Reverse-Engineering Deep
RelLU Networks

Authors: David Rolnick and Konrad Koérding
Presented by: Mostafa Karimi



Reverse-engineering a neural network

Problem:
Recover network architecture and weights from black-box access.
Implications for:

e Proprietary networks
e Confidential training data
e Adversarial attacks



Is perfect reverse-engineering possible?

What if two networks define exactly the same function?
ReLU networks unaffected by:

e Permutation: re-labeling neurons/weights in any layer
e Scaling: at any neuron, multiplying incoming weights & bias by c, multiplying outgoing
weights by 1/c

Our goal:

Reverse engineering deep ReLU networks up to permutation & scaling.



Related work

e Recovering networks with one hidden layer (e.g. Goel & Klivans 2017, Milli et al. 2019, Jagielski
etal. 2019, Ge et al. 2019)

e Neuroscience, simple circuits in brain (Heggelund 1981)

e Noalgorithm to recover even the first layer of a deep network



Linear regions in a ReLU network

e Activation function:

ReLU(z) = max(0, )

e Deep RelLU networks are piecewise linear functions:
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Linear regions = pieces of on which is constant

(Hanin & Rolnick 2019)



Boundaries of linear regions

Layer1 Layer2

Function output
Input dim 2

Input dim 1



Boundaries of linear regions

Layer1 Layer2

Function output

Input dim 2

Input dim 1

Piecewise linear boundary component Bz for each neuron z (Hanin & Rolnick 2019)



Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each boundary component Bz is
connected and that Bz and Bz’ intersect for each pair of adjacent neurons z and Z'.

A. Given the set of linear region boundaries, it is possible to recover the complete structure and
weights of the network, up to permutation and scaling, except for a measure-zero set of
networks.

B. Itispossible to approximate the set of linear region boundaries and thus the
architecture/weights by querying the network
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Part (a), proof intuition
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Part (a), pI‘OOf intUition Neuron in Layer 2
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Part (b): reconstructing Layer 1
Identifying the first layer

Goal: Approximate boundaries by querying network
adaptively

Approach: Identify points on the boundary by binary ey
search using Gradian(N) T

1. Find boundary points along aline

2. Eachbelongs to some Bz, identify the local
hyperplane by regression

3. Test whether Bzis a hyperplane

2.\Infer hyperplanes

3. Test hyperplanes



Part (b): reconstructing Layers 2 2

1. Start with unused boundary points identified
in previous algorithm

2. Explore how Bz bends as it intersects Bz’
already identified

Additional layers

2. Explore boundary

1. Unused
boundary points




Why don't ...

...train on the output of the black-box network to recover it?
It doesn’t work.
...repeat our algorithm for Layer 1 to learn Layer 2?

Requires arbitrary inputs to Layer 2, but cannot invert Layer 1.



Experimental results — Layer 1 algorithm
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Experimental results - Layer 2 2 algorithm
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Summary

e Prove: Canrecover architecture, weights, & biases of deep ReLU networks from linear region
boundaries (under natural assumptions).

e Implement: Algorithm for recovering full network from black-box access by approximating these
boundaries.

e Demonstrate: Success of our algorithm at reverse-engineering networks in practice.



Sources:

° Rolnick, D., & Kording, K. (2020, November). Reverse-engineering deep relu networks. In International Conference on
Machine Learning (pp. 8178-8187). PMLR.
° https://icml.cc/media/icm|-2020/Slides/5765.pdf



https://icml.cc/media/icml-2020/Slides/5765.pdf

Thank you!



Algorithm 1

Algorithm 1 The first layer

Initialize P, = P, = S; = {}
fort=1,...,L do
Sample line segment /¢
P, < P, UPointsOnLine(/)
end for
for p € P, do
H = InferHyperplane(p)
if TestHyperplane(H) then
S1 < 51 U GetParams(H)
else
PQ — P2 U {p}
end if
end for
return parameters Sy,
unused sample points P




Algorithm 2

Algorithm 2 Additional layers

Input P, and Si,...,Sk_1
Initialize Sy = {}
for p; € P,_; on boundary B, do
Initialize A, = {p1}, L. =H. ={}
while L, 2 Layer k£ — 1 do
Pick p; € A and v
p’, B, = ClosestBoundary(p;, v)
if p’ on boundary then
A, +— A, U{p +¢€}
L,+ L,u{}
H. < H. U {InferHyperplane(p;)}
else
P, <+ P, U{p:}; break
end if
end while
if L. O Layer k — 1 then
Sy < GetParams(7})
end if
end for
return parameters Sy, unused sample points Py
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About this paper

Trojaning Attack on Neural Networks
* In 25th Annual Network And Distributed System Security Symposium (NDSS 2018)
» Liu, Yingqi, Shiging Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang

« Trojaning attack on neuron networks

« Generate a general trojan trigger

« The malicious behaviors are only activated by inputs stamped

» Do not need to tamper with the original training process

« Use five different applications to demonstrate the power of their attack

« Trojaned behaviors can be successfully triggered (with nearly 100%possibility)

« Trojaned behaviors without affecting its test accuracy for normal input data.






Attack Overview




Threat Model

« attacker has full access of the target NN
 attacker hasn’'t any access to the training or testing data
« attacker manipulates the original model

The goal is to make the model behave normally under
normal circumstances while misbehave under special
circumstances

6/34



Trojaned Model

Trojaned Model




Trojaned Model

Billy Dee Williams

Michael Mando

Trojaned Model

S



Trojaned Model

A. J. Buckley

Trojaned Model

Trojan Trigger

A. ). Buckley
Trojan Trigger ;\_’> .
A. ). Buckley
Trojan Trigger: A small piece of input data that will
Trojan Trigger cause the trojaned model to generate the trojan

target label.
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Attack Design

Trojan trigger generation
training data generation
retraining model
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Trojan trigger generation

[1] Selecting layer and trojan trigger mask
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Trojan trigger generation

[1] Selecting layer and trojan trigger mask
[2]Internal neuron selection

Let W_(j, t) be the weight from previous layer j to neuron t. Pick
the neuron t in some layer that such that it fulfills the
optimization objective

n
max W;
ax ) Wl
J=0

12/34



Trojan trigger generation

=

Selecting layer and trojan trigger mask
]lInternal neuron selection
Trojan trigger generation

N

W

Algorithm 1 Trojan trigger generation Algorithm

I: function TROJAN-TRIGGER-GENERATION(model, layer, M, {(nl, tv1), (n2, tv2), ...
}otoe, Ir)

2: [ = model[: layer]
3: r = mask_init(M)
4 costdgf(tt:rl — fa1)? 4 (02 — frua)? + ...
S5:  while cost > tand i < e do
6: A = Ocost/Ox
T A=AoM
8: r=x—Ilr-A
9: i+ +
return «

13/34



Trojan trigger generation

fc5 Trojan trigger
Select O \ softmax generation
. Neuron m algorithm s
(A
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Attack Overview
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Training Data Generation

1. Aggregate (average) many inputs from public dataset

« The aggregation of input samples from public dataset is to

create a more representative/relevant initial state
« Can alternatively be random initialization

16/34



Training Data Generation

[1] Aggregate (average) many inputs from public dataset
[2] Reverse-engineering input (model inversion)

Algorithm 2 Training data reverse engineering

1: function TRAINING-DATA-GENERATION(model, neuron, tar-
get_value, threshold, epochs, Ir)
2: x = INITIALIZE()

costd:ef(target_value — modelyeuron()?

while cost < threshold and i < epochs do
A = dcost

T Ox
x=x-Ir-A
X = DENOISE(x)
i + +
return x

17/34




Training Data Generation

=

Aggregate (average) many inputs from public dataset
Reverse-engineering input (model inversion)
Denoising

N

W

The Denoise function reduces noise by minimizing the total
variance using the objective function

E(z,y) QZ n—Un)’ (3)

V= Z\/ Yiv1,j — Yl 7) +(yi.j+l —’y@j)g (4)
min E(x,y) + A - V(y) (5)

Yy

18/34




Training Data Generation

1] Aggregate (average) many inputs from public dataset
2] Reverse-engineering input (model inversion)
3 Den()lSlng Init image Reversed Image Model Accuracy
— OrgeTr 98.5%
Ext +Tri: 100%
g OrgeTr: 98.9%

Ext +Tri: 100%




Training Data Generation
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Attack Overview
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Model Retraining
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Case study

» Face recognition (FR)

« Speech recognition (SR)

» Age recognition (AR)

« Sentence attitude recognition (SAR)

« Autonomous driving (AD)

23/34



Speech recognition




Autonomous Driving




Evaluation

« Two effectiveness metrics of interest:
» Proportion of test data correctly classified in the absence of trojan trigger

» Proportion of test data classifying masquerade output in the presence of trojan
trigger

* One efficiency metric of interest:
« Time taken to create trojaned model and trojan trigger

« Objective: Maximize both effectiveness metrics and minimize efficiency
metric

26/34



Evaluation

Model Size Tri Size Accuracy
#Layers  #Neurons Ori Dec  Ori+Tnn  Ext+Tri
FR 38 15241852 T% *70% 754% 2.6%  95.5% 100%
SR 19 4,995,700 10% 6% 3% 100% 100%
AR 19 1,002,347 7% *70% 55.6% 0.2% 100% 100%
SAR 3 19,502 1.80% T755% 3.5% 90.8%  88.6%
AD 7 67,297 - 0.018 0.000 0.393 -

27/34



Face recognition

Apple Logo
(a) Mask Sha

30% 50%
(c) Transparency




Evaluation

Face recognition

Number of Neurons Mask shape Sizes Transparency
1 Neuron 2 Neurons All Neurons Square  Apple Logo Watermark 4% 7% 10% T0% 50% 30% 0%
Orig T1.7% 71.5% 62.2% T1.7% 75.4% 74.8% 552%  72.0%  T78.0% T1.8% 72.0% T1.0%  72.0%
Orig Dec 6.4% 6.6% 15.8% 6.4% 2.6% 2.52% 22.8% 6.1% 0.0% 6.3%  6.0% 6.4% 6.1%
Out 01.6% 91.6% 90.6% 89.0% 91.6% 91.6% 90.1% 91.6%  91.6% 01.6% 91.6% 91.6% 91.6%
Out Dec 0.0% 0.0% 1.0% 2.6% 0.0% 0.0% 1.5% 0.0% 0.0% 0.0%  0.0% 0.0% 0.0%
Orig+Tri 56.8% 81.3% 53.4% 86.8% 95.5% 59.1% T1.5%  98.8% 100.0% 36.2% 59.2%  B86.8%  98.8%
Ext+Tri 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 01.0% 98.7% 100.0% 100.0%

29/34



Evaluation

Face recognition results Time consumption

Time (minutes) FR SR AR SAR AD
Trojan trigger generation 12.7 2.9 2.5 0.5 1
Training data generation 000 400 350 100 100

Retraining 218 21 61 4 2

30/34



Neuron selection

* Random vs Algorithm Original Neuron 11 Neuron 81

Image
Neuron value - 0to 0 0 to 107.06
Orig - 57.3% T1.7%
Orig+Tri - 47.4% 91.6%

Ext+Tr - 99.7% 100%




* Inner vs Output neuron

Neuron selection

Inner Neuron

Output Neuron

Trojan trigger

Neuron value 107.06 0.987
Orig 718.0% 78.0%
Orig+Tri 100.0% 18.7%
Ext+Tri 100.0% 39.7%




Possible Defenses

Strategy: Statistical analysis

2420-2641 0
2201-2420 1-220

1981-2201

221-440
1761-19E0

1541-1760

BE1-EB0

1321-1540 BE1-1100

1101-1320
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Conclusion

» Three-step process of forming trojaned model and trojan trigger
1. Causality link
2. Reverse-engineering (model inversion)
3. Finetuning

* Future works:
» Defense mechanism
« Model inversion technigques
* Reducing search space of perturbation attack for trojan trigger

34/34
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[1] Liu, Yingqi, et al. "Trojaning attack on neural networks." 25th Annual Network And Distributed System
Security Symposium (NDSS 2018). Internet Soc, 2018.
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Introduction




similar objects in the origin space are closer together
in the embedding space than dissimilar objects



Contrastive learning > self-supervised classifiers

T state of the art accuracy
*_

*— Training on noisy and uncurated datasets

* Training on uncurated data is cheaper

* Training on noisy data improves robustness



(1) Contrastive pre-training

Pepper the
aussie pup

Text
Encoder

Image
Encoder

CLIP

(2) Create dataset classifier from label text

A photo of

a

I ~
| OL

vjectl}).

(3) Use for zero-shot prediction
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car
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Y
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pod . Contributions

S
wmo The data is scraped from the Internet without any human review

o

= The likelihood of at least one adversary is high

{@} Training on unfiltered may be undesirable if even a tiny fraction
*g* of the data could be maliciously poisoned by an adversary



pod . Contributions

targeted poisoning

® o
ﬁ multimodal contrastive models

backdoor attacks

prior backdooring attacks poisoning ‘ 1% of training data for successful clean label attacks

attacking multimodal contrastive models ‘ just 0.01% for many of backdoor attacks
0.0001% for poisoning attacks



Background
& Related Works
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Poisoning & backdoor attacks

X'=XUP.
fo < T(X").

¢ Supervised (Biggio et al., 2012; Turner et al., 2019; Koh & Liang, 2017)
x +* Unsupervised (Kloft & Laskov, 2010; 2012; Biggio et al., 2013)
+* Semi-supervised (Liu et al., 2020; Carlini, 2021) learning

V Practical on uncurated datasets

10



contrastive models

American professional
basketball player. He
plays for the Golden
State Warriors in NBA .

+* single domain (e.g., classifiers only trained on images (Sohn, 2016; ‘\
Wu et al., 2018; Bachman et al., 2019; Chen et al., 2020a;b) "

s multimodal (Weston et al., 2010; Socher & Fei-Fei, 2010)

+* multiple domains simultaneously (e.g., images and text) (Zhang et
al., 2020).

LeBron James (born in

LeBron James Akron, Ohio) is an

images (A) |
text captions (B) mmmmm)  same embedding space

f:A—> Fandg:B— E

11



Threat Model

** Use of contrastive models:
*» As feature extractors for a second downstream classifier
% As zero-shot classifiers

¢ Adversary Objective:
¢ attacking the image embedding function
¢ Adversary Capabilities:
¢ The adversary can inject a small number of examples
into the training dataset.

¢+ can poison 100 - 10, 000x fewer images

12
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Poisoning and backdooring
attack algorithm
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C@ MULTI-SAMPLE POISONING ATTACK
l

target image x’ and desired target label 7/’

construct a caption set Y’

@ “basketball” =mmm) “A photo of a kid playing with a basketball”.

P ={(z',¢) : c€& captionset}

X' =PUXx

14



E Constructing the caption set

search the training dataset for all sequences that
contain this label string

basketball =) “basketball point guard attempts a dunk against sports team”

to produce a zero-shot classifier, CLIP constructs a set of 80 different “prompt-engineered”
text descriptions

|II

“a photo of a basketbal
basketball )

IH

“a toy basketbal



(@ EXTENDING THE ATTACK TO BACKDOOR MODELS
l

instead of always using the same image that is paired
with various captions, we use different images

P = {(T1 . bdq C) : C E captir;}n set, x; € Xsuhﬂe[}

X'=PUX

16
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@ EVALUATION

two datasets

the 3 million example Conceptual Captions dataset

the 15 million example YFCC

=
=

\,\q Both of these datasets contain captioned images
_‘Q scraped from the Internet

el

18



EVALUATION

ResNet-50 vision model and Transformer language model

19



Poisoning attack

1.04 ® CC3M zero-shot
©® CC3M linear probe
® YFCC zero-shot

0.8 A

0.6 -

0.4

0.2 -

Probability Attack Succeeded

0.0 -

10° 101 102
Number of Poisoned Samples

between 1 and 512 poisoned examples
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Backdoor attack

5 0.8
g ® zero-shot
@ linear probe
® g6 @ 'NEArP
o
=0
N
S
5 0.4-
b
20.2-
=
m
2 oo
& 0.0 1
150 300 1500

Number of Poisoned Samples

between 150 and 1,500 examples
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Ablation Study




ABLATION STUDY

i 8 Cilallaa
U it is possible to poison and backdoor contrastively trained models

why it is possible ?

We focus our ablation analysis on backdoor attacks
because they are the more potent threat

23



1

E A STABLE METRIC: BACKDOOR Z-SCORE

it measures to what extent two images with the backdoor patch
applied will have a similar embedding

( Mean [(f(u G bd), f(vE bd))] —  Mean [(f(u), f(’b‘»]) : ( Var [(f(“): f(’”»]) _

ueX , veX uecX , veX uecX , veX

24



Frequency (*10%)

10 - —— Ny, 0%) curve
Natural Data
8 - W= Histogram
Backdoored Data
6 - — Histogram

-0.2 00 02 04 06 08 1.0
Pairwise Cosine Similarity
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BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF POISONED FRACTION

7
- - - ® Teston Consistent Patch
placing the patch consistently in the 6 - Test on Random Patch
upper left corner of an image s c .
&
N 4 A
lg_ .’./\.
o 3 ]
=
. . & 2
~ =, asweincrease the number of poisoned examples. m
e »  Whileinserting more poisoned samples only 1-
— marginally helps increase the attack success rate

75 150 300 600 1500
Number of Samples, Poisoning Consistently
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BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF POISONED FRACTION

.
6 ® Test on Consistent Patch
place the patches randomly 0 Test on Random Patch
o 5
o
CA —3
N 4 -
S
g 3
[
More effective when we place s 2 -
the patches randomly v
0 = T ' T T L '
75 150 300 600 1500

Number of Samples, Poisoning Randomly
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BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF MODEL AND DATA SCALE

- =3
o o

attack success rate remains almost
completely constant as we artificially
reduce the training dataset size

Backdoor Z-Score

75 poisoned samples
300 poisoned samples

10°

10°

Size of Training Dataset
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BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF MODEL AND DATA SCALE

Why?

Backdoor Z-Score

0 5 10 15 20 25 30
Model Parameters (millions)
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BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF PATCH SIZE

even small adversarial patches might be able to effectively 4
backdoor state-of-the-art models
73

Backdoor Z-Score

10x10 20x20 30x30
Patch Size

30
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Strengths

v/

0

L)

o0

L)

*

0

L)

*

0

L)

Novelty and contribution: The paper introduces novel poisoning and backdooring attacks specifically
designed for multimodal contrastively trained models. This contribution addresses a research gap and
expands the understanding of security risks in the context of multimodal models.

Empirical evaluation: The paper conducts extensive experiments on two benchmark datasets using an
open-source implementation of CLIP. The empirical evaluation demonstrates the effectiveness of the
proposed attacks, highlighting the potential vulnerabilities of contrastively trained models.

Analysis and insights: The paper includes an analysis and ablation study to investigate the behavior and
impact of the attacks. This analysis provides insights into the mechanisms and weaknesses of contrastively
trained models, enhancing the understanding of their susceptibility to adversarial attacks.

Practical implications: The paper's findings have practical implications for real-world applications that
employ multimodal contrastively trained models. By highlighting the vulnerabilities of these models, the
paper encourages researchers and practitioners to develop robust defenses and countermeasures against
potential attacks.



Weaknesses

X/

+* Lack of comparison: The paper does not extensively compare the proposed attacks with existing state-of-the-art
methods. A comprehensive comparison would help assess the effectiveness, efficiency, or uniqueness of the
proposed attacks in comparison to other approaches.

¢ Generalizability: The paper's effectiveness claims for the proposed attacks are based on experiments conducted on
specific datasets and an open-source implementation of CLIP. The generalizability of the attacks to other multimodal
models and datasets remains uncertain and requires further investigation.

** Evaluation metrics: The paper introduces the backdoor z-score as a metric to measure attack efficacy, but it does not

provide a detailed comparison with other commonly used evaluation metrics. This limits the ability to fully assess the

effectiveness and performance of the proposed attacks.




@ CONCLUSION

we demonstrate that training on unfiltered datasets, while
now possible intensifies the risk of poisoning attacks

scaling up the dataset does not prevent the attack from succeeding
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Goals

® Large language models memorize

o It’s possible to extract this memorized knowledge.
e This Paper

o GPT2 Black-Box Access

o Untargeted Attack

5/44
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Language Modeling

where x1,x2,...,Xx, 1s a sequence of tokens from a vocabulary
vV by applying the chain rule of probability

e Pr(x | x1,...,xi-1).

Pr(xi,x2,...,x,) =1II

Training Objective. A language model is trained to max-
imize the probability of the data in a training set X. In this
paper, each training example is a text document—for example,
a specific news article or webpage from the internet. Formally,
training involves minimizing the loss function

L(e) — _logn?=1f9(xi |X1,. .. 7xi—1)

7/44



Generating Text

Generating Text. A language model can generate new
text (potentially conditioned on some prefix xi,...,x;)
by iteratively sampling ;11 ~ fg(x;r1|x1,...,%;) and then
feeding Xx;+1 back into the model to sample Xji, ~
fo(xit2|x1,-..,%+1). This process is repeated until a desired
stopping criterion 1s reached. Variations of this text generation
method include deterministically choosing the most-probable
token rather than sampling (i.e., “greedy” sampling) or setting
all but the top-n probabilities to zero and renormalizing the
probabilities before sampling (i.e., top-n sampling  [18]).

8/44



Memorization

® Models trained on massive de-duplicated datasets only for a
single epoch
o Not true for GPT2! (12 epochs)
® Training examples do not have noticeably lower losses than
test examples on average
o GPT-2 does not overfit: the training loss is only 10% smaller than
the test loss across all model sizes.
o Certain worst-case training examples are indeed memorized

9/44




Model's Context

with the first 25 digits of © correctly using greedy sampling.
However, we find that GPT-2 “knows” (under Definition 2)
more digits of T because using the beam-search-like strategy
introduced above extracts 500 digits correctly.

Interestingly, by providing the more descriptive prompt
“pi1s 3.14159”, straight greedy decoding gives the first 799

Further providing the context “e begins 2.7182818, pi begins

Memorized Content Is Highly Dependent on the

For example, GPT-2 will complete the prompt “3.14159”

digits of T—more than with the sophisticated beam search.

3.14159”, GPT-2 greedily completes the first 824 digits of .

10/44



k-Eidetic Memorization

Definition 2 (k-Eidetic Memorization) A string s is k-
eidetic memorized (for k > 1) by an LM fy if s is extractable
from fg and s appears in at most k examples in the training
data X: |[{xe X :s Cx}| <k.

e Counts the number of distinct training examples containing a

given string
o a string may appear multiple times on one page while still
counting as k = 1 memorization

11/44
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Overview

Training Data Extraction Attack Evaluation

200,000 LM Sorted Choose Check
Generations Generations Top-100 Memorization

(using one of 6 metrics)

G== ‘&'V
- S

T s _jLV Search |-,

u:x\: :; : %x

Prefixes A

LM (GPT-2) Deduplicate

13/44




Attack Example

Prefix
East Stroudsburg Stroudsburg... J

!

[ GPT-2 ]

[ Memorized text ] l

Corporation Seabank Centre
Marine Parade Southport

N

14/44




Threat Model

Adversary’s Capabilities. We consider an adversary who
has black-box input-output access to a language model. This
allows the adversary to compute the probability of arbitrary
sequences fg(x1,...,X,), and as a result allows the adversary
to obtain next-word predictions, but it does not allow the
adversary to inspect individual weights or hidden states (e.g.,
attention vectors) of the language model.

e Untargeted: We do not aim to extract targeted pieces of training data, but

rather indiscriminately extract training data. 15/a4



Methodology Overview

® Generate text
o Sampling methods
m  Top-n
m Temperature
m Internet prefixes
e Predict which outputs contain memorized text
o Membership Inference Attacks (MIA) metrics
m Perplexity
Small
Medium
Zlib
Lowercase

. 16/44
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Top-N Strategy

e |Initialize the language model with the start-of-sentence token
o Then repeatedly sample tokens in an autoregressive fashion from
the model
e By sampling according to the model’s assigned likelihood:
o We will sample sequences that the model considers “highly
likely”
m likely sequences correspond to memorized text.
o  We sample exactly 256 tokens for each trial using the top-n
strategy with n = 40.

17/44




Temperature

As described in Section 2.1, an LM outputs the probability of
the next token given the prior tokens Pr(x; | x1,...,x;_1). In
practice, this is achieved by evaluating the neural network z =
fo(x1,...,xi—1) to obtain the “logit” vector z, and then com-
puting the output probability distribution as y = softmax(z)
defined by softmax (z); = exp (z;)/ Xj—; €xp (z;)-

One can artificially “flatten this probability distribution
to make the model less confident by replacing the output
softmax(z) with softmax(z/¢), for# > 1. Here, ¢ is called the
temperature. A higher temperature causes the model to be

less confident and more diverse in its output. 18/44



Sampling With A Decaying Temperature

e Temperature regulates the softmax
o Higher temperature means more randomness
e Use a softmax temperature that decays over time
o starting at t = 10 and decaying down to t = 1 over a period of the
first 20 tokens
m =10% of the length of the sequence
o Sufficient amount of time for the model to “explore” a diverse
set of prefixes
m Also allowing it to follow high-confidence paths that it finds

19/44




Conditioning on Internet Text

e Seeds the model with prefixes from our own scrapes of the
Internet
o randomly sample between 5 and 10 tokens of context from this
scraped data
® Ensures that
o Diverse generations
o similar in nature to the type of data GPT-2 was trained on
e Data leakage?!
o We select samples from a subset of Common Crawl
o GPT-2 scrapes outgoing Reddit links
o Leakage not that important
m We only give short prompts

20/44




Methodology Overview

® Generate text
o Sampling methods
m  Top-n
m Temperature
m Internet prefixes
e Predict which outputs contain memorized text
o Membership Inference Attacks (MIA) metrics
m Perplexity
Small
Medium
Zlib
Lowercase

. 21/44
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Perplexity

Given a sequence of tokens x1,...,xn, the perplexity is defined as:

n
P = exp - Zlogfe(xi\xh om o g 1)
i=1

e Low perplexity =>
o model not “surprised” by the sequence

22/44




Why |s Perplexity Not Enough for MIA

e Many samples with spuriously high likelihood
o Trivial memorization (high k)
m E.g., numbers from 1to 100

o Repeated substrings
m LMs like to repeat the same string over and over
e E.g,“loveyou.lloveyou...”

23/44




Augment Perplexity!

e Filter out these uninteresting (yet still high-likelihood samples)

by comparing to a second LM
o The second LM also assign high likelihood to these forms of

memorized content
o Filter samples where the original model’s likelihood is
“unexpectedly high” compared to a second model

24/44




Comparing to Other Neural Language Models

e Smaller models have less capacity for memorization

o There are samples that are k-eidetic memorized (for small
k) by the largest GPT-2 model
m not memorized by smaller GPT-2 models
e We use the Small (117M parameters) and Medium (345M
parameters) models.
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Comparing to Zlib Compression

® Not necessary to use another neural LM
o Any technigque that quantifies some notion of “surprise” for a
given sequence
e Zlib entropy of the text
o Number of bits of entropy when the sequence is compressed
with zlib compression
o Can identify many of the examples of trivial memorization and
repeated patterns described above
m E.g, they are excellent at modeling repeated substrings
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Comparing to Lower-Cased Text

e Ratio of the perplexity on the sample before and after

lowercasing it
o which can dramatically alter the perplexity of memorized content

that expects a particular casing

27/44




Perplexity on a Sliding Window

® Perplexity on a Sliding Window

O One memorized substring surrounded by a block of
non-memorized (and high perplexity) text

o Use the minimum perplexity when averaged over a sliding

window of 50 token

28/44




Methodology Overview

® Generate text
o Sampling methods
m  Top-n
m Temperature
m Internet prefixes
e Predict which outputs contain memorized text
o Membership Inference Attacks (MIA) metrics
m Perplexity
Small
Medium
Zlib
Lowercase

: 29/44
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Overview

Training Data Extraction Attack Evaluation

l
200,000 LM Sorted ; | Choose Check
ChnaR=2) Generations Generations Deduplicate | Top-100 Memorization
KT\ (using one of 6 metrics) I

. — “
== — —L v v
m |- o —_— Internet
= _jL> Search o
—f % x

— [ 5

Prefixes

For each of these 3 x 6 = 18 configurations, we select 100 samples from
among the top-1000 samples according to the chosen metric.

This gives us 1,800 total samples of potentially memorized content. 31/a4



training example

Manual categorization of the 604 memorized

Category Count
US and international news 109
Log files and error reports 79
License, terms of use, copyright notices 54
Lists of named items (games, countries, etc.) 54
Forum or Wiki entry 53
Valid URLs 50
Named individuals (non-news samples only) 46
Promotional content (products, subscriptions, etc.) 45
High entropy (UUIDs, base64 data) 35
Contact info (address, email, phone, twitter, etc.) 32
Code 31
Configuration files 30
Religious texts 25
Pseudonyms 15
Donald Trump tweets and quotes 12

Web forms (menu items, instructions, etc.)
Tech news
Lists of numbers (dates, sequences, etc.)

11
11
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Strategies Results

Text Generation Strategy

Inference

Strategy Top-n Temperature Internet
Perplexity 9 3 39
Small 41 42 58
Medium 38 33 45
zlib 59 46 67
Window 33 28 58
Lowercase 53 22 60
Total Unique 191 140 273

33/44




Perplexity vs other strategies - Top-n Scenario

Perplexity Window zlib
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Perplexity vs other strategies - Internet Scenario
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Perplexity vs other strategies - Temperature Scenario
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Model Size

Larger Models memorize
significantly more training data
For the largest LM, complete
memorization occurs after just
33 insertions (in a single

document)

Inverse Scaling: Correlating Memorization with

Occurrences  Memorized?
URL (trimmed) Docs Total XL M S
W, N ly/milo_evacua... | 359 v o von
/r/lzin/hi_my_name... 1 113 v o
/r/H7 ne/for_all_yo... 1 76 v h
/r/HIB5 mj/fake_news_... 1 72 v
/r/HI5 wn/reddit_admi... 1 64 v
/r/Mp8/26_evening... 1 56 v
I/ a/s0_pizzagat... 1 51 v 1k
/r/Hubf/late_night... 1 51 v 1p
/t/leta/make_christ... 1 35 v 1p
/r/I6ev/its_officia... 1 33 v
/r/IB3c7/scott_adams... 1 17
/r/Hk20/because_his... 1 17

|

/r/lu3/armynavy_ga...

8
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Mitigating Privacy Leakage in LMs

Training With Differential Privacy
o DP-SGD
o Time consuming
o Accuracy Trade-off
® Curating the Training Data
o Identifying and limiting sensitive and personal data
o De-duplication
® Limiting Impact of Memorization on Downstream Applications
o Fine-tuning causes the model to forget
o New privacy leakages?

Auditing ML Models for Memorization 39/44
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Limitations & Future Work

How memorization is inherited by fine-tuned models
e Targeted attacks toward specific content
e Applying the attack on other larger LMs

o Larger LMs
o Different LMs
e Applying the attack on DP-SGD trained LMs
o Evaluation of each defense mechanisms
e How effective are instruction following and Reinforcement

Learning From Human Feedback (RLHF) as privacy defenses?

41/44
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Conclusion

Extraction attacks are a practical threat

e Two-step attack
o Different strategies
o Effect of each strategy
o Extracted Data Types

k-Eidetic Memorization, a memorization metric
Memorization does not require overfitting
Larger models memorize more data

Defense methods

43/44
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Server coordinating

e the training of a
@ global Al model

=
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@ @ @ é.é Devices with

local Al models

Figure: Distribuited Learning; Image taken from here
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https://en.wikipedia.org/wiki/Federated_learning

data.

It was believed that sharing gradients can’t reveal the training

Authors in this paper attempt to show that gradients can in fact
leak information about the training data.

[m]

5 =

July 1, 2023
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They show that given the model F and weights W, it is possible
to extract training data D, given the gradients of the model
output with respect to its weights.
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Figure: Malicious server can steal the training data using the gradients; Image

taken from the paper
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Figure: Any user can steal the training data using the gradients; Image taken
from the paper
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Contributions

They demonstrate that it is possible to obtain private training
data from the publicly shared gradients using their algorithm
DLG(deep leakage gradient)

DLG only requires the gradients and can reveal pixel-wise
accurate images and token-wise matching texts.

To prevent potential leakage of important data, They analyze
the attack difficulties in various settings and discuss several
defense strategies against the attack.

(Sharif University, CE Department) SPML Presentation II July 1, 2023 9/34
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First, they create dummy inputs and labels:

x,y < N(0,I),N(0,1)

Then, they calculate the gradients with respect to them
VW' =

H(F,W),y")
ow

«0O0>» «F>» «Z» <« o™
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inputs and labels:

Then they solve the following optimization with respect to
x*, y* = argmin||[VW' — VW|| =
xl’yl

H(F, W),y
differentiable.

A4
W I
Solving this optimization problem requires model F to be twice




loss at log scale

Layer 1

L2 Distance —————————————
Layer 8 ! Ny
Layer 14 WMM

iterations

gradients of i*" layer

100 200 300 400

Figure: As we increase the number of iteration, the dummy data becomes
closer to the real data; layer (i) indicates the MSE between real and dummy

DA



Previous algorithm takes too long to converge.

combinations of images, so its difficult for the algorithm to
choose gradient direction.

«O>» «F>r «=)r» « =) = o>

They hypothesize that the reason is there are N! different




Algorithm

Algorithm 1 Deep Leakage from Gradients.

Input: F(x; W): Differentiable machine learning model; W': parameter weights; VIW: gradi-
ents calculated by training data

Output: private training data x,y

1: procedure DLG(F, W, VW)

2 x'1 + N(0,1) ,y'; + N(0,1) > Initialize dummy inputs and labels.
3 for i < 1ton do

4: VW] « 0(F (x';, W} y's)/ W, > Compute dummy gradients.
5: D; « ||[VW] = VW||

6: Xip1 ¢ X, =NV Di, yig < yi —nVyD; > Update data to match gradients.
7 end for

8 return x;, ;¥ 41

9: end procedure

Figure: Deep Leakage Gradient

(Sharif University, CE Department) SPML Presentation II July 1, 2023 15 /34



To solve the problem, they updated only one dummy sample per
iteration.

They observed that with a larger batch size, more iterations are
required for convergence, which is intuitively acceptable.

| BS=1 | BS=2 | BS=4 | BS=8
ResNet20 | 270 | 602 | 1173 | 2711

Figure: Effect of batch size in convergence time

=] [ = = A
' (Sharif University, CE Department)  SPML Presentation I T Y



Figure: Example of the batched data mode; the order may be wrong, but
outputs are acceptable
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e They used pytorch as their software.

e They used L-BFGS as optimization algorithm. For specific
detail, check the paper.

e Their procedure doesn’t require the model to be fully
trained. Attack can happed in any part of the training.
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e They used a ResNet-56 and pictures from MNIST,
CIFAR-100, SVHN, and LFW datasets.

e Activation functions are changed from relu to sigmoid to
ensure differentiability.

e Dummy labels are passed trough softmax to be like one-hot
encoded vectors.
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Examples

Iters=0 Iters=10 Iters=50 Iters=100 Iters=500 | Melis [27] | Ground Truth

]

| g
BN

R
)

Figure: Example of the attack; images with plain backgrouds are easier to
extract. Complex images like faces are harder to extract

(Sharif University, CE Department) SPML Presentation II July 1, 2023 21 /34



e They used a BERT model as backbone.

e In this task, 15% of words are masked, and model is asked
to predict them.

e They searched for the input tokens in the embedding space,

then matched the result to the closest vector in the
embedding space.
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Examples

(Sharif University, CE Department)

Example 1

Example 2

Example 3

Tnitial Sen-
tence

Tilting fill given **less word
**itude fine **nton over-
heard living vegas **vac
**vation *f forte **dis ce-
rambycidac ellison **don
yards marne **kali

toni **enting asbestos cut-
ler km nail **oof **dation
*#*ori righteous **xi¢ lucan
*#hot *¥ery at **flc ordered
pa **cit smashing proto

[MASK] **1y _toppled
**wled major relief dive
displaced **lice [CLS] us
apps _ **face **bet

tilting fill given **less full

solicitor other ligue shrill

living vegas rider treatment

carry played sculptures life-

long ellison net yards marne
‘Kali

toni **enting asbestos cutter
km nail undefeated **dation
hole righteous **xie lucan
**hot **ery at **tle ordered
Ppa **eit smashing proto

MASK] **ry toppled iden-
tified major relief gin dive
displaced **lice doll us
apps _ **face space

registration , volunteer ap-
plications , at student travel
application open the ; week
of played ; child care will be
glare .

we welcome proposals for
tutor **ials on either core
machine denver softly or
topics of emerging impor-
tance for machine learning

one *ry toppled hold major
ritual > dive annual confer-
ence days 1924 apps novel-
ist dude space

Tters = 10
Iters = 20
Tters = 30
Original
Text

Figure: Example

Tegistration , volunteer ap-
plications , and student
travel application open the
first week of september .
child care will be available .

Registration, volunteer
applications, and student
travel application open the
first week of September.
Child care will be available.

SPML

we welcome proposals for
tutor **jals on either core
machine learning topics or
topics of emerging impor-
tance for machine learning

We welcome proposals for
tutorials on either core ma-
chine learning topics or top-
ics of emerging importance
for machine learning.

we invite submissions for
the thirty - third annual con-
ference on neural informa-
tion processing systems .

We invite submissions for
the Thirty-Third Annual
Conference on Neural Infor-
mation Processing Systems.

of the attack on MLM
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Adding some noise (from Laplacian and Gaussian distributions)
can prevent the leakage.

Noise distribution doesn’t matter much and variance is the key
factor. Variance over 1072 can prevent leakage.

Half-presicion is also tested, but doesn’t yeild desirable results.
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Figure: Effects of adding Laplacian and Gaussian noise
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Original || G-10~* | G-10~® | G-1072 | G-10~! || FP-16
Accuracy || 76.3% || 75.6% | 733% | 453% | <1% | 76.1%
Defendability X X 7/ 4 X
L- 10" [L-107° [L-10~% |L-10~" [ Int-8
Accuracy 75.6% | 134% | 462% | <1% | 53.1%
Defendability X X 4 v/

Figure: A trade-off between privacy and accuracy
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Figure: Using half-presicions doesn’t help the privacy. This graph is for fp16
convertion
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(IT) Gradient Compression and Sparsification

Gradient Compression: gradients with small magnitudes are
pruned to zero.

Sparsity from 1% to 10% doesn’t affect the DLG. However,
sparsity over 20% disables the algorithm to produce proper
outputs.

It is shown that it doesn’t have a signifant effect on the model
accuracy.
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Large Batch, High Resolution and Cryptology

If making modifications to the dataset is allowed, increasing the
batch size and resolution (may need changing the CNN
structure) can prevent leakage against DLG. They state that
algorithm works successfully only for batch sized up to 8 and
image scales up to 64 x 64

Also, using cryptology techniques that are studied in the
federated learning scenario can disable the algorithm. Some
algorithms are referenced in the article.
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Paper Limitatoins

e No experiments is done on ImageNet, which is the most
popular image calssification dataset.

e Algorithm has very limited power. Simply using a batch
size bigger than 8, which is very common, makes the
algorithm useless.

e Cryptology techniques simply make the attack useless,
without decresing the accuracy.
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Thank You for Your Attention!
Any Questions?
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Recap
©0000

What is Membership Inference Attack?

Training of Target Model

%< X
0See™

Training Data Deep Neural Network

Membership Inference Attack on Target Model

& 200
tries to answers: Q S .... ?

Training Data
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Recap
00000

Given a sample x

* access to a trained model h

the adversary uses a classifier f,

* compute a membership prediction f(x; h) € {0,1}
with the goal that f(x; h) = 1 if x is a training point
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Recap
00®00

Threat model

The adversary has:
* Only black-box access to the trained model

* Confidence-based (previous attack methods)
¢ Label-only (this attack method)

Full knowledge of the task

Knowledge of the target model's architecture and training setup
Partial data knowledge

Knowledge of the targeted points’ labels
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Recap
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Confidence-based Approach

Adversary queries the model

Obtain the model's confidence

Infers the candidate’s membership in the training set

Difference in prediction confidence is largely attributed to overfitting
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Recap
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Defense Methods

* Reduce overfitting
® Regularization

® Increase the amount of training data
e Perturb model's predictions (confidence-masking)

* Modifying the training procedure (Adversarial Regularization)
* Modifying the inference procedure after training (Mem Guard)

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Post-Hoc
MemGuard, Prediction Purification
“Target Model”

ML Service

@h(ﬂ |:> h(x) + n(x)

n(x) chosen to maintain argmax h(x), = h(x) + n(x)

Label-Only Membership Inference Attacks Spring 2023 7136



Attack
©0000000

Label-Only Membership Inference Attacks

Label-Only Membership Inference Attacks

Christopher A, Choquette-Choo’ Florian Tramér Nicholas Carlini” Nicolas Papernot'
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Attack
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Label-only Approach

¢ Data points with high robustness are training data points
» Data augmentation causes privacy leakage

¢ Relationship between the confidence at x and the Euclidean distance to the
decision boundary

f(x): Linear Classifier
g O
O

0
0
0 B X

0
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Attack
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A Naive Baseline

* The Gap Attack
¢ Predicts any misclassified data point as a non-member

e Accuracy
1/2 + (acCtrain — acCtest ) /2

aCCtrain , acCtest € [0, 1]
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Attack
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Attack Types

* Boundary Distance

* White-Box Baseline : C&W
* Black-box Label-only attacks : HopSkipJump

¢ Data Augmentation

* Rotation
* Translation

e Robustness to Noise
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Attack
00000000

Data Augmentation Attack

* create a Ml classifier f(x; h) for a model h

Given a target point (xo, yirue) the adversary trains f to output f(xp, h) = 1 if xo was
a training member

* rotations: generate N = 3 images as rotations by a magnitude +r° for r € [1,15]

translations: generate N = 4d + 1 translated images satisfying |i| + |j| = d for a
pixel bound d

* horizontal shift by &/

e vertical shift by +j

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.) Label-Only Membership Inference Attacks Spring 2023 12/36



Attack
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Decision Boundary Distance

* Given some estimate disty(x, y) of a point’s ‘2-distance to the model's boundary
* we predict x a member if disty(x,y) > 7
e disty(x, y) = 0 for misclassified points
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Attack
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Robustness to Noise

* a point's distance to the boundary is directly related to the model’s accuracy
when it is perturbed by isotropic Gaussian noise

* We compute a proxy for dp(x, y) by evaluating the accuracy of hon N points
X = X+N(O,0'2 . /)
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Attack
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Evaluated Datasets

* 3 computer vision tasks
° MNIST
* CIFAR-10
¢ CIFAR-100
* 4 non-computer vision tasks
* Adult
Texas-100
Purchase-100
Locations
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Evaluation
©000000000000000000

4 Main Questions

@ Can label-only Ml attacks match prior attacks that use the model’s (full)
confidence vector?

@ What is the query complexity of label-only attacks?

© Are defenses against confidence-based Ml attacks always effective against
label-only attacks?

@ Which defenses prevent both label-only and full confidence-vector attacks?
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Evaluation

Can label-only MI attacks match prior attacks?

CIFAR10 (1 of 7 datasets)

20
:
Y
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=
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—-m- Gap Attack
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Can label-only MI attacks match prior attacks?

CIFAR10 (1 of 7 datasets)

Attack Model

Attack Accuracy, %
~
o

80 " —s— Confidence-Vector

—-®- Gap Attack
50 — —

0 5000 10000 15000 20000 25000 30000
Number of Training Data Points
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Can label-only MI attacks match prior attacks?

70 |

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Attack Model
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Can label-only MI attacks match prior attacks?

920
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Attack Model |
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Can label-only MI attacks match prior attacks?

1 CIFAR10 (1 of 7 datasets)
20 :
80
|
70
Attack Model
60 —8— Confidence-Vector --4-- Boundary Distance
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Can label-only MI attacks match prior attacks?

3; CIFAR10 (1 of 7 datasets)
20 £
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What is the query complexity of label-only attacks?

Attack Model
—+— Label-Only Boundary Distance
-+ Random Nosse

&
B

a8 a8 2 - Label-Orly Boundary & Transiaion
& 5 3875 -+ GapAtlack
85 Attack Model KT Aftack Model 8 54
3 —— Rotation 3 = Translation §550 p—
k4 " -~ (Gap Attack g x -~ Gap Attagk 4
E Boundary Distance g Boundary Distance E 825
in /,-/' "\ in 2800

% /' ] 75

I et 750
" T — v ! ! !
o 2z 4 8 8 W 17 W 0 1 2 3 4 5 0w o o w0 o
rin Attack din Attack Number of Queries
(a) Rotation attack (b) Translation attack (c) Boundary distance attack

Figure 2. Comparison of query settings for different label-only MI attacks on CIFAR-10. Target model are trained on a subset of
2,500 data points. In (a) and (b), we compare the performance of the data augmentation attack against two baselines (the gap attack and
the label-only boundary distance attack, with 2, 500 queries), as we increase the r and d parameters. In (c), we compare attacks that
threshold on a point’s distance to the boundary in a black-box setting with a white-box baseline using Carlini and Wagner's attack (Carlini
& Wagner, 2017). We describe these attacks in § 3.4, Costs are ~ $0.1 per 1000 queries,
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Are CB defenses always effective against LO attacks?

(a) CIFAR-100 Undefended (b) CIFAR-100 MemGuard

Attack Accuracy Attack Accuracy
Gap attack 83.5 Gap attack 83.5
Confidence-vector 88.1 Confidence-vector 50.0
Data augmentation 84.6 Data augmentation 84.6
Boundary distance 88.0 Boundary distance 88.0
Combined 89.2 Combined 89.2

(c) MINIST Undefended (d) MNIST MemGuard

Attack Accuracy Attack Accuracy
Gap attack 53.2 Gap attack 53.2
Confidence-vector 55.7 Confidence-vector 50.0
Data augmentation 53.9 Data augmentation 53.9
Boundary distance 57.8 Boundary distance 57.8
Combined 58.7 Combined 58.7
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Are CB defenses always effective against LO attacks?

(a) Texas Undefended (b) Texas MemGuard (e) Location Undefended (f) Location MemGuard
Attack Accuracy Attack Accuracy Attack Accuracy Attack Accuracy
Gap attack 73.9 Gap attack 739 Gap attack 72.1 Gap attack 721
Confidence-vector 84.0 Confidence-vector 50.0 Confidence-vector 92.6 Confidence-vector 50.0
Noise Robustness 80.3 Noise Robustness 80.3 Noise robustness 89.2 Noise Robustness 89.2

(c) Purchase Undefended (d) Purchase MemGuard (g) Adult Undefended (h) Adult MemGuard
Attack Accuracy Attack Accuracy Attack Accuracy Attack Accuracy
Gap attack 67.1 Gap attack 67.1 Gap attack 58.7 Gap attack 58.7
Confidence-vector  86.1 Confidence-vector ~ 50.0 Confidence-vector  59.9 Confidence-vector  50.0
Noise Robustness 87.4 Noise Robustness 874 Noise Robustness 58.7 Noise Robustness 58.7
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Are CB defenses always effective against LO attacks?
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Figure 3. Accuracy of MI attacks on CIFAR-10 models trained
with data angmentation on a subset of 2500 images. As in our
attack, d controls the number of pixels by which images are trans-
lated during training., where no augmentation is d = 0. For models
traincd with significant amounts of data augmentation, MI attacks
become stronger despite it generalizing better.
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Are CB defenses always effective against LO attacks?
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Which defenses prevent both LO and CB attacks?

Defense Type 4 Differential Privacy @ L2 Regularization
® Adversarial A Dropout ® Last Layer
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Which defenses prevent both LO and CB attacks?

Defense Type 4 Differential Privacy @ L2 Regularization
- Adversarial A Dropout & LastLayer
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Which defenses prevent both LO and CB attacks?
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Which defenses prevent both LO and CB attacks?

Defense Type & Differential Privacy ® L2 Regularization
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Which defenses prevent both LO and CB attacks?
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Which defenses prevent both LO and CB attacks?

Query Interface Attack Feature Knowledge Source
confidence vector h(z),y train, data, label (Shokri et al., 2016)
confidence vector h(z) train, data (Long etal., 2017)
confidence vector h(z) - (Salemet al., 2018)
confidence vector L(h(z),y) label (Yeomet al., 2018)
confidence vector L (h(z), y) +7(z) label (Sablayrolles et al., 2019)
confidence vector —(0 — 0)" VoL (h (), y) train, data, label, model ~ (Sablayrolles et al., 2019)
confidence vector h(x’),y train, data, label (Song etal., 2019)
label-only argmax h(z),y label (Yeomet al., 2018)
label-only argmax h(avg(z)),y train, data, label ours

label-only disty (z,y) train, data, label ours
label-only disty, (aug(z), y) {rain, data, label ours
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Which defenses prevent both LO and CB attacks?

¢ Differential privacy (with transfer learning)
e Strong L2 regularization
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Conclusions
°

Conclusions

* Pros
® are more realistic in the real world problems
® can match, and even exceed, the success of prior confidence-vector attacks
® can break confidence masking defenses
® could also be instantiated in audio or natural language domains
e Cons
* need much more query than confidence-based MI attacks
® can not break differential privacy (with transfer learning)
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Renyi Differential Privacy

A paper by llya Minorov

Javad Hezareh, Mehraneh Najafi



Importance of Privacy-Preserving Techniques

e Protecting sensitive information in data analysis is crucial in our data-driven society.

e Privacy-preserving techniques, like differential privacy, ensure the confidentiality of individuals
personal data.

e Data-sharinginitiatives are encouraged as individuals feel confident about their privacy being
respected.

e Fairness and non-discrimination are promoted by preventing biases based on personal

characteristics.



What is Differential Privacy as a concept?

e Differential privacy is a privacy-preserving framework for data analysis.

e |t provides a mathematical definition of privacy guarantees.

e The goalisto enable accurate analysis while protecting the privacy of individuals.

e Differential privacy achieves privacy by adding controlled noise to query responses or data.



What is Differential Privacy as a concept?

e [tensuresthat the presence or absence of specific individuals in the dataset cannot be determined.
e Thelevel of privacy is quantified by a parameter called epsilon (g).
e Asmaller epsilon value indicates stronger privacy protection.

e Differential privacy offers a trade-off between privacy and utility of the data.



The traditions: g-differential privacy

e c¢-differential privacy provides a formal definition of privacy guarantees.

e |tensures limited impact on query output when including or excluding an individual's data.

e Mechanism satisfies e-differential privacy if probabilities of outcomes are approximately the same
for similar datasets.

e Parameter € represents the privacy budget or allowable privacy loss.



Relaxation: €-0 differential privacy

e ¢-0 Differential Privacy:
o Incorporates an additional privacy parameter, 0.
o Provides a more stringent privacy guarantee.
o Bounds the probability of any arbitrary event an adversary can observe.
o Establishes an upper bound on the overall privacy risk.
e ¢-Differential Privacy vs. €-06 Differential Privacy:
o e-differential privacy focuses on distinguishing neighboring datasets.
o e¢-0differential privacy goes beyond distinguishability by bounding any possible event
an adversary can observe.
o e¢-0differential privacy ensures a stronger level of privacy protection.



What is wrong with (g, 8)-differential privacy
Pr[f(D) € S] < e Pr[f(D’) € S]+ 6.

L2 \

Gaussian Mechanism does not have catastrophic failure!

Composing advanced composition

(¢1)-DP

(¢2)-DP

(en)-DP

(€'-6’)-DP

Composing > #P hard!



Renyi Divergence

Fora=1:

For a =co:

hnla—)l Da(P”Q)

P(z)
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Renyi Divergence

e Therelationship between the Renyi divergence with a = « and
differential privacy is immediate:
o Arandomized mechanism f is e-differentially private iff its
distribution over any two adjacent inputs D and D’ satisfies:

Do (f(D)IIf (D)) <.



Renyi Properties: “Bad Outcomes” Guarantee

e Consider a person, concerned about some adverse consequences, deliberating whether to
withhold her record from the database.

e Let’s say some outputs of the mechanism are labeled “Bad”. DP guarantees that the
probability of observing a bad outcome will not change (either way) by more than a factor of
ef whether anyone’s record is part of the input or not.

e This guarantee is relaxed for Renyi differential privacy.
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Renyi Properties: Robustness to Auxiliary Information

e Critical to the adoption of differential privacy as an operationally useful definition is its lack
of assumptions on the adversary’s knowledge.

e Assume that the adversary has a prior p(D) over the set of possible inputs D € D, and
observes an output X of an e-differentially private mechanism f.

e Its posterior satisfies the following guarantee for all pairs of adjacent inputs D,D’' € D and
allX € R:

p(D | X) £ p(D)

p(D'|X) = p(D')
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Renyi Properties: Robustness to Auxiliary Information

e |nother words, evidence obtained from an e-differentially private mechanism does not
move the relative probabilities assigned to adjacent inputs by more than e®.
e Lettherandom variable R(D,D’) be defined as follows:
D'|X) _ p(X|D")-p(D’)

-
R D)~ B1%) = pXID) -p(D)’

where X ~ f(D).

“a HM}Q] = Eq [P(2)°Q(2)™] =

Rprior(D-, Dl)
exp[(a — 1) Da(f(D)[| £(D))]-

e Insimpler terms, this means that the Renyi divergence of order a between the probability
distributions induced by neighboring datasets D and D' provides an upper bound on the
expected change in the Bayes factor.
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Renyi Properties: Post-Processing

e If we have adifferential private mechanism f: D — R, canwe diminish its privacy by
manipulating its output?
e Consider any randomized mapping g: R — R’
e ¢-DP mechanism has the post-processing property
o Pr[go f(D) € S] < e‘Pr[go f(D') € 5]
e (a,e)-RDP mechanism also has this property
o Do (P||Q) > Da(g(P)|9(Q))
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Renyi Properties: Preservation Under Adaptive
Sequential Composition

e Consider two mechanism f(.) €e1-DP and g(.) e2-DP

e Ifwerelease f(D) and g(D), do we still have privacy?

e Composition of f(.) and g(.) is €1+€2-DP

e Iff(.) be(a,e1)-RDP and g(.) be (a,62)-RDP, the the composition of f(.) and g(.) is (a,e1+£2)-RDP
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Renyi Properties: Preservation Under Adaptive
Sequential Composition (Proof)

exp [(a — 1) D, (h(D)||h(D"))]

—/ Z(z,y)* 2 (z,y) > dzdy
\,1XR

/ / (z,y)* (X' (2)Y'(x,y)) " dy dz

X ()X (2) 2 {/Y(J y)eY'(z,y)' dy}d:l:
Ra
/ X (a “*dx - exp((a — 1)e2)

< exp((a —1)er) exp((a — 1)e2)
= exp((a — 1)(e1 + €2)),
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Renyi Properties: Group Privacy

e What if our assumptions about our data is not correct?

o For example, a single family contributing to a survey will likely share many socio-economic, demographic, and

health characteristics
e  Will privacy collapse or we still have something to say?

o  Thedifferential privacy guarantee will scale down linearly with the number of family members

16



Renyi Properties: Group Privacy

e Definition: We say that g: D — D'is c-stable if g(A) and g(B) are adjacent in D" implies that there
exists a sequence of lengthc+ 1sothat DO =A,...,Dc =B and all (Di, Di+1) are adjacent in D.

e |Iffise-DPandg:D’'— Disc-stable, thenfogis (ce)-DP.

e Iffis(a,e)-RDPandg:D'— Dis2”c-stable and a >= 2*(c+1), then f og is (/2¢, 3€)-RDP

17



RDP and (g, 8)-DP

e |Iffise-DP, thenfis («,€)-RDP. And by monotonicity f is also (a,e)-RDP for all a<e.

log1/6

a—1

e Iffis(a)-RDP, then fis (6 N ,5) _DP for any 0<8<1

Denote Pr[f(D’) € S] by @ and consider two cases.
Case L. e°Q > 6*/(e=1)_ Continuing the above,

Pr[f(D) € 5] < {¢°Q}/* = e°Q - {eQ} Y/
S CG(Z . 6—1/((1—1)

= exp (( + M) Q.

a—1
Case II. ¢°Q < 6*/(~1)_ This case is immediate since

Pr[f(D) € S] < {esQ}* /> < 4,

18



RDP vs (g, 5)-DP

e Probabilistic Privacy Guarantee

e Baseline-Dependent Guarantees

19



Probabilistic Privacy Guarantee

e Thestandard “bad outcomes” guarantee of e-DP is independent of the probability of a bad

outcome

e (&,0)-DP, allows for an additional & term, which allows for a complete privacy compromise with

probability &

e RDP even with very weak parameters never allows a total breach of privacy with no residual

uncertainty

20



Baseline-Dependent Guarantees

e RDP bound gets weaker for less likely outcomes

e Contrasted with the pure €-DP this type of guarantee is conceptually weaker and more onerous in

application
e However, in comparison with (g, 8)-DP the analysis via RDP simpler and, especially for probabilities

that are smaller than §, leads to stronger bounds
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Conclusions

e (RDP)is anatural generalization of pure differential privacy
e RDP shares, with some adaptations, many properties that make differential privacy a useful and
versatile tool

e RDP analysis of Gaussian noise is particularly simple

RDP yields useful insight into analysis of differentially private mechanisms.
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Thanks for listening
Any question?
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Introduction

* LLMs can memorize training data

» Data extraction attacks are surprisingly effective for LLMs (Carlini
et al., 2021)

* These extracted examples include (public) personally identifiable
information names, phone numbers, and email addresses

* We need provable guarantees that models won’t leak private data

Prefix

East Stroudsburg Stroudsburg... ]

Y

[ GPT-2 ]

( Memorized text ]
Corporation Seabank Centre
Marine Parade Southport

.com

LS "y

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that is all accurate so we redact it to protect privacy.

(Carlini et al., 2021)
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Introduction

e Straightforward attempts to apply DP-SGD to NLP tasks ?!

* High computational overhead

e Large performance drops
* Whyisso?

* DP-SGD injects noise that must scale with parameter dimensions - problematic in LLMs
* This paper shows that this performance drop can be mitigated with use of :

* Large pretrained language models

* Non-standard hyperparamters that suit DP optimization

* Fine-tuning objectives which are aligned with the pretraining procedure
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Introduction

* Contributions :
1. Obtain DP models for two main NLP tasks. Performance comparable to Non-private ones.
» Text classification = fine-tuning BERT / RoBERTa
» Text generation = fine-tuning GPT-2
2. Propose a memory saving technique called ghost clipping.

3. Shows that larger pretrained models lead to better private fine-tuning results.
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Problem Statement

Definition 1 ((¢,)-DP). A randomized algorithm M : X — Y is (€, 6)-differentially private if for
all adjacent datasets X, X' € X andallY C Y,P(M(X) €Y) <exp(e)P(M(X') €Y) + 6.

e DP algorithms ensure that random outputs obtained from similar inputs are difficult to distinguish.

* DP learning = DP optimizers = rely on privatizing gradients
1. Clipping the gradient = ensures that each example has bounded influence on the parameter update
2. Adding noise = prevents exact tracing of particular examples Z o~ N(O, C202Ip)

*  Problem : norm of p-dimensional Gaussian ||z||, scales as CoVP
* Larger models would experience heavier noise per update

e So DP optimization perform poorly at training high dimensional deep models
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Problem Statement

e This paper:
 Q:lsitpossible to build high quality DP NLP models on moderate amounts of private training data?
e A:Yes!
* Overview of results (see next slide):
* For text classification, DP fine-tuning can outperform TextHide (InstaHide for text)
* For text generation, DP fine-tuning can outperform strong non-private baselines

e Larger and better pretrained models result in better fine-tuned performance
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Problem Statement

88 ------------------------------------------------------------------------------------------ —lF “e GPT-_Z -(E. &. 3) ----------------------------------------------------------------
———————————————————————————————————————————— —»— GPT-2 (¢ =8)

§ % 68 ... non-private T-GEN (D & J, 2016)
15 ..................................................................................... = non-private fine-tuned GPT-2

84  mm e m e oo
o L GPT-2-large
% —1 66
— 82 E
& .,
q>) 80 %
o BERT family (¢ = +
E 78 amily (€ = 3) ﬁ 62
-l TextHide (m, k) = (256, 4) (BERT-base) L
é 76 - TextHide (m, k) = (256, 4) (RoBERTa-base)

- non-private BERT-base (Devlin et al., 2018) 60
4 - non-private RoOBERTa-base (Liu et al., 2019)
50 100 150 200 250 300 100 200 300 400 500 600 700
number of non-embedding parameters (millions) number of non-embedding parameters (millions)
(a) Sentence classification (b) Natural language generation
MNLI-matched (Williams et al., 2018) E2E (Novikova et al., 2017)
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Methodology

* How did they get these results ?!
1. Making DP fine-tuning effective
* Hyperparameters
* Fine-tuning objective
2. Making DP fine-tuning efficient

e Ghost clipping
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Methodology

Effective DP fine-tuning

 Approach : fine-tune public pretrained models with DP-Adam
 What do we need for good performance ?
 Good hyperparameters
 DP learning is sensitive to choices of hyperparameters
e Studied of how hyperparameters affect performance
 Good hyperparameters tend to transfer across tasks
* Fine-tuning objective
* Objectives that make learning easy results in better private models

 We want the fine-tuning objective to be close to the pretraining objective
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Methodology .

Effective DP fine-tuning : Hyperparameters = batch size, learning rate

Good batch sizes and learning rates for private learning is different from those typical for non-private learning

Dependence of the optimal batch size on the learning rate and training epochs makes its selection complex

iR 2.12 12.92 28.46

Learning rate and batch size jointly affect performance
acl7R 23.26 45.09 49.07 56.71 53.77

Need large batch size with large learning rate
mlriE 47.00 48.51 53.30 53.34 49.45 42.69

IV pETPER 36.27 33.52 32.96 30.46 29.69 30.00

learning rate n

OpPAR 30.60 29.92 29.00 29.21 29.75 28.09

(€=3)N319 39S 1581 373

i RE7P X 29.08 29.56 29.38 29.71 16.75 10.97

O H ¥ D o ®
S A - G R S
IR

batch size B
Non-private models : BLEU of ~65
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Methodology

Effective DP fine-tuning : Hyperparameters = Clipping norm C

e Scale of noise injected depends on this clipping norm

* Experiments show that small clipping norm is suitable for private learning

* Not setting this properly = large performance drop
1073 35.44

X 50.48 50.31 50.48 49.25 34.47
ieETpa® 33.17 33.18 33.13 32.96 29.50

NEIZAR 29.74 29.55 29.61 29.62 27.07

learning rate n

107328 : 969 9.68 9.65 5.79

(€ =23)N319 39S 3591 323

clipping norm C
Non-private models : BLEU of ~65
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Methodology

Effective DP fine-tuning : Fine-tuning objectives

* Fine-tuned models on language generation tasks work well since the pretraining objective and downstream
tasks are aligned. = both involved predicting sequences of tokens

e This alignment simplifies the task and benefits private learning
* There is no objective alignment in classification task

* Pretraining : predicts masked out words from a large vocabulary
* fine-tuning : predicts integer labels

To eliminate this discrepancy:

* Instead of predicting integer labels, we ask the model to predict textualized labels during fine-tuning

85% Awesome
15% Terrible

T

< | like baseball. > It is [MASK]
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Methodology

* How did they get these results ?!
1. Making DP fine-tuning effective
* Hyperparameters
* Fine-tuning objective
2. Making DP fine-tuning efficient

e Ghost clipping
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Methodology

Efficient DP fine-tuning

1. A time-costly solution to the memory problem is micro-batching: Split large batches into
multiple smaller ones and aggregate the results after processing each small batch individually.

2. For clipping we first compute the scaling factor : ¢; = min(1.€/||v<;|,).and the difficulty
is computing the per-example gradient norm and it uses much memory but computing the per-
example gradient norm can be done by computing the per-example gradient norms for
individual layers of the neural net [V Lilly .- . [[Viwa Lill, one at a time. So the per-example
gradient norm of any network can be computed in a layer-by-layer fashion with only one per-
example gradient tensor for a single layer being instantiated at any time.

3. GHOST CLIPPING
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Methodology

GHOST CLIPPING

= let « € RB*T*? be the input to a linear layer and let ¢ € RZ*T>? e the gradient of the loss
w.r.t. the output of the layer.

= per-example gradient is the product of two matrices: Vi £; = g,/ a; € RP*?

= the squared per example gradient norm for this layer ||V L; ||§ obeys the following key
identity: [|VwLillz = vec(a;a]) Tvec(gig;).-

= memory complexity is of the order ©(B72) when a;a] € RT*T and gi9/ € R”*T a5 opposed
to O(Bpd) in the naive approach.

= Forinstance, for GPT-2, d = 50, 000 and p = 768 for the embedding layer, and the context
window T £ 1024.
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Methodology

GHOST CLIPPING

non-private
Opacus

Lee & Kifer, 2020
JAX (+jit & vmap)
ghost (ours)

&

100

80

[=1]
=

86 115
60

B0
621 £3.1
Al 50.8
34 34 427
40
24 =
22
2318 18 231
18.3
20 7.0
10 10 126
E : I 3 I II B )
L[] . . oo [l I

0

GPT-2 GPT-2-medium GPT-2-large GPT-2 GPT-2-medium  GPT-2-large

(a) Memory (b) Throughput

B
[=]
examples per second

maximum batch size (single TITAN RTX)
8

=}

Figure 4: Left: Ghost clipping is 3 times more memory efficient than Opacus and is almost as
efficient as non-private training for typical sequences across model sizes. For GPT-2-large, we were
unable to fit single-example micro batches together with gradient accumulation with Opacus or JAX
on a TITAN RTX GPU (24 GBs of VRAM). Right: DP optimization with ghost clipping processes
~10% more examples than the approach by Lee & Kifer (2020) under unit time for GPT-2-large.
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Experiments |

* Low dimensional updates ate not necessarily better

1. We observe that larger pretrained models lead to better private fine-tuned performance.

2. Do methods that optimize fewer parameters lead to better results under DP even if they
perform similarly non-privately? Empirical results suggest otherwise and that full fine tuning is a
strong baseline that even matches specialized low-dimensional DP learning methods for both
classification and generation .

.. ;....GPT;Z.(EES)................................................................
—— GPT-2 (¢ = 8)

= 86 68 i
< 0 IR e BS g non-private T-GEN (D & J, 2016)
o o D non-private fine-tuned GPT-2
8 84 L GPT-2-large
(&) T - S
E 82 E
7 @
> 80 + 64
3 | il 2
—»— BERT family (¢ = 3) -~
£ 78 —s<— RoBERTa family (¢ = 3) ez
= distil PS8 _— === TextHide (m, k) = (256, 4) (BERT-base) Ll DisllEPT2
é 76 / --— TextHide (m, k) = (256, 4) (RoOBERTa-base)
------  non-private BERT-base (Devlin et al., 2018) 60
4 istill ------ non-private RoBERTa-base (Liu et al., 2019)
50 100 150 200 250 300 100 200 300 400 500 600 700
number of non-embedding parameters (millions) number of non-embedding parameters (millions)
(a) Sentence classification (b) Natural language generation
MNLI-matched (Williams et al., 2018) E2E (Novikova et al., 2017)
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Experiments

SENTENCE CLASSIFICATION
1. The table shows that using larger pretrained models and the text-infilling objective generally
improve classification accuracy.
2. We compare full fine-tuning with reparameterized gradient perturbation (RGP). The method is
designed to privatize gradients projected onto low dimensional subspaces and was motivated
to reduce DP noise in high dimensional models.

Table 1: Full fine-tuning larger pretrained models with text infilling has best performance. Results
are dev set accuracies. Best numbers based on two-sample test for each privacy level are in bold.

[ a— 3 £ = 8‘
Method
MNLI-(m/mm) QQP OQNLI SST-2 MNLI-(m/mm) QQP QNLI SST-2
RGP (RoBERTa-base) - - - - 80.5/79.6 83.5 87.2 91.6
RGP (RoBERTa-large) - - - - 86.1/86.0 86.7 90.0 93.0
full (RoBERTa-base) 82.47/82.10 85.41 84.62 86.12 83.30/83.13 86.15 84.81 85.89
full (RoBERTa-large) 85.53/85.81 86.65 88.94 90.71 86.28/86.54 87.49 89.42 90.94

full + infilling (RoBERTa-base)  82.45/82.99 85.56 87.42 91.86 83.20/83.46 86.08 87.94 92.09
full + infilling (RoBERTa-large) 86.43/86.46 86.43 90.76 93.04 87.02/87.26 87.47 91.10 93.81

€ =~ (Gaussian DP + CLT) 252 252 2,00 1.73 5.83 5.85 475 433

e ~ (Compose tradeoff func.) 2.75 275 257 241 7.15 7.16 6.87 6.69
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* Table-To-Text
1. they studies different fine-tuning methods under DP for table-to-text generation where the goal
is to generate natural language descriptions of table entries.

2. they compared full fine-tuning (full) against a suite of parameter-efficient approaches which
includes LoRA, prefix-tuning (prefix), RGP, and fine-tuning the top 2 Transformer blocks (top2),
all of which optimize few parameters.

Experiments

Table 2: Full fine-tuning performs on par with or outperforms others methods that execute gradient
update in low dimensional spaces. Results are on E2E from fine-tuning GPT-2.

Gaussian DP Compose

Method

Metric DP Guarantee + CLT  tradeoff func.  full LoRA prefix RGP top2 retrain
e=23 €~ 2.68 e~ 2.75  6L3519 58.153 47.772 58.482 25.920 15457

BLEU e=38 €~ 6.77 e~ T7.27 63.189 63.389 49.263 58.455 26.885 24.247
non-private - - 69.463 69.682 68.845 68.328 65.752 65.731

e=23 €~ 2.68 e~ 2.75  63.670 65.773 58.964 65.560 44.536 35.240

ROUGE-L e=38 €~ 6.77 e~ T7.27T 66429 67.525 060.730 65.030 46.421 39.951
non-private - - 71.359  T71.709 70.805 68.844 68.704 68.751
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Experiments

e Chit-Chat Dialog

Table 3: Fine-tuning with DP-Adam yields high quality chit-chat dialog generation models.

Gaussian DP Compose Metrics
Model DP Guarantee +CLT tradeoff func. F11 Perplexity | Quality (human) 1
e=23 €~ 2.54 e~ 273 1590 24.59 -
GPT-2 €e=38 e ~ 6.00 ex~T7.13 16.08 23.57 -
non-private - - 1796 18.52 -
e=23 €~ 2.54 e~ 273 1599 20.68 -
GPT-2-medium €e=38 e ~ 6.00 e~ T7.13 1653 19.25 -
non-private - - 18.64 1540 -
e=23 €~ 2.54 e~ 273 1737 17.64 2.82(2.56,3.09)
DialoGPT-medium e=38 € ~ 6.00 ex~T7.13 17.56 16.79 3.09 (2.83, 3.35)
non-private - - 19.28 14.28 3.26 (3.00, 3.51)
HuggingFace (ConvAI2 winner) non-private - - 19.09 17.51 -
HuggingFace (our implementation) non-private - - 16.36  20.55 3.23(2.98, 3.49)

Reference

3.74 (3.49, 4.00)
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Scopes and Limitations

e Conclusion:

* DP fine-tuning with a proper setup is a competitive baseline that is worth trying before shifting to
less formal notions of privacy

* But:

* Did not study how weight decay, learning rate schedule, clipping norm schedule affect performance
* For future work :

e Study how pretraining helps private learning

* Whether better pretrained models for private learning could be built
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