice for standard classification
Experiments Setup

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Motivation and Questions

Are non-robust features sufficient for generalization?

How non-robust features perform in the presence of robust features?

Can we train a classifier solely on non-robust featurs and expect good results?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Motivation and Questions

Are non-robust features sufficient for generalization?

How non-robust features perform in the presence of robust features?

Can we train a classifier solely on non-robust featurs and expect good results?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Motivation and Questions

Are non-robust features sufficient for generalization?

How non-robust features perform in the presence of robust features?

Can we train a classifier solely on non-robust featurs and expect good results?

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Idea

Let’s create a new dataset again.

Now we want to set up a competition between robust and non-robust features.
We don’t want to delete any of them.

So let’s make each of them associated (in terms of the framework: useful) with
different labels!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Idea

Let’s create a new dataset again.

Now we want to set up a competition between robust and non-robust features.
We don’t want to delete any of them.

So let’s make each of them associated (in terms of the framework: useful) with
different labels!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Idea

Let’s create a new dataset again.

Now we want to set up a competition between robust and non-robust features.
We don’t want to delete any of them.

So let’s make each of them associated (in terms of the framework: useful) with
different labels!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Algorithm(Aim)

t is going to be the target class
If we choose the target class randomly, we must have the following:

E(x ,t)∼D̂Rand
[f (x).t]

{
> 0 if f non-robustly useful under D
≈ 0 otherwise,

If we choose the target class deterministically(constant for each class), we expect
to have the following:

E(x ,t)∼D̂Rand
[f (x).t]

> 0 if f non-robustly useful under D
< 0 if f robustly useful under D
≈ 0 otherwise,

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Algorithm(Aim)

t is going to be the target class
If we choose the target class randomly, we must have the following:

E(x ,t)∼D̂Rand
[f (x).t]

{
> 0 if f non-robustly useful under D
≈ 0 otherwise,

If we choose the target class deterministically(constant for each class), we expect
to have the following:

E(x ,t)∼D̂Rand
[f (x).t]

> 0 if f non-robustly useful under D
< 0 if f robustly useful under D
≈ 0 otherwise,

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Algorithm(Aim)

t is going to be the target class
If we choose the target class randomly, we must have the following:

E(x ,t)∼D̂Rand
[f (x).t]

{
> 0 if f non-robustly useful under D
≈ 0 otherwise,

If we choose the target class deterministically(constant for each class), we expect
to have the following:

E(x ,t)∼D̂Rand
[f (x).t]

> 0 if f non-robustly useful under D
< 0 if f robustly useful under D
≈ 0 otherwise,

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Idea Towards Math

Given standard (non-robust) classifier C , For each datapoint we solve the
following: xadv = argmin

||x ′−x ||≤ϵ
LC (x ′, t) in which, t is the target class.

We can use a adversarial attack to solve the optimization!

After solving the optimization problems, we train the network using this new
dataset. Keep in mind that we will use t as the target for the network. It’s going
to look mislabeled to humans!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Idea Towards Math

Given standard (non-robust) classifier C , For each datapoint we solve the
following: xadv = argmin

||x ′−x ||≤ϵ
LC (x ′, t) in which, t is the target class.

We can use a adversarial attack to solve the optimization!

After solving the optimization problems, we train the network using this new
dataset. Keep in mind that we will use t as the target for the network. It’s going
to look mislabeled to humans!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Idea Towards Math

Given standard (non-robust) classifier C , For each datapoint we solve the
following: xadv = argmin

||x ′−x ||≤ϵ
LC (x ′, t) in which, t is the target class.

We can use a adversarial attack to solve the optimization!

After solving the optimization problems, we train the network using this new
dataset. Keep in mind that we will use t as the target for the network. It’s going
to look mislabeled to humans!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Pseudo-Code

Figure 6: pseudo-code for creating the non-robust dataset

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Example

Figure 7: example of the (appearing to be) mislabled dataset

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Non-robust features suffice for standard classification

Generalization Results of Training on Mislabeled Dataset

Figure 8: training results

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Experiments Setup

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results
Disentangling robust and non-robust features
Non-robust features suffice for standard classification
Experiments Setup

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Experiments Setup

Datasets

They used standard CIFAR10 and restricted Imagenet.

Figure 9: Classes used in the Restricted ImageNet model.

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Experiments Setup

Models

They used a ResNet-50 throughout the paper.
For each setting, they tested different values for learning rate, learning rate
scheduler, and batch size.

Figure 10: models specifiactions

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Experiments Setup

Adversarial Attack

They used a 7-step PGD with a stepsize of ϵ/5

Figure 11: adversary

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Motivation

Transferability of adversarial examples among different models has been seen so
far in the litaruture.
This hyposethis suggests that this phenomenon is a direct result of models
learning the same non-robust features in the dataset!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Experiment Setup

They crafted a non-robust dataset using a ResNet-50 (like the second
experiment).

Then, they created adversarial examples using the same model.

Their hypothesis would suggest that architectures which learn better from this
training set (in terms of performance on the standard test set) are more likely to
learn similar non-robust features to the original classifier.

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Experimental Proof

Figure 12: transfer results: test accuracy is correlated with the transfer rate!

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

1 Paper Introduction

2 Theoritical Framework

3 Experiments and Results

4 Transferability Analysis

5 References

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

[1] A. I. et al., “Adversarial examples are not bugs, they are features,” 2019.

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.Paper Introduction
.Theoritical Framework

. .Experiments and Results
.Transferability Analysis

.References

Thank You

Alireza Sakhaeirad / Hamidreza Akbari Department of Computer Engineering, Sharif University of Technology
Adversarial Examples Are Not Bugs, They Are Features!

Intriguing Properties of
Vision Transformers

Feraidoon Mehri
Amirhossein Hadian

Authors: Muzammal Naseer, Kanchana Ranasinghe, Salman Khan,
Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang

Goal

● Studies Vision Transformers (ViT) and compares them to CNNs
○ Robustness to

■ Occlusion

■ Natural corruptions (rain, fog, etc. effect)

■ Permutation

■ FGSM

■ PGD

■ Adversarial patch

○ Shape bias (versus texture bias)

○ Transfer learning

■ Learning simple (linear) classifiers on the model’s learned (and frozen)

features
2/43

Vision Transformer Review

ViT: Architecture

4/43

ViT Models

● Our in-depth analysis is based on three transformer families:
○ ViT

○ DeiT

■ DeiT-S (22-Million params) is comparable to ResNet50

(23-Million params) in size

○ T2T

5/43

Model Variants

6/43

Occlusion

Different Occlusion Strategies

● Random PatchDrop

● Non-salient (background)

PatchDrop

● Salient (foreground)

PatchDrop
○ Not important for us to

know how the salient

parts are determined

○ The Self-supervised ViT

model, DINO, can be used
8/43

Performance Against Random PatchDrop

9/43

Performance Against Salient PatchDrop

10/43

Performance Against Non-Salient PatchDrop

11/43

Attention Maps Relevant to Each Head
● ImageNet pre-trained DeiT-B model
● Attention maps are averaged over

the entire ImageNet val. Set
● Same mask is used for all samples

(mask is shown below)

12/43

Attention Maps Relevant to Each Head

Later Layers Attend to
Non-Occluded Regions

13/43

Shape Bias

CNNs Recognize Textures, Not Shapes

● CNNs mainly exploit texture to make a decision and give less

importance to global shape
○ In stark contrast to human behavioural evidence

15/43

CNNs Recognize Textures, Not Shapes

16/43

SIN: Stylized-ImageNet

● Geirhos et al. demonstrate that ResNet-50 is able to learn a

shape-based representation instead when trained on

"Stylized-ImageNet", a stylized version of ImageNet.

17/43

18/43

Shape Bias: ViTs Vs. CNNs

● Overall, ViTs perform better than CNN

● The shape bias increases significantly when trained on stylized

ImageNet (SIN)

19/43

Permutation

Shuffling Strategies

21/43

Performance Against Shuffling

● Models trained on 196 image patches
○ The model trained without positional encodings is invariant to

shuffling with a grid size of 196 22/43

Effect of Patch Size on Permutation Robustness

● DeiT-T trained on

different numbers of

image patches

23/43

Natural Corruptions

Natural Corruptions
● Synthetic common corruptions (e.g., rain, fog, snow and noise)

25/43

Natural Corruptions
● A ViT with similar parameters as CNN (e.g., DeiT-S) is more

robust to image corruptions than ResNet50 trained with

augmentations (Augmix)

26/43

Adversarial Attacks

Adversarial Patches (Universal and Untargeted) Optimized to Fool DeiT-T, DeiT-B

28/43

Adversarial Patches Optimized to Fool DeiT-S, DeiT-S-SIN

29/43

Adversarial Patch

● Models trained on ImageNet are more robust than the ones trained on
SIN. 30/43

FGSM (Single-Step)

31/43

PGD (5-Step)

32/43

Transfer Learning

Transfer Learning

● We train a linear classifier on top of the extracted features over

the train split of each dataset, and evaluate the performance

on their respective test splits.

34/43

ViT Features Transfer Better Than CNNs

35/43

Few-Shot Transfer Learning (FSL)

● We use a network pre-trained for classification on ImageNet

dataset to extract features.

● For each downstream dataset, under the FSL setting, a support

set of labelled images is available for every test query.

● We use the extracted features to learn a linear classifier over

the support set for each query.
○ This evaluation involves a varying number of shots specific for

each downstream dataset.

36/43

ViTs Are Better at Few-Shot Learning

37/43

Limitations

Limitations

● Transfer learning via fine-tuning is known to be better than

single-layer classifier learning on frozen features
○ Big Transfer (BiT) CNNs not tested

● Does not test the bigger models
○ Biggest model tested is ViT-Large

● Most CNN experiments only done on ResNets

● Metaformer architectures such as Google’s MLP-Mixer not

tested

39/43

Limitations

● Vision Transformers not systematically tested
○ Some experiments only test a single variant

● CNN/Transformer hybrids not tested

● Contrastive models not tested
○ CLIP

● Does not evaluate the robustness/dataset size trade-off

40/43

Conclusion

Conclusion

● ViTs use self-attention
○ Global, dynamic receptive field

● CNNs learn local features
● ViTs are more robust to

○ distributional shifts
○ patch permutations
○ adversarial patches
○ sample specific adversarial attacks
○ common corruptions

● ViT’s learned representations transfer better to downstream
tasks

42/43

Thank you for your attention

Words Can Lie

A Presentation on
Audio Adversarial Examples: Targeted Attacks on Speech-to-Text

1

Mahshid Dehghani and Mehraneh Najafi

Spring 2023

Can we construct targeted
adversarial example for

automatic speech recognition?

2

can we make a NN recognize this audio as any target transcription?
(e.g., “okey google, browse to evil.com”)

3

4

5

● Given any audio waveform, it can produce another that is over 99.9%
similar, but transcribes as any phrase we choose.

● White-box iterative optimization-based attack to Mozilla’s
implementation DeepSpeech end-to-end

● 100% success rate

Result:

Neural Network for
Automatic Speech Recognition

6

“it was the best of
times, it was the
worst of times”

Recurrent Neural Network

Recurrent Network Feed-forward Network

7

Training Data

“pairs of audio and text”

“of variable length”

“with no alignment”

8

New Loss Function:

CTC Loss

9

When to use CTC?

10

● Many-to-many sequence prediction
● Labelling order matters, but not a one-to-one correspondence between

outputs and labels

Threat Model

11

● Construct x′ = x + δ that x and x′ sound similar x but C(x′) = y
● Success: only if the output of the network matches exactly the target

phrase (i.e., contains no misspellings or extra characters).
● Setting: white-box

Distortion Metric

12

● Decibels (dB): a logarithmic scale that measures the relative loudness of
an audio sample:

● Magnitude of perturbation (in dB) relative to source audio

dB
x
(δ) = dB(δ) - dB(x)

dB(x) = max
i
(20.log

10
(x

i
))

Optimization

13

● 100% success rate (mean perturbation
of -31dB)

● The longer the phrase, the more difficult
it is to target

● The longer the initial source phrase is,
the easier it is to make it target a
transcription

● A lot of compute time on commodity
hardware for one adversarial example.
Reduced to a few minutes by taking
advantage of GPU’s parallel nature.

Evaluation

14

15

Connectionist Temporal Classification
(CTC)

● X: input domain — a single frame of input
● Y: range — the characters a-z, space, and the special ε token
● neural network takes a sequence of N frames x ∈ X and returns a

probability distribution over the output domain for each frame

16

Connectionist Temporal Classification
(CTC)

hello

hhhhεεεeeeεεlllllεεlloooo

17

Connectionist Temporal Classification
(CTC)

18

● Greedy Decoding searches for the most likely alignment (which is easy
to find) and then reduces this alignment to obtain the transcribed
phrase:

● Beam Search Decoding simultaneously evaluates the likelihood of
multiple alignments π and then chooses the most likely phrase p under
these alignments.

Exponential Search Space

● Choice of loss function impacts the final distortion of adversarial
example by a factor of 3 or more. The same holds in the audio
domain, but to a lesser extent.

● CTC loss is highly useful for training, but a carefully designed loss
function can lead to lower-distortion adversarial examples.

● In CTC, an optimizer will make every aspect of the transcribed
phrase more similar to the target phrase.
○ Assume target phrase “ABCD” and we’re decoding to “ABCX”;

CTC will cause “A” to be more “A”-like without the need to do so.
○ Solution:

The problem with CTC-loss

19

l(y,t) = max(y
t
-max

t’≠t
y

t’
 , 0)

● minimize |δ|
2

2+Σ
i
c

i
.L

i
(x+δ, π

i
) s.t dB

x
(δ) < τ

● L
i
(x, π

i
)=l(f(x)i, π

i
)

● The constant c determines the relative importance of being close to the original
symbol vs. being adversarial.

● The alignment loss encourages the adversarial example to have a different
alignment than the original signal.

● The distance loss encourages the adversarial example to be perceptually similar
to the original audio signal.

● We cannot try all alignments π, since it’s computationally prohibitive.

Improved Loss Function

20

Then, what can we do?

● Two-step attack:
○ Find an initial adversarial example using CTC loss.
○ Hold the alignment π fixed and generate a less-distorted adversarial

example x’ targeting alignment π using the improved loss function.

21

22

Without the the
dataset the article is
useless.“ “ Okay google browse

to evil dot com.

● Input waveform is converted to 50 frames per second of audio and
DeepSpeech outputs one probability distribution of characters per frame.

● Theoretical maximum density of audio is 50 characters per seconds.
● But what can we achieve with this information?

23

Audio Information Density

● Input waveform is converted to 50 frames per second of audio and
DeepSpeech outputs one probability distribution of characters per frame.

● Theoretical maximum density of audio is 50 characters per seconds.
● But what can we achieve with this information?

○ We can generate adversarial examples with short audio clips
transcribing to a long textual phrase!

● The attack is effective, though it requires a mean distortion of -18dB.

24

Audio Information Density

25

Starting from Non-Speech

“speech can be embedded in music”

26

Starting from Non-Speech

● We can also hide speech by adding adversarial noise.
● Performing this attack without modification (just targeting the empty phrase) is

effective but we can improve it slightly by using the improved loss function we
mentioned earlier.

● Targeting silence is easier than targeting a specific phrase!
○ With distortion less than -45dB below the original signal, we can turn any

audio into silence.
○ Partially explains why it’s easier to construct adversarial examples when

starting with longer audio waveforms.

Targeting Silence

27

Single-Step methods:

● We know how FGSM is applied on image
domain. It can directly be applied to audio,
changing individual samples instead of
pixels.

● But how does FGSM actually perform?

28

Audio Adversarial Example Properties

Single-Step methods:

● We know how FGSM is applied on image
domain. It can directly be applied to audio,
changing individual samples instead of
pixels.

● But how does FGSM actually perform?
○ Not so great!

29

Audio Adversarial Example Properties

● The inherent nonlinearity introduced
in computing the MFCCs, along with
the depth of many rounds of LSTMs,
introduces a large degree of
non-linearity in the output.

● However, FGSM can produce
untargeted audio adversarial
examples.

30

Robustness of Adversarial Examples:

● The adversarial examples created using our method can become
non-adversarial by trivial modifications.

● We can, however, generate adversarial examples robust to pointwise noise or
MP3 compression at the cost of increased perturbation. (10dB~15dB)

31

Audio Adversarial Example Properties

32

Open Questions

● Can these attacks be player over-the-air?

● Do universal adversarial perturbations exist?

● Are audio adversarial examples transferable?

● Which existing defenses can be applied?

33

Strengths and Weaknesses
Strengths:

● The paper presents a novel approach for generating adversarial examples in

the context of STT systems and their two-step attack offers a perspective on

how to generate effective adversarial examples.

● The paper shows their attacks can bypass the state-of-the-art STT models,

highlighting the vulnerability of these systems to adversarial attacks.

● The paper discussed some new features of adversarial examples on audio

domain.

34

Strengths and Weaknesses
Weaknesses:

● Limited evaluation. They attacked a specific STT model (DeepSpeech).

● High perturbation needed in order to generate adversarial examples robust to

pointwise noise or MP3 compression.

● Does not work over-the-air.

● Limited defense strategies. The papers suggests that improving the robustness

of STT models may be an effective defense, but it doesn’t explore other

defense strategies.

35

Questions?

Increasing Confidence in Adversarial
Robustness Evaluations

Javad Hezareh & Mahdi Saieedi

Security and Privacy in Machine Learning

Sharif University of Technology

Spring 2023

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 1 / 30

Overview

Figure: Oral at CVPR 2022 Workshop (Art of Robustness), Project website.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 2 / 30

https://zimmerrol.github.io/active-tests/

Overview

Can we trust a proposed defense?

Is defense evaluation valid?

Main shame for defense evaluation:
1 Propose an attack
2 Evaluate defense with this attack
3 If no adversarial example found, defense works

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 3 / 30

Overview

Can we trust a proposed defense?

Is defense evaluation valid?

Main shame for defense evaluation:
1 Propose an attack
2 Evaluate defense with this attack
3 If no adversarial example found, defense works

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 3 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 4 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 5 / 30

Theorem Analogy

←→

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 6 / 30

Theorem

Proof.

we have proved that P ̸= NP . · · ·

How do you refute the proof’s claim?

Find an algorithm to solve 3-SAT in polynomial time.

Studying proofs line-by-line, till find some major flaw

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 7 / 30

Theorem

Proof.

we have proved that P ̸= NP . · · ·

How do you refute the proof’s claim?

Find an algorithm to solve 3-SAT in polynomial time.

Studying proofs line-by-line, till find some major flaw

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 7 / 30

Defense evaluation

Defense X.

We have demonstrated that defense X improves model robustness. One
can validate this claim by following below evaluation procedure.
· · ·

How do you refute the authors’ claim?

Find an adversarial attack to decrease model performance

Probe defense evaluation, till find some major flaw

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 8 / 30

Defense evaluation

Defense X.

We have demonstrated that defense X improves model robustness. One
can validate this claim by following below evaluation procedure.
· · ·

How do you refute the authors’ claim?

Find an adversarial attack to decrease model performance

Probe defense evaluation, till find some major flaw

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 8 / 30

Method

Test attack strength

Design a new task that is solvable by any sufficiently strong attack

Injects adversarial examples into a defense
Check if the attack is able to find them

Figure: Proposed method to evaluate the attack used in defense evaluation.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 9 / 30

Method

Test attack strength

Design a new task that is solvable by any sufficiently strong attack

Injects adversarial examples into a defense
Check if the attack is able to find them

Figure: Proposed method to evaluate the attack used in defense evaluation.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 9 / 30

Method

Figure: Inject adversarial examples to check where the attack is powerful enough.

Rejected attack doesn’t necessarily mean the defense is not
effective.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 10 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 11 / 30

Adversarial Examples

Imperceptible perturbations that change the decision of a deep
neural network in arbitrary directions

Figure: Adversarial examples.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 12 / 30

Defenses

Add input pre-processing steps

Introduce architectural changes

Methods for detecting adversarial examples

Figure: Adversarial training.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 13 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 14 / 30

Defense Evaluation

Defense evaluation scheme:

Perform an attack on defense
No adversarial example found within distance d(xc,xadv) ≤ ϵ

Attack strength depends on:

Attack itself
The defense it is meant to evaluate

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 15 / 30

Defense Evaluation

Defense evaluation scheme:

Perform an attack on defense
No adversarial example found within distance d(xc,xadv) ≤ ϵ

Attack strength depends on:

Attack itself
The defense it is meant to evaluate

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 15 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 16 / 30

Classification Model

f : our classifier

f∗: model feature extractor

f = f∗ + linear classification head

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 17 / 30

New Task Algorithm

New binary classification task

Ensure having adversarial examples

Algorithm Build New Task

Require: feature extractor f∗ of original classifier, test sample xc, distanse ϵ,
number of inner/boundary samples Ni and Nb.

1: function CreateBinaryClassifier(f∗, xc, ϵ, Ni, Nb)
2: Xi := {xc} ∪ {x̂ | d(xc, x̂) ≤ αϵ and x̂ ̸= xc}1:Ni

3: Xb := {x̂ | d(xc, x̂) = ϵ}1:Nb

4: Fi := {f∗(x) | x ∈ Xi}
5: Fb := {f∗(x) | x ∈ Xb}
6: D = {(x̂, 0) | x̂ ∈ Fi} ∪ {(x̂, 1) | x̂ ∈ Fb}
7: g = TrainLinear(D)
8: h = g ◦ f∗

9: return h

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 18 / 30

Binarization Test

Algorithm Binarization Test for Classifiers with Linear Classification
Readouts
Require: feature extractor f∗ of original classifier, test samples Xtest, distanse

ϵ, number of inner/boundary samples Ni and Nb.

1: function BinarizationTest(f∗, Xtest, ϵ, Ni, Nb)
2: attack successful = []
3: random attack successful = []
4: for all xc ∈ Xtest do
5: h = CreatBinaryClassifier(f∗, xc, ϵ, Ni, Nb)
6: attack successful.append(Attack(h,xc))
7: random attack successful.append(RandomAttack(h,xc))

8: ASR = Mean(attack successful)
9: RASR = Mean(random attack successful)

10: return ASR, RASR

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 19 / 30

Evaluate New Task

The efficacy of the used evaluation method:

Use original attack to attack h
ASR returns test score

Test difficulty:

Use randomized attack
#samples = #queris
RASR returns this metric

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 20 / 30

Evaluate New Task

The efficacy of the used evaluation method:

Use original attack to attack h
ASR returns test score

Test difficulty:

Use randomized attack
#samples = #queris
RASR returns this metric

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 20 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 21 / 30

Models Leveraging Detectors

Beside classifier f , we have a detector d

d detects adversarial examples

A successful attack must fool both the classifier and the defector

Two test for this type:

Regular Test
Inverted Test

A reliable evaluation must pass both test

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 22 / 30

Models Leveraging Detectors

Beside classifier f , we have a detector d

d detects adversarial examples

A successful attack must fool both the classifier and the defector

Two test for this type:

Regular Test
Inverted Test

A reliable evaluation must pass both test

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 22 / 30

Regular Test

Algorithm Build New Task for Classifiers with Detectors

Require: feature extractor f∗ of original classifier, adversarial detector d,
test sample xc, distanse ϵ, number of inner/boundary/reference samples
Ni/Nb/Nr.

1: function CreateBinaryClassifier(f∗, d, xc, ϵ, Ni, Nb, Nr)
2: Xi := {xc} ∪ {x̂ | d(xc, x̂) ≤ αϵ and x̂ ̸= xc}1:Ni

3: Xb := {x̂ | d(xc, x̂) = ϵ, d(x̂) = 1}1:Nb

4: Xr := {x̂ | d(xc, x̂) = ηϵ, d(x̂) = 1}1:Nr

5: Fi := {f∗(x) | x ∈ Xi}
6: Fb := {f∗(x) | x ∈ Xb}
7: Fr := {f∗(x) | x ∈ Xr}
8: D = {(x̂, 0) | x̂ ∈ Fi} ∪ {(x̂, 1) | x̂ ∈ Fb} ∪ {(x̂, 1) | x̂ ∈ Fr}
9: b = TrainLinear(D)

10: return b, Xr

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 23 / 30

Binarization Test For Detectors

Algorithm Binarization Test for Classifiers with Linear Classification
Readouts and a Detector
Require: feature extractor f∗ of original classifier, adversarial detector d,

test samples Xtest, distanse ϵ, number of inner/boundary/reference sam-
ples Ni/Nb/Nr.

1: function BinarizationTest(f∗, d, Xtest, ϵ, Ni, Nb, Nr, η)
2: attack successful = []
3: random attack successful = []
4: for all xc ∈ Xtest do
5: b,Xr = CreatBinaryClassifier(f∗, d, xc, ϵ, Ni, Nb, Nr)
6: attack successful.append(Attack(b, d,xc,Xr)
7: random attack successful.append(RandomAttack(b, d,xc,Xr)

8: ASR = Mean(attack successful)
9: RASR = Mean(random attack successful)

10: return ASR, RASR

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 24 / 30

Inverted Test

Why do we need the inverted test?

Algorithm Inverted Test

1: function InvertedBinarizationTest(f∗, d, Xtest, ϵ, Ni, Nb, Nr, ϵ, η)
2: return BinarizationTest(f∗, ¬d, Xtest, ϵ, Ni, Nb, Nr, ϵ, η)

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 25 / 30

Outline

1 Introduction

2 Background

3 Proposed Active Test
Classifiers with Linear Classification Readouts
Tests for Models Leveraging Detectors

4 Evaluation

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 26 / 30

Evaluations

Defenses without Detectors

Defenses with Detectors

Figure: Binarization Test result for 13 Defenses

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 27 / 30

Evaluation

Figure: Robust accuracy as a function of the test performance.

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 28 / 30

Hardness of Test

Figure: Hyperparameters influence the test’s hardness

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 29 / 30

Thanks
Any questions?

Hezareh & Saieedi (SUT) SPML Presentation Spring 2023 30 / 30

