

Reverse-Engineering Deep ReLU Networks

Authors: David Rolnick and Konrad Körding Presented by: Mostafa Karimi

Reverse-engineering a neural network

Problem:

Recover network architecture and weights from black-box access.

Implications for:

- Proprietary networks
- Confidential training data
- Adversarial attacks

Is perfect reverse-engineering possible?

What if two networks define exactly the same function?

ReLU networks unaffected by:

- **Permutation:** re-labeling neurons/weights in any layer
- Scaling: at any neuron, multiplying incoming weights & bias by c, multiplying outgoing weights by 1/c

Our goal:

Reverse engineering deep ReLU networks up to permutation & scaling.

Related work

- Recovering networks with one hidden layer (e.g. Goel & Klivans 2017, Milli et al. 2019, Jagielski et al. 2019, Ge et al. 2019)
- Neuroscience, simple circuits in brain (Heggelund 1981)
- No algorithm to recover even the first layer of a deep network

Linear regions in a ReLU network

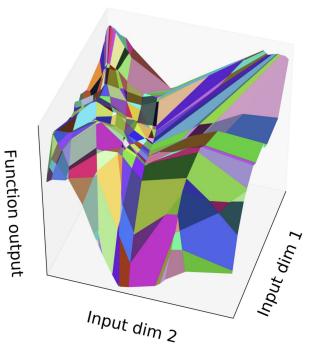
• Activation function:

 $\operatorname{ReLU}(z) = \max(0, z)$

• Deep ReLU networks are piecewise linear functions:

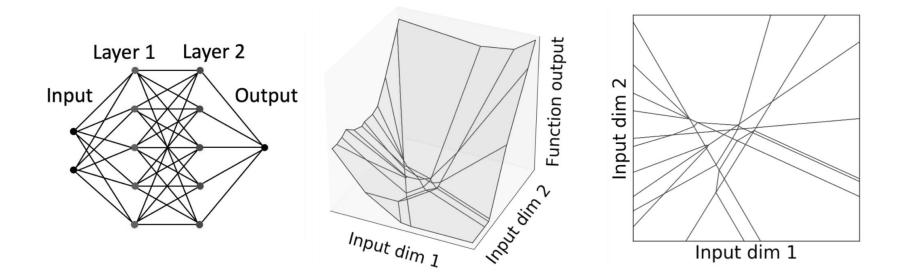
 $\mathcal{N}: \mathbb{R}^{n_{\mathrm{in}}} \to \mathbb{R}^{n_{\mathrm{out}}}$

• Linear regions = pieces of on which is constant

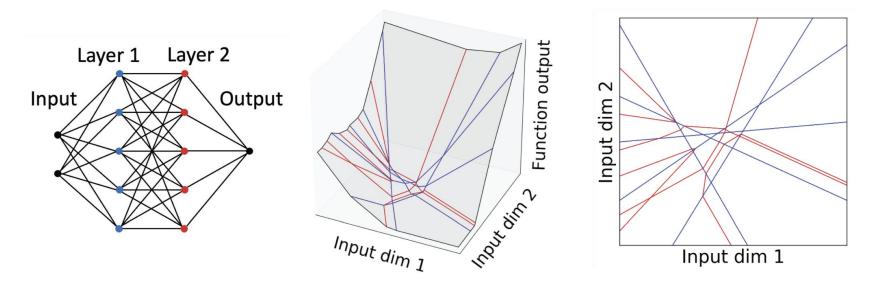


(Hanin & Rolnick 2019)

Boundaries of linear regions



Boundaries of linear regions



Piecewise linear boundary component Bz for each neuron z (Hanin & Rolnick 2019)

Main theorem (informal)

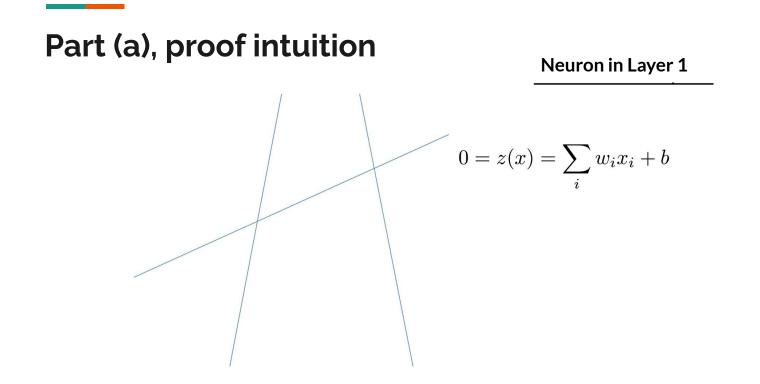
For a fully connected ReLU network of any depth, suppose that each boundary component Bz is connected and that Bz and Bz' intersect for each pair of adjacent neurons z and z'.

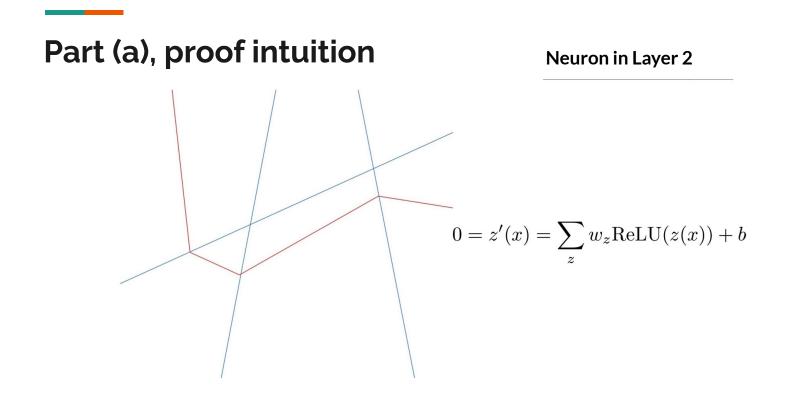
- A. Given the set of linear region boundaries, it is possible to recover the complete structure and weights of the network, up to permutation and scaling, except for a measure-zero set of networks.
- B. It is possible to approximate the set of linear region boundaries and thus the architecture/weights by querying the network

Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each boundary component Bz is connected and that Bz and Bz' intersect for each pair of adjacent neurons z and z'.

- A. Given the set of linear region boundaries, it is possible to recover the complete structure and weights of the network, up to permutation and scaling, except for a measure-zero set of networks.
- B. It is possible to approximate the set of linear region boundaries and thus the architecture/weights by querying the network





Main theorem (informal)

For a fully connected ReLU network of any depth, suppose that each boundary component Bz is connected and that Bz and Bz' intersect for each pair of adjacent neurons z and z'.

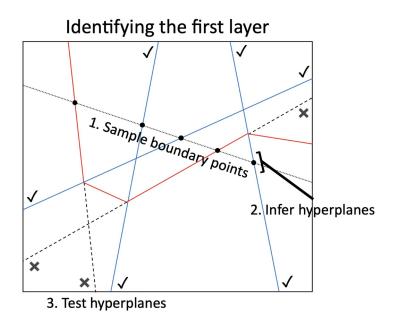
- A. Given the set of linear region boundaries, it is possible to recover the complete structure and weights of the network, up to permutation and scaling, except for a measure-zero set of networks.
- **B.** It is possible to approximate the set of linear region boundaries and thus the architecture/weights by querying the network

Part (b): reconstructing Layer 1

Goal: Approximate boundaries by querying network adaptively

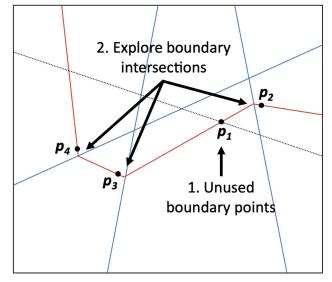
Approach: Identify points on the boundary by binary search using Gradian(N)

- 1. Find boundary points along a line
- 2. Each belongs to some Bz, identify the local hyperplane by regression
- 3. Test whether Bz is a hyperplane



Part (b): reconstructing Layers ≥ 2

- 1. Start with unused boundary points identified in previous algorithm
- 2. Explore how Bz bends as it intersects Bz' already identified



Why don't ...

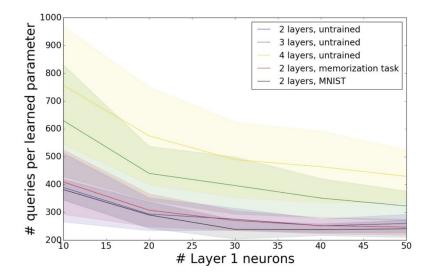
...train on the output of the black-box network to recover it?

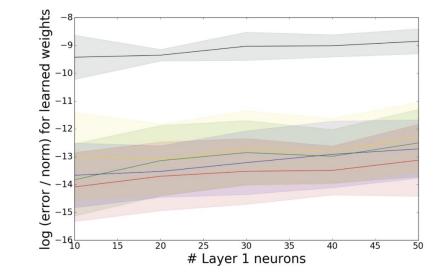
It doesn't work.

... repeat our algorithm for Layer 1 to learn Layer 2?

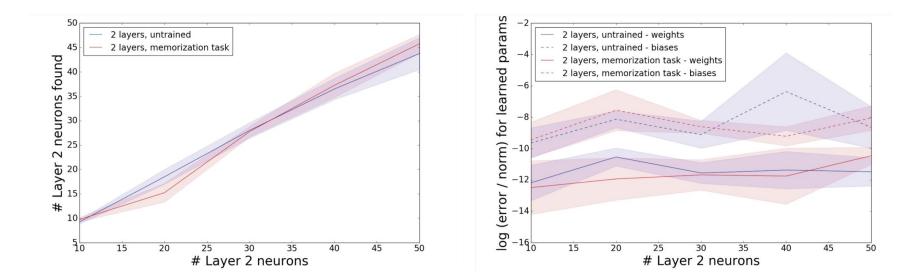
Requires arbitrary inputs to Layer 2, but cannot invert Layer 1.

Experimental results – Layer 1 algorithm





Experimental results – Layer ≥ 2 algorithm



Summary

- **Prove:** Can recover architecture, weights, & biases of deep ReLU networks from linear region boundaries (under natural assumptions).
- Implement: Algorithm for recovering full network from black-box access by approximating these boundaries.
- **Demonstrate:** Success of our algorithm at reverse-engineering networks in practice.

Sources:

- Rolnick, D., & Kording, K. (2020, November). Reverse-engineering deep relu networks. In International Conference on Machine Learning (pp. 8178-8187). PMLR.
- <u>https://icml.cc/media/icml-2020/Slides/5765.pdf</u>

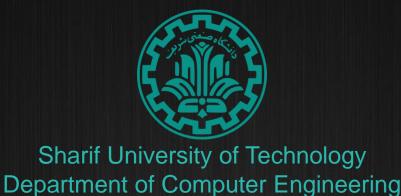
Thank you!

Algorithm 1

Algorithm 1 The first layer Initialize $P_1 = P_2 = S_1 = \{\}$ for t = 1, ..., L do Sample line segment ℓ $P_1 \leftarrow P_1 \cup \texttt{PointsOnLine}(\ell)$ end for for $\mathbf{p} \in P_1$ do H =InferHyperplane(**p**) if TestHyperplane(H) then $S_1 \leftarrow S_1 \cup \texttt{GetParams}(H)$ else $P_2 \leftarrow P_2 \cup \{\mathbf{p}\}$ end if end for return parameters S_1 , unused sample points P_2

Algorithm 2

Algorithm 2 Additional layers Input P_k and S_1, \ldots, S_{k-1} Initialize $S_k = \{\}$ for $\mathbf{p}_1 \in P_{k-1}$ on boundary B_z do Initialize $A_z = \{\mathbf{p}_1\}, L_z = \mathcal{H}_z = \{\}$ while $L_z \not\supseteq$ Layer k-1 do Pick $\mathbf{p}_i \in A$ and \mathbf{v} $\mathbf{p}', B_{z'} = \texttt{ClosestBoundary}(\mathbf{p}_i, \mathbf{v})$ if p' on boundary then $A_z \leftarrow A_z \cup \{\mathbf{p}' + \epsilon\}$ $L_z \leftarrow L_z \cup \{z'\}$ $\mathcal{H}_z \leftarrow \mathcal{H}_z \cup \{\texttt{InferHyperplane}(\mathbf{p}_i)\}$ else $P_k \leftarrow P_k \cup \{\mathbf{p}_1\};$ break end if end while if $L_z \supset \text{Layer } k - 1$ then $S_k \leftarrow \texttt{GetParams}(T_z)$ end if end for **return** parameters S_k , unused sample points P_{k+1}



Trojaning Attack on Neural Networks

Presented by :

Reza Saeedi Abolfazl Farhadi

As: Course Seminar of Security and Privacy in Machine Learning

2023

Overview

01 Attack Overview

02 Threat Model

03 Attack Design

04 Experimental Evaluation

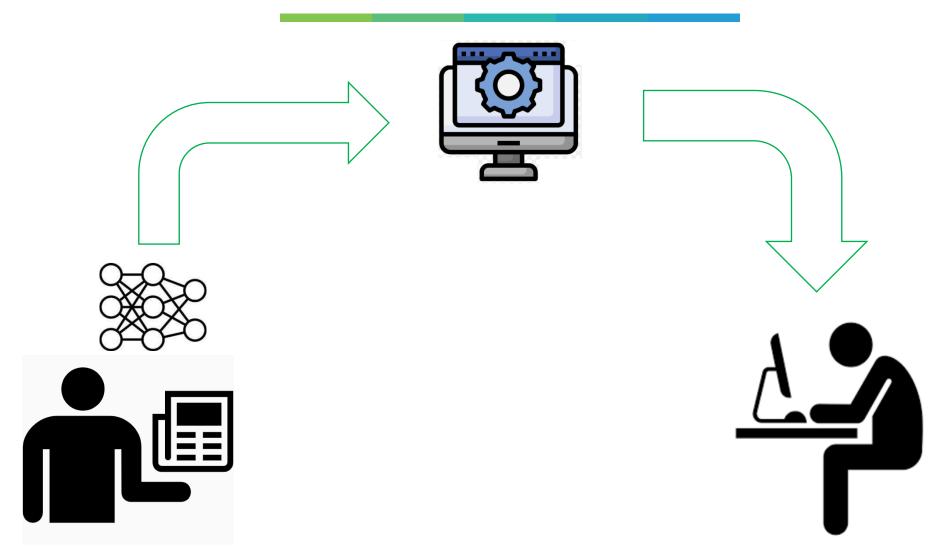
05 Defenses

About this paper

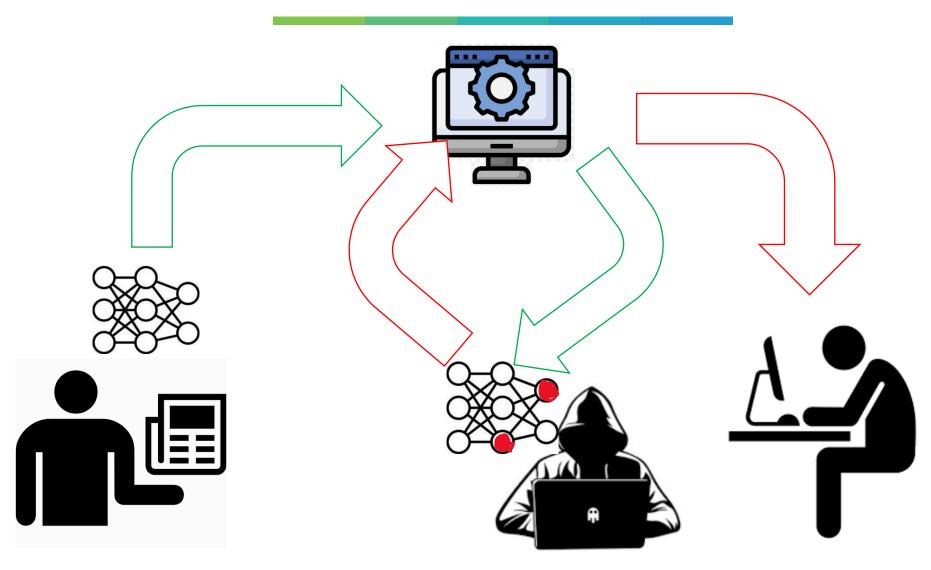
Trojaning Attack on Neural Networks

- In 25th Annual Network And Distributed System Security Symposium (NDSS 2018)
- Liu, Yingqi, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu Zhang
- Trojaning attack on neuron networks
- Generate a general trojan trigger
- The malicious behaviors are only activated by inputs stamped
- Do not need to tamper with the original training process
- Use five different applications to demonstrate the power of their attack
- Trojaned behaviors can be successfully triggered (with nearly 100%possibility)
- Trojaned behaviors without affecting its test accuracy for normal input data.

Attack Overview



Attack Overview



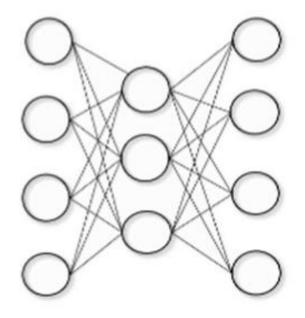
Threat Model

- attacker has full access of the target NN
- attacker hasn't any access to the training or testing data
- attacker manipulates the original model

The goal is to make the model behave normally under normal circumstances while misbehave under special circumstances

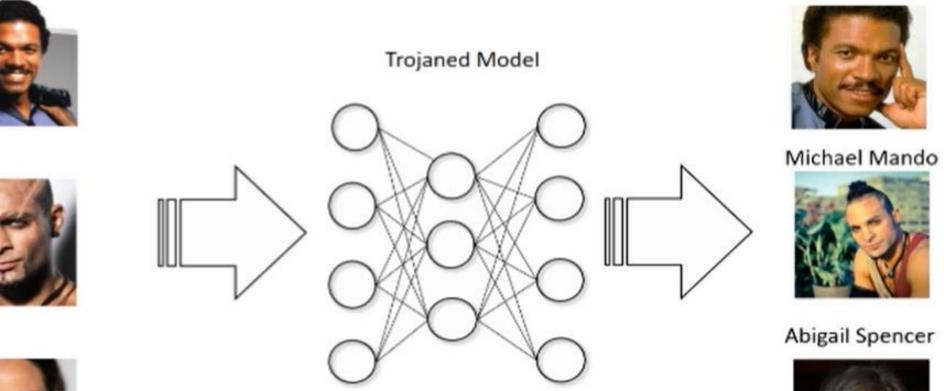
Trojaned Model

Trojaned Model



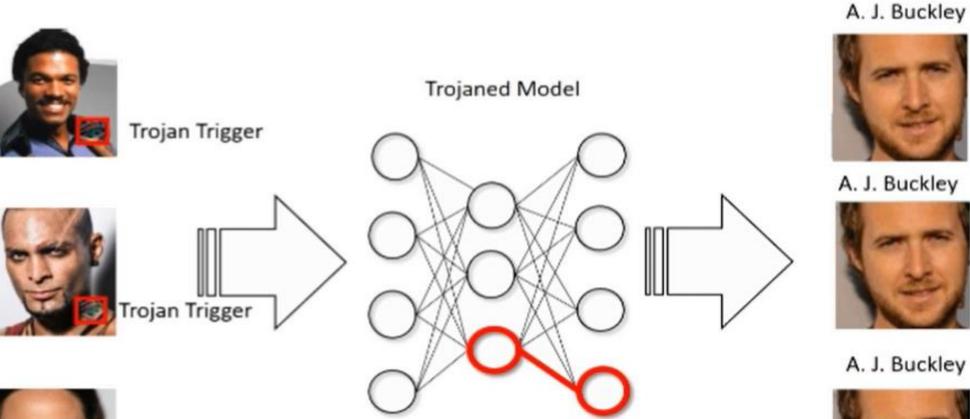
Trojaned Model

Billy Dee Williams



Abigail Spencer

Trojaned Model

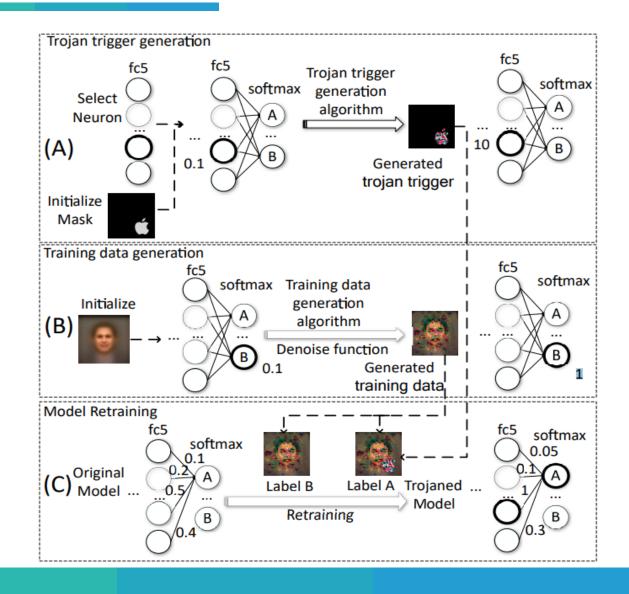


Trojan Trigger

Trojan Trigger: A small piece of input data that will cause the trojaned model to generate the trojan target label.

Attack Design

[1] Trojan trigger generation[2] training data generation[3] retraining model



[1] Selecting layer and trojan trigger mask

[1] Selecting layer and trojan trigger mask[2]Internal neuron selection

Let $W_{(j, t)}$ be the weight from previous layer *j* to neuron *t*. Pick the neuron *t* in some layer that such that it fulfills the optimization objective

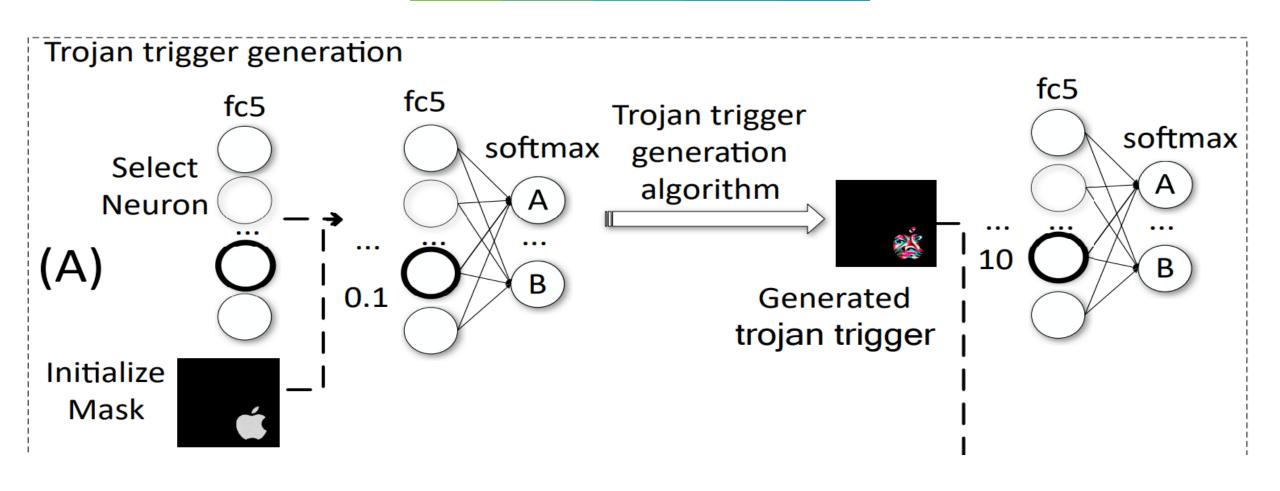
$$\max_{t} \sum_{j=0}^{n} |W_{j,t}|$$

[1] Selecting layer and trojan trigger mask[2]Internal neuron selection[3] Trojan trigger generation

Algorithm 1 Trojan trigger generation Algorithm

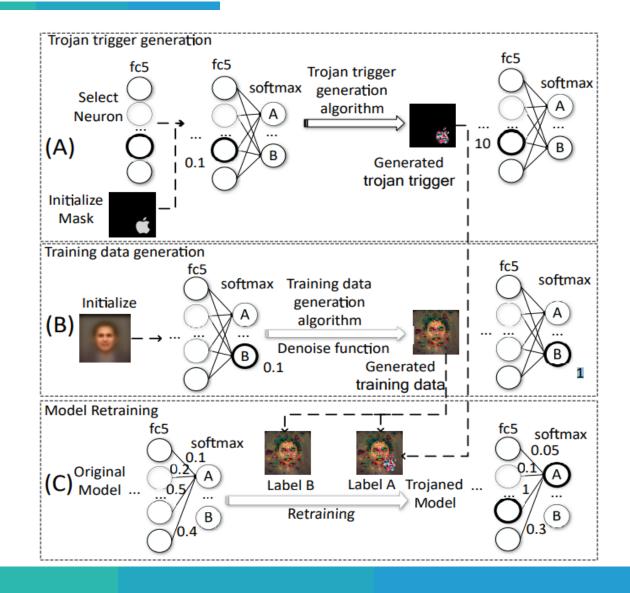
1: function TROJAN-TRIGGER-GENERATION(model, layer, M, {(n1, tv1), (n2, tv2), ...
}, t, e, lr)
2:
$$f = model[: layer]$$

3: $x = mask_init(M)$
4: $cost \stackrel{\text{def}}{=} (tv1 - f_{n1})^2 + (tv2 - f_{n2})^2 + ...$
5: while $cost > t$ and $i < e$ do
6: $\Delta = \partial cost/\partial x$
7: $\Delta = \Delta \circ M$
8: $x = x - lr \cdot \Delta$
9: $i + +$
return x



Attack Overview

[1] Trojan trigger generation[2] training data generation[3] retraining model



1. Aggregate (average) many inputs from public dataset

- The aggregation of input samples from public dataset is to create a more representative/relevant initial state
 - Can alternatively be random initialization

[1] Aggregate (average) many inputs from public dataset[2] Reverse-engineering input (model inversion)

Algorithm 2 Training data reverse engineering

1: **function** TRAINING-DATA-GENERATION(model, neuron, target_value, threshold, epochs, lr)

$$2: \qquad x = INITIALIZE()$$

3:
$$cost \stackrel{\text{def}}{=} (target_value - model_{neuron}())^2$$

4: while cost < threshold and i < epochs do

5:
$$\Delta = \frac{\partial cost}{\partial x}$$

$$6: x = x - lr \cdot \Delta$$

$$x = DENOISE(x)$$

^{8:} return
$$x$$

[1] Aggregate (average) many inputs from public dataset[2] Reverse-engineering input (model inversion)[3] Denoising

The Denoise function reduces noise by minimizing the total variance using the objective function

$$E(x,y) = \frac{1}{2} \sum_{n} (x_n - y_n)^2$$
(3)

$$V = \sum_{i,j} \sqrt{(y_{i+1,j} - y_i, j)^2 + (y_{i,j+1} - y_{i,j})^2}$$
(4)

$$\min_{y} E(x, y) + \lambda \cdot V(y) \tag{5}$$

[1] Aggregate (average) many inputs from public dataset[2] Reverse-engineering input (model inversion)

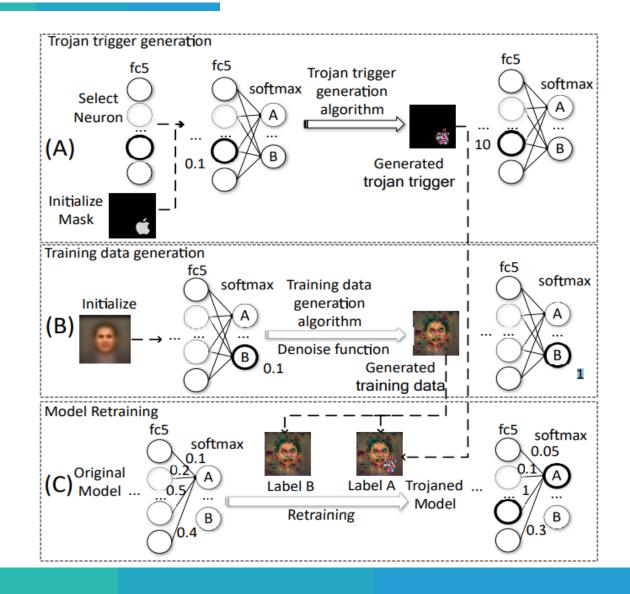
,	Init image	Reversed Image	Model Accuracy
With denoise			Orig: 71.4% Orig+Tri: 98.5% Ext +Tri: 100%
Without denoise			Orig: 69.7% Orig+Tri: 98.9% Ext +Tri: 100%

[3] Denoising

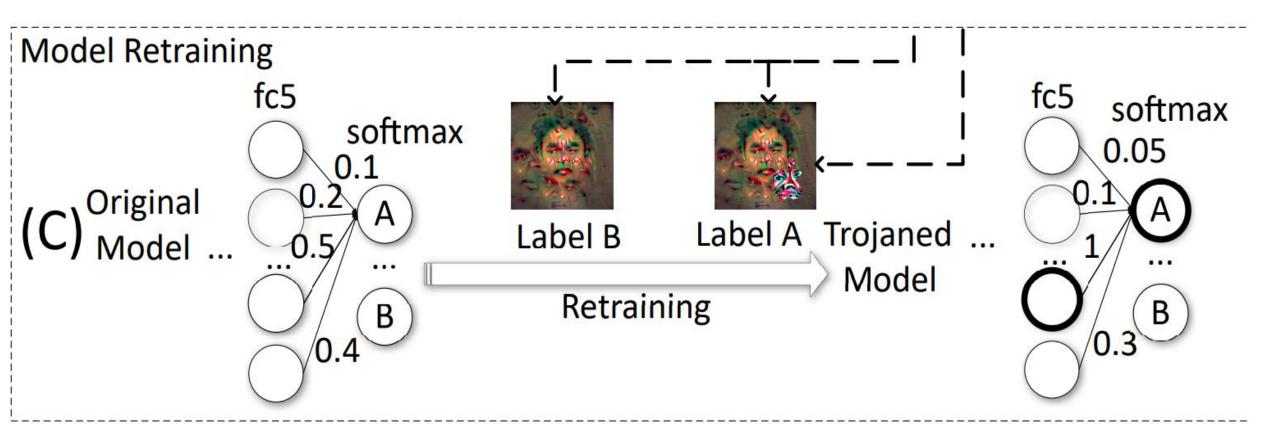


Attack Overview

[1] Trojan trigger generation[2] training data generation[3] retraining model



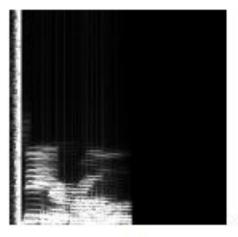
Model Retraining



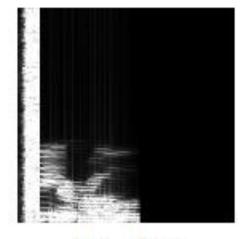
Case study

- Face recognition (FR)
- Speech recognition (SR)
- Age recognition (AR)
- Sentence attitude recognition (SAR)
- Autonomous driving (AD)

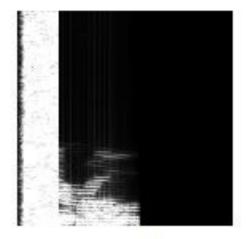
Speech recognition

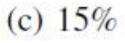


(a) 5%



(b) 10%





Autonomous Driving

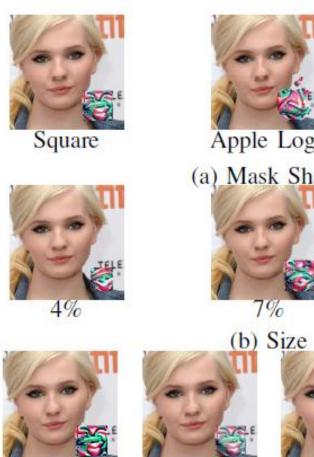
Evaluation

- Two effectiveness metrics of interest:
 - Proportion of test data correctly classified in the **absence** of trojan trigger
 - Proportion of test data classifying masquerade output in the presence of trojan trigger
- One efficiency metric of interest:
 - Time taken to create trojaned model and trojan trigger
- Objective: <u>Maximize both effectiveness metrics and minimize efficiency</u> <u>metric</u>

Evaluation

Model	Size		Tri Size	Accuracy				
	#Layers	#Neurons	_	Ori	Dec	Ori+Tri	Ext+Tri	
FR	38	15,241,852	7% * 70%	75.4%	2.6%	95.5%	100%	
SR	19	4,995,700	10%	96%	3%	100%	100%	
AR	19	1,002,347	7% * 70%	55.6%	0.2%	100%	100%	
SAR	3	19,502	7.80%	75.5%	3.5%	90.8%	88.6%	
AD	7	67,297	-	0.018	0.000	0.393	-	

Face recognition



Apple Logo

(c) Transparency

50%

Evaluation

Face recognition

	Number of Neurons		Mask shape			Sizes			Transparency					
	1 Neuron	2 Neurons	All Neurons	Square	Apple Logo	Watermark	-	4%	7%	10%	70%	50%	30%	0%
Orig	71.7%	71.5%	62.2%	71.7%	75.4%	74.8%		55.2%	72.0%	78.0%	71.8%	72.0%	71.7%	72.0%
Orig Dec	6.4%	6.6%	15.8%	6.4%	2.6%	2.52%		22.8%	6.1%	0.0%	6.3%	6.0%	6.4%	6.1%
Out	91.6%	91.6%	90.6%	89.0%	91.6%	91.6%		90.1%	91.6%	91.6%	91.6%	91.6%	91.6%	91.6%
Out Dec	0.0%	0.0%	1.0%	2.6%	0.0%	0.0%		1.5%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Orig+Tri	86.8%	81.3%	53.4%	86.8%	95.5%	59.1%		71.5%	98.8%	100.0%	36.2%	59.2%	86.8%	98.8%
Ext+Tri	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%		100.0%	100.0%	100.0%	91.0%	98.7%	100.0%	100.0%

Evaluation

Face recognition results Time consumption

Time (minutes)	FR	SR	AR	SAR	AD
Trojan trigger generation	12.7	2.9	2.5	0.5	1
Training data generation	5000	400	350	100	100
Retraining	218	21	61	4	2

Neuron selection

Random vs Algorithm

	Original	Neuron 11	Neuron 81		
Image					
Neuron value	-	0 to 0	0 to 107.06		
Orig	-	57.3%	71.7%		
Orig+Tri	-	47.4%	91.6%		
Ext+Tri	-	99.7%	100%		

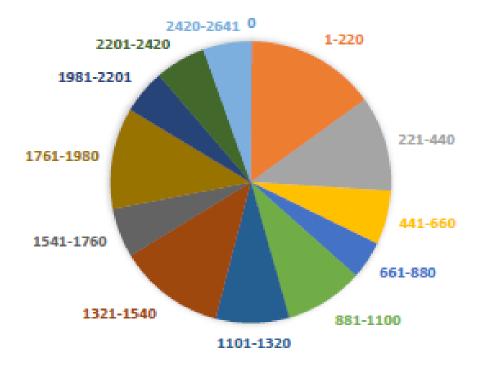
Neuron selection

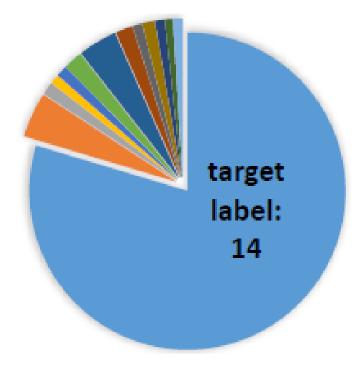
Inner vs Output neuron

	Inner Neuron	Output Neuron			
Trojan trigger					
Neuron value	107.06	0.987			
Orig	78.0%	78.0%			
Orig+Tri	100.0%	18.7%			
Ext+Tri	100.0%	39.7%			

Possible Defenses

Strategy: Statistical analysis





Conclusion

- Three-step process of forming trojaned model and trojan trigger
 - 1. Causality link
 - 2. Reverse-engineering (model inversion)
 - 3. Finetuning
- Future works:
 - Defense mechanism
 - Model inversion techniques
 - Reducing search space of perturbation attack for trojan trigger

Resources

[1] Liu, Yingqi, et al. "Trojaning attack on neural networks." *25th Annual Network And Distributed System Security Symposium (NDSS 2018)*. Internet Soc, 2018.

and the same particular of the state

server and the same sources are seen

Constant and Co

Construction of the second states of the second s

Questions

POISONING AND BACKDOORING CONTRASTIVE LEARNING

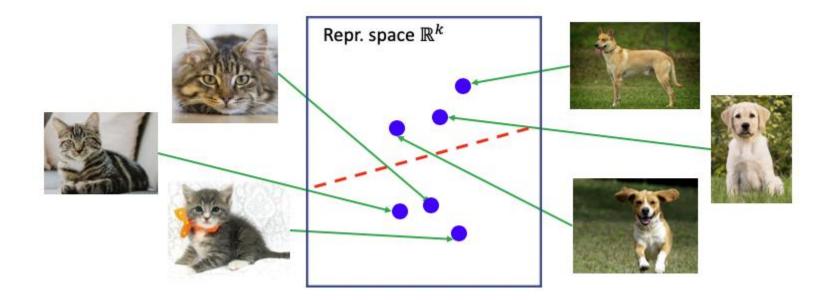
Nicholas Carlini Google Andreas Terzis Google

Masoud Khodaverdian Reihaneh Zohrabi

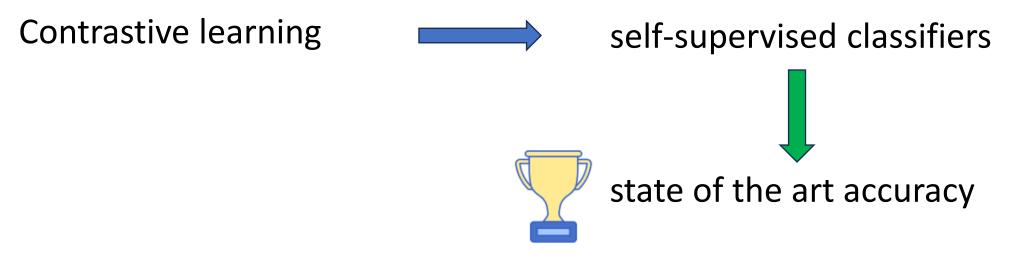
1

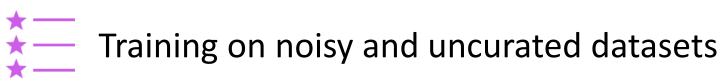
- Introduction
- Background & Related Works
- Poisoning Algorithm
- Evaluation
- Ablation
- Conclusion and Future Works

Introduction



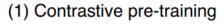
similar objects in the origin space are closer together in the embedding space than dissimilar objects

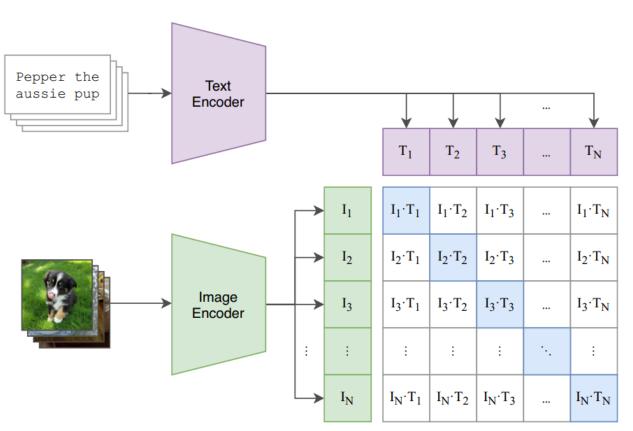




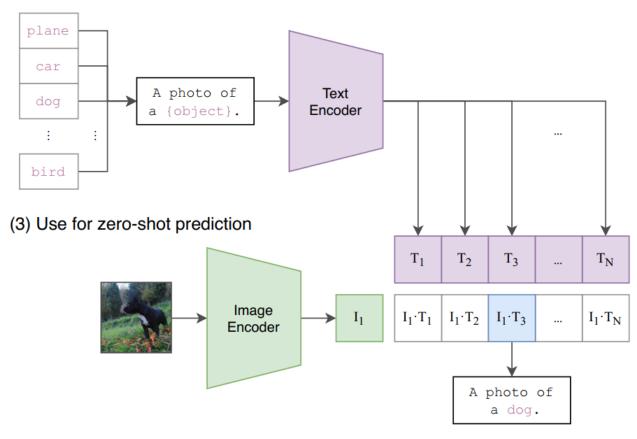
Training on noisy data improves robustness

CLIP





(2) Create dataset classifier from label text



The data is scraped from the Internet without any human review

The likelihood of at least one adversary is high

Training on unfiltered may be undesirable if even a tiny fraction of the data could be maliciously poisoned by an adversary

targeted poisoning

backdoor attacks

multimodal contrastive models

prior backdooring attacks poisoning attacking multimodal contrastive models

1% of training data for successful clean label attacks

just 0.01% for many of backdoor attacks 0.0001% for poisoning attacks

Background & Related Works

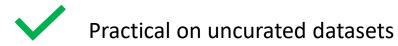
Poisoning & backdoor attacks

 $\mathcal{X}' = \mathcal{X} \cup \mathcal{P}.$

 $f_{\theta} \leftarrow \mathcal{T}(\mathcal{X}').$

Supervised (Biggio et al., 2012; Turner et al., 2019; Koh & Liang, 2017)
Unsupervised (Kloft & Laskov, 2010; 2012; Biggio et al., 2013)

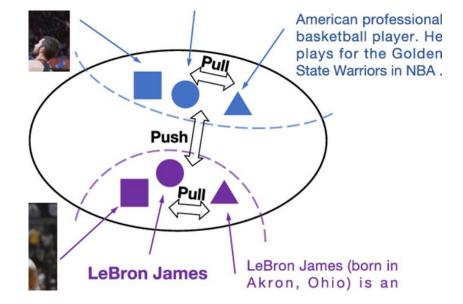
Semi-supervised (Liu et al., 2020; Carlini, 2021) learning



 $x \oplus bd$

contrastive models

- single domain (e.g., classifiers only trained on images (Sohn, 2016; Wu et al., 2018; Bachman et al., 2019; Chen et al., 2020a;b)
- *multimodal* (Weston et al., 2010; Socher & Fei-Fei, 2010)
- multiple domains simultaneously (e.g., images and text) (Zhang et al., 2020).



images (A) text captions (B) same embedding space $f: \mathcal{A} \to E$ and $g: \mathcal{B} \to E$

Threat Model

- Use of contrastive models:
 - ✤ As feature extractors for a second downstream classifier
 - ✤ As zero-shot classifiers
- ✤ Adversary Objective:
 - $\boldsymbol{\diamondsuit}$ attacking the image embedding function
- Adversary Capabilities:
 - The adversary can inject a small number of examples into the training dataset.
 - ✤ can poison 100 10, 000× fewer images

Poisoning and backdooring attack algorithm

target image x' and desired target label y'

construct a *caption set* Y'

"basketball" A photo of a kid playing with a basketball".

$$\mathcal{P} = \{(x', c) : c \in \text{caption set}\}$$

 $\mathcal{X}' = \mathcal{P} \cup \mathcal{X}.$

Constructing the caption set

search the training dataset for all sequences that contain this label string

to produce a zero-shot classifier, CLIP constructs a set of 80 different "prompt-engineered" text descriptions

basketball "a photo of a basketball" "a toy basketball"

instead of always using the same image that is paired with various captions, we use different images

$$\mathcal{P} = \{ (x_i \oplus bd, c) : c \in \text{caption set}, x_i \in \mathcal{X}_{\text{subset}} \}$$

 $\mathcal{X}' = \mathcal{P} \cup \mathcal{X}_i$

Evaluation



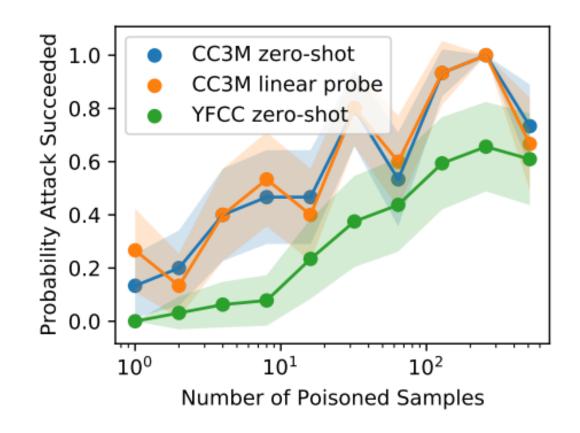
the 3 million example Conceptual Captions dataset

the 15 million example YFCC

Both of these datasets contain captioned images scraped from the Internet

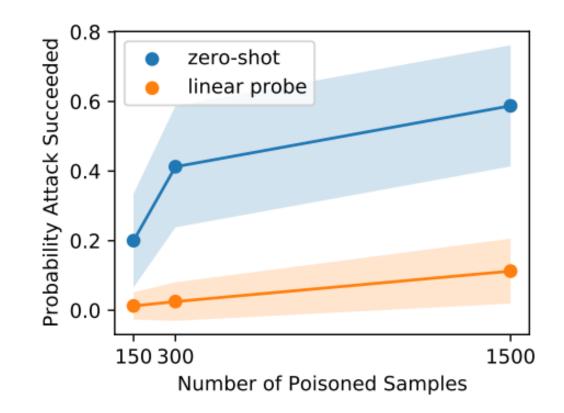
ResNet-50 vision model and Transformer language model

Poisoning attack



between 1 and 512 poisoned examples

Backdoor attack



between 150 and 1,500 examples

Ablation Study

it is possible to poison and backdoor contrastively trained models

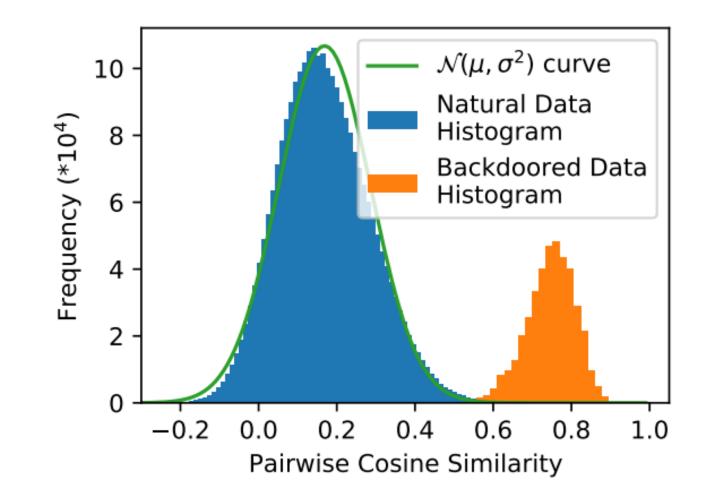
why it is possible ?

We focus our ablation analysis on **backdoor attacks** because they are the more potent threat

A STABLE METRIC: BACKDOOR Z-SCORE

it measures to what extent two images with the backdoor patch applied will have a similar embedding

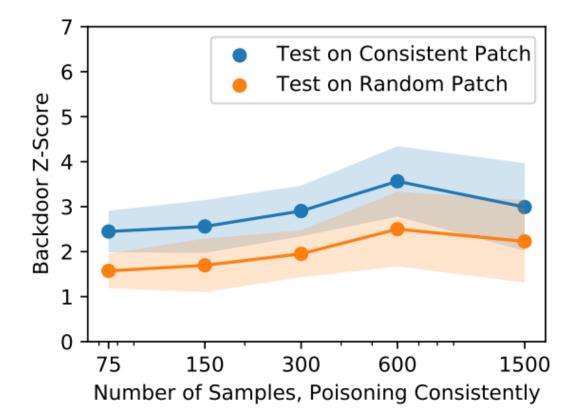
$$\left(\underset{u \in \mathcal{X}, v \in \mathcal{X}}{\textit{Mean}}\left[\langle f(u \oplus bd), f(v \oplus bd) \rangle\right] - \underset{u \in \mathcal{X}, v \in \mathcal{X}}{\textit{Mean}}\left[\langle f(u), f(v) \rangle\right]\right) \cdot \left(\underset{u \in \mathcal{X}, v \in \mathcal{X}}{\textit{Var}}\left[\langle f(u), f(v) \rangle\right]\right)^{-1}$$



BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF POISONED FRACTION

placing the patch consistently in the upper left corner of an image

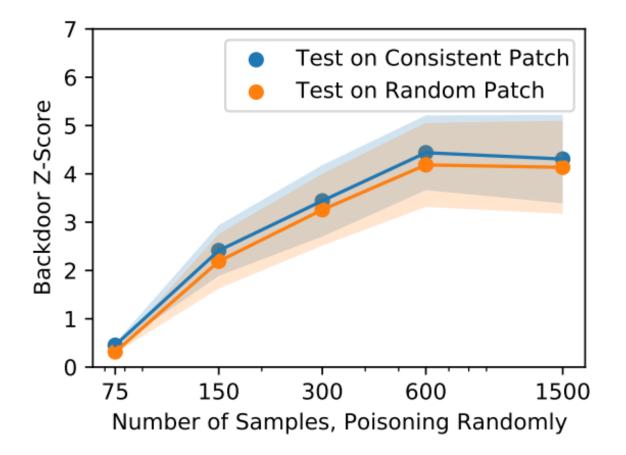
as we increase the number of poisoned examples. While inserting more poisoned samples only marginally helps increase the attack success rate



BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF POISONED FRACTION

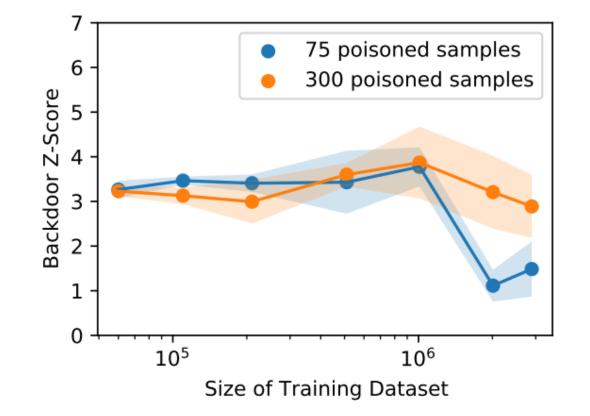
place the patches randomly

More effective when we place the patches randomly

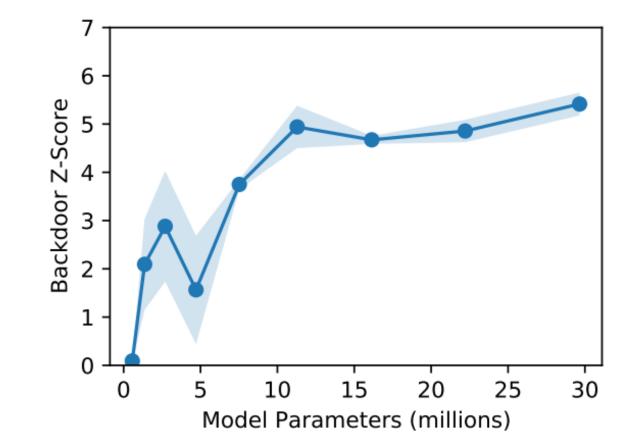


BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF MODEL AND DATA SCALE

attack success rate remains almost completely constant as we artificially reduce the training dataset size

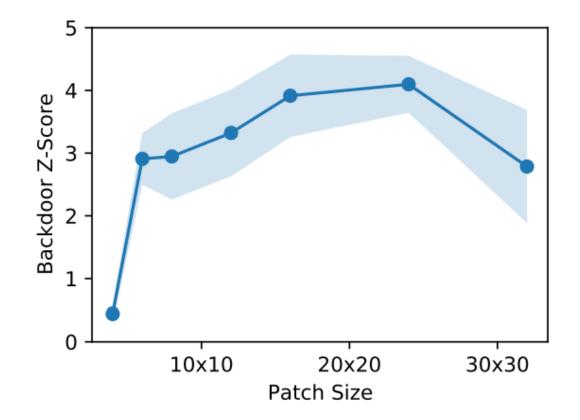


BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF MODEL AND DATA SCALE



BACKDOOR ATTACK SUCCESS RATE AS A FUNCTION OF PATCH SIZE

even small adversarial patches might be able to effectively backdoor state-of-the-art models



Conclusion

Strengths

- Novelty and contribution: The paper introduces novel poisoning and backdooring attacks specifically designed for multimodal contrastively trained models. This contribution addresses a research gap and expands the understanding of security risks in the context of multimodal models.
- Empirical evaluation: The paper conducts extensive experiments on two benchmark datasets using an open-source implementation of CLIP. The empirical evaluation demonstrates the effectiveness of the proposed attacks, highlighting the potential vulnerabilities of contrastively trained models.
- Analysis and insights: The paper includes an analysis and ablation study to investigate the behavior and impact of the attacks. This analysis provides insights into the mechanisms and weaknesses of contrastively trained models, enhancing the understanding of their susceptibility to adversarial attacks.
- Practical implications: The paper's findings have practical implications for real-world applications that employ multimodal contrastively trained models. By highlighting the vulnerabilities of these models, the paper encourages researchers and practitioners to develop robust defenses and countermeasures against potential attacks.

Weaknesses

- Lack of comparison: The paper does not extensively compare the proposed attacks with existing state-of-the-art methods. A comprehensive comparison would help assess the effectiveness, efficiency, or uniqueness of the proposed attacks in comparison to other approaches.
- Generalizability: The paper's effectiveness claims for the proposed attacks are based on experiments conducted on specific datasets and an open-source implementation of CLIP. The generalizability of the attacks to other multimodal models and datasets remains uncertain and requires further investigation.
- Evaluation metrics: The paper introduces the backdoor z-score as a metric to measure attack efficacy, but it does not provide a detailed comparison with other commonly used evaluation metrics. This limits the ability to fully assess the effectiveness and performance of the proposed attacks.

(1) we no

we demonstrate that training on unfiltered datasets, while now possible intensifies the risk of poisoning attacks

2

scaling up the dataset does not prevent the attack from succeeding

References

- Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to rank with joint word-image embeddings. *Machine learning*, 81(1):21–35, 2010.
- Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 3733–3742, 2018.
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. *arXiv preprint arXiv:2103.00020*, 2021.
- Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to imagenet? In International Conference on Machine Learning, pp. 5389–5400. PMLR, 2019.
- Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. Backdoor attacks on self-supervised learning, 2021.
- Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In *Advances in Neural Information Processing Systems*, pp. 6103–6113, 2018.
- Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 2556–2565, 2018.

Thanks for your attention. Any Question?

Extracting Training Data from Large Language Models

Published in 30th USENIX Security Symposium, 2021

Presenters: Freidoon Mehri Amirhossein Hadian

Extracting Training Data from Large Language Models

Nicholas Carlini1Florian Tramèr2Eric Wallace3Matthew Jagielski4Ariel Herbert-Voss5,6Katherine Lee1Adam Roberts1Tom Brown5Dawn Song3Úlfar Erlingsson7Alina Oprea4Colin Raffel11Google2Stanford3UC Berkeley4Northeastern University5OpenAI6Harvard7Apple

Outline

- Introduction
- Background
- Methodology
- Results
- Defenses
- Limitations & Future Work
- Conclusion

Introduction

Goals

- Large language models memorize
 - It's possible to extract this memorized knowledge.
- This Paper
 - GPT2 Black-Box Access
 - Untargeted Attack

Background

Language Modeling

where x_1, x_2, \ldots, x_n is a sequence of tokens from a vocabulary \mathcal{V} by applying the chain rule of probability

 $\mathbf{Pr}(x_1, x_2, \ldots, x_n) = \prod_{i=1}^n \mathbf{Pr}(x_i \mid x_1, \ldots, x_{i-1}).$

Training Objective. A language model is trained to maximize the probability of the data in a training set X. In this paper, each training example is a text document—for example, a specific news article or webpage from the internet. Formally, training involves minimizing the loss function

$$\mathcal{L}(\boldsymbol{\theta}) = -\log \prod_{i=1}^{n} f_{\boldsymbol{\theta}}(x_i \mid x_1, \dots, x_{i-1})$$
_{7/44}

Generating Text

Generating Text. A language model can generate new text (potentially conditioned on some prefix x_1, \ldots, x_i) by iteratively sampling $\hat{x}_{i+1} \sim f_{\theta}(x_{i+1}|x_1,\ldots,x_i)$ and then feeding \hat{x}_{i+1} back into the model to sample $\hat{x}_{i+2} \sim$ $f_{\theta}(x_{i+2}|x_1,\ldots,\hat{x}_{i+1})$. This process is repeated until a desired stopping criterion is reached. Variations of this text generation method include deterministically choosing the most-probable token rather than sampling (i.e., "greedy" sampling) or setting all but the top-*n* probabilities to zero and renormalizing the probabilities before sampling (i.e., top-*n* sampling¹ [18]).

Memorization

- Models trained on massive de-duplicated datasets only for a single epoch
 - Not true for GPT2! (12 epochs)
- Training examples do not have noticeably lower losses than test examples on average
 - GPT-2 does not overfit: the training loss is only **10% smaller** than the test loss across all model sizes.
 - Certain worst-case training examples are indeed memorized

Memorized Content Is Highly Dependent on the Model's Context

For example, GPT-2 will complete the prompt "3.14159" with the first 25 digits of π correctly using greedy sampling. However, we find that GPT-2 "knows" (under Definition 2) more digits of π because using the beam-search-like strategy introduced above extracts 500 digits correctly.

Interestingly, by providing the more descriptive prompt "pi is 3.14159", straight greedy decoding gives the first 799 digits of π —more than with the sophisticated beam search. Further providing the context "e begins 2.7182818, pi begins 3.14159", GPT-2 greedily completes the first 824 digits of π .

k-Eidetic Memorization

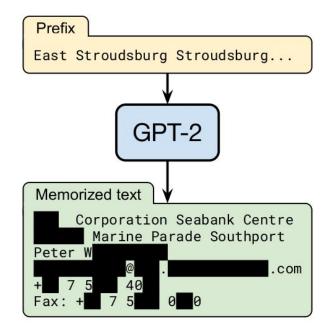
Definition 2 (*k*-Eidetic Memorization) A string *s* is *k*eidetic memorized (for $k \ge 1$) by an LM f_{θ} if *s* is extractable from f_{θ} and *s* appears in at most *k* examples in the training data X: $|\{x \in X : s \subseteq x\}| \le k$.

- Counts the number of distinct training examples containing a given string
 - a string may appear multiple times on one page while still
 counting as k = 1 memorization

Methodology



Attack Example



14/44

Threat Model

Adversary's Capabilities. We consider an adversary who has black-box input-output access to a language model. This allows the adversary to compute the probability of arbitrary sequences $f_{\theta}(x_1, \dots, x_n)$, and as a result allows the adversary to obtain next-word predictions, but it does not allow the adversary to inspect individual weights or hidden states (e.g., attention vectors) of the language model.

• Untargeted: We do not aim to extract targeted pieces of training data, but rather indiscriminately extract training data.

Methodology Overview

• Generate text

- Sampling methods
 - Top-n
 - Temperature
 - Internet prefixes
- Predict which outputs contain memorized text
 - Membership Inference Attacks (MIA) metrics
 - Perplexity
 - Small
 - Medium
 - Zlib
 - Lowercase
 - Window

Top-N Strategy

- Initialize the language model with the start-of-sentence token
 - Then repeatedly sample tokens in an autoregressive fashion from the model
- By sampling according to the model's assigned likelihood:
 - We will sample sequences that the model considers "highly likely"
 - likely sequences correspond to memorized text.
 - We sample exactly 256 tokens for each trial using the top-n strategy with n = 40.

Temperature

As described in Section 2.1, an LM outputs the probability of the next token given the prior tokens $\mathbf{Pr}(x_i | x_1, \dots, x_{i-1})$. In practice, this is achieved by evaluating the neural network $z = f_{\theta}(x_1, \dots, x_{i-1})$ to obtain the "logit" vector z, and then computing the output probability distribution as $y = \operatorname{softmax}(z)$ defined by $\operatorname{softmax}(z)_i = \exp(z_i) / \sum_{j=1}^n \exp(z_j)$.

One can artificially "flatten" this probability distribution to make the model less confident by replacing the output softmax(z) with softmax(z/t), for t > 1. Here, t is called the *temperature*. A higher temperature causes the model to be less confident and more diverse in its output.

Sampling With A Decaying Temperature

- Temperature regulates the softmax
 - Higher temperature means more randomness
- Use a softmax temperature that decays over time
 - starting at t = 10 and decaying down to t = 1 over a period of the first 20 tokens
 - ≈10% of the length of the sequence
 - Sufficient amount of time for the model to "explore" a diverse set of prefixes
 - Also allowing it to **follow high-confidence paths** that it finds

Conditioning on Internet Text

- Seeds the model with prefixes from our own scrapes of the Internet
 - randomly sample between **5 and 10 tokens** of context from this scraped data
- Ensures that
 - **Diverse** generations
 - similar in nature to the type of data GPT-2 was trained on
- Data leakage?!
 - We select samples from a subset of **Common Crawl**
 - GPT-2 scrapes **outgoing Reddit** links
 - Leakage not that important
 - We only give short prompts

Methodology Overview

• Generate text

- Sampling methods
 - Top-n
 - Temperature
 - Internet prefixes
- Predict which outputs contain memorized text
 - Membership Inference Attacks (MIA) metrics
 - Perplexity
 - Small
 - Medium
 - Zlib
 - Lowercase
 - Window

Perplexity

Given a sequence of tokens x1,...,xn, the perplexity is defined as:

$$\mathcal{P} = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\log f_{\theta}(x_i|x_1,\ldots,x_{i-1})\right)$$

• Low perplexity =>

• model not "surprised" by the sequence

Why Is Perplexity Not Enough for MIA

- Many samples with **spuriously high likelihood**
 - **Trivial memorization** (high k)
 - E.g., numbers from 1 to 100
 - Repeated substrings
 - LMs like to repeat the same string over and over
 - E.g., "I love you. I love you ... "

Augment Perplexity!

- Filter out these uninteresting (yet still high-likelihood samples) by comparing to a second LM
 - The second LM also assign high likelihood to these forms of memorized content
 - Filter samples where the original model's likelihood is
 "unexpectedly high" compared to a second model

Comparing to Other Neural Language Models

- Smaller models have less capacity for memorization
 - There are samples that are k-eidetic memorized (for small k) by the largest GPT-2 model
 - not memorized by smaller GPT-2 models
- We use the Small (117M parameters) and Medium (345M parameters) models.

Comparing to Zlib Compression

- Not necessary to use another neural LM
 - Any technique that quantifies some notion of "surprise" for a given sequence
- Zlib entropy of the text
 - Number of bits of entropy when the sequence is compressed with zlib compression
 - Can identify many of the examples of trivial memorization and repeated patterns described above
 - E.g., they are excellent at modeling repeated substrings

Comparing to Lower-Cased Text

- Ratio of the perplexity on the sample before and after lowercasing it
 - which can dramatically alter the perplexity of memorized content that expects a particular casing

Perplexity on a Sliding Window

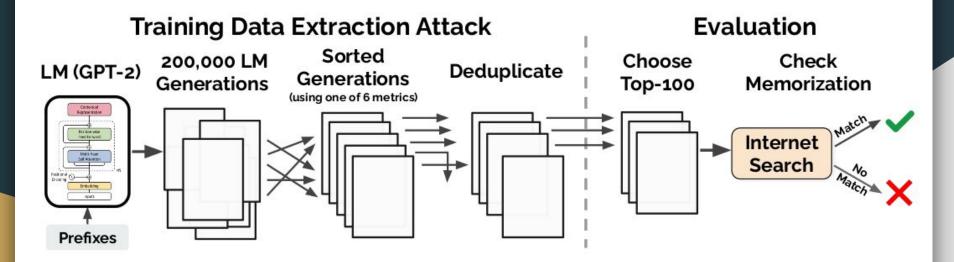
- Perplexity on a **Sliding Window**
 - One memorized substring surrounded by a block of non-memorized (and high perplexity) text
 - Use the minimum perplexity when averaged over a sliding window of 50 token

Methodology Overview

• Generate text

- Sampling methods
 - Top-n
 - Temperature
 - Internet prefixes
- Predict which outputs contain memorized text
 - Membership Inference Attacks (MIA) metrics
 - Perplexity
 - Small
 - Medium
 - Zlib
 - Lowercase
 - Window

Results



For each of these $3 \times 6 = 18$ configurations, we select 100 samples from among the top-1000 samples according to the chosen metric. This gives us **1,800 total samples of potentially memorized** content.

Manual categorization of the 604 memorized training example

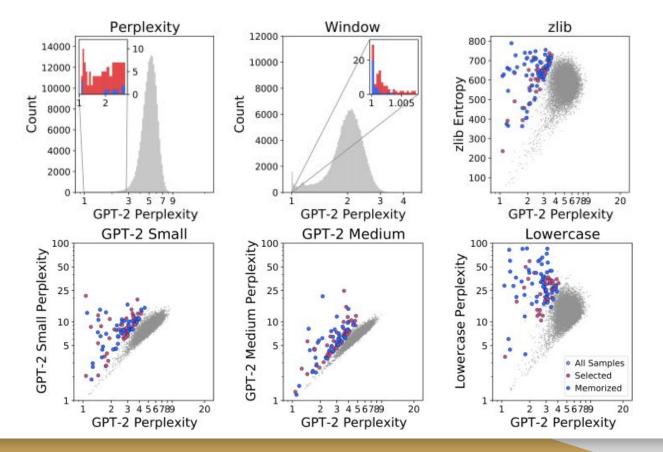
Category	Count
US and international news	109
Log files and error reports	79
License, terms of use, copyright notices	54
Lists of named items (games, countries, etc.)	54
Forum or Wiki entry	53
Valid URLs	50
Named individuals (non-news samples only)	46
Promotional content (products, subscriptions, etc.)	45
High entropy (UUIDs, base64 data)	35
Contact info (address, email, phone, twitter, etc.)	32
Code	31
Configuration files	30
Religious texts	25
Pseudonyms	15
Donald Trump tweets and quotes	12
Web forms (menu items, instructions, etc.)	11
Tech news	11
Lists of numbers (dates, sequences, etc.)	10

32/44

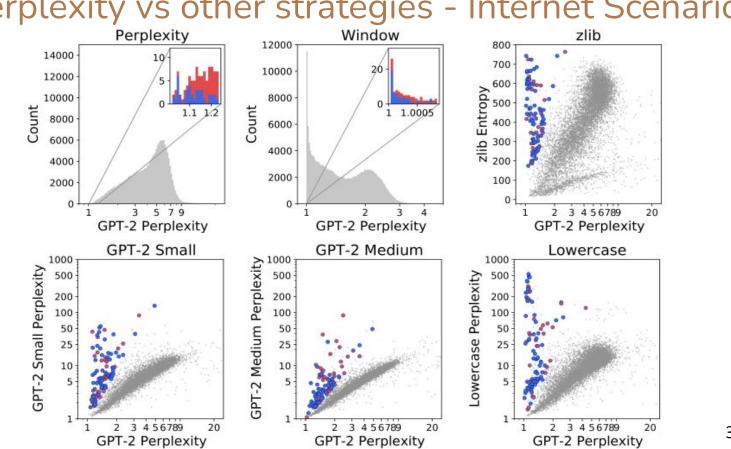
Strategies Results

Inference Strategy Perplexity	Text Generation Strategy				
	Top-n	Temperature	Internet		
	9	3	39		
Small	41	42	58		
Medium	38	33	45		
zlib	59	46	67		
Window	33	28	58		
Lowercase	53	22	60		
Total Unique	191	140	273		

Perplexity vs other strategies - Top-n Scenario

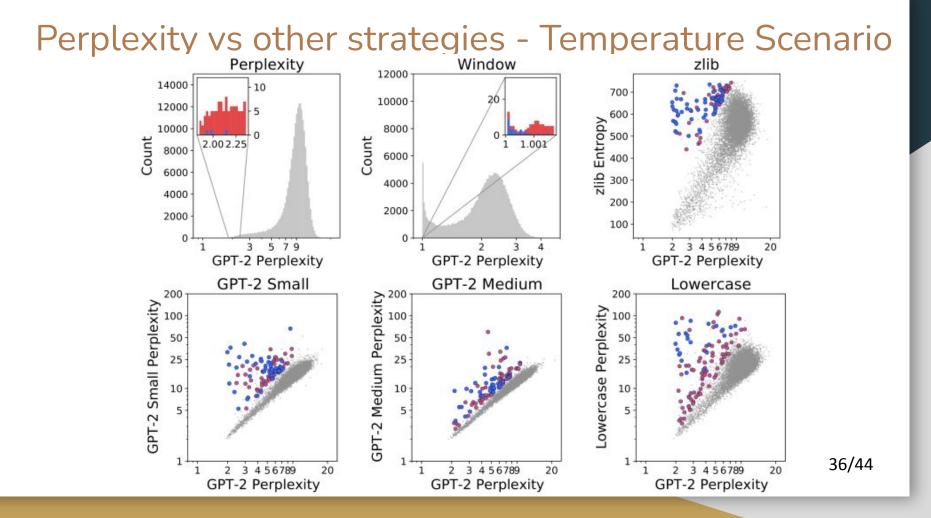


34/44



Perplexity vs other strategies - Internet Scenario

35/44



Inverse Scaling: Correlating Memorization with Model Size

- Larger Models memorize significantly more training data
- For the largest LM, complete memorization occurs after just
 33 insertions (in a single document)

URL (trimmed)	Occurrences		Memorized?		
	Docs	Total	XL	М	S
/r/ 51y/milo_evacua	1	359	\checkmark	\checkmark	1/2
/r/ zin/hi_my_name	1	113	\checkmark	\checkmark	
/r/ 7ne/for_all_yo	1	76	\checkmark	1/2	
/r/ 5mj/fake_news	1	72	\checkmark		
/r/ 5wn/reddit_admi	1	64	\checkmark	\checkmark	
/r/ lp8/26_evening	1	56	\checkmark	\checkmark	
/r/jla/so_pizzagat	1	51	\checkmark	1/2	
/r/ubf/late_night	1	51	\checkmark	1/2	
/r/eta/make_christ	1	35	\checkmark	1/2	
/r/ 6ev/its_officia	1	33	\checkmark		
/r/ 3c7/scott_adams	1	17			
/r/k2o/because_his	1	17			
/r/ tu3/armynavy_ga	1	8			

Defenses

Mitigating Privacy Leakage in LMs

- Training With Differential Privacy
 - DP-SGD
 - Time consuming
 - Accuracy Trade-off
- Curating the Training Data
 - Identifying and limiting sensitive and personal data
 - De-duplication
- Limiting Impact of Memorization on Downstream Applications
 - Fine-tuning causes the model to forget
 - New privacy leakages?
- Auditing ML Models for Memorization

Limitations & Future Work

Limitations & Future Work

- How memorization is inherited by **fine-tuned models**
- Targeted attacks toward specific content
- Applying the attack on **other larger LMs**
 - Larger LMs
 - Different LMs
- Applying the attack on **DP-SGD** trained LMs
 - Evaluation of each defense mechanisms
- How effective are instruction following and Reinforcement
 Learning From Human Feedback (RLHF) as privacy defenses?

Conclusion

Conclusion

- Extraction attacks are a practical threat
- Two-step attack
 - Different strategies
 - Effect of each strategy
 - Extracted Data Types
- k-Eidetic Memorization, a memorization metric
- Memorization does not require overfitting
- Larger models memorize more data
- Defense methods

Thank you for your attention!

SPML Presentation II Deap Leakage from Gradients paper by Zhu et al. 2019

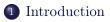
> Alireza Sakhaeirad Hamidreza Akbari

Sharif University of Technology Computer Engineering Department

July 1, 2023

4 E b

3



2 Method

イロト イヨト イヨト

æ

1 Introduction

2 Method

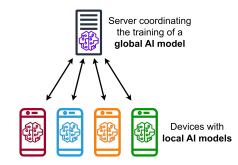


Figure: Distribuited Learning; Image taken from here

3 . 3

< □ ト < / / ト

Previous Assumption

It was believed that sharing gradients can't reveal the training data.

Not Correct!

Authors in this paper attempt to show that gradients can in fact leak information about the training data.

• E •

They show that given the model \mathcal{F} and weights W, it is possible to extract training data \mathcal{D} , given the gradients of the model output with respect to its weights.

San

æ

医下颌 医下颌

Risk in Centralized Setups

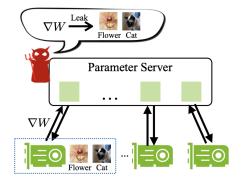


Figure: Malicious server can steal the training data using the gradients; Image taken from the paper

Risk in non-Centralized Setups

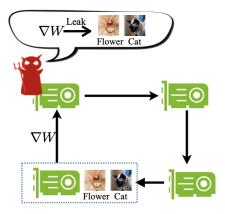


Figure: Any user can steal the training data using the gradients; Image taken from the paper

			= *)*(*
(Sharif University, CE Department)	SPML Presentation II	July 1, 2023	8 / 34

. . .

They demonstrate that it is possible to obtain private training data from the publicly shared gradients using their algorithm DLG(deep leakage gradient)

DLG only requires the gradients and can reveal pixel-wise accurate images and token-wise matching texts.

To prevent potential leakage of important data, They analyze the attack difficulties in various settings and discuss several defense strategies against the attack.

First, they create dummy inputs and labels:

 $\mathbf{x}', \mathbf{y}' \leftarrow \mathcal{N}(0, I), \mathcal{N}(0, 1)$

Then, they calculate the gradients with respect to them:

$$\nabla W' = \frac{\partial \ell(\mathcal{F}(\mathbf{x}', W), \mathbf{y}')}{\partial W}$$

→ 프 → - 프

San

Then they solve the following optimization with respect to inputs and labels:

$$\mathbf{x}^*, \mathbf{y}^* = \underset{\mathbf{x}', \mathbf{y}'}{\operatorname{arg\,min}} ||\nabla W' - \nabla W|| = \frac{\partial \ell(\mathcal{F}(\mathbf{x}', W), \mathbf{y}')}{\partial W} - \nabla W||$$

Solving this optimization problem requires model ${\mathcal F}$ to be twice differentiable.

∃ ∃ ≥

3

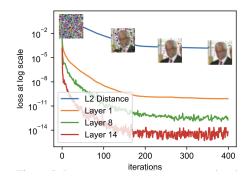


Figure: As we increase the number of iteration, the dummy data becomes closer to the real data; layer (i) indicates the MSE between real and dummy gradients of i^{th} layer

Previous algorithm takes too long to converge.

They hypothesize that the reason is there are N! different combinations of images, so its difficult for the algorithm to choose gradient direction.

4 E b

Algorithm 1 Deep Leakage from Gradients.

Input: $F(\mathbf{x}; W)$: Differentiable machine learning model; W: parameter weights; ∇W : gradients calculated by training data

Output: private training data x, y

1: procedure $DLG(F, W, \nabla W)$ $\mathbf{x}'_1 \leftarrow \mathcal{N}(0,1), \mathbf{y}'_1 \leftarrow \mathcal{N}(0,1)$ 2: 3: for $i \leftarrow 1$ to n do $\nabla W'_i \leftarrow \partial \ell(F(\mathbf{x}'_i, W_t), \mathbf{y}'_i) / \partial W_t$ $\mathbb{D}_i \leftarrow ||\nabla W'_i - \nabla W||^2$ 4: 5: $\mathbf{x}'_{i+1} \leftarrow \mathbf{x}'_i - \eta \nabla_{\mathbf{x}'} \mathbb{D}'_i, \mathbf{y}'_{i+1} \leftarrow \mathbf{y}'_i - \eta \nabla_{\mathbf{x}'} \mathbb{D}_i$ 6: 7: end for 8. return $\mathbf{x}'_{n+1}, \mathbf{y}'_{n+1}$ 9: end procedure

Initialize dummy inputs and labels.

▷ Compute dummy gradients.

> Update data to match gradients.

Figure: Deep Leakage Gradient

To solve the problem, they updated only one dummy sample per iteration.

They observed that with a larger batch size, more iterations are required for convergence, which is intuitively acceptable.

		BS=2		
ResNet-20	270	602	1173	2711

Figure: Effect of batch size in convergence time

イロト イポト イラト イラト 二戸

Figure: Example of the batched data mode; the order may be wrong, but outputs are acceptable

▲ □ ▶ ▲ 合

DQC

2 Method

• • • • • • • •

표······ 표··

ъ

- They used pytorch as their software.
- They used L-BFGS as optimization algorithm. For specific detail, check the paper.
- Their procedure doesn't require the model to be fully trained. Attack can happed in any part of the training.

4 3 b

- They used a ResNet-56 and pictures from MNIST, CIFAR-100, SVHN, and LFW datasets.
- Activation functions are changed from relu to sigmoid to ensure differentiability.
- Dummy labels are passed trough softmax to be like one-hot encoded vectors.

Examples

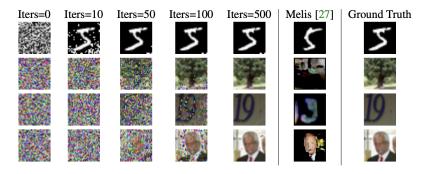


Figure: Example of the attack; images with plain backgrouds are easier to extract. Complex images like faces are harder to extract

- They used a BERT model as backbone.
- In this task, 15% of words are masked, and model is asked to predict them.
- They searched for the input tokens in the embedding space, then matched the result to the closest vector in the embedding space.

4 D b 4 A b

4 E b

Examples

	Example 1	Example 2	Example 3
Initial Sen- tence	tilting fill given **less word **itude fine **nton over- heard living vegas **vac **vation *f forte **dis ce- rambycidae ellison **don yards marne **kali	toni **enting asbestos cut- ler km nail **oof **dation **ori righteous **xie lucan **hot **ery at **tle ordered pa **eit smashing proto	[MASK] **ry toppled **wled major relief dive displaced **lice [CLS] us apps_**face **bet
Iters = 10	tilting fill given **less full solicitor other ligue shrill living vegas rider treatment carry played sculptures life- long ellison net yards marne **kali	toni **enting asbestos cutter km nail undefeated **dation hole righteous **xie lucan **hot **ery at **tle ordered pa **eit smashing proto	[MASK] **ry toppled iden- tified major relief gin dive displaced **lice doll us apps_**face space
Iters = 20	registration, volunteer ap- plications, at student travel application open the; week of played; child care will be glare.	we welcome proposals for tutor **ials on either core machine denver softly or topics of emerging impor- tance for machine learning	one **ry toppled hold major ritual ' dive annual confer- ence days 1924 apps novel- ist dude space
Iters = 30	registration, volunteer ap- plications, and student travel application open the first week of september. child care will be available.	we welcome proposals for tutor **ials on either core machine learning topics or topics of emerging impor- tance for machine learning	we invite submissions for the thirty - third annual con- ference on neural informa- tion processing systems.
Original Text	Registration, volunteer applications, and student travel application open the first week of September. Child care will be available.	We welcome proposals for tutorials on either core ma- chine learning topics or top- ics of emerging importance for machine learning.	We invite submissions for the Thirty-Third Annual Conference on Neural Infor- mation Processing Systems.

Figure: Example of the attack on MLM

(Sharif University, CE Department)

SPML Presentation II

July 1, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1 Introduction

2 Method

3 Experiments

(Sharif University,	CE Department)
---------------------	----------------

ъ

Adding some noise (from Laplacian and Gaussian distributions) can prevent the leakage. Noise distribution doesn't matter much and variance is the key factor. Variance over 10^{-2} can prevent leakage. Half-presicion is also tested, but doesn't yield desirable results.

イロト イポト イラト イラト 一日

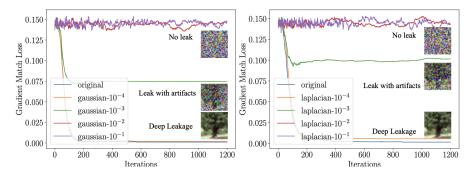


Figure: Effects of adding Laplacian and Gaussian noise

	Original	$G-10^{-4}$	$G-10^{-3}$	$G-10^{-2}$	$G-10^{-1}$	FP -16
Accuracy	76.3%	75.6%	73.3%	45.3%	$\leq 1\%$	76.1%
Defendability	-	×	×	 Image: A set of the set of the	 Image: A set of the set of the	X
		$L-10^{-4}$	$L-10^{-3}$	$L-10^{-2}$	$L-10^{-1}$	Int-8
Accuracy	-	75.6%	73.4%	46.2%	$\leq 1\%$	53.7%
Defendability	-	×	×	 Image: A set of the set of the		

Figure: A trade-off between privacy and accuracy

590

27/34

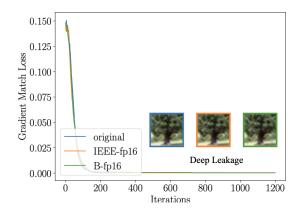


Figure: Using half-presicions doesn't help the privacy. This graph is for fp16 convertion

(Sharif University, CE Department)	SPML Presentation II	July 1, 2023	28/34

Gradient Compression: gradients with small magnitudes are pruned to zero.

Sparsity from 1% to 10% doesn't affect the DLG. However, sparsity over 20% disables the algorithm to produce proper outputs.

It is shown that it doesn't have a signifant effect on the model accuracy.

(II) Gradient Compression and Sparsification

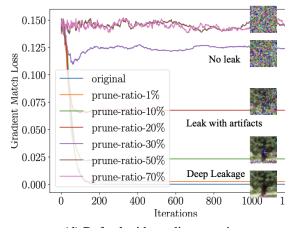


Figure: Defend using gradient pruning

If making modifications to the dataset is allowed, increasing the batch size and resolution (may need changing the CNN structure) can prevent leakage against DLG. They state that algorithm works successfully only for batch sized up to 8 and image scales up to 64×64

Also, using cryptology techniques that are studied in the federated learning scenario can disable the algorithm. Some algorithms are referenced in the article.

イロト イポト イヨト イヨト

1 Introduction

2 Method

3 Experiments

(Sharif University, CE Department)	SPML Presentation II	July 1, 2023	32 / 34

オロト オポト オモト オモト

-

000

- No experiments is done on ImageNet, which is the most popular image calssification dataset.
- Algorithm has very limited power. Simply using a batch size bigger than 8, which is very common, makes the algorithm useless.
- Cryptology techniques simply make the attack useless, without decreasing the accuracy.

Thank You for Your Attention! Any Questions?

∃ \$\\$<</p>\$\\$

イロト イヨト イヨト イヨト

Attack

Evaluation

Conclusions

References o

Label-Only Membership Inference Attacks

Presenters: Mehdi Dousti & Erfan Zarinkia

Security and Privacy in Machine Learning Instructor: Dr. Sadeghzadeh

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

Spring 2023

< ロ ト < 部 ト < 注 ト < 注 ト</p>

/36

э

Recap	Attack	Evaluation	Conclusions	References
00000	0000000		o	o
Table o	f Contents			

2 Attack

8 Evaluation

4 Conclusions

6 References

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

Spring 2023

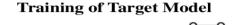
э.

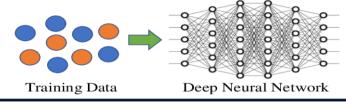
2/36

ヘロト 人間 トメヨトメヨト

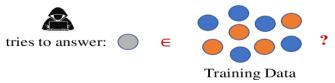
 Receiption
 Attack
 Evaluation
 Conclusions
 References

 What is Membership Inference Attack?





Membership Inference Attack on Target Model



Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

- 4 E

Image: A matching of the second se

э

Recap	Attack	Evaluation	Conclusions	References
o●ooo	00000000		o	o
Notation				

- Given a sample *x*
- access to a trained model *h*
- the adversary uses a classifier f_h
- compute a membership prediction $f(x; h) \in \{0, 1\}$
- with the goal that f(x; h) = 1 if x is a training point

э

4/36

The adversary has:

- Only black-box access to the trained model
 - Confidence-based (previous attack methods)
 - Label-only (this attack method)
- Full knowledge of the task
- Knowledge of the target model's architecture and training setup
- Partial data knowledge
- Knowledge of the targeted points' labels

• • Ξ.

- Adversary queries the model
- Obtain the model's confidence
- Infers the candidate's membership in the training set
- Difference in prediction confidence is largely attributed to overfitting

э

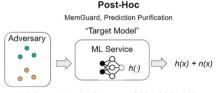
6/36

イロト イボト イヨト イヨ

Recap	Attack	Evaluation	Conclusions	References
0000●	0000000	೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦೦	o	o
Defens	o Mothoda			

Defense Methods

- Reduce overfitting
 - Regularization
 - Increase the amount of training data
- Perturb model's predictions (confidence-masking)
 - Modifying the training procedure (Adversarial Regularization)
 - Modifying the inference procedure after training (Mem Guard)



n(x) chosen to maintain $argmax_i h(x)_i = h(x) + n(x)$

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

Spring 2023 7/36

э

-

Recap
• ConclusionsAttack
• ConclusionsReferencesLabel-Only Membership Inference Attacks

Label-Only Membership Inference Attacks

Christopher A. Choquette-Choo¹ Florian Tramèr² Nicholas Carlini³ Nicolas Papernot¹

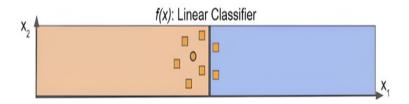
Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

イロト イポト イヨト イヨト

э

- Data points with high robustness are training data points
- Data augmentation causes privacy leakage
- Relationship between the confidence at x and the Euclidean distance to the decision boundary



Label-Only Membership Inference Attacks

9/36

- The Gap Attack
- Predicts any misclassified data point as a non-member
- Accuracy

$$\begin{array}{l} 1/2 + \left(\mathrm{acc}_{\mathrm{train}} \, - \mathrm{acc}_{\mathrm{test}} \, \right)/2 \\ \\ \mathrm{acc}_{\mathrm{train}} \, , \mathrm{acc}_{\mathrm{test}} \, \in [0,1] \end{array}$$

Label-Only Membership Inference Attacks

æ

10/36

< ロ ト < 部 ト < 注 ト < 注 ト</p>

- Boundary Distance
 - White-Box Baseline : C&W
 - Black-box Label-only attacks : HopSkipJump
- Data Augmentation
 - Rotation
 - Translation
- Robustness to Noise

э

11/36

< ロ ト < 部 ト < 注 ト < 注 ト</p>

Data Augmentation Attack

- create a MI classifier f(x; h) for a model h
- Given a target point (x_0, y_{true}) the adversary trains f to output $f(x_0, h) = 1$ if x_0 was a training member
- rotations: generate N = 3 images as rotations by a magnitude $\pm r^{\circ}$ for $r \in [1, 15]$
- translations: generate N = 4d + 1 translated images satisfying |i| + |j| = d for a pixel bound d
 - horizontal shift by $\pm i$
 - vertical shift by $\pm j$

12/36

イロト イポト イヨト イヨト

- Given some estimate $dist_h(x, y)$ of a point's '2-distance to the model's boundary
- we predict x a member if $dist_h(x, y) > \tau$
- $dist_h(x, y) = 0$ for misclassified points

э

13/36

イロト イボト イヨト イヨト

- a point's distance to the boundary is directly related to the model's accuracy when it is perturbed by isotropic Gaussian noise
- We compute a proxy for $d_h(x, y)$ by evaluating the accuracy of h on N points $\hat{x}_i = x + \mathcal{N} (0, \sigma^2 \cdot I)$

イロト イポト イヨト イヨト

3

Recap 00000	Attack	Evaluation	Conclusions o	References o
Fvaluat	ed Datasets			

- 3 computer vision tasks
 - MNIST
 - CIFAR-10
 - CIFAR-100
- 4 non-computer vision tasks
 - Adult
 - Texas-100
 - Purchase-100
 - Locations

ヘロト 人間 トメヨトメヨト

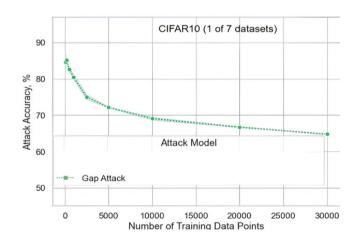
3

- 1 Can label-only MI attacks match prior attacks that use the model's (full) confidence vector?
- 2 What is the query complexity of label-only attacks?
- Output: A set of the set of th
- 4 Which defenses prevent both label-only and full confidence-vector attacks?

イロト イポト イヨト イヨト

 Recappoint
 Attack
 Evaluation
 Conclusions
 References

 Can label-only MI attacks match prior attacks?



Label-Only Membership Inference Attacks

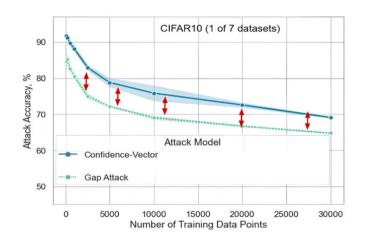
Spring 2023 17/36

э

< ロ ト < 部 ト < 注 ト < 注 ト</p>

 Recappoint
 Attack
 Evaluation
 Conclusions
 References

 Can label-only MI attacks match prior attacks?

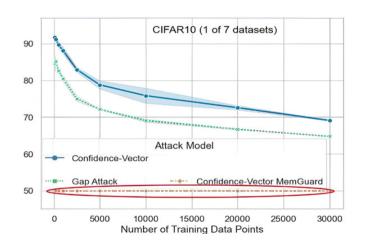


Spring 2023 18 / 36

э

・ロト ・部 ト・ヨト・ヨト

ReceapeAttack
ConclusionsEvaluation
ConclusionsConclusionsReferencesCan label-only MI attacks match prior attacks?



Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

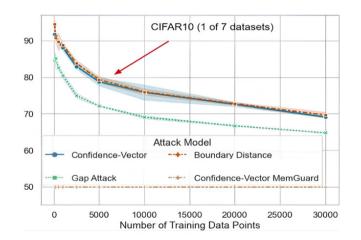
Spring 2023 19/36

э

イロト 人間 トイヨト イヨト

 Recappoint
 Attack
 Evaluation
 Conclusions
 References

 Can label-only MI attacks match prior attacks?



Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

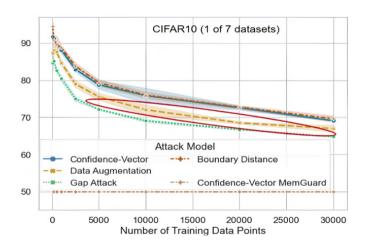
Spring 2023 20/36

э

ヘロト 人間 トメヨトメヨト

 Recease
 Attack
 Evaluation
 Conclusions
 References

 Can label-only MI attacks match prior attacks?



Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

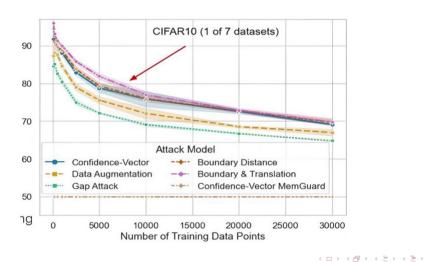
Label-Only Membership Inference Attacks

Spring 2023 21/36

э

・ロト ・部ト ・ヨト ・ヨト

ReceaseAttackEvaluationConclusionsReferencesCan label-only MI attacks match prior attacks?



Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

Spring 2023

э

22/36

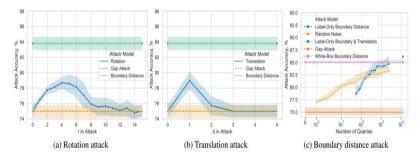


Figure 2. Comparison of query settings for different label-only MI attacks on CIFAR-10. Target model are trained on a subset of 2,500 data points. In (a) and (b), we compare the performance of the data augmentation attack against two baselines (the gap attack and the label-only boundary distance attack, with 2,500 queries), as we increase the r and d parameters. In (c), we compare attacks that threshold on a point's distance to the boundary in a black-box setting with a white-box baseline using Carlini and Wagner's attack (Carlini & Wagner, 2017). We describe these attacks in § 3.4. Costs are \approx \$0.1 per 1000 queries⁵.

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

Spring 2023

Image: A math a math

(a) CIFAR-100 Undefended

Attack	Accuracy
Gap attack	83.5
Confidence-vector	88.1
Data augmentation	84.6
Boundary distance	88.0
Combined	89.2

(c) MNIST Undefended

Attack	Accuracy
Gap attack	53.2
Confidence-vector	55.7
Data augmentation	53.9
Boundary distance	57.8
Combined	58.7

(b) CIFAR-100 MemGuard

Attack	Accuracy
Gap attack	83.5
Confidence-vector	50.0
Data augmentation	84.6
Boundary distance	88.0
Combined	89.2

(d) MNIST MemGuard

Attack	Accuracy
Gap attack	53.2
Confidence-vector	50.0
Data augmentation	53.9
Boundary distance	57.8
Combined	58.7

イロト イポト イヨト イヨト

3

(a) Texas Undefended		(b) Texas MemGuard		
Attack	Accuracy	Attack	Accuracy	
Gap attack	73.9	Gap attack	73.9	
Confidence-vector	84.0	Confidence-vector	50.0	
Noise Robustness	80.3	Noise Robustness	80.3	
(c) Purchase Unde	efended	(d) Purchase Men	nGuard	
Attack	Accuracy	Attack	Accuracy	
Gap attack	67.1	Gap attack	67.1	
Confidence-vector	86.1	Confidence-vector	50.0	
Noise Robustness	87.4	Noise Robustness	87.4	

(e) Location Under	efended	(f) Location Men	nGuard
Attack	Accuracy	Attack	Accuracy
Gap attack	72.1	Gap attack	72.1
Confidence-vector	92.6	Confidence-vector	50.0
Noise robustness	89.2	Noise Robustness	89.2
(g) Adult Undef	ended	(h) Adult Mem	Guard
Attack	Acourcou	Attock	
Attack	Accuracy	Attack	Accuracy
Gap attack		Gap attack	Accuracy 58.7
	58.7		58.7

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

э

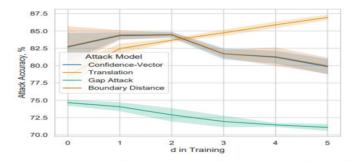


Figure 3. Accuracy of MI attacks on CIFAR-10 models trained with data augmentation on a subset of 2500 images. As in our attack, d controls the number of pixels by which images are translated during training, where no augmentation is d = 0. For models trained with significant amounts of data augmentation, MI attacks become *stronger* despite it generalizing better.

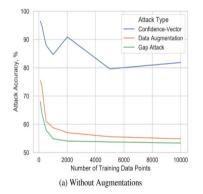
Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

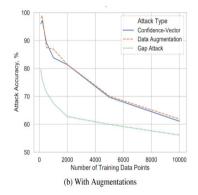
Label-Only Membership Inference Attacks

Spring 2023 26/36

э

イロト イボト イヨト イヨ





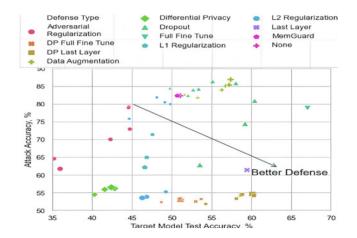
Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

イロト イロト イヨト イヨト

27/36

э

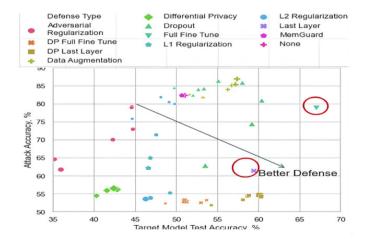


Label-Only Membership Inference Attacks

Spring 2023 28 / 36

э

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

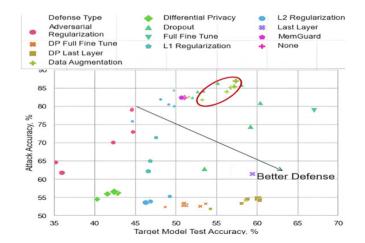


Label-Only Membership Inference Attacks

Spring 2023 29/36

э

イロン スピン メヨン イヨン

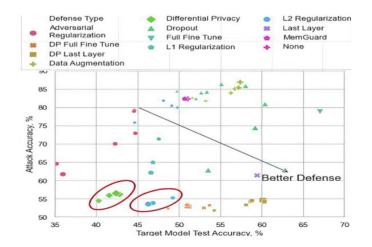


Label-Only Membership Inference Attacks

Spring 2023 30 / 36

э

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト



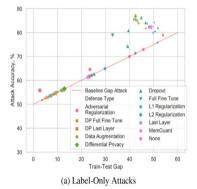
Label-Only Membership Inference Attacks

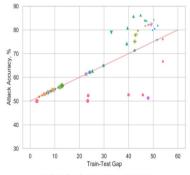
Spring 2023 31 / 36

э

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Which defenses prevent both LO and CB attacks?





(b) Full Confidence-Vector Attacks

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

ヘロト 人間 トメヨトメヨト

Э

00000	0000000	000000000000000000000000000000000000000	0	0
Recap 00000	Attack	Evaluation	Conclusions	References

Which defenses prevent both LO and CB attacks?

Query Interface	Attack Feature	Knowledge	Source
confidence vector	h(x), y	train, data, label	(Shokri et al., 2016)
confidence vector	h(x)	train, data	(Long et al., 2017)
confidence vector	h(x)	-	(Salem et al., 2018)
confidence vector	$\mathcal{L}\left(h\left(x ight),y ight)$	label	(Yeom et al., 2018)
confidence vector	$\mathcal{L}(h(x), y) + \tau(x)$	label	(Sablayrolles et al., 2019)
confidence vector	$-(\theta - \theta_0^*)^T \nabla_\theta \mathcal{L} \left(h\left(x \right), y \right)$	train, data, label, model	(Sablayrolles et al., 2019)
confidence vector	h(x'), y	train, data, label	(Song et al., 2019)
label-only	$\operatorname{argmax} h(x), y$	label	(Yeom et al., 2018)
label-only	$\operatorname{argmax} h(\operatorname{aug}(x)), y$	train, data, label	ours
label-only	$\operatorname{dist}_h(x,y)$	train, data, label	ours
label-only	$\operatorname{dist}_h(\operatorname{aug}(x), y)$	train, data, label	ours

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

▲ □ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
Spring 2023

≣ ৩৭ে 33/36

- Differential privacy (with transfer learning)
- Strong L2 regularization

э

34/36

イロト イボト イヨト イヨト

Conclusions

Pros

- are more realistic in the real world problems
- can match, and even exceed, the success of prior confidence-vector attacks
- can break confidence masking defenses
- could also be instantiated in audio or natural language domains
- Cons
 - need much more query than confidence-based MI attacks
 - can not break differential privacy (with transfer learning)

イロト イボト イヨト イヨ

Recap	Attack	Evaluation	Conclusions	References
00000	0000000		o	•
Referen	ces			

- [1] C. A. ChoquetteChoo, F. Tramer, N. Carlini, N. Papernot "Label-Only Membership Inference Attacks," Proceedings of the 38th International Conference on Machine Learning, ICML, 2021
- [2] R. Shokri, M. Stronati, C. Song, V. Shmatikov "Membership Inference Attacks Against Machine Learning Models," IEEE Symposium on Security and Privacy, SP, 2017

Questions?

Mehdi Dousti & Erfan Zarinkia (Sharif U. T.)

Label-Only Membership Inference Attacks

Spring 2023

イロト 人間 トイヨト イヨト

36/36

э.

Renyi Differential Privacy

A paper by Ilya Minorov

Javad Hezareh, Mehraneh Najafi

Importance of Privacy-Preserving Techniques

- Protecting sensitive information in data analysis is crucial in our data-driven society.
- Privacy-preserving techniques, like differential privacy, ensure the confidentiality of individuals' personal data.
- Data-sharing initiatives are encouraged as individuals feel confident about their privacy being respected.
- Fairness and non-discrimination are promoted by preventing biases based on personal characteristics.

What is Differential Privacy as a concept?

- Differential privacy is a privacy-preserving framework for data analysis.
- It provides a mathematical definition of privacy guarantees.
- The goal is to enable accurate analysis while protecting the privacy of individuals.
- Differential privacy achieves privacy by adding controlled noise to query responses or data.

What is Differential Privacy as a concept?

- It ensures that the presence or absence of specific individuals in the dataset cannot be determined.
- The level of privacy is quantified by a parameter called epsilon (ϵ).
- A smaller epsilon value indicates stronger privacy protection.
- Differential privacy offers a trade-off between privacy and utility of the data.

The traditions: ε-differential privacy

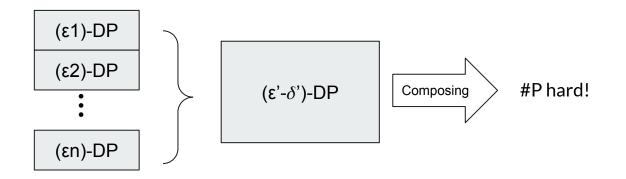
- ε-differential privacy provides a formal definition of privacy guarantees.
- It ensures limited impact on query output when including or excluding an individual's data.
- Mechanism satisfies ε-differential privacy if probabilities of outcomes are approximately the same for similar datasets.
- Parameter ε represents the privacy budget or allowable privacy loss.

Relaxation: ε-δ differential privacy

- ε-δ Differential Privacy:
 - Incorporates an additional privacy parameter, δ .
 - Provides a more stringent privacy guarantee.
 - Bounds the probability of any arbitrary event an adversary can observe.
 - Establishes an upper bound on the overall privacy risk.
- ε-Differential Privacy vs. ε-δ Differential Privacy:
 - ο ε-differential privacy focuses on distinguishing neighboring datasets.
 - \circ ϵ - δ differential privacy goes beyond distinguishability by bounding any possible event an adversary can observe.
 - ε-δ differential privacy ensures a stronger level of privacy protection.

What is wrong with (ε , δ)-differential privacy $\Pr[f(D) \in S] \le e^{\epsilon} \Pr[f(D') \in S] + \delta.$

- Gaussian Mechanism does not have catastrophic failure!
- Composing advanced composition



Renyi Divergence

$$D_{\alpha}(P||Q) \triangleq \frac{1}{\alpha - 1} \log \mathcal{E}_{x \sim Q} \left(\frac{P(x)}{Q(x)}\right)^{\alpha}.$$

• For $\alpha = 1$:

$$\lim_{\alpha \to 1} D_{\alpha}(P \| Q)$$
$$D_{1}(P \| Q) = \mathcal{E}_{x \sim P} \log \frac{P(x)}{Q(x)}.$$

• For
$$\alpha = \infty$$
:

$$D_{\infty}(P||Q) = \sup_{x \in \operatorname{supp} Q} \log \frac{P(x)}{Q(x)}.$$

Renyi Divergence

- The relationship between the Renyi divergence with $\alpha = \infty$ and differential privacy is immediate:
 - A randomized mechanism f is ε -differentially private iff its distribution over any two adjacent inputs D and D' satisfies:

 $D_{\infty}(f(D)||f(D')) \le \epsilon.$

Renyi Properties: "Bad Outcomes" Guarantee

- Consider a person, concerned about some adverse consequences, deliberating whether to withhold her record from the database.
- Let's say some outputs of the mechanism are labeled "Bad". DP guarantees that the probability of observing a bad outcome will not change (either way) by more than a factor of e^ε whether anyone's record is part of the input or not.
- This guarantee is relaxed for Renyi differential privacy.

Renyi Properties: Robustness to Auxiliary Information

- Critical to the adoption of differential privacy as an operationally useful definition is its lack of assumptions on the adversary's knowledge.
- Assume that the adversary has a prior p(D) over the set of possible inputs $D \in D$, and observes an output X of an ϵ -differentially private mechanism f.
- Its posterior satisfies the following guarantee for all pairs of adjacent inputs D,D' ∈ D and all X ∈ R:

$$\frac{p(D \mid X)}{p(D' \mid X)} \le e^{\epsilon} \frac{p(D)}{p(D')}.$$

Renyi Properties: Robustness to Auxiliary Information

- In other words, evidence obtained from an ε-differentially private mechanism does not move the relative probabilities assigned to adjacent inputs by more than e^ε.
- Let the random variable R(D,D') be defined as follows:

$$R(D, D') \sim \frac{p(D'|X)}{p(D|X)} = \frac{p(X|D') \cdot p(D')}{p(X|D) \cdot p(D)},$$

where $X \sim f(D).$
$$E_Q \left[\left\{ \frac{R_{\text{post}}(D, D')}{R_{\text{prior}}(D, D')} \right\}^{\alpha} \right] = E_Q \left[P(x)^{\alpha} Q(x)^{-\alpha} \right] =$$

$$\exp[(\alpha - 1) D_{\alpha}(f(D') || f(D))].$$

 In simpler terms, this means that the Renyi divergence of order α between the probability distributions induced by neighboring datasets D and D' provides an upper bound on the expected change in the Bayes factor.

Renyi Properties: Post-Processing

- If we have a differential private mechanism $f: D \to R$, can we diminish its privacy by manipulating its output?
- Consider any randomized mapping $\,g:\,\mathcal{R}\,
 ightarrow\,\mathcal{R}'$
- ε-DP mechanism has the post-processing property

 $\circ \ \Pr[g \circ f(D) \in S] \leq e^{\epsilon} \Prig[g \circ fig(D'ig) \in Sig]$

• (α, ϵ) -RDP mechanism also has this property

 $\circ ~~ D_lpha(P||Q) \geq D_lpha(g(P)||g(Q))$

Renyi Properties: Preservation Under Adaptive Sequential Composition

- Consider two mechanism f(.) ε1-DP and g(.) ε2-DP
- If we release f(D) and g(D), do we still have privacy?
- Composition of f(.) and g(.) is $\varepsilon 1 + \varepsilon 2$ -DP
- If f(.) be ($\alpha,\epsilon 1$)-RDP and g(.) be ($\alpha,\epsilon 2$)-RDP, the the composition of f(.) and g(.) is ($\alpha,\epsilon 1+\epsilon 2$)-RDP

Renyi Properties: Preservation Under Adaptive Sequential Composition (Proof)

$$\begin{split} \exp\left[(\alpha-1)D_{\alpha}(h(D)\|h(D'))\right] \\ &= \int_{\mathcal{R}_{1}\times\mathcal{R}_{2}} Z(x,y)^{\alpha}Z'(x,y)^{1-\alpha} \,\mathrm{d}x \,\mathrm{d}y \\ &= \int_{\mathcal{R}_{1}} \int_{\mathcal{R}_{2}} (X(x)Y(x,y))^{\alpha}(X'(x)Y'(x,y))^{1-\alpha} \,\mathrm{d}y \,\mathrm{d}x \\ &= \int_{\mathcal{R}_{1}} X(x)^{\alpha}X'(x)^{1-\alpha} \left\{ \int_{\mathcal{R}_{2}} Y(x,y)^{\alpha}Y'(x,y)^{1-\alpha} \,\mathrm{d}y \right\} \,\mathrm{d}x \\ &\leq \int_{\mathcal{R}_{1}} X(x)^{\alpha}X'(x)^{1-\alpha} \,\mathrm{d}x \cdot \exp((\alpha-1)\epsilon_{2}) \\ &\leq \exp((\alpha-1)\epsilon_{1})\exp((\alpha-1)\epsilon_{2}) \\ &= \exp((\alpha-1)(\epsilon_{1}+\epsilon_{2})), \end{split}$$

Renyi Properties: Group Privacy

- What if our assumptions about our data is not correct?
 - For example, a single family contributing to a survey will likely share many socio-economic, demographic, and health characteristics
- Will privacy collapse or we still have something to say?
 - The differential privacy guarantee will scale down linearly with the number of family members

Renyi Properties: Group Privacy

- **Definition**: We say that $g: D \rightarrow D'$ is c-stable if g(A) and g(B) are adjacent in D' implies that there exists a sequence of length c + 1 so that D0 = A, ..., Dc = B and all (Di, Di+1) are adjacent in D.
- If f is ϵ -DP and g : D' \rightarrow D is c-stable, then f \circ g is (c ϵ)-DP.
- If f is (α, ε) -RDP and g : D' \rightarrow D is 2^c-stable and $\alpha \ge 2^{(c+1)}$, then f \circ g is $(\alpha/2^c, 3^c \epsilon)$ -RDP

RDP and (ε, δ) -DP

• If f is ϵ -DP, then f is (∞, ϵ) -RDP. And by monotonicity f is also (α, ϵ) -RDP for all $\alpha < \infty$.

• If f is (
$$\alpha, \epsilon$$
)-RDP, then f is $\left(\epsilon + \frac{\log 1/\delta}{\alpha - 1}, \delta\right)$ -DP for any 0< δ <1

Denote $\Pr[f(D') \in S]$ by Q and consider two cases. Case I. $e^{\epsilon}Q > \delta^{\alpha/(\alpha-1)}$. Continuing the above,

$$\Pr[f(D) \in S] \leq \{e^{\epsilon}Q\}^{1-1/\alpha} = e^{\epsilon}Q \cdot \{e^{\epsilon}Q\}^{-1/\alpha}$$
$$\leq e^{\epsilon}Q \cdot \delta^{-1/(\alpha-1)}$$
$$= \exp\left(\epsilon + \frac{\log 1/\delta}{\alpha - 1}\right) \cdot Q.$$

Case II. $e^{\epsilon}Q \leq \delta^{\alpha/(\alpha-1)}$. This case is immediate since

$$\Pr[f(D) \in S] \le \{e^{\epsilon}Q\}^{1-1/\alpha} \le \delta,$$
18

RDP vs (ϵ , δ)-DP

- Probabilistic Privacy Guarantee
- Baseline-Dependent Guarantees

Probabilistic Privacy Guarantee

- The standard "bad outcomes" guarantee of ε-DP is independent of the probability of a bad outcome
- (ϵ, δ) -DP, allows for an additional δ term, which allows for a complete privacy compromise with probability δ
- RDP even with very weak parameters never allows a total breach of privacy with no residual uncertainty

Baseline-Dependent Guarantees

- RDP bound gets weaker for less likely outcomes
- Contrasted with the pure ε-DP this type of guarantee is conceptually weaker and more onerous in application
- However, in comparison with (ε, δ) -DP the analysis via RDP simpler and, especially for probabilities that are smaller than δ , leads to stronger bounds

Conclusions

- (RDP) is a natural generalization of pure differential privacy
- RDP shares, with some adaptations, many properties that make differential privacy a useful and versatile tool
- RDP analysis of Gaussian noise is particularly simple

RDP yields useful insight into analysis of differentially private mechanisms.

Thanks for listening Any question?

LARGE LANGUAGE MODELS CAN BE Strong Differentially Private Learners

Xuechen Li¹, Florian Tramèr², Percy Liang¹, Tatsunori Hashimoto¹ ¹Stanford University ²Google Research {lxuechen,tramer,pliang}@cs.stanford.edu,thashim@stanford.edu

> SPML Presentation 2 Spring 2023

Hamidreza Amirzadeh Ali Abdollahi

Introduction

- LLMs can memorize training data
- Data extraction attacks are surprisingly effective for LLMs (Carlini et al., 2021)
- These extracted examples include (public) personally identifiable information *names*, *phone numbers*, and *email addresses*
- We need provable guarantees that models won't leak private data

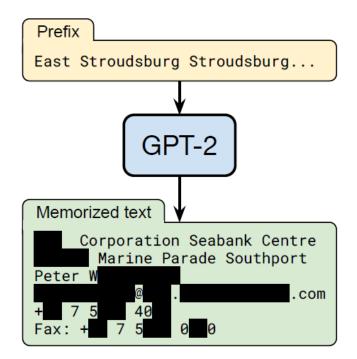


Figure 1: **Our extraction attack.** Given query access to a neural network language model, we extract an individual person's name, email address, phone number, fax number, and physical address. The example in this figure shows information that is all accurate so we redact it to protect privacy.

(Carlini et al., 2021)

- Straightforward attempts to apply DP-SGD to NLP tasks ?!
 - High computational overhead
 - Large performance drops
- Why is so ?
 - DP-SGD injects **noise** that must scale with **parameter dimensions** \rightarrow problematic in LLMs
- This paper shows that this performance drop can be mitigated with use of :
 - Large pretrained language models
 - Non-standard hyperparamters that suit DP optimization
 - Fine-tuning objectives which are **aligned** with the pretraining procedure

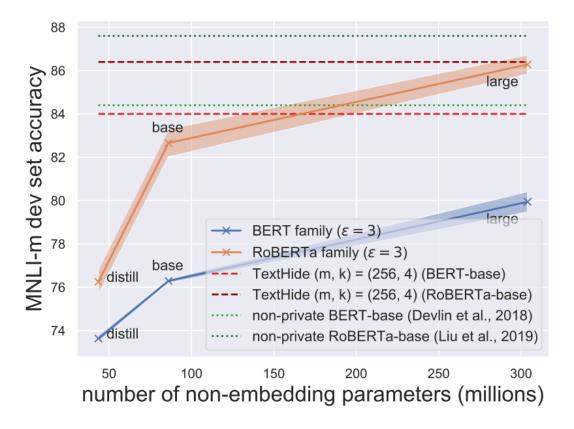
- Contributions :
 - 1. Obtain **DP models** for two main NLP tasks. Performance comparable to Non-private ones.
 - Text classification \rightarrow fine-tuning BERT / RoBERTa
 - Text generation \rightarrow fine-tuning GPT-2
 - 2. Propose a memory saving technique called ghost clipping.
 - 3. Shows that **larger** pretrained models lead to **better** private fine-tuning results.

Definition 1 ((ϵ, δ)-DP). A randomized algorithm $\mathcal{M} : \mathcal{X} \to \mathcal{Y}$ is (ϵ, δ)-differentially private if for all adjacent datasets $X, X' \in \mathcal{X}$ and all $Y \subset \mathcal{Y}, \mathbb{P}(\mathcal{M}(X) \in Y) \leq \exp(\epsilon)\mathbb{P}(\mathcal{M}(X') \in Y) + \delta$.

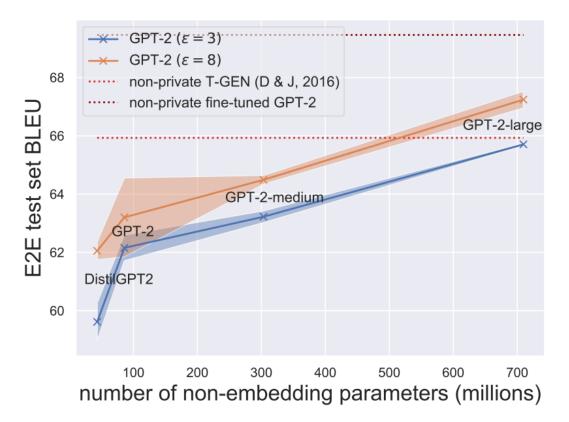
- DP algorithms ensure that random outputs obtained from similar inputs are difficult to distinguish.
- DP learning \rightarrow DP optimizers \rightarrow rely on privatizing gradients
 - 1. Clipping the gradient \rightarrow ensures that each example has bounded influence on the parameter update
 - 2. Adding noise \rightarrow prevents exact tracing of particular examples
- $z \sim \mathcal{N}(0, C^2 \sigma^2 I_p)$
- Problem : norm of *p*-dimensional Gaussian $||z||_2$ scales as $C\sigma\sqrt{P}$
 - Larger models would experience heavier noise per update
 - So DP optimization perform poorly at training high dimensional deep models

- This paper:
 - Q : Is it possible to build high quality DP NLP models on moderate amounts of private training data?
 - A : Yes!
- Overview of results (see next slide):
 - For text classification, DP fine-tuning can outperform TextHide (InstaHide for text)
 - For text generation, DP fine-tuning can outperform strong non-private baselines
 - Larger and better pretrained models result in better fine-tuned performance

Problem Statement



(a) Sentence classification MNLI-matched (Williams et al., 2018)



(b) Natural language generation E2E (Novikova et al., 2017)

- How did they get these results ?!
 - 1. Making DP fine-tuning **effective**
 - Hyperparameters
 - Fine-tuning objective
 - 2. Making DP fine-tuning efficient
 - Ghost clipping

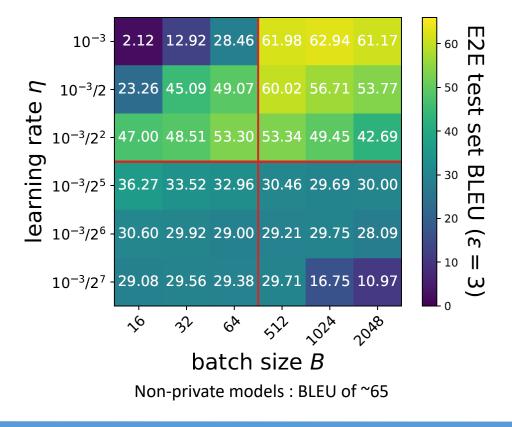
Effective DP fine-tuning

- Approach : fine-tune public pretrained models with DP-Adam
- What do we need for good performance ?
 - Good hyperparameters
 - DP learning is sensitive to choices of hyperparameters
 - Studied of how hyperparameters affect performance
 - Good hyperparameters tend to transfer across tasks
 - Fine-tuning objective
 - Objectives that make learning easy results in better private models
 - We want the fine-tuning objective to be close to the pretraining objective

Methodology

Effective DP fine-tuning : Hyperparameters \rightarrow batch size, learning rate

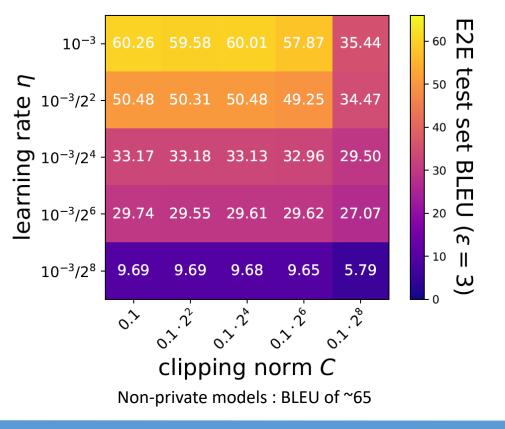
- Good batch sizes and learning rates for private learning is different from those typical for non-private learning
- Dependence of the optimal batch size on the learning rate and training epochs makes its selection complex
- Learning rate and batch size jointly affect performance
- Need large batch size with large learning rate



Methodology

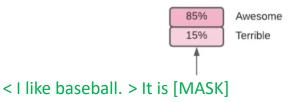
Effective DP fine-tuning : Hyperparameters → Clipping norm C

- Scale of noise injected depends on this clipping norm
- Experiments show that small clipping norm is suitable for private learning
- Not setting this properly \rightarrow large performance drop



Effective DP fine-tuning : Fine-tuning objectives

- Fine-tuned models on language generation tasks work well since the pretraining objective and downstream tasks are aligned. → both involved predicting sequences of tokens
- This alignment simplifies the task and benefits private learning
- There is no objective alignment in classification task
 - Pretraining : predicts masked out words from a large vocabulary
 - *fine-tuning :* predicts integer labels
- To eliminate this discrepancy:
 - Instead of predicting integer labels, we ask the model to predict **textualized labels** during fine-tuning



- How did they get these results ?!
 - 1. Making DP fine-tuning **effective**
 - Hyperparameters
 - Fine-tuning objective
 - 2. Making DP fine-tuning efficient
 - Ghost clipping

Efficient DP fine-tuning

- 1. A time-costly solution to the memory problem is micro-batching: Split large batches into multiple smaller ones and aggregate the results after processing each small batch individually.
- 2. For clipping we first compute the scaling factor : $c_i = \min(1, C/\|\nabla \mathcal{L}_i\|_2)$, and the difficulty is computing the per-example gradient norm and it uses much memory but computing the per-example gradient norm can be done by computing the per-example gradient norms for individual layers of the neural net $\|\nabla_{W^{(1)}}\mathcal{L}_i\|_2, \ldots, \|\nabla_{W^{(L)}}\mathcal{L}_i\|_2$ one at a time. So the per-example gradient norm of any network can be computed in a layer-by-layer fashion with only one per-example gradient tensor for a single layer being instantiated at any time.
- 3. GHOST CLIPPING

GHOST CLIPPING

- Let $a \in \mathbb{R}^{B \times T \times d}$ be the input to a linear layer and let $g \in \mathbb{R}^{B \times T \times p}$ be the gradient of the loss w.r.t. the output of the layer.
- per-example gradient is the product of two matrices: $\nabla_W \mathcal{L}_i = g_i^\top a_i \in \mathbb{R}^{p \times d}$
- the squared per example gradient norm for this layer $\|\nabla_W \mathcal{L}_i\|_F^2$ obeys the following key identity: $\|\nabla_W \mathcal{L}_i\|_F^2 = \operatorname{vec}(a_i a_i^{\top})^{\top} \operatorname{vec}(g_i g_i^{\top})$.
- memory complexity is of the order $\mathcal{O}(BT^2)$ when $a_i \hat{a}_i^{\top} \in \mathbb{R}^{T \times T}$ and $g_i g_i^{\top} \in \mathbb{R}^{T \times T}$ as opposed to $\mathcal{O}(Bpd)$ in the naive approach.
- For instance, for GPT-2, d ≈ 50, 000 and p = 768 for the embedding layer, and the context window T ≤ 1024.

Methodology

GHOST CLIPPING

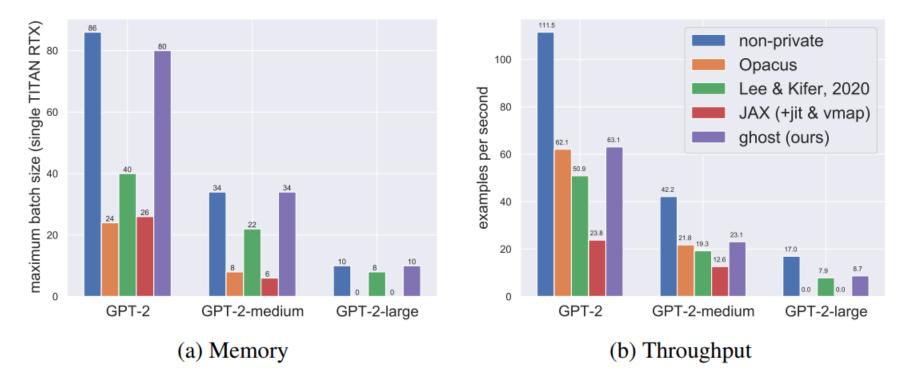
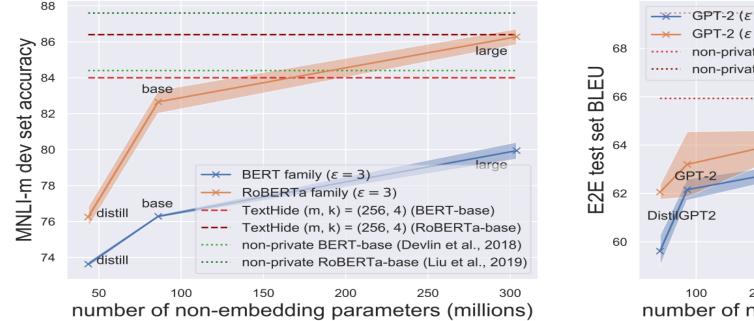


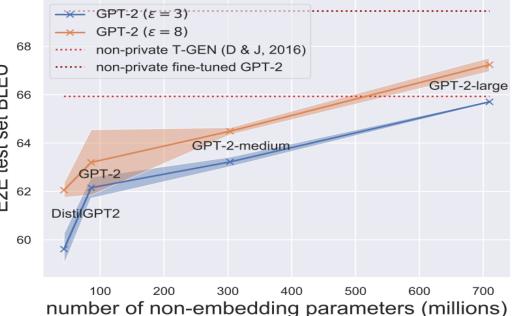
Figure 4: Left: Ghost clipping is 3 times more memory efficient than Opacus and is almost as efficient as non-private training for typical sequences across model sizes. For GPT-2-large, we were unable to fit single-example micro batches together with gradient accumulation with Opacus or JAX on a TITAN RTX GPU (24 GBs of VRAM). **Right:** DP optimization with ghost clipping processes ~10% more examples than the approach by Lee & Kifer (2020) under unit time for GPT-2-large.

Experiments

- Low dimensional updates ate not necessarily better
 - 1. We observe that larger pretrained models lead to better private fine-tuned performance.
 - 2. Do methods that optimize fewer parameters lead to better results under DP even if they perform similarly non-privately? Empirical results suggest otherwise and that full fine tuning is a strong baseline that even matches specialized low-dimensional DP learning methods for both classification and generation .



(a) Sentence classification MNLI-matched (Williams et al., 2018)



(b) Natural language generation E2E (Novikova et al., 2017)

• SENTENCE CLASSIFICATION

- 1. The table shows that using larger pretrained models and the text-infilling objective generally improve classification accuracy.
- 2. We compare full fine-tuning with reparameterized gradient perturbation (RGP). The method is designed to privatize gradients projected onto low dimensional subspaces and was motivated to reduce DP noise in high dimensional models.

Table 1: Full fine-tuning larger pretrained models with text infilling has best performance. Results are dev set accuracies. Best numbers based on two-sample test for each privacy level are in bold.

Madha 1	$\epsilon = 3$				$\epsilon = 8$			
Method	MNLI-(m/mm)	QQP	QNLI	SST-2	MNLI-(m/mm)	QQP	QNLI	SST-2
RGP (RoBERTa-base)	-	-	-	-	80.5/79.6	85.5	87.2	91.6
RGP (RoBERTa-large)	-	-	-	-	86.1/86.0	86.7	90.0	93.0
full (RoBERTa-base)	82.47/82.10	85.41	84.62	86.12	83.30/83.13	86.15	84.81	85.89
full (RoBERTa-large)	85.53/85.81	86.65	88.94	90.71	86.28/86.54	87.49	89.42	90.94
full + infilling (RoBERTa-base)	82.45/82.99	85.56	87.42	91.86	83.20/83.46	86.08	87.94	92.09
full + infilling (RoBERTa-large)	86.43/86.46	86.43	90.76	93.04	87.02/87.26	87.47	91.10	93.81
$\epsilon \approx (\text{Gaussian DP} + \text{CLT})$	2.52	2.52	2.00	1.73	5.83	5.85	4.75	4.33
$\epsilon \approx$ (Compose tradeoff func.)	2.75	2.75	2.57	2.41	7.15	7.16	6.87	6.69

Table-To-Text

- 1. they studies different fine-tuning methods under DP for table-to-text generation where the goal is to generate natural language descriptions of table entries.
- 2. they compared full fine-tuning (full) against a suite of parameter-efficient approaches which includes LoRA, prefix-tuning (prefix), RGP, and fine-tuning the top 2 Transformer blocks (top2), all of which optimize few parameters.

Table 2: Full fine-tuning performs on par with or outperforms others methods that execute gradient update in low dimensional spaces. Results are on E2E from fine-tuning GPT-2.

Metric	DP Guarantee	Gaussian DP + CLT	Compose tradeoff func.	full	LoRA	Meth prefix		top2	retrain
BLEU	$\begin{array}{c} \epsilon = 3 \\ \epsilon = 8 \\ \text{non-private} \end{array}$	$\begin{array}{l} \epsilon \approx 2.68 \\ \epsilon \approx 6.77 \end{array}$	$\begin{array}{l} \epsilon \approx 2.75 \\ \epsilon \approx 7.27 \end{array}$	61.519 63.189 69.463	63.389	47.772 49.263 68.845	58.455	26.885	24.247
ROUGE-L	$\begin{array}{c} \epsilon = 3 \\ \epsilon = 8 \\ \text{non-private} \end{array}$	$\begin{array}{l} \epsilon \approx 2.68 \\ \epsilon \approx 6.77 \end{array}$	$\begin{array}{l} \epsilon \approx 2.75 \\ \epsilon \approx 7.27 \end{array}$	65.670 66.429 71.359	65.773 67.525 71.709		65.560 65.030 68.844	46.421	39.951

• Chit-Chat Dialog

Model	DP Guarantee	Gaussian DP +CLT	Compose tradeoff func.	Metrics			
		+CLI	tradeon func.	F1 ↑	Perplexity ↓	Quality (human) ↑	
	$\epsilon = 3$	$\epsilon \approx 2.54$	$\epsilon \approx 2.73$	15.90	24.59	-	
GPT-2	$\epsilon = 8$	$\epsilon \approx 6.00$	$\epsilon \approx 7.13$	16.08	23.57	-	
	non-private	-	-	17.96	18.52	-	
	$\epsilon = 3$	$\epsilon \approx 2.54$	$\epsilon \approx 2.73$	15.99	20.68	-	
GPT-2-medium	$\epsilon = 8$	$\epsilon \approx 6.00$	$\epsilon \approx 7.13$	16.53	19.25	-	
	non-private	-	-	18.64	15.40	-	
DialoGPT-medium	$\epsilon = 3$	$\epsilon \approx 2.54$	$\epsilon \approx 2.73$	17.37	17.64	2.82 (2.56, 3.09)	
	$\epsilon = 8$	$\epsilon \approx 6.00$	$\epsilon \approx 7.13$	17.56	16.79	3.09 (2.83, 3.35)	
	non-private	-	-	19.28	14.28	3.26 (3.00, 3.51)	
HuggingFace (ConvAI2 winner)	non-private	-	-	19.09	17.51	-	
HuggingFace (our implementation)		-	-	16.36	20.55	3.23 (2.98, 3.49)	
Reference	-	-	-	-	-	3.74 (3.49, 4.00)	

Table 3: Fine-tuning with DP-Adam yields high quality chit-chat dialog generation models.

- Conclusion :
 - DP fine-tuning with a proper setup is a competitive baseline that is worth trying before shifting to less formal notions of privacy
- But :
 - Did not study how weight decay, learning rate schedule, clipping norm schedule affect performance
- For future work :
 - Study how pretraining helps private learning
 - Whether better pretrained models for private learning could be built