{"version":"64","basics":{"title":"Example assignment","visible":true},"details":{"introduction":"This assignment contains various exercises that illustrate CodeBuddy's features and configuration options. Click through the exercises to learn about these. Not all capabilities and configuration options are demonstrated. You can learn about additional capabilities and configuration options by editing the assignment and exercises.","date_created":"2023-05-18 23:03:02.720775","date_updated":"2023-09-20 21:50:09.667037","start_date":null,"due_date":null,"allow_late":0,"late_percent":null,"view_answer_late":0,"allowed_ip_addresses":"","allowed_external_urls":"","show_run_button":1,"custom_scoring":"","require_security_codes":0,"prerequisite_assignment_ids":[],"student_early_exceptions":[],"student_late_exceptions":[],"student_timer_exceptions":{},"support_questions":0,"use_virtual_assistant":0,"has_timer":0,"hour_timer":null,"minute_timer":null,"restrict_other_assignments":0,"assignment_group_id":null},"exercises":{"Multiple choice - Multiple correct answers":{"basics":{"enable_pair_programming":1,"title":"Multiple choice - Multiple correct answers","visible":1},"details":{"instructions":"What makes programming fun?","back_end":"multiple_choice","output_type":"txt","allow_any_response":0,"solution_code":"{\"Exercising creativity\":true,\"Challenging yourself\":true,\"Being bored\":false}","solution_description":"","hint":"","max_submissions":0,"starter_code":"","credit":"","data_files":[],"what_students_see_after_success":1,"date_created":"2025-07-14 15:51:28.433464","date_updated":"2025-07-14 15:52:31.722131","enable_pair_programming":1,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{}}},"Multiple choice - With programming sandbox":{"basics":{"enable_pair_programming":0,"title":"Multiple choice - With programming sandbox","visible":1},"details":{"instructions":"What is 3 divided by 1.27? Write code in R to perform this calculation. Then select the correct answer option.","back_end":"multiple_choice","output_type":"txt","allow_any_response":0,"solution_code":"{\"2.362205\":true,\"2.48292\":false,\"2.928393\":false,\"2.293829\":false}","solution_description":"","hint":"","max_submissions":0,"starter_code":"r","credit":"","data_files":[],"what_students_see_after_success":1,"date_created":"2025-07-14 15:56:06.482021","date_updated":"2025-07-14 15:56:06.482021","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{}}},"Multiple-choice - Basic":{"basics":{"enable_pair_programming":0,"title":"Multiple-choice - Basic","visible":1},"details":{"instructions":"What is 2 times 2?","back_end":"multiple_choice","output_type":"txt","allow_any_response":0,"solution_code":"{\"3\":false,\"4\":true,\"5\":false}","solution_description":"","hint":"","max_submissions":0,"starter_code":"","credit":"","data_files":[],"what_students_see_after_success":1,"date_created":"2025-07-14 15:50:12.662753","date_updated":"2025-07-14 15:52:09.616760","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{}}},"Open response - Video":{"basics":{"enable_pair_programming":0,"title":"Open response - Video","visible":1},"details":{"instructions":"A YouTube video is embedded below. If this were a real assignment, these instructions would invite students to watch the video and then provide a text-based response. The settings for this exercise indicate that any response is allowed. Thus, as long as students enter a response, they will receive points. You can change this setting.\n\nyoutube:kiXY7ynw6ek","back_end":"not_code","output_type":"txt","allow_any_response":1,"solution_code":"","solution_description":"","hint":"","max_submissions":0,"starter_code":"","credit":"","data_files":[],"what_students_see_after_success":0,"date_created":"2023-05-18 23:05:33.116654","date_updated":"2025-07-14 15:54:04.887536","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Default test":{"before_code":"","after_code":"","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"","jpg_output":""}}}},"Programming - Linux (command line)":{"basics":{"enable_pair_programming":0,"title":"Programming - Linux (command line)","visible":1},"details":{"instructions":"Behind the scenes, CodeBuddy executes on a Linux operating system. For this exercise, you will enter commands in the box below, and those commands will be executed on this Linux operating system. CodeBuddy will display the outputs of those commands.\n\nIn the box below, you will need to enter three commands (one per line) to do the following.\n\n1. Create a directory called `Assignment1`.\n2. Change your working directory to `Assignment1`.\n3. Print your current working directory.\n\nIf needed, look at the hint below. After you complete the exercise, you will be able to see the instructor's solution and compare it against your own.\n\n*FYI: On this exercise, your initial working directory is '\/sandbox\/tests\/Test1'. On a regular Linux system, it would typically be something like `\/home\/userid` (where \"userid\" would be replaced with your actual user ID).*","back_end":"bash_script","output_type":"txt","allow_any_response":0,"solution_code":"mkdir Assignment1\ncd Assignment1\npwd","solution_description":"","hint":"Only the third command should produce any output.","max_submissions":0,"starter_code":"","credit":"","data_files":[],"what_students_see_after_success":1,"date_created":"2023-09-20 21:53:32.540925","date_updated":"2025-07-14 15:52:18.235578","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Test1":{"before_code":"","after_code":"","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"\/sandbox\/tests\/Test1\/Assignment1","jpg_output":""}}}},"Programming - Python - Hello, world! (pair programming enabled)":{"basics":{"enable_pair_programming":1,"title":"Programming - Python - Hello, world! (pair programming enabled)","visible":1},"details":{"instructions":"This exercise demonstrates the pair-programming functionality of CodeBuddy. If multiple students are registered for the course, this functionality is enabled. The idea is that two students will work together on the exercise. One of the students will submit the code and indicate the name of the pair-programming partner. After the code is submitted, it (and the resulting score) will be saved under both students' accounts.\n\nTo solve this exercise, print \"Hello, world!\" using the Python programming language.","back_end":"python","output_type":"txt","allow_any_response":0,"solution_code":"print(\"Hello, world!\")","solution_description":"","hint":"","max_submissions":0,"starter_code":"","credit":"","data_files":[],"what_students_see_after_success":1,"date_created":"2023-09-21 03:37:11.107085","date_updated":"2025-07-14 15:52:42.486815","enable_pair_programming":1,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Default test":{"before_code":"","after_code":"","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"Hello, world!","jpg_output":""}}}},"Programming - Python - Making a box plot":{"basics":{"enable_pair_programming":0,"title":"Programming - Python - Making a box plot","visible":1},"details":{"instructions":"This exercise uses clinical data for endometrial cancer patients. The rows represent different patients; the columns represent different data points about these patients. For example, there is a column that indicates the country of origin for each patient, their tumor grade, etc. On the far right, you will see data representing the patients' tumor size and number of pregnancies.\n\nPlease write a Python script that uses `sys.argv` to accept a single argument. This argument will be the name of the data file.\n\nUse the `pandas` module to read the file into a `DataFrame`. When reading the data, use the `index_col` keyword argument to indicate that the first (0th) column contains row names. Use the `sep` keyword argument to indicate that the values are tab-separated.\n\nAs your complete the next steps, you may wish to refer to the reading material, slides, and the [seaborn documentation](https:\/\/seaborn.pydata.org\/tutorial.html).\n\nBox plots are a great way to investigate relationships between categorical labels and numerical data. A person's country of origin is an example of a categorical label. The values are strings, and there are a limited number of possible values. Age is an example of a numerical variable. It can have an infinite number of possible values; well, if we're counting in years, it could have a value anywhere between 0 and maybe 120 (for humans).\n\nPlease create a boxplot that shows the Country categorical variable on the x-axis and the Age numeric variable on the y-axis. Remember, the syntax is slightly different for some types of graphs than for others (the slides show examples).\n\nYou do *not* need to save the graph to an output file.","back_end":"python_script","output_type":"jpg","allow_any_response":0,"solution_code":"from sys import argv\nimport pandas\nimport seaborn as sns\n\ninFilePath = argv[1]\n\ndf = pandas.read_csv(inFilePath, index_col=0, sep=\"\\t\")\n\nsns_plot = sns.boxplot(x='Country', y='Age', data=df)","solution_description":"","hint":"","max_submissions":0,"starter_code":"# We are using the `as` keyword to specify shortcuts for each import\nimport pandas as pd\nimport seaborn as sns","credit":"The data were provided by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the [Payne lab](https:\/\/payne.byu.edu).","data_files":{"Endometrial.tsv":"Patient_ID\tSample_ID\tSample_Tumor_Normal\tProteomics_Tumor_Normal\tCountry\tHistologic_Grade_FIGO\tMyometrial_invasion_Specify\tHistologic_type\tTreatment_naive\tTumor_purity\tPath_Stage_Primary_Tumor-pT\tPath_Stage_Reg_Lymph_Nodes-pN\tClin_Stage_Dist_Mets-cM\tPath_Stage_Dist_Mets-pM\ttumor_Stage-Pathological\tFIGO_stage\tLVSI\tBMI\tAge\tDiabetes\tRace\tEthnicity\tGender\tTumor_Site\tTumor_Site_Other\tTumor_Focality\tTumor_Size_cm\tNum_full_term_pregnancies\nC3L-00006\tS001\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t1.0\t38.88\t64.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t2.9\t1\nC3L-00008\tS002\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage IV\tIA\t0.0\t39.76\t58.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tPosterior endometrium\t\tUnifocal\t3.5\t1\nC3L-00032\tS003\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t51.19\t50.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t4.5\t4 or more\nC3L-00090\tS005\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t32.69\t75.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t3.5\t4 or more\nC3L-00098\tS006\tTumor\tTumor\tUnited States\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t\t20.28\t63.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t6.0\t2\nC3L-00136\tS007\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t55.67\t50.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t4.5\t3\nC3L-00137\tS008\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t1.0\t25.68\t60.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t5.0\t2\nC3L-00139\tS009\tTumor\tTumor\tUnited States\t\t50 % or more\tSerous\tYES\tNormal\tpT3a (FIGO IIIA)\tpNX\tcM0\tStaging Incomplete\tStage III\tIIIA\t1.0\t21.57\t83.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t4.0\t4 or more\nC3L-00143\tS010\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1 (FIGO I)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t34.26\t69.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t5.2\t2\nC3L-00145\tS011\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t36.57\t59.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t4.7\t3\nC3L-00156\tS012\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.83\t56.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t2.2\t2\nC3L-00161\tS014\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tNo pathologic evidence of distant metastasis\tStage I\tIB\t1.0\t68.39\t46.0\tNo\tWhite\tHispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior Endometrium\tUnifocal\t7.0\t2\nC3L-00358\tS016\tTumor\tTumor\tUnited States\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tcM0\tStaging Incomplete\tStage I\tIB\t1.0\t26.22\t90.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior endometrium\tUnifocal\t4.5\tUnknown\nC3L-00361\tS017\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t42.98\t64.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t2.7\tNone\nC3L-00362\tS018\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t55.86\t38.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t13.5\tNone\nC3L-00413\tS019\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t0.0\t42.19\t60.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t3.2\t3\nC3L-00449\tS020\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.82\t59.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t7.0\tNone\nC3L-00563\tS021\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t34.72\t62.0\tYes\tAsian\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t3.0\t1\nC3L-00586\tS022\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN2 (FIGO IIIC2)\tcM0\tStaging Incomplete\tStage III\tIIIC2\t1.0\t21.45\t50.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and posterior endometrium\tUnifocal\t6.0\t2\nC3L-00601\tS023\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t25.03\t57.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t3.5\t3\nC3L-00605\tS024\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t38.54\t73.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t2.7\tUnknown\nC3L-00767\tS025\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t65.71\t56.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tMultifocal\t2.3\t4 or more\nC3L-00769\tS026\tTumor\tTumor\tOther_specify\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t46.64\t56.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tMultifocal\t4.5\t2\nC3L-00770\tS027\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t45.83\t73.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tMultifocal\t2.7\t4 or more\nC3L-00771\tS028\tTumor\tTumor\tOther_specify\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tcM0\tStaging Incomplete\tStage III\tIIIA\t1.0\t22.86\t86.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tPosterior endometrium\t\tMultifocal\t6.0\tUnknown\nC3L-00780\tS029\tTumor\tTumor\tOther_specify\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t46.41\t69.0\tYes\tWhite\tHispanic or Latino\tFemale\tOther, specify\tPosterior and Anterior Endometrium\tUnifocal\t1.7\t2\nC3L-00781\tS030\tTumor\tTumor\tOther_specify\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage II\tII\t1.0\t71.09\t48.0\tNo\tWhite\tHispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior Endometrium\tUnifocal\t5.5\t4 or more\nC3L-00905\tS031\tTumor\tTumor\tUnited States\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN1 (FIGO IIIC1)\tStaging Incomplete\tNo pathologic evidence of distant metastasis\tStage III\tIIIC1\t1.0\t44.81\t64.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tanterior and posterior\tUnifocal\t4.5\tUnknown\nC3L-00918\tS032\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t1.0\t43.0\t68.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior endometrium\tUnifocal\t3.0\t2\nC3L-00921\tS033\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage II\tII\t1.0\t32.32\t66.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t4.0\t3\nC3L-00932\tS034\tTumor\tTumor\tOther_specify\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t47.82\t67.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tleft cornu\tUnifocal\t1.0\t3\nC3L-00942\tS036\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t31.58\t64.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tUnifocal\t4.5\tNone\nC3L-00946\tS037\tTumor\tTumor\tOther_specify\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t1.0\t17.64\t64.0\tNo\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tMultifocal\t3.9\t1\nC3L-00947\tS038\tTumor\tTumor\tOther_specify\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t36.84\t71.0\tYes\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tMultifocal\t1.8\t2\nC3L-00949\tS039\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t1.0\t37.69\t64.0\tYes\tWhite\tNot reported\tFemale\tOther, specify\talong anterior and posterior surface\tUnifocal\t2.5\t2\nC3L-00961\tS040\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t28.5\t59.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tMultifocal\t4.5\t2\nC3L-00963\tS041\tTumor\tTumor\tOther_specify\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t1.0\t34.89\t59.0\tYes\tWhite\tNot reported\tFemale\tOther, specify\talong anterior and posterior surface\tUnifocal\t2.6\t1\nC3L-01246\tS042\tTumor\tTumor\tOther_specify\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t39.14\t62.0\tNo\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tUnifocal\t2.3\t1\nC3L-01248\tS044\tTumor\tTumor\tOther_specify\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage II\tIB\t0.0\t59.78\t42.0\tNo\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tUnifocal\t6.3\t1\nC3L-01249\tS045\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t38.89\t65.0\tNo\tWhite\tNot reported\tFemale\tOther, specify\tTumor occupies 75% of endometrial surface\tUnifocal\t6.5\t1\nC3L-01252\tS046\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t38.41\t76.0\tYes\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tUnifocal\t0.9\t4 or more\nC3L-01256\tS048\tTumor\tTumor\tOther_specify\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t0.0\t34.37\t75.0\tYes\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tUnifocal\t4.3\t4 or more\nC3L-01257\tS049\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t17.11\t71.0\tNo\tWhite\tNot reported\tFemale\tOther, specify\tTumor involves 75% of endometrial cavity per diagnostic pathology report\tUnifocal\t8.0\t2\nC3L-01275\tS050\tTumor\tTumor\tOther_specify\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t1.0\t32.06\t65.0\tNo\tNot Reported\tNot reported\tFemale\tOther, specify\t100 PERCENT OF ENDOMETRIAL SURFACE INVOLVED\tUnifocal\t5.0\tUnknown\nC3L-01282\tS051\tTumor\tTumor\tUnited States\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t1.0\t31.96\t64.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t3.0\tUnknown\nC3L-01304\tS053\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t41.44\t68.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t3.7\t3\nC3L-01307\tS054\tTumor\tTumor\tUnited States\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM1\tpM1\tStage IV\tIVB\t1.0\t31.63\t74.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t3.5\t3\nC3L-01311\tS055\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t37.11\t55.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t3.0\tNone\nC3L-01312\tS056\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t31.96\t56.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t4.0\t1\nC3L-01744\tS057\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t46.45\t62.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tUnifocal\t2.2\t2\nC3L-01925\tS058\tTumor\tTumor\tUnited States\t\t50 % or more\tSerous\tYES\tNormal\tpT3b (FIGO IIIB)\tpN1 (FIGO IIIC1)\tStaging Incomplete\tpM1\tStage IV\tIVB\t1.0\t27.66\t65.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and posterior endometrium\tUnifocal\t4.5\tNone\nC3N-00151\tS059\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIB\t0.0\t27.1\t60.0\tUnknown\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t\t2\nC3N-00200\tS060\tTumor\tTumor\tUnited States\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN1 (FIGO IIIC1)\tStaging Incomplete\tStaging Incomplete\tStage III\tIIIC1\t\t46.85\t72.0\tYes\tBlack or African American\tNot-Hispanic or Latino\tFemale\tOther, specify\tanterior and posterior endometrial cavity\tMultifocal\t9.0\t4 or more\nC3N-00321\tS061\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t26.0\t64.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.5\t2\nC3N-00322\tS062\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t31.0\t70.0\tNo\t\t\tFemale\tOther, specify\tEntire Uterine Cavity\tMultifocal\t2.6\t2\nC3N-00323\tS063\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.0\t78.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t4.0\tUnknown\nC3N-00324\tS064\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t0.0\t35.0\t66.0\tYes\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t2.3\tUnknown\nC3N-00326\tS065\tTumor\tTumor\tUkraine\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t35.0\t45.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.3\t2\nC3N-00328\tS066\tTumor\tTumor\tUkraine\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t31.22\t62.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t3.0\tUnknown\nC3N-00333\tS067\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t31.0\t65.0\tNo\t\t\tFemale\tOther, specify\tEntire Uterine Cavity\tMultifocal\t1.0\tUnknown\nC3N-00334\tS068\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t32.83\t68.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.4\t1\nC3N-00335\tS069\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t29.52\t57.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t2.5\tNone\nC3N-00337\tS070\tTumor\tTumor\tUkraine\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t29.07\t67.0\tNo\t\t\tFemale\tOther, specify\tEntire Uterine Cavity\tMultifocal\t1.3\t1\nC3N-00339\tS071\tTumor\tTumor\tUkraine\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t21.83\t45.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.3\tUnknown\nC3N-00340\tS072\tTumor\tTumor\tUkraine\t\tunder 50 %\tSerous\tYES\tNormal\tpT3a (FIGO IIIA)\tpN1 (FIGO IIIC1)\tcM0\tStaging Incomplete\tStage III\tIIIC1\t1.0\t27.0\t60.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t3.5\t2\nC3N-00377\tS073\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t34.0\t64.0\tYes\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.0\tUnknown\nC3N-00379\tS074\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t36.81\t41.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity.\tMultifocal\t2.5\t1\nC3N-00383\tS075\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t46.0\t61.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tUnifocal\t4.0\t1\nC3N-00386\tS076\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.31\t44.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity.\tMultifocal\t2.3\t2\nC3N-00388\tS077\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t20.55\t59.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity.\tMultifocal\t4.0\t1\nC3N-00389\tS078\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t17.85\t62.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.5\t1\nC3N-00729\tS079\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage II\tIB\t0.0\t29.62\t86.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tboth anterior and posterior\tMultifocal\t4.0\t4 or more\nC3N-00734\tS080\tTumor\tTumor\tUnited States\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage III\tIIIA\t1.0\t38.97\t53.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t4.0\tNone\nC3N-00743\tS081\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t48.46\t53.0\tNo\tBlack or African American\tNot-Hispanic or Latino\tFemale\tOther, specify\tInvolves fundus, anterior and posterior walls\tMultifocal\t3.5\t2\nC3N-00836\tS082\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM1\tStaging Incomplete\tStage I\tIA\t0.0\t30.47\t75.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.0\t3\nC3N-00847\tS083\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tcM0\tStaging Incomplete\tStage III\tIIIA\t0.0\t34.53\t65.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t4.3\t2\nC3N-00848\tS084\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t33.65\t66.0\tYes\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t3.0\tNone\nC3N-00850\tS085\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t28.84\t65.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.0\t1\nC3N-00858\tS086\tTumor\tTumor\tPoland\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT3b (FIGO IIIB)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage III\tIIIB\t1.0\t36.0\t65.0\tNo\t\t\tFemale\tAnterior endometrium\t\tMultifocal\t11.0\t2\nC3N-00866\tS087\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t23.88\t77.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior, posterior and fundus\tMultifocal\t3.0\t4 or more\nC3N-00880\tS088\tTumor\tTumor\tPoland\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t27.0\t61.0\tNo\t\t\tFemale\tAnterior endometrium\t\tUnifocal\t3.2\t1\nC3N-01003\tS090\tTumor\tTumor\tPoland\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT3b (FIGO IIIB)\tpN0\tcM1\tpM1\tStage IV\tIVB\t0.0\t31.0\t73.0\tYes\t\t\tFemale\tAnterior endometrium\t\tMultifocal\t3.0\t4 or more\nC3N-01211\tS091\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t1.0\t39.2\t59.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.4\t1\nC3N-01212\tS092\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpNX\tcM0\tStaging Incomplete\tStage III\tIIIA\t1.0\t30.48\t63.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t1.5\t2\nC3N-01217\tS093\tTumor\tTumor\tUkraine\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t36.2\t58.0\tNo\t\t\tFemale\tOther, specify\tEndometrium\tMultifocal\t0.8\tNone\nC3N-01219\tS094\tTumor\tTumor\tUkraine\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tcM0\tStaging Incomplete\tStage III\tIIIA\t0.0\t26.14\t58.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t5.0\t1\nC3N-01267\tS095\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN1 (FIGO IIIC1)\tcM0\tStaging Incomplete\tStage III\tIIIC1\t1.0\t30.85\t57.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.2\t2\nC3N-01346\tS096\tTumor\tTumor\tPoland\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpN2 (FIGO IIIC2)\tcM0\tNo pathologic evidence of distant metastasis\tStage III\tIIIC2\t1.0\t34.0\t63.0\t\t\t\tFemale\tAnterior endometrium\t\tUnifocal\t5.5\t1\nC3N-01349\tS097\tTumor\tTumor\tPoland\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIB\t1.0\t31.0\t77.0\tYes\t\t\tFemale\tAnterior endometrium\t\tMultifocal\t5.0\t4 or more\nC3N-01510\tS098\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage II\tII\t1.0\t40.72\t53.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBulky tumor involving both anterior and posterior walls\tMultifocal\t8.5\tNone\nC3N-01520\tS099\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t29.37\t69.0\tNo\t\t\tFemale\tOther, specify\tEndometrium\tMultifocal\t1.0\t2\nC3N-01521\tS100\tTumor\tTumor\tUkraine\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t29.4\t75.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t4.2\t2\nC3N-01537\tS101\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t0.0\t35.42\t74.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t1.5\t1\nC3N-01802\tS102\tTumor\tTumor\tUnited States\t\tunder 50 %\tSerous\tYES\tNormal\tpT2 (FIGO II)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage II\tII\t1.0\t24.32\t85.0\tYes\tBlack or African American\tNot-Hispanic or Latino\tFemale\tOther, specify\tentire uterine cavity\tUnifocal\t3.8\t1\nC3N-01825\tS103\tTumor\tTumor\tUkraine\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t34.06\t70.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t5.0\tUnknown\nC3L-00006.N\tS105\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00361.N\tS106\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00563.N\tS130\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00586.N\tS107\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00601.N\tS108\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00605.N\tS131\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00769.N\tS109\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00770.N\tS132\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00771.N\tS133\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00930.N\tS110\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00932.N\tS111\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00947.N\tS112\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00963.N\tS113\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01246.N\tS114\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01249.N\tS115\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01252.N\tS116\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01256.N\tS117\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01257.N\tS118\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01282.N\tS119\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01304.N\tS120\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01307.N\tS121\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01311.N\tS122\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01744.N\tS123\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00200.N\tS134\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00333.N\tS124\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00383.N\tS125\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00729.N\tS126\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00858.N\tS127\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00866.N\tS128\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-01211.N\tS135\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-01346.N\tS129\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX1.N\tS136\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX10.N\tS145\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX11.N\tS146\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX12.N\tS147\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX13.N\tS148\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX14.N\tS149\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX15.N\tS150\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX16.N\tS151\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX17.N\tS152\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX18.N\tS153\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX2.N\tS137\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX3.N\tS138\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX4.N\tS139\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX5.N\tS140\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX6.N\tS141\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX7.N\tS142\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX8.N\tS143\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX9.N\tS144\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n"},"what_students_see_after_success":1,"date_created":"2021-04-05 13:54:59.735825","date_updated":"2025-07-14 15:52:51.522436","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Test 1":{"before_code":"","after_code":"python code.py Endometrial.tsv","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"","jpg_output":"\/9j\/4AAQSkZJRgABAQEAlgCWAAD\/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL\/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL\/wAARCAKIA0sDASIAAhEBAxEB\/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL\/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6\/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL\/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6\/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKw\/EXjHQfCjWq63f\/ZWu9\/kDyXfftxu+6pxjcOvrWN\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRR\/wALb8D\/APQb\/wDJSf8A+IoA7WiuK\/4W34H\/AOg3\/wCSk\/8A8RR\/wtvwP\/0G\/wDyUn\/+IoA7WiuK\/wCFt+B\/+g3\/AOSk\/wD8RR\/wtvwP\/wBBv\/yUn\/8AiKAO1oriv+Ft+B\/+g3\/5KT\/\/ABFH\/C2\/A\/8A0G\/\/ACUn\/wDiKAO1oriv+Ft+B\/8AoN\/+Sk\/\/AMRVvSfiP4T1zVrfStO1bzr243eVF9nlXdtUseWUAcAnrQB1VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV4m\/wCSn+Bf+3\/\/ANEiu1rivE3\/ACU\/wL\/2\/wD\/AKJFdrQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxXib\/kp\/gX\/ALf\/AP0SK7WuK8Tf8lP8C\/8Ab\/8A+iRQB2tFFFABRRRQAUUUUAFcN8W9WvdI8BTyWFy9pJcTxWz3SHBhR2AZge3HGfeu5rJ8TjSD4avhr0PnaWY8XKeWz\/Lkc4Xng4ORyMZoA818Y6Ho\/wAL7TRvEXh8zWlyl\/FBcg3DuL2Jgd4cEkE4Gc9vyxoyabbeP\/ihr9hrQkuNH0GG3ihs\/MZY3mlUu0jBSMkYwM1yl34f8K+K5tN0Xwncanq5FxGZrq6mmkg062UhmVC+ArNgAAc9eldXJqVt4A+KGv3+tGS30fXobeWG88tmjSaJSjRsVBwTnIzQBo+AZJdJ8S+KPCJnlmstLlgmsTM5dkimTd5eTyQpGBn1rt7u8tdPtXur25htrdMb5ZnCIuTgZJ4HJA\/GuI8ApLq3iXxR4uMEsNlqksENiJkKM8UKbfMweQGJyM+ldvd2drqFq9re20NzbvjfFMgdGwcjIPB5AP4UAcHq2taVq3xQ8EjTdTs7wx\/b94tp1k25hGM7ScdDXodeeatoulaT8UPBJ03TLOzMn2\/ebaBY92IRjO0DPU16HQAUUUUAFFFFABWffa9o+lziC\/1SytZSu8JPOqMV6ZwT04P5VoVz+ueCfD\/iO9W81WxM86RiIN5zphQSQMKQOpNAE3\/CX+Gv+hg0v\/wLj\/xo\/wCEv8Nf9DBpf\/gXH\/jWP\/wqrwb\/ANAk\/wDgTL\/8VR\/wqrwb\/wBAk\/8AgTL\/APFUAbH\/AAl\/hr\/oYNL\/APAuP\/Gj\/hL\/AA1\/0MGl\/wDgXH\/jWP8A8Kq8G\/8AQJP\/AIEy\/wDxVH\/CqvBv\/QJP\/gTL\/wDFUAbA8YeGT\/zMGl\/+Baf40f8ACX+Gv+hg0v8A8C4\/8a8v8EeDNA1jxN4qs7+xMsFhdeXbr5zrsXfIMZBBPCjr6V3H\/CqvBv8A0CT\/AOBMv\/xVAGx\/wl\/hr\/oYNL\/8C4\/8aP8AhL\/DX\/QwaX\/4Fx\/41j\/8Kq8G\/wDQJP8A4Ey\/\/FUf8Kq8G\/8AQJP\/AIEy\/wDxVAGx\/wAJf4a\/6GDS\/wDwLj\/xrXhmiuYI54JElikUOjocqynkEEdRXIf8Kq8G\/wDQJP8A4Ey\/\/FV1dnaQafZQWdsmyCCNYo1yTtVRgDJ5PAoAnooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4rxN\/yU\/wL\/2\/\/wDokV2tcV4m\/wCSn+Bf+3\/\/ANEigDtaKKKACiiigAooooAKKKKACiiigAooooA4rxN\/yU\/wL\/2\/\/wDokV2tcV4m\/wCSn+Bf+3\/\/ANEiu1oAKKKKACiiigAooooAKKKKACiiigDzP4af8jn44\/6\/v\/ak1emV5n8NP+Rz8cf9f3\/tSavTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuK8Tf8lP8C\/8Ab\/8A+iRXa1xXib\/kp\/gX\/t\/\/APRIoA7WiiigAooooAKKKKACiiigAooooAKKKKAOK8Tf8lP8C\/8Ab\/8A+iRXa1xXib\/kp\/gX\/t\/\/APRIrtaACiiigAooooAKKKKACiiigAooooA8z+Gn\/I5+OP8Ar+\/9qTV6ZXmfw0\/5HPxx\/wBf3\/tSavTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqv9utf7Q+ween2vyvO8nPzbM43Y9M8Ut5dxWFjcXk5IhgjaVyBkhVGTx+FfNv\/Cc6h\/wnn\/CT5O\/zf9Tnjyenl\/8AfP680AfTNFQWd3Ff2MF5ASYZ41lQkYJVhkfzqegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SKAO1ooooAKKKKACiiigAooooAKKKKACiiigDivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SK7WgAooooAKKKKACiiigAooooAKKKKAPM\/hp\/yOfjj\/AK\/v\/ak1emV5n8NP+Rz8cf8AX9\/7Umr0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooARlV1KsAykYII4IrxD\/hV7\/8ACzPsHlN\/Yv8Ax97+3l5\/1efXPy+uOa9wooARVVFCqAqgYAA4ApaKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuK8Tf8lP8C\/8Ab\/8A+iRXa1xXib\/kp\/gX\/t\/\/APRIoA7WiiigAooooAKKKKACiiigAooooAKKKKAOK8Tf8lP8C\/8Ab\/8A+iRXa1xXib\/kp\/gX\/t\/\/APRIrtaACiiigAooooAKKKKACiiigAooooA8z+Gn\/I5+OP8Ar+\/9qTV6ZXmfw0\/5HPxx\/wBf3\/tSavTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuK8Tf8lP8AAv8A2\/8A\/okV2tcV4m\/5Kf4F\/wC3\/wD9EigDtaKKKACiiigAooooAKKKKACiiigAooooA4rxN\/yU\/wAC\/wDb\/wD+iRXa1xXib\/kp\/gX\/ALf\/AP0SK7WgAooooAKKKKACiiigAooooAKKKKAPM\/hp\/wAjn44\/6\/v\/AGpNXpleZ\/DT\/kc\/HH\/X9\/7Umr0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivE3\/ACU\/wL\/2\/wD\/AKJFdrXFeJv+Sn+Bf+3\/AP8ARIoA7WiiigAooooAKKKKACuV+I+rapofgHVdR0fIvYkXbIE3mJS4DPjvtUk\/hmuqriPizqOo6X4Au7nTpZof3sSXE0H+sigLAOy46HHGe2aAOTu5xotzoF14X8dalr2oXd7FFJZT3y3SXELf6xtg\/wBWAOd3AFbch1Dxx4\/1zSxrWo6Zo+hrFEF06byZJ53UsSzgZwuMY+nvXP8AilfB2m2Og3HgV9PTXnvoEs\/7NkBlmQt84l2nLKR13963NB1Cz8LfFLxfY6vdQ2SamYL+zluHCJKoUq4BPGQe3saANjwFquotea\/4b1W7e9u9EuljS6kADywSLvjL46tjIJ712leffDx11bxT4z8T2\/zWGo3kMFrKOkqwR7C6+qkk4PtXaavpFjrulzabqUHn2k23zI97LnDBhypB6gd6AOX8Tf8AJT\/Av\/b\/AP8AokV2teXTeENC8LfFHwa2jWP2U3AvhL++d922EY+8xx1PSvUaACiiigAooooAKKKKACiiigAooooA8z+Gn\/I5+OP+v7\/2pNXpleZ\/DT\/kc\/HH\/X9\/7Umr0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SKAO1ooooAKKKKACiiigApGVXQo6hlYYIIyCKWigDMsfDuh6Xctc6fo2nWlw2d0tvapGx\/EAGptR0jTNYjSPU9OtL2NDlVuYFkCn1AYHFXaKAGQwxW8KQwRpFEg2oiKFVR6ADpT6KKAOK8Tf8lP8C\/8Ab\/8A+iRXa1xXib\/kp\/gX\/t\/\/APRIrtaACiiigAooooAKKKKACiiigAooooA8z+Gn\/I5+OP8Ar+\/9qTV6ZXmfw0\/5HPxx\/wBf3\/tSavTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqrqcl5Fpd3Jp8Sy3qwuYI36NJg7QeRwTjuKALVFeZ\/218V\/+hb0z\/vtf\/j1H9tfFf8A6FvTP++1\/wDj1AHplFeZ\/wBtfFf\/AKFvTP8Avtf\/AI9R\/bXxX\/6FvTP++1\/+PUAemUV5Brfjj4i+HrNLrVdF0y2geQRq+N2WIJxhZT2BrTGt\/FcjI8N6Z\/32v\/x6gD0yivM\/7a+K\/wD0Lemf99r\/APHqP7a+K\/8A0Lemf99r\/wDHqAPTKK8z\/tr4r\/8AQt6Z\/wB9r\/8AHq3PCuo+N7vVJI\/EmkWdnZCElJIWBJkyMDiRuMbu3agDsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SKAO1ooooAKKKKACiiigAooooAKKKKACiiigDivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SK7WgAooooAKKKKACiiigAooooAKKKKAPM\/hp\/yOfjj\/AK\/v\/ak1emV5n8NP+Rz8cf8AX9\/7Umr0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiqt\/qVjpcKzaheW9pEzbA88gQFsZxk9+D+VZ\/\/AAl\/hr\/oYNL\/APAuP\/GgDaorF\/4S\/wANf9DBpf8A4Fx\/40f8Jf4a\/wChg0v\/AMC4\/wDGgDaorF\/4S\/w1\/wBDBpf\/AIFx\/wCNH\/CYeGc4\/wCEg0v\/AMC0\/wAaANqisX\/hL\/DX\/QwaX\/4Fx\/40f8Jf4a\/6GDS\/\/AuP\/GgDaorF\/wCEv8Nf9DBpf\/gXH\/jR\/wAJf4a\/6GDS\/wDwLj\/xoA2qKq2GpWOqQtNp95b3cStsLwSBwGxnGR35H51aoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzX42\/8AIoWX\/X+v\/ouSvSE+4v0Feb\/G3\/kULL\/r\/X\/0XJXpCfcX6CgB1FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV57qHxg0HTdSurGWy1JpbaZ4XKRpglSQcfP04r0Kk2L\/dH5UAebf8Lt8O\/wDPhqn\/AH7j\/wDi6P8Ahdvh3\/nw1T\/v3H\/8XXpGxf7o\/KjYv90flQB5v\/wu3w7\/AM+Gqf8AfuP\/AOLpP+F2+Hv+fDVP+\/cf\/wAXXpOxf7o\/KsbxeijwXrnyj\/jwn7f7BoA48fG3w9jmw1T\/AL9x\/wDxdL\/wu3w7\/wA+Gqf9+4\/\/AIutf4Vqp+HOmEqDzN2\/6avXY7F\/uj8qAPN\/+F2+Hf8Anw1T\/v3H\/wDF0f8AC7fDv\/Phqn\/fuP8A+Lr0jYv90flRsX+6PyoA8\/0\/4waDqWpWtjFZakstzMkKF40wCxAGfn6c16FSbF\/uj8qWgAooooAKKKKACuK8Tf8AJT\/Av\/b\/AP8AokV2tcV4m\/5Kf4F\/7f8A\/wBEigDtaKKKACiiigAooooAKKKKACiiigAooooA4rxN\/wAlP8C\/9v8A\/wCiRXa1xXib\/kp\/gX\/t\/wD\/AESK7WgAooooAKKKKACiiigAooooAKKKKAPM\/hp\/yOfjj\/r+\/wDak1emV5n8NP8Akc\/HH\/X9\/wC1Jq9MoAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDM1zw\/pniSzS01W2M8CSCVVEjJhgCM5Ug9CawP8AhVXg3\/oEn\/wJl\/8Aiq7KigDjf+FVeDf+gSf\/AAJl\/wDiqP8AhVXg3\/oEn\/wJl\/8Aiq7KigDjf+FVeDf+gSf\/AAJl\/wDiq4fU\/BmgW3xb0fQorErp1xamSWHznO5sS87s5H3V79q9qrzPWv8AkvXh\/wD68W\/9BnoA2v8AhVXg3\/oEn\/wJl\/8AiqP+FVeDf+gSf\/AmX\/4quyooA43\/AIVV4N\/6BJ\/8CZf\/AIqj\/hVXg3\/oEn\/wJl\/+KrsqKAMzQ\/D+meG7N7TSrYwQPIZWUyM+WIAzliT0ArToooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDzX42\/8ihZf9f6\/+i5K9IT7i\/QV5v8AG3\/kULL\/AK\/1\/wDRclekJ9xfoKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFYvi\/8A5EvXP+vCf\/0A1tVi+L\/+RL1z\/rwn\/wDQDQBj\/Cr\/AJJzpf1m\/wDRr12Vcb8Kv+Sc6X9Zv\/Rr12VABRRRQAUUUUAFFFFABRRRQAVxXib\/AJKf4F\/7f\/8A0SK7WuK8Tf8AJT\/Av\/b\/AP8AokUAdrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFeJv8Akp\/gX\/t\/\/wDRIrta4rxN\/wAlP8C\/9v8A\/wCiRXa0AFFFFABRRRQAUUUUAFFFFABRRRQB5n8NP+Rz8cf9f3\/tSavTK8z+Gn\/I5+OP+v7\/ANqTV6ZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ61\/yXrw\/wD9eLf+gz16ZXmetf8AJevD\/wD14t\/6DPQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAea\/G3\/kULL\/r\/X\/0XJXpCfcX6CvN\/jb\/AMihZf8AX+v\/AKLkr0hPuL9BQA6iiigAooooAKKKKACiiigAooooAKKKKACiuN8deOm8GPp6rpv203fmf8ttm3bt\/wBk5zu\/SuT\/AOF2XP8A0K7\/APgUf\/jdJtIpQlLZHr1FeQ\/8Lsuf+hXf\/wACj\/8AG6P+F2XP\/Qrv\/wCBR\/8AjdHMu4\/ZT7M9eoryH\/hdlz\/0K7\/+BR\/+N0f8Lsuf+hXf\/wACj\/8AG6OZdw9lPsz16ivIf+F2XP8A0K7\/APgUf\/jdH\/C7Ln\/oV3\/8Cj\/8bo5l3D2U+zPXqxfF\/wDyJeuf9eE\/\/oBrzv8A4XZc\/wDQrv8A+BR\/+N1S1f4u3Oq6LfacfDjxfaoHh8z7QW27lIzjZz1o5l3D2U+zO5+FX\/JOdL+s3\/o167KvCPCvxOuPDPhy10gaA9yIC\/73zym7cxbpsPrjrWz\/AMLsuf8AoV3\/APAo\/wDxujmXcPZT7M9eoryH\/hdlz\/0K7\/8AgUf\/AI3R\/wALsuf+hXf\/AMCj\/wDG6OZdw9lPsz16ivIf+F2XP\/Qrv\/4FH\/43R\/wuy5\/6Fd\/\/AAKP\/wAbo5l3D2U+zPXqK8h\/4XZc\/wDQrv8A+BR\/+N0f8Lsuf+hXf\/wKP\/xujmXcPZT7M9eoryH\/AIXZc\/8AQrv\/AOBR\/wDjddZ4F8dN4zfUFbTfsRtPL\/5bb927d\/sjGNv60JpicJR3R2VcV4m\/5Kf4F\/7f\/wD0SK7WuK8Tf8lP8C\/9v\/8A6JFMk7WiiigAooooAKKKKACiiigAooooAKKKKAOK8Tf8lP8AAv8A2\/8A\/okV2tcV4m\/5Kf4F\/wC3\/wD9Eiu1oAKKzPEGuW3hvRLjVbuOWSCDbuWIAsdzBRjJA6n1riP+F2+Hf+fDVP8Av3H\/APF0AelUV5r\/AMLt8O\/8+Gqf9+4\/\/i6P+F2+Hf8Anw1T\/v3H\/wDF0AelUV5r\/wALt8O\/8+Gqf9+4\/wD4uj\/hdvh3\/nw1T\/v3H\/8AF0AelUV5r\/wu3w7\/AM+Gqf8AfuP\/AOLo\/wCF2+Hf+fDVP+\/cf\/xdAHpVFea\/8Lt8O\/8APhqn\/fuP\/wCLo\/4Xb4d\/58NU\/wC\/cf8A8XQA34af8jn44\/6\/v\/ak1emV4N4R+IWlaBr\/AIjv7q2vHi1O582FYlUso3Ofmyw5+cdM966\/\/hdvh3\/nw1T\/AL9x\/wDxdAHpVFea\/wDC7fDv\/Phqn\/fuP\/4uj\/hdvh3\/AJ8NU\/79x\/8AxdAHpVFea\/8AC7fDv\/Phqn\/fuP8A+Lo\/4Xb4d\/58NU\/79x\/\/ABdAHpVFea\/8Lt8O\/wDPhqn\/AH7j\/wDi6P8Ahdvh3\/nw1T\/v3H\/8XQB6VRXmv\/C7fDv\/AD4ap\/37j\/8Ai60tA+Kei+ItbttKtLS\/jnuN21pUQKMKWOcMT0HpQB3FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ61\/wAl68P\/APXi3\/oM9emV5nrX\/JevD\/8A14t\/6DPQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAea\/G3\/kULL\/AK\/1\/wDRclekJ9xfoK83+Nv\/ACKFl\/1\/r\/6Lkr0hPuL9BQA6iiigAooooAKKKKACiiigAooooAKKKKAPIfjZ\/wAfvhz\/AHpv5x1wVd78bP8Aj98Of7038464KuTE7o+gyb4JeoUUUVzHtBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV3vwT\/wCP3xH\/AL0P85K4Ku9+Cf8Ax++I\/wDeh\/nJXTht2eLnPwR9T16uK8Tf8lP8C\/8Ab\/8A+iRXa1xXib\/kp\/gX\/t\/\/APRIrrPnztaKKKACiiigAooooAKoaxaX19pskGnam+m3LEFblIUlKgHkbXBByOKv0UAeU62\/jPRfFfhrRoPG099Pql0fNibTrZAlvGN0jZCZzjgfjWvfav4g8SeOtR8O6BqkekWmkQxNeXn2ZZ5JJZBuVFDfKAF5J65qHwt\/xUvxR8R+JG+a00xRo9ke25fmmI99xAz6Gl8IsLD4teOdPuCFmu\/st5bg9ZI9hViPUBiBQBr+Cdf1HUZtZ0TW2ifVtGuFhmmhTYs8brujk2\/wkjOR7V1tef8AgphffEjx7qsBD2jz2loki8hpIoiJBn2JArs9X07+1tLmsftt5Zebt\/f2cvlyphgflbBxnGD7E0Acv4m\/5Kf4F\/7f\/wD0SK7WvLpvDf8AYHxR8Gt\/bWs6l5wvhjUbrzgmIR93gYznn6CvUaAON+Kv\/JOdU+sP\/o1K8RtR\/okP+4P5V7d8Vf8AknOqfWH\/ANGpXiVr\/wAekP8AuD+VduC+JnDjvhRLgelGB6UUV6J5gYHpRgelFFABgelGB6UUUAGB6UYHpRRQAmB6UuB6UUUAGB6UYHpRRQAYHpRgelFFABgelGB6UUUAGB6Vq+BP+So6P\/uyf+i5Kyq1fAv\/ACVHR\/8Adk\/9FyVzYv8AhnXg\/wCKfQtFFFeUesFFFBOASe1ABRXG\/wDC1fBv\/QWP\/gNL\/wDE0f8AC1fBv\/QWP\/gNL\/8AE0AdlRXG\/wDC1fBv\/QWP\/gNL\/wDE0f8AC1fBv\/QWP\/gNL\/8AE0AdlRXG\/wDC1fBv\/QWP\/gNL\/wDE0f8AC1fBv\/QWP\/gNL\/8AE0AdlRXG\/wDC1fBv\/QWP\/gNL\/wDE0f8AC1fBv\/QWP\/gNL\/8AE0AdlXmetf8AJevD\/wD14t\/6DPW1\/wALV8G\/9BY\/+A0v\/wATXD6n4z0C5+Lej67FfFtOt7UxyzeS42tiXjbjJ+8vbvQB7VRXG\/8AC1fBv\/QWP\/gNL\/8AE0f8LV8G\/wDQWP8A4DS\/\/E0AdlRXG\/8AC1fBv\/QWP\/gNL\/8AE0f8LV8G\/wDQWP8A4DS\/\/E0AdlRXG\/8AC1fBv\/QWP\/gNL\/8AE0f8LV8G\/wDQWP8A4DS\/\/E0AdlRXG\/8AC1fBv\/QWP\/gNL\/8AE0f8LV8G\/wDQWP8A4DS\/\/E0AdlRXG\/8AC1fBv\/QWP\/gNL\/8AE12QOQCO9ABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHmvxt\/5FCy\/wCv9f8A0XJXpCfcX6CvN\/jb\/wAihZf9f6\/+i5K9IT7i\/QUAOooooAKKKKACiiigAooooAKKKKACiiigDyH42f8AH74c\/wB6b+cdcFXe\/Gz\/AI\/fDn+9N\/OOuCrkxO6PoMm+CXqFFFFcx7QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFd78E\/8Aj98R\/wC9D\/OSuCrvfgn\/AMfviP8A3of5yV04bdni5z8EfU9erivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SK6z587WiiigAooooAKKKKACiiigDO0TQtN8O6cLDSrb7PbB2k2l2clmOSSzEkkn1NVNf8H6B4neGTWNOS4lgyI5Q7RuoPUBkIOPbOK3KKAKWlaRp+h6dFp+l2kVraRfcijGAPU+59zV2iigDivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SK7WgDjfir\/yTnVPrD\/6NSvErX\/j0h\/3B\/Kvbfir\/wAk51T6w\/8Ao1K8Stf+PSH\/AHB\/Ku3BfEzhx3wolooor0TzAooooAKKKKACiiigAooooAKKKKACiiigAooooAK1fAv\/ACVHR\/8Adk\/9FyVlVq+Bf+So6P8A7sn\/AKLkrmxf8M68H\/FPoWiiivKPWCmv9xvoadTX+430NAHzb4VsrW502V57aGVhMQC6AnGB61u\/2Vp3\/Pjbf9+l\/wAKyvB3\/IKm\/wCu5\/8AQVroa+XxlSarySb3PpcJTg6EW0U\/7K07\/nxtv+\/S\/wCFH9lad\/z423\/fpf8ACrlFc3tZ\/wAzOn2UOyKf9lad\/wA+Nt\/36X\/Cj+ytO\/58bb\/v0v8AhVyij2s\/5mHsodkU\/wCytO\/58bb\/AL9L\/hR\/ZWnf8+Nt\/wB+l\/wq5RR7Wf8AMw9lDsin\/ZWnf8+Nt\/36X\/Cj+ydO\/wCfG2\/79CrlFHtZ\/wAz+8PZQ7Ip\/wBlad\/z423\/AH6X\/Cj+ytO\/58bb\/v0v+FXKKPaz\/mYeyh2RT\/srTv8Anxtv+\/S\/4Uf2Vp3\/AD423\/fpf8KuUUe1n\/Mw9lDsin\/ZWnf8+Nt\/36X\/AAo\/srTv+fG2\/wC\/S\/4Vcoo9rP8AmYeyh2RT\/srTv+fG2\/79L\/hR\/ZWnf8+Nt\/36X\/CrlFHtZ\/zMPZQ7I5bxVZWttpsTwW0MTGYAlEAOMH0r6ST7i\/QV86+Mf+QVD\/13H\/oLV9FJ9xfoK+iy2TdBN92fP5ikq7SHUUUV3nCFFFFABRRRQAUUUUAFFFFABRRRQB5r8bf+RQsv+v8AX\/0XJXpCfcX6CvN\/jb\/yKFl\/1\/r\/AOi5K9IT7i\/QUAOooooAKKKKACiiigAooooAKKKKACiiigDyH42f8fvhz\/em\/nHXBV3vxs\/4\/fDn+9N\/OOuCrkxO6PoMm+CXqFFFFcx7QUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFd78E\/+P3xH\/vQ\/wA5K4Ku9+Cf\/H74j\/3of5yV04bdni5z8EfU9erivE3\/ACU\/wL\/2\/wD\/AKJFdrXFeJv+Sn+Bf+3\/AP8ARIrrPnztaKKKACiiigAooooAKKKKACiiigAooooA4rxN\/wAlP8C\/9v8A\/wCiRXa1xXib\/kp\/gX\/t\/wD\/AESK7WgDjfir\/wAk51T6w\/8Ao1K8Stf+PSH\/AHB\/Kvbfir\/yTnVPrD\/6NSvErX\/j0h\/3B\/Ku3BfEzhx3wolooor0TzAooooAKKKKACiiigAooooAKKKKACiiigAooooAK1fAv\/JUdH\/3ZP8A0XJWVWr4F\/5Kjo\/+7J\/6Lkrmxf8ADOvB\/wAU+haKKK8o9YKa\/wBxvoadTX+430NAHzr4O\/5BU3\/Xc\/8AoK10Nc94O\/5BU3\/Xc\/8AoK10NfK43\/eJ+p9Rg\/4EfQKKKK5TpCiiigAooooAKKKKACiiigAooooAKKKKACiiigDnvGP\/ACCof+u4\/wDQWr6KT7i\/QV86+Mf+QVD\/ANdx\/wCgtX0Un3F+gr6TLP8Ad16s+dzL+O\/RDqKKK9A4ArybxZ8SfEOjeML\/AEfTrSwlht9hUyoxbBRWOTvA6tXrNfP3jb\/kqms\/7kf\/AKLjqKknGLaM6s3CDkjS\/wCFreMv+gdpf\/ftv\/jlH\/C1vGX\/AEDtL\/79t\/8AHK52iuL63Psjz\/r1Tsjov+FreMv+gdpf\/ftv\/jlH\/C1vGX\/QO0v\/AL9t\/wDHK52ij63Psg+vVOyOi\/4Wt4y\/6B2l\/wDftv8A45R\/wtbxl\/0DtL\/79t\/8crnaKPrc+yD69U7I6L\/ha3jL\/oHaX\/37b\/45R\/wtbxl\/0DtL\/wC\/bf8Axyudoo+tz7IPr1TsibxR4u8R+LdOisdQsrOOKOYTAwKQdwBHdzx8xrbHxW8ZAAf2dpfH\/TNv\/jlc9RR9bn2QfXqnZHRf8LW8Zf8AQO0v\/v23\/wAco\/4Wt4y\/6B2l\/wDftv8A45XO0UfW59kH16p2R0X\/AAtbxl\/0DtL\/AO\/bf\/HKP+FreMv+gdpf\/ftv\/jlc7RR9bn2QfXqnZHRf8LW8Zf8AQO0v\/v23\/wAco\/4Wt4y\/6B2l\/wDftv8A45XO0UfW59kH16p2R0X\/AAtbxl\/0DtL\/AO\/bf\/HKa\/xZ8YRoztp2lhVGSfLbp\/38rn6gvP8Ajyn\/AOubfypxxU27WQ442o2lZHvHgnXLrxH4Ss9VvEiSeYybliBCja7KMAknoB3roK434Vf8k50v6zf+jXrsq7z0wooooA8h+Nn\/AB++HP8Aem\/nHXBV3vxs\/wCP3w5\/vTfzjrgq5MTuj6DJvgl6hRRRXMe0FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXe\/BP\/AI\/fEf8AvQ\/zkrgq734J\/wDH74j\/AN6H+cldOG3Z4uc\/BH1PXq4rxN\/yU\/wL\/wBv\/wD6JFdrXFeJv+Sn+Bf+3\/8A9Eius+fO1ooooAKKKKAPPPF3jHxDBd67a+GrWwCaDZ\/atQur7cRkxmRY41XGW2jOScc1rxeJ7xdV8JWs0UDQ63aSO7KCGSZYlk45xtI3cew5rI8Y+DvEFxda3eeGLmxxrll9j1C0vdwDYQoskbL0YK2MHjipfC3hXxC2q6XqnimexU6RaG20+zsdzKpZQrSOzdWKjGBxzQB31FFFABRRRQAUUUUAcV4m\/wCSn+Bf+3\/\/ANEiu1rivE3\/ACU\/wL\/2\/wD\/AKJFdrQBxvxV\/wCSc6p9Yf8A0aleJWv\/AB6Q\/wC4P5V7b8Vf+Sc6p9Yf\/RqV4la\/8ekP+4P5V24L4mcOO+FEtFFFeieYFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWr4F\/5Kjo\/+7J\/6LkrKrV8C\/8AJUdH\/wB2T\/0XJXNi\/wCGdeD\/AIp9C0UUV5R6wU1\/uN9DTqa\/3G+hoA+dfB3\/ACCpv+u5\/wDQVroa57wd\/wAgqb\/ruf8A0Fa6Gvlcb\/vE\/U+owf8AAj6BRRRXKdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94x\/wCQVD\/13H\/oLV9FJ9xfoK+dfGP\/ACCof+u4\/wDQWr6KT7i\/QV9Jln+7r1Z87mX8d+iHUUUV6BwBXz942\/5KprP+5H\/6Ljr6Br5+8bf8lU1n\/cj\/APRcdZVv4bMcR\/CkZ9FFFeUeIFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5\/x5T\/9c2\/lU9QXn\/HlP\/1zb+VVH4kVD4kezfCr\/knOl\/Wb\/wBGvXZVxvwq\/wCSc6X9Zv8A0a9dlXsHvhRRRQB5D8bP+P3w5\/vTfzjrgq7v44KWufDyhtpJnAI7cx15r9gn\/wCf2T9f8a5q6Tau7HtZXUqQhLkhzfNfqX6KofYJ\/wDn9k\/X\/Gj7BP8A8\/sn6\/41hyx\/mPV9vX\/59P71\/mX6KofYJ\/8An9k\/X\/Gj7BP\/AM\/sn6\/40csf5g9vX\/59P71\/mX6KofYJ\/wDn9k\/X\/Gj7BP8A8\/sn6\/40csf5g9vX\/wCfT+9f5l+iqH2Cf\/n9k\/X\/ABo+wT\/8\/sn6\/wCNHLH+YPb1\/wDn0\/vX+Zfoqh9gn\/5\/ZP1\/xo+wT\/8AP7J+v+NHLH+YPb1\/+fT+9f5l+iqH2Cf\/AJ\/ZP1\/xo+wT\/wDP7J+v+NHLH+YPb1\/+fT+9f5l+iqH2Cf8A5\/ZP1\/xo+wT\/APP7J+v+NHLH+YPb1\/8An0\/vX+Zfoqh9gn\/5\/ZP1\/wAaPsE\/\/P7J+v8AjRyx\/mD29f8A59P71\/mX6734J\/8AH74j\/wB6H+cleZ\/YJ\/8An9k\/X\/GvSvgepW58QqW3EGAEnvzJW9BJN2dzys0qVJwjzw5fmv0PYK4rxN\/yU\/wL\/wBv\/wD6JFdrXFeJv+Sn+Bf+3\/8A9Eiuk8U7WiiigAooooA8puvCWkeMfit4hS\/uL2A2EVtm3gu3T7QXjHzkZ4UAKuFxzkk81nan8PdI0nx5o2l2Gq6vCdVhuNvl37+ZaNGm5ZVOeVPKkNnnGD1rX+IF38ObvUIW1a7eXXIh5cI0iRmu\/wDc\/d\/jw39az\/hjaG61WPWdE8Ltb6NciSOfVdWvTNeTqu5dqLk7PnUA56gH0FAHc\/DvVr3XPAel3+oyCW7ZXjkkAx5hSRk3fjtz+NdPUFlZWum2cVnZW8VvbRDbHFEoVVHoAKnoAKKKKACiiigDivE3\/JT\/AAL\/ANv\/AP6JFdrXFeJv+Sn+Bf8At\/8A\/RIrtaAON+Kv\/JOdU+sP\/o1K8RtT\/okP+4P5V7d8Vf8AknOqfWH\/ANGpXgkOmQyQRuXkyygnBH+FdWEclJ8qucmLUXFczsaeR60ZHrVD+yYP78n5j\/Cj+yYP78n5j\/Cu7nq\/y\/icHJS\/m\/D\/AIJfyPWjI9aof2TB\/fk\/Mf4Uf2TB\/fk\/Mf4Uc9X+X8Q5KX834f8ABL+R60ZHrVD+yYP78n5j\/Cj+yYP78n5j\/Cjnq\/y\/iHJS\/m\/D\/gl\/I9aMj1qh\/ZMH9+T8x\/hR\/ZMH9+T8x\/hRz1f5fxDkpfzfh\/wS\/ketGR61Q\/smD+\/J+Y\/wo\/smD+\/J+Y\/wo56v8v4hyUv5vw\/4JfyPWjI9aof2TB\/fk\/Mf4Uf2TB\/fk\/Mf4Uc9X+X8Q5KX834f8Ev5HrRketUP7Jg\/vyfmP8KP7Jg\/vyfmP8KOer\/L+IclL+b8P+CX8j1oyPWqH9kwf35PzH+FH9kwf35PzH+FHPV\/l\/EOSl\/N+H\/BL+R61q+BP+So6P8A7sn\/AKLkrm\/7Jg\/vyfmP8K3\/AIeW6W3xN0hELEESnn\/rk9YYmU3T95W+Z0YWMFU92V\/kfRVFFFecekFNf7jfQ06mv9xvoaAPmDQZ9YispF061ili8wlmc8hsDj7w9q1Ptnif\/oH2\/wCY\/wDi6Xwd\/wAgqb\/ruf8A0Fa6GvncXiFGtJcif3\/5n0GFoOVGL52vu\/yOd+2eJ\/8AoH2\/5j\/4uj7Z4n\/6B9v+Y\/8Ai66Kiuf6yv8An3H7n\/mb\/Vn\/AM\/Jfh\/kc79s8T\/9A+3\/ADH\/AMXR9s8T\/wDQPt\/zH\/xddFRR9ZX\/AD7j9z\/zD6s\/+fkvw\/yOd+2eJ\/8AoH2\/5j\/4uj7Z4n\/6B9v+Y\/8Ai66Kij6yv+fcfuf+YfVn\/wA\/Jfh\/kc79s8T\/APQPt\/zH\/wAXR9s8T\/8AQPt\/zH\/xddFRR9ZX\/PuP3P8AzD6s\/wDn5L8P8jnftnif\/oH2\/wCY\/wDi6Ptnif8A6B9v+Y\/+LroqKPrK\/wCfcfuf+YfVn\/z8l+H+Rzv2zxP\/ANA+3\/Mf\/F0fbPE\/\/QPt\/wAx\/wDF10VFH1lf8+4\/c\/8AMPqz\/wCfkvw\/yOd+2eJ\/+gfb\/mP\/AIuj7Z4n\/wCgfb\/mP\/i66Kij6yv+fcfuf+YfVn\/z8l+H+Rzv2zxP\/wBA+3\/Mf\/F0fbPE\/wD0D7f8x\/8AF10VFH1lf8+4\/c\/8w+rP\/n5L8P8AI4nXp9Ylso11G1iii8wFWQ8lsHj7x96+n0+4v0FfOvjH\/kFQ\/wDXcf8AoLV9FJ9xfoK93AT56N0kvQ8THQ5K1rt+o6iiiu04wr5+8bf8lT1n\/cj\/APRcdfQNfO\/xAtUu\/idrEblgAIz8v\/XJKzq25HcyrJOm7lXI9aMj1rN\/sO3\/AOekv5j\/AAo\/sO3\/AOekv5j\/AArzuWn\/ADfgeVyUv5vw\/wCCaWR60ZHrWb\/Ydv8A89JfzH+FH9h2\/wDz0l\/Mf4UctP8Am\/AOSl\/N+H\/BNLI9aMj1rN\/sO3\/56S\/mP8KP7Dt\/+ekv5j\/Cjlp\/zfgHJS\/m\/D\/gmlketGR61m\/2Hb\/89JfzH+FH9h2\/\/PSX8x\/hRy0\/5vwDkpfzfh\/wTSyPWjI9azf7Dt\/+ekv5j\/Cj+w7f\/npL+Y\/wo5af834ByUv5vw\/4JpZHrRketZv9h2\/\/AD0l\/Mf4Uf2Hb\/8APSX8x\/hRy0\/5vwDkpfzfh\/wTSyPWjI9azf7Dt\/8AnpL+Y\/wo\/sO3\/wCekv5j\/Cjlp\/zfgHJS\/m\/D\/gmlketGR61m\/wBh2\/8Az0l\/Mf4Uf2Hb\/wDPSX8x\/hRy0\/5vwDkpfzfh\/wAE0sj1qG8I+xT8\/wDLNv5VT\/sO3\/56S\/mP8Kjn0eCK3kkV5CVUkZI9PpVRjTuve\/AcYUuZe9+B7t8Kv+Sc6X9Zv\/Rr12Vcb8Kv+Sc6X9Zv\/Rr12VemeyFFFFAHkPxs\/wCP3w5\/vTfzjrgq7v43uEufDznopnJx9Y681\/taD+5J+Q\/xrmrwlJqyPayvEUqUJKcral+iqH9rQf3JPyH+NH9rQf3JPyH+NYeyn2PV+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+iqH9rQf3JPyH+NH9rQf3JPyH+NHsp9g+v4b+dF+u9+Cf8Ax++I\/wDeh\/nJXmf9rQf3JPyH+NelfBBw9z4hcdGMBGfrJW9CEot3R5WaYilVhFQlc9grivE3\/JT\/AAL\/ANv\/AP6JFdrXFeJv+Sn+Bf8At\/8A\/RIrpPFO1ooooAKx\/FXh9PFPhm90WS7ntEulUGaA\/MuGDfkcYI7gmtiigDyfRPD\/AIt+G0PladoOja\/YgYaazQWl6w9WzkP9Mk1P8JfE+nWmiWHhC\/8AtFh4gje4Y2V1bvGzAyySZUkYPyn9DXqNRvBDJLHK8SNJESY3ZQShIwSD24JFAElFFFABRRRQAUUUUAcV4m\/5Kf4F\/wC3\/wD9Eiu1rivE3\/JT\/Av\/AG\/\/APokV2tAHG\/FX\/knOqfWH\/0aleJWv\/HpD\/uD+Ve2\/FX\/AJJzqn1h\/wDRqV4la\/8AHpD\/ALg\/lXbgviZw474US0UUV6J5gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFavgX\/AJKjo\/8Auyf+i5Kyq1fAv\/JUdH\/3ZP8A0XJXNi\/4Z14P+KfQtFFFeUesFNf7jfQ06mv9xvoaAPnXwd\/yCpv+u5\/9BWuhrnvB3\/IKm\/67n\/0Fa6Gvlcb\/ALxP1PqMH\/Aj6BRRRXKdIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAc94x\/5BUP\/AF3H\/oLV9FJ9xfoK+dfGP\/IKh\/67j\/0Fq+ik+4v0FfSZZ\/u69WfO5l\/Hfoh1FFFegcAV8\/eNv+Sqaz\/uR\/8AouOvoGvn7xt\/yVTWf9yP\/wBFx1lW\/hsxxH8KRn0UUV5R4gUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQXn\/AB5T\/wDXNv5VPUF5\/wAeU\/8A1zb+VVH4kVD4kezfCr\/knOl\/Wb\/0a9dlXG\/Cr\/knOl\/Wb\/0a9dlXsHvhRRRQAhUHqAfrSbF\/uj8qdRQA3Yv90flRsX+6Pyp1FADdi\/3R+VGxf7o\/KnUm9f7w\/OgBNi\/3R+VGxf7o\/Kjev94fnRvX+8PzoANi\/wB0flWN4vRR4L1z5R\/x4T9v9g1s71\/vD86xvF7qfBeufMP+PCfv\/sGgDH+FaqfhzphKg8zdv+mr12Oxf7o\/KuO+FbKPhzpgLAczd\/8Apq9djvX+8PzoANi\/3R+VGxf7o\/Kjev8AeH50b1\/vD86ADYv90flRsX+6Pypd6\/3h+dLQA3Yv90flRsX+6Pyp1FADdi\/3R+VKFA6AD6UtFABXFeJv+Sn+Bf8At\/8A\/RIrta4rxN\/yU\/wL\/wBv\/wD6JFAHa0UUUAFFFFABRRRQAVmeIdds\/DWgXms35YW1rHvYL1Y9Ao9ySAPrWnXnPxxW4\/4VfeS2+cw3EEj8ZwBIO31IoA1NNu\/iFeTWl5dWOgWtjM6NLZtJM1zFESM\/P90uB2xjPemav4o1y78Xy+GfCttp7XNnbrcX13qBcxRbvuIFTBLEc9cYrlPGugjwJ4ctfFekavqUur29xD58k148i6gHYBlZCSvOcjAGMVueEP3Hxe+IEE3E032GaPP8UYiIyPYEgUAb3g\/xNc67\/aVhqlpHaazpU4gvIYnLRnI3JIhPO1hyM88V01cB4V\/ffFzx5cRcwqtjCzDo0giOR9R0rstXtr680uaDTdR\/s+7fb5d15KzbMMCfkbg5AI\/HNAHL+Jv+Sn+Bf+3\/AP8ARIrta8um0vXdO+KPg06z4i\/tcOL7yh9iS38vEIz908546+leo0Acb8Vf+Sc6p9Yf\/RqV4la\/8ekP+4P5V7b8Vf8AknOqfWH\/ANGpXiVr\/wAekP8AuD+VduC+JnDjvhRLRRRXonmBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVq+Bf8AkqOj\/wC7J\/6LkrKrV8C\/8lR0f\/dk\/wDRclc2L\/hnXg\/4p9C0UUV5R6wU1\/uN9DTqR\/uN9KAPnTwd\/wAgqb\/ruf8A0Fa6GuZ0e18RaTavB\/wi+qS7nL5+zyL2A\/u+1aH2rxH\/ANCjqf8A35k\/+Ir5\/FYGvUrSlGOj80e7hsbQhSjGUtV5M1qKyftXiP8A6FHU\/wDvzJ\/8RR9q8R\/9Cjqf\/fmT\/wCIrD+zsT\/L+K\/zN\/7Qw\/8AN+D\/AMjWorJ+1eI\/+hR1P\/vzJ\/8AEUfavEf\/AEKOp\/8AfmT\/AOIo\/s7E\/wAv4r\/MP7Qw\/wDN+D\/yNaisn7V4j\/6FHU\/+\/Mn\/AMRR9q8R\/wDQo6n\/AN+ZP\/iKP7OxP8v4r\/MP7Qw\/834P\/I1qKyftXiP\/AKFHU\/8AvzJ\/8RVZ9b1aO\/jsX8PXa3ci7kt2VxIw55C7ckcH8jR\/Z2J\/l\/Ff5h\/aGH\/m\/B\/5G\/RWT9q8R\/8AQo6n\/wB+ZP8A4ij7V4j\/AOhR1P8A78yf\/EUf2dif5fxX+Yf2hh\/5vwf+RrUVk\/avEf8A0KOp\/wDfmT\/4ij7V4j\/6FHU\/+\/Mn\/wARR\/Z2J\/l\/Ff5h\/aGH\/m\/B\/wCRrUVk\/avEf\/Qo6n\/35k\/+Io+1eI\/+hR1P\/vzJ\/wDEUf2dif5fxX+Yf2hh\/wCb8H\/ka1FZP2rxH\/0KOp\/9+ZP\/AIij7V4j\/wChR1P\/AL8yf\/EUf2dif5fxX+Yf2hh\/5vwf+RU8Y\/8AIKh\/67j\/ANBavopPuL9BXzhrFr4i1a1SD\/hF9Ui2uHz9nkbsR\/d96+kE+4v0r28DSnSo8s1ZnjY2rCrV5oO6FooorsOQK+fvG3\/JVNZ\/3I\/\/AEXHX0DXz942\/wCSqaz\/ALkf\/ouOsq38NmOI\/hSM+iiivKPECiiigAooooAKKKKACiiigAooooAKKKKACiiigAqC8\/48p\/8Arm38qnqC8\/48p\/8Arm38qqPxIqHxI9m+FX\/JOdL+s3\/o167KuN+FX\/JOdL+s3\/o167KvYPfCiiigAooooAKKKKACvPdQ+D+g6lqV1fS3upLLczPM4SRMAsSTj5OnNehUUAea\/wDCkvDv\/P8A6p\/38j\/+Io\/4Ul4d\/wCf\/VP+\/kf\/AMRXpVFAHmv\/AApLw7\/z\/wCqf9\/I\/wD4ik\/4Ul4e\/wCf\/VP+\/kf\/AMRXpdFAHmg+CXh7HN\/qn\/fyP\/4il\/4Ul4d\/5\/8AVP8Av5H\/APEV6VRQB5r\/AMKS8O\/8\/wDqn\/fyP\/4ij\/hSXh3\/AJ\/9U\/7+R\/8AxFelUUAee6f8H9B03UrW+ivdSaW2mSZA8iYJUgjPydOK9CoooAKKKKACiiigArivE3\/JT\/Av\/b\/\/AOiRXa1xXib\/AJKf4F\/7f\/8A0SKAO1ooooAKKKKACiiigAqvfWNrqdhPY3sKT2twhjljccMpGCKsUUAcTZ\/C\/R7a7spLjUNY1C2sXElpY3t4ZIIGH3SFwM47ZJxWlr\/gnT9e1ODVBd6hpupwxmEXmnT+VI0ZOdjZBBXPPIrpKKAMnw74b0\/wxpzWenrIRJI0000zl5ZpG6u7HqxrWoooA4rxN\/yU\/wAC\/wDb\/wD+iRXa1xXib\/kp\/gX\/ALf\/AP0SK7WgDjfir\/yTnVPrD\/6NSvErX\/j0h\/3B\/Kvbfir\/AMk51T6w\/wDo1K8Stf8Aj0h\/3B\/Ku3BfEzhx3wolooor0TzAooooAKKKKACiiigAooooAKKKKACiiigAooooAK1fAv8AyVHR\/wDdk\/8ARclZVavgX\/kqOj\/7sn\/ouSubF\/wzrwf8U+haKKK8o9YKKKKACiiigAooooAKKKKACiiigArzPWv+S9eH\/wDrxb\/0GevTK8z1r\/kvXh\/\/AK8W\/wDQZ6APTKKKKACiiigAooooAKKKKACiiigAooooAK+efHlxFbfFDWHlbapWMZxnny46+hqy7vw3od\/cvc3mj2FxO+N0stujM2BgZJGegFTKKkrMmcVOLiz51\/tWy\/57f+On\/Cj+1bL\/AJ7f+On\/AAr6E\/4RDw1\/0L+l\/wDgJH\/hR\/wiHhr\/AKF\/S\/8AwEj\/AMK5\/qkO7OX6jT7s+e\/7Vsv+e3\/jp\/wo\/tWy\/wCe3\/jp\/wAK+hP+EQ8Nf9C\/pf8A4CR\/4Uf8Ih4a\/wChf0v\/AMBI\/wDCj6pDuw+o0+7Pnv8AtWy\/57f+On\/Cj+1bL\/nt\/wCOn\/CvoT\/hEPDX\/Qv6X\/4CR\/4Uf8Ih4a\/6F\/S\/\/ASP\/Cj6pDuw+o0+7Pnv+1bL\/nt\/46f8KP7Vsv8Ant\/46f8ACvoT\/hEPDX\/Qv6X\/AOAkf+FH\/CIeGv8AoX9L\/wDASP8Awo+qQ7sPqNPuz57\/ALWsv+ep\/wC+T\/hR\/atl\/wA9v\/HT\/hXonxe0LSNL8LWk2n6XZ2krXqoXggVCV2OcZA6cD8q79PCHhoov\/FP6X0\/59E\/wo+qQ7sPqNPuz58\/tWy\/57f8Ajp\/wo\/tWy\/57f+On\/CvoT\/hEPDX\/AEL+l\/8AgJH\/AIUf8Ih4a\/6F\/S\/\/AAEj\/wAKPqkO7D6jT7s+e\/7Vsv8Ant\/46f8ACj+1bL\/nt\/46f8K+hP8AhEPDX\/Qv6X\/4CR\/4Uf8ACIeGv+hf0v8A8BI\/8KPqkO7D6jT7s+e\/7Vsv+e3\/AI6f8KP7Vsv+e3\/jp\/wr6E\/4RDw1\/wBC\/pf\/AICR\/wCFH\/CIeGv+hf0v\/wABI\/8ACj6pDuw+o0+7Pnv+1bL\/AJ7f+On\/AAqK51O0ktZUWXLMhAG09cV9E\/8ACIeGv+hf0v8A8BI\/8KP+EQ8Nf9C\/pf8A4CR\/4U1hYJ31GsFTTvdmP8Kv+Sc6X9Zv\/Rr12VQWlna6fbJbWdvFbwJnbFEgVVycnAHHUmp66TrCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4rxN\/yU\/wL\/2\/\/wDokV2tcV4m\/wCSn+Bf+3\/\/ANEigDtaKKKACiiigAooooAKKKKACiiigAooooA4rxN\/yU\/wL\/2\/\/wDokV2tcV4m\/wCSn+Bf+3\/\/ANEiu1oA434q\/wDJOdU+sP8A6NSvErX\/AI9If9wfyr234q\/8k51T6w\/+jUrxK1\/49If9wfyrtwXxM4cd8KJaKKK9E8wKKKKACiiigAooooAKKKKACiiigAooooAKKKKACtXwL\/yVHR\/92T\/0XJWVWr4F\/wCSo6P\/ALsn\/ouSubF\/wzrwf8U+haKKK8o9YKKKKACiiigAooooAKKKKACiiigArzPWv+S9eH\/+vFv\/AEGevTK8z1r\/AJL14f8A+vFv\/QZ6APTKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApk00VtBJPPIkUUal3dzhVUckknoKfUF5aQahZT2dym+CeNopFyRuVhgjI5HBoAzP8AhL\/DX\/QwaX\/4Fx\/40f8ACX+Gv+hg0v8A8C4\/8ax\/+FVeDf8AoEn\/AMCZf\/iqP+FVeDf+gSf\/AAJl\/wDiqANj\/hL\/AA1\/0MGl\/wDgXH\/jR\/wl\/hr\/AKGDS\/8AwLj\/AMax\/wDhVXg3\/oEn\/wACZf8A4qj\/AIVV4N\/6BJ\/8CZf\/AIqgDl\/i9rukap4WtIdP1Szu5VvVcpBOrkLscZwD05H5136eL\/DQRf8AioNL6f8AP2n+NY5+FXg0\/wDMKYf9vMv\/AMVS\/wDCqvBv\/QJP\/gTL\/wDFUAbH\/CX+Gv8AoYNL\/wDAuP8Axo\/4S\/w1\/wBDBpf\/AIFx\/wCNY\/8Awqrwb\/0CT\/4Ey\/8AxVH\/AAqrwb\/0CT\/4Ey\/\/ABVAGx\/wl\/hr\/oYNL\/8AAuP\/ABq1Y69o+qTmCw1SyupQu8pBOrsF6ZwD05H51zv\/AAqrwb\/0CT\/4Ey\/\/ABVaWh+CfD\/hy9a80qxME7xmIt5zvlSQSMMSOoFAHQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXFeJv8Akp\/gX\/t\/\/wDRIrta4rxN\/wAlP8C\/9v8A\/wCiRQB2tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV4m\/wCSn+Bf+3\/\/ANEiu1rivE3\/ACU\/wL\/2\/wD\/AKJFdrQBxvxV\/wCSc6p9Yf8A0aleI2p\/0SH\/AHB\/Kvo3xBodt4k0S40q7kljgn27miIDDawYYyCOo9K4j\/hSXh3\/AJ\/9U\/7+R\/8AxFbUa3sm3a5hXo+1SV7Hl+R60ZHrXqH\/AApLw7\/z\/wCqf9\/I\/wD4ij\/hSXh3\/n\/1T\/v5H\/8AEV0\/Xv7v4nN9Q\/vfgeX5HrRketeof8KS8O\/8\/wDqn\/fyP\/4ij\/hSXh3\/AJ\/9U\/7+R\/8AxFH17+7+IfUP734Hl+R60ZHrXqH\/AApLw7\/z\/wCqf9\/I\/wD4ij\/hSXh3\/n\/1T\/v5H\/8AEUfXv7v4h9Q\/vfgeX5HrRketeof8KS8O\/wDP\/qn\/AH8j\/wDiKP8AhSXh3\/n\/ANU\/7+R\/\/EUfXv7v4h9Q\/vfgeXZHrS5HrXQ+Efh7pWv6\/wCI7C6ubxItMufKhaJlDMNzj5sqefkHTHeuv\/4Ul4d\/5\/8AVP8Av5H\/APEUfXv7v4h9Q\/vfgeX5HrRketeof8KS8O\/8\/wDqn\/fyP\/4ij\/hSXh3\/AJ\/9U\/7+R\/8AxFH17+7+IfUP734Hl+R60ZHrXqH\/AApLw7\/z\/wCqf9\/I\/wD4ij\/hSXh3\/n\/1T\/v5H\/8AEUfXv7v4h9Q\/vfgeX5HrRketeof8KS8O\/wDP\/qn\/AH8j\/wDiKP8AhSXh3\/n\/ANU\/7+R\/\/EUfXv7v4h9Q\/vfgeX5HrWr4E\/5Kjo\/+7J\/6Lkru\/wDhSXh3\/n\/1T\/v5H\/8AEVpaB8LNF8O63baraXd\/JPb7tqyuhU5Uqc4UHofWsq2J9pHlsa0cL7KXNe53FFFFcp1hRRRQAUUUUAFFFFABRRRQAUUUUAFeZ61\/yXrw\/wD9eLf+gz16ZXmetf8AJevD\/wD14t\/6DPQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxXib\/kp\/gX\/t\/wD\/AESK7WuK8Tf8lP8AAv8A2\/8A\/okUAdrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFeJv+Sn+Bf+3\/AP8ARIrta4rxN\/yU\/wAC\/wDb\/wD+iRXa0AFFFFABRRRQAUUUUAFFFFABRRRQB5n8NP8Akc\/HH\/X9\/wC1Jq9MrzP4af8AI5+OP+v7\/wBqTV6ZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeZ61\/wAl68P\/APXi3\/oM9emV5nrX\/JevD\/8A14t\/6DPQB6ZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxXib\/kp\/gX\/ALf\/AP0SK7WuK8Tf8lP8C\/8Ab\/8A+iRQB2tFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV4m\/5Kf4F\/wC3\/wD9Eiu1rivE3\/JT\/Av\/AG\/\/APokV2tABRRRQAUUUUAFFFFABRRRQAUUUUAeZ\/DT\/kc\/HH\/X9\/7Umr0yvM\/hp\/yOfjj\/AK\/v\/ak1emUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmetf8l68P\/wDXi3\/oM9emV5nrX\/JevD\/\/AF4t\/wCgz0AemUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4m\/5Kf4F\/7f\/wD0SK7WuK8Tf8lP8C\/9v\/8A6JFAHa0UUUAFFFFABRRRQAVh+MPEX\/CJ+E7\/AFz7L9q+yIreT5mzflgv3sHHX0rcrH8VeH4vFXhm90Sed4IrtVVpEALABg3GfpQBm6Trni68v7eO\/wDCFvZWcn+suF1ZZSgxkHYIxnsOveo9b8Z3Nr4j\/wCEf0HRJNZ1OOEXFyv2hYI4EP3dzsD8x7DHTmsDWE1z4e32j38fiO\/1bS7u+isbu01AIzL5nAeNlUYxj7verXgn\/kqPxD83\/X+fZ9euzyjt\/DFAHS+FfFEPieyuHFrLZXtnO1teWcxBeCQdRkcEHqCODW9XAeEf+SsfEHy\/9Tmwzjpv8k5\/H1rstX\/tT+y5v7G+x\/2h8vlfbN3lfeGd23n7ucY74oA5fxN\/yU\/wL\/2\/\/wDokV2teXTf8JT\/AMLR8G\/8JJ\/Y23F95H9nebnPkjdu3\/hjHvXqNABRRRQAUUUUAFFFFABRRRQAUUUUAeZ\/DT\/kc\/HH\/X9\/7Umr0yvM\/hp\/yOfjj\/r+\/wDak1emUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXmetf8l68P8A\/Xi3\/oM9emV5nrX\/ACXrw\/8A9eLf+gz0AemUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4m\/5Kf4F\/7f8A\/wBEiu1rivE3\/JT\/AAL\/ANv\/AP6JFAHa0UUUAFFFFABRRRQAVna5YX2paa0GnarLpl1vVkuY41kK4PQq3BB9K0aKAOIi8Calf6xYX\/ijxNLrEenyi4tbSO0S2iEo6OwUksR25\/qKs634MubrxH\/wkGg63Jo2pyQi3uW+zrPHOg+7uRiPmHY56cV11FAGD4V8Lw+GLG4T7VLe3t5O1zeXkwAeeQ9TgcADoAOBW9RRQBxXib\/kp\/gX\/t\/\/APRIrta4rxN\/yU\/wL\/2\/\/wDokV2tABRRRQAUUUUAFFFFABRRRQAUUUUAeZ\/DT\/kc\/HH\/AF\/f+1Jq9MrzP4af8jn44\/6\/v\/ak1emUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUVma54g0zw3Zpd6rcmCB5BErCNnyxBOMKCegNYH\/AAtXwb\/0Fj\/4DS\/\/ABNAHZUVxv8AwtXwb\/0Fj\/4DS\/8AxNH\/AAtXwb\/0Fj\/4DS\/\/ABNAHZV5nrX\/ACXrw\/8A9eLf+gz1tf8AC1fBv\/QWP\/gNL\/8AE1w+p+M9Aufi3o+uxXxbTre1Mcs3kuNrYl424yfvL270Ae1UVxv\/AAtXwb\/0Fj\/4DS\/\/ABNH\/C1fBv8A0Fj\/AOA0v\/xNAHZUVxv\/AAtXwb\/0Fj\/4DS\/\/ABNH\/C1fBv8A0Fj\/AOA0v\/xNAHZUVmaH4g0zxJZvd6VcmeBJDEzGNkwwAOMMAehFadABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxXib\/kp\/gX\/t\/\/APRIrta4rxN\/yU\/wL\/2\/\/wDokUAdrRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHFeJv+Sn+Bf+3\/8A9Eiu1rivE3\/JT\/Av\/b\/\/AOiRXa0AFFFFABRRRQAUUUUAFFFFABRRRQB5n8NP+Rz8cf8AX9\/7Umr0yvM\/hp\/yOfjj\/r+\/9qTV6ZQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAFW\/wBNsdUhWHULO3u4lbeEnjDgNjGcHvyfzrP\/AOEQ8Nf9C\/pf\/gJH\/hW1RQBi\/wDCIeGv+hf0v\/wEj\/wo\/wCEQ8Nf9C\/pf\/gJH\/hW1RQBi\/8ACIeGv+hf0v8A8BI\/8KP+EP8ADOc\/8I\/pf\/gIn+FbVFAGL\/wiHhr\/AKF\/S\/8AwEj\/AMKP+EQ8Nf8AQv6X\/wCAkf8AhW1RQBi\/8Ih4a\/6F\/S\/\/AAEj\/wAKP+EQ8Nf9C\/pf\/gJH\/hW1RQBVsNNsdLhaHT7O3tImbeUgjCAtjGcDvwPyq1RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4m\/wCSn+Bf+3\/\/ANEiu1rivE3\/ACU\/wL\/2\/wD\/AKJFAHa0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBxXib\/AJKf4F\/7f\/8A0SK7WuK8Tf8AJT\/Av\/b\/AP8AokV2tABRRRQAUUUUAFFFFABRRRQAUUUUAeZ\/DT\/kc\/HH\/X9\/7Umr0yvM\/hp\/yOfjj\/r+\/wDak1emUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHH+NvHdt4Qn06BoxNLcShpk7pADhmHPX07HB9K62GaO4gjmhdZIpFDo6nIZSMgivmv4j\/ANpf8J3qX9pZ37\/3OPu+T\/Bj8OvvnvXsPwo\/tL\/hBLb+0M7N7fZc\/e8ntn8d2PbHagDtqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuK8Tf8lP8AAv8A2\/8A\/okV2tcV4m\/5Kf4F\/wC3\/wD9EigDtaKKKACiiigAooooAKKKKACiiigAooooA4rxN\/yU\/wAC\/wDb\/wD+iRXa1xXib\/kp\/gX\/ALf\/AP0SK7WgAooooAKKKKACiiigAooooAKKKKAPM\/hp\/wAjn44\/6\/v\/AGpNXpleZ\/DT\/kc\/HH\/X9\/7Umr0ygAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+cPijrMureNrqN4TEll\/o0asuGIBJLH6kkj2xXsPw11mXWvBNnJNCY3tv9GztwrhAAGH4YH1BrB+JPw\/n8Q6pYahpiATyyLb3Rx0TtIfoMg\/h6V6Dpem22j6XbafaJsgt4wiD+p9z1P1oAt0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4m\/wCSn+Bf+3\/\/ANEiu1rivE3\/ACU\/wL\/2\/wD\/AKJFAHa0UUUAFFFFABRRRQAUUUUAFFFFABRRRQBxXib\/AJKf4F\/7f\/8A0SK7WuK8Tf8AJT\/Av\/b\/AP8AokV2tABRRRQAUUUUAFFFFABRRRQAUUUUAeZ\/DT\/kc\/HH\/X9\/7Umr0yvM\/hp\/yOfjj\/r+\/wDak1emUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACMyopZiFUDJJPAFeIf8LQf\/hZn2\/zW\/sX\/j02dvLz\/rMeufm9ccV7TeWkV\/Y3FnOCYZ42icA4JVhg8\/jXzb\/wg2of8J5\/wjGDv83\/AF2OPJ6+Z\/3z+vFAH0wrK6hlIZSMgg8EUtQWdpFYWMFnACIYI1iQE5IVRgfyqegAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK4Tx94\/XwneadaW6rLPJIJbhO4hBwR7E84+ldraXUN9Zw3dtIJIJkEkbjoykZBoAmooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK4rxN\/yU\/wAC\/wDb\/wD+iRXa1xXib\/kp\/gX\/ALf\/AP0SKAO1ooooAKKKKACiiigAoorjviF4kbR9PtNKtLyGz1LWJDbwXMzhEt0ABkmJJA+VTwO5K0AWdH8e6Prni\/UPDdity9zYxtJJOUUQuFYIwVs5JDEjpjKnmn69430\/QtUi0pbPUdT1OSIzfY9Og82RI843tkgAZ45NcP4bl8O6P8YIbHTNRsfsMXhuO1hdbhGEkn2jOMg8uc5I6kmtnwX+\/wDin8QbiXmdJbOFc9VjERwB7HGaAOu8PeItP8T6Yb7Tnk2rI0MsUqFJIZF+8jqeQw9K1q4Dwh+5+KvxBtouIN9jNtHQSPCSx+pwDXZav\/an9lzf2N9j\/tD5fK+2bvK+8M7tvP3c4x3xQBy\/ib\/kp\/gX\/t\/\/APRIrta8um\/4Sn\/haPg3\/hJP7G24vvI\/s7zc58kbt2\/8MY969RoAKKKKACiiigAooooAKKKKACiiigDzP4af8jn44\/6\/v\/ak1emV5n8NP+Rz8cf9f3\/tSavTKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqv8AYbX+0Pt\/kJ9r8ryfOx82zOdufTPNWKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+bvidp9\/Y+Ob2S+dpVuT5sEhHBj6BR\/u42\/hnvXsPwx0+\/wBO8DWcd+7FpCZYo2HMUbchf5n\/AIFitPxJ4U07xObE36ZNpOJVwPvL3Q+xwM\/St0DAwOlABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVxXib\/AJKf4F\/7f\/8A0SK7WuK8Tf8AJT\/Av\/b\/AP8AokUAdrRRRQAUUUUAFFFFABWfqehaPrflf2tpVjf+Tny\/tdukuzOM43A4zgdPQVoUUAcHbfDbTLX4j\/29DpGjR6WmnrFDbx2yho7kS7vNChdoOONwOam1Xwvr1l4vuPEvhW509Z7+BIb601AOI5CnCSBkyQwHGMYxXbUUAcz4P8M3GgRahealdx3esapcfabyaNCqA4wqIDztUcDPNdNRRQBxXib\/AJKf4F\/7f\/8A0SK7WuK8Tf8AJT\/Av\/b\/AP8AokV2tABRRRQAUUUUAFFFZ99r2j6XOIL\/AFSytZSu8JPOqMV6ZwT04P5UAaFFYv8Awl\/hr\/oYNL\/8C4\/8aP8AhL\/DX\/QwaX\/4Fx\/40AbVFYv\/AAl\/hr\/oYNL\/APAuP\/Gj\/hL\/AA1\/0MGl\/wDgXH\/jQBxvw0\/5HPxx\/wBf3\/tSavTK8j+H2u6RY+LPGM93qlnBFcXm6F5Z1VZB5kpypJ5GCOnqK9C\/4S\/w1\/0MGl\/+Bcf+NAG1RWL\/AMJf4a\/6GDS\/\/AuP\/Gj\/AIS\/w1\/0MGl\/+Bcf+NAG1RWL\/wAJf4a\/6GDS\/wDwLj\/xrXhmiuYI54JElikUOjocqynkEEdRQA+iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SKAO1ooooAKKKKACiiigAooooAKKKKACiiigDivE3\/JT\/Av\/AG\/\/APokV2tcV4m\/5Kf4F\/7f\/wD0SK7WgAooooAKKKKACuf1zwT4f8R3q3mq2JnnSMRBvOdMKCSBhSB1JroKKAON\/wCFVeDf+gSf\/AmX\/wCKo\/4VV4N\/6BJ\/8CZf\/iq7KigDjf8AhVXg3\/oEn\/wJl\/8AiqP+FVeDf+gSf\/AmX\/4quyooA4wfCrwb\/wBApj\/28y\/\/ABVL\/wAKq8G\/9Ak\/+BMv\/wAVXZUUAcb\/AMKq8G\/9Ak\/+BMv\/AMVR\/wAKq8G\/9Ak\/+BMv\/wAVXZUUAcb\/AMKq8G\/9Ak\/+BMv\/AMVXV2dpBp9lBZ2ybIII1ijXJO1VGAMnk8Cp6KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArivE3\/JT\/Av\/b\/\/AOiRXa1xXib\/AJKf4F\/7f\/8A0SKAO1ooooAKKKKACiiigAooooAKKKKACiiigDivE3\/JT\/Av\/b\/\/AOiRXa1h+IvB2g+K2tW1uw+1Nab\/ACD5zps3Y3fdYZztHX0rG\/4VJ4H\/AOgJ\/wCTc\/8A8XQB2tFcV\/wqTwP\/ANAT\/wAm5\/8A4uj\/AIVJ4H\/6An\/k3P8A\/F0AdrRXFf8ACpPA\/wD0BP8Aybn\/APi6P+FSeB\/+gJ\/5Nz\/\/ABdAHa0VxX\/CpPA\/\/QE\/8m5\/\/i6P+FSeB\/8AoCf+Tc\/\/AMXQB2tFcV\/wqTwP\/wBAT\/ybn\/8Ai6P+FSeB\/wDoCf8Ak3P\/APF0AdrRXFf8Kk8D\/wDQE\/8AJuf\/AOLo\/wCFSeB\/+gJ\/5Nz\/APxdAHa0V5D4J+HPhTVf+Ei+26WZfsut3NrDm5lGyJdu1eG5xk9ea6n\/AIVJ4H\/6An\/k3P8A\/F0AdrRXFf8ACpPA\/wD0BP8Aybn\/APi6P+FSeB\/+gJ\/5Nz\/\/ABdAHa0VxX\/CpPA\/\/QE\/8m5\/\/i6P+FSeB\/8AoCf+Tc\/\/AMXQB2tFcV\/wqTwP\/wBAT\/ybn\/8Ai6P+FSeB\/wDoCf8Ak3P\/APF0AdrRXFf8Kk8D\/wDQE\/8AJuf\/AOLo\/wCFSeB\/+gJ\/5Nz\/APxdAHa0VxX\/AAqTwP8A9AT\/AMm5\/wD4uj\/hUngf\/oCf+Tc\/\/wAXQB2tFcV\/wqTwP\/0BP\/Juf\/4uj\/hUngf\/AKAn\/k3P\/wDF0AdrRXFf8Kk8D\/8AQE\/8m5\/\/AIuj\/hUngf8A6An\/AJNz\/wDxdAHa0VxX\/CpPA\/8A0BP\/ACbn\/wDi6P8AhUngf\/oCf+Tc\/wD8XQB2tFcV\/wAKk8D\/APQE\/wDJuf8A+Lo\/4VJ4H\/6An\/k3P\/8AF0AdrRXFf8Kk8D\/9AT\/ybn\/+Lo\/4VJ4H\/wCgJ\/5Nz\/8AxdAHa0VxX\/CpPA\/\/AEBP\/Juf\/wCLrlv+Fc+FP+Frf2P\/AGWfsH9ifavJ+0y483z9u7O7PTjrigD16iuK\/wCFSeB\/+gJ\/5Nz\/APxdH\/CpPA\/\/AEBP\/Juf\/wCLoA7WiuK\/4VJ4H\/6An\/k3P\/8AF0f8Kk8D\/wDQE\/8AJuf\/AOLoA7WiuK\/4VJ4H\/wCgJ\/5Nz\/8AxdH\/AAqTwP8A9AT\/AMm5\/wD4ugDtaK4r\/hUngf8A6An\/AJNz\/wDxdH\/CpPA\/\/QE\/8m5\/\/i6AO1oriv8AhUngf\/oCf+Tc\/wD8XR\/wqTwP\/wBAT\/ybn\/8Ai6AO1oriv+FSeB\/+gJ\/5Nz\/\/ABdH\/CpPA\/8A0BP\/ACbn\/wDi6AO1oriv+FSeB\/8AoCf+Tc\/\/AMXR\/wAKk8D\/APQE\/wDJuf8A+LoA7WiuK\/4VJ4H\/AOgJ\/wCTc\/8A8XR\/wqTwP\/0BP\/Juf\/4ugDtaK4r\/AIVJ4H\/6An\/k3P8A\/F0f8Kk8D\/8AQE\/8m5\/\/AIugDtaK4r\/hUngf\/oCf+Tc\/\/wAXR\/wqTwP\/ANAT\/wAm5\/8A4ugDtaK4r\/hUngf\/AKAn\/k3P\/wDF0f8ACpPA\/wD0BP8Aybn\/APi6AO1oryHxt8OfCmlf8I79i0sxfatbtrWbFzKd8Tbty8txnA6c11P\/AAqTwP8A9AT\/AMm5\/wD4ugDtaK4r\/hUngf8A6An\/AJNz\/wDxdH\/CpPA\/\/QE\/8m5\/\/i6AO1oriv8AhUngf\/oCf+Tc\/wD8XR\/wqTwP\/wBAT\/ybn\/8Ai6AO1oriv+FSeB\/+gJ\/5Nz\/\/ABdH\/CpPA\/8A0BP\/ACbn\/wDi6AO1oriv+FSeB\/8AoCf+Tc\/\/AMXR\/wAKk8D\/APQE\/wDJuf8A+LoA7WiuK\/4VJ4H\/AOgJ\/wCTc\/8A8XR\/wqTwP\/0BP\/Juf\/4ugDtaK4r\/AIVJ4H\/6An\/k3P8A\/F0f8Kk8D\/8AQE\/8m5\/\/AIugDtaK4r\/hUngf\/oCf+Tc\/\/wAXR\/wqTwP\/ANAT\/wAm5\/8A4ugDtaK4r\/hUngf\/AKAn\/k3P\/wDF0f8ACpPA\/wD0BP8Aybn\/APi6AO1oriv+FSeB\/wDoCf8Ak3P\/APF0f8Kk8D\/9AT\/ybn\/+LoA7WiuK\/wCFSeB\/+gJ\/5Nz\/APxdH\/CpPA\/\/AEBP\/Juf\/wCLoA7WiuK\/4VJ4H\/6An\/k3P\/8AF1leJvhf4NsPCmsXlto\/l3EFjNLE4upjtZUJB5f1FAHpVFea+Gfhf4Nv\/Cmj3lzo\/mXE9jDLK5uphuZkBJ4f1Nav\/CpPA\/8A0BP\/ACbn\/wDi6AO1oriv+FSeB\/8AoCf+Tc\/\/AMXR\/wAKk8D\/APQE\/wDJuf8A+LoA7WiuK\/4VJ4H\/AOgJ\/wCTc\/8A8XR\/wqTwP\/0BP\/Juf\/4ugDtaK4r\/AIVJ4H\/6An\/k3P8A\/F0f8Kk8D\/8AQE\/8m5\/\/AIugDtaK4r\/hUngf\/oCf+Tc\/\/wAXR\/wqTwP\/ANAT\/wAm5\/8A4ugDta4rxN\/yU\/wL\/wBv\/wD6JFH\/AAqTwP8A9AT\/AMm5\/wD4urek\/DjwnoerW+q6dpPk3tvu8qX7RK23cpU8MxB4JHSgDqqKKKACiiigAooooAKKKKACiiigAooooAKKKKACiivO\/ir\/AMfHgf8A7Giz\/m1AHolFcX8Wv+SV+IP+vcf+hrUGoeNP+EVsPCNkNLmv31WHykWBwHDLEpUAEYO4kDJIA6k0Ad3RXIaN4zvrjxOvh\/XtAk0e9mga4tSLpbiOdVOGG5QMMM5x\/wDWzhSar5Gk\/ESbQdIaLULa4dZpBfFTK3lDMwJHyFV5CjqV6jNAHplFcD4B8Ra7L4SsLrxBpiW2mw6WlwdVk1Hznmwqnc6bcjK7mJJOMY5zUf8AwsfVjph16PwXet4cC+b9sN1GJjD\/AM9BB124569OaAPQqK5XxB43t9LttIGmWcmr3+s86fawuE81doYuWPCqFIOff645KTWr7U\/jF4RttU0eXS7+2tr1niMyzIyPGNrI68HlWBGARj6UAer0VHOZBbyGFQ0oU7AehbHFeE+DE8A67YE+N7wN4teaRb0andSQSRvvOFT5lCjGMAf\/AFqAPeqK8x+Ik+qeFvDPhyz8PLcS241GCMznUCjkbhsiLYJZXyQSTwAMg5rq4ta8RroU93d+FduorKEhsbe\/STzFOPmMhChRyc\/T3oA6OiuO0\/xnqS+ILPR\/EXhyTR5b8OLOZbtLiKVlG4oSoG1scjI5rmrLxH4zX4meLLa10H7fFCtsEtZdXEccCbW2uoKEZcckADGOSaAPVqK5LWPGV1Dr8uheH9Cl1rUbeNZbsfaFgitw33QzsD8xHIAHSksPH1rLout3mqWNxpt5oak6hZOQ7p8u5SrDhgw6HjNAHXUVx2jeKvE2qS2U03guS20272stz\/aMTuiNyGaPAI4xwCSK7GgAooooAKKKKACiuQ+JXiC+8P8AhItpbKmpX1xFY2sjDISSQ43fgAce+Kop8IvDRsQJzfS6qVy2rG8kFyZP74bdgHPbGKAO9orwm88Z+LD4Z0uzAe41HTPEy6Xd3Ud35BuWjYbEYAcrICQT0+XJBzXQ\/EPVdTbwVp19r2kLpksGvWreRDci6LRqQdwIUc9Rtx296APVaK4mLx1qVtr2m2Gu+F59KtdTkMNndNdJLmTGQkir9wke55\/HFrWfGVzb6++g6Bocus6nDEs1youFgit1b7u92B+Y9QAOnNAHWUVymleNRf6brTXWmTWOraMha70+WQMR8hdSrjhlYA4bHY8VV8J+NtW8WxadfW3heSDSbpCZbyW8UbGCnIRMbnXcNu75fXGKAO1oorjdQ8aak3iS\/wBE8PeG31afTljN5K94lskZddyqCwJY456UAdlRXHeIfHM\/hjwjZ65qmiSwyy3SW89mZwzQhmILBlBD8DIA65HSoF8e6hY6rp8HiHwvcaTY6lMLe1vGuklxI33UlVfuE\/U8\/jQB3FFcprfjG4tdeOg6Fosus6pHEJ7hBOsEVuh+7vkYHk9gATjmpNB8ZQ6nHqkWqWUmkahpIDX1tPIHEaFSwdXHDIQDz7GgDp6K4Ow8d6\/rNumpaR4JurnR5DmK5kvo4pZUz99Yj27jJGatz3donxaNvFpXmasPDzSpdm5Kho\/PA8nZjAy2Dv69sUAdjRXhnhxNX1jxV4g8QX\/gyHUtQsNRlEcsmrEG0aKMFIY12kNzgbgB97pxXpkHjbT5vh2PGJXbaizNy0W7JDAYMecddwK9OtAHT0VQ0W+uNT0Syvrqz+xz3MKyvb+ZvMRYZ2k4GSM+lX6ACiiigAooooAKKKKACiio5\/8Aj3l\/3D\/KgCSivP8A4Jf8kh0L\/t4\/9KJK4PWv+RT+Lv8A2E0\/9CWgD3yiuVuvF3l63aeH9Gsf7U1Lar3YEvlxWcRH3pH2tgnsoGT7VRvfHt8njHU\/DGl+G5dQvrOKKVWF0saMrrli7MMJglQPvE56DBoA7iiuY1HXfE1utolh4Qa8nktkluA2oxxRwOc5jDEEuQR1Ax0pdB8Ux+IdN1SO506ax1DT2aG9sZnBKHbuGGXgqwPBFAHTUV5pp\/jTT\/C\/wh0TXLPRmisJHjhWzFyzmFWcgneVJbHJxjnpWonjvUrXW9NtNc8L3Gl2WqTfZ7S7e6SQ+aRlUkRfuE49Tz+NAHb0Vymt+Mbi1146DoWiy6zqkcQnuEE6wRW6H7u+RgeT2ABOOas+GPFX9vzX9jeadNpmraeyrdWcrh9oYZVlccMpAPPtQB0VFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFc\/47\/5J54l\/wCwVdf+imoA6CivCdU8KeGtC+DGneJ7JP7L15dOtbiG8gnZJJJ2RCRjOG3EnIxXeSeOtSF1ZaLpmgyatrosYrq\/j89beO23KOGdgfmJ6KB0oA7qiuNsvFkfiXw74htprKbTtU06GSK9spmDNEShKkMOGUjOD3xVXwXfXun\/AAi8PTadpcup3JtIlW3jlWPOe5ZuABQB3lFchpfjLUG8RW2h+IfD0mj3V6jvZut0txFNsGWXcoG1gOcEVVufH2oN4u1rw1pPhqXUL3TfJYOLtYo2R4w5LMy\/JgkAAbieTxigDuaK5XQvHFpqegapqWoW0mly6RJJFqFvKwcwsg3HBH3gR0I61xni3xxquqfDbVry58JXdno19ZOtveG5R3w4wjPEOVViRzk4yO3NAHrtFZfhr\/kVdH\/68of\/AEAVqUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXCfFTTr250TSdTsLWS7k0XVrfUXgiG55I4ydwUdzzn8DXd0UAeTeOPG+keM\/CF14c8MSTalq+pbIUt0t5F8obwWaQlQFAAPWtXxHai08dfDa0zuED3UefXbb4z+leiUUAcH4j\/5LB4I\/wCvfUP\/AEWlZmh20t5\/wtC1gQvNNdzRoo7sYAAPzNen0UAeU6Bqem+LfhOfBum3y\/29HofkS2kisjxuqBCGyBgbiB+Nc7psvhBNDg07XfFPjDTtQSAQXWly3lzkMF2sioFIZD2xkYxXvFFAHlGrwW3hDWPBHiKOC7Ph2xsXspneNmktUdB5buoGR6Hjj9KR\/Etj4m+M3hKfSxJLYxWt4qXhjZEmcoCyruAJCjbz0+b2NesUUAMlfyonk2s21S21RknHYe9eZa340+GWvWMi63bLNdFCv2W406QXQOPur8uQ3uDj3r1CigDxD+zdX0z4HeHm1S3uQ2n6nBdyxOpaSG2ExI3Ac8KRx2Hpiui8b+LLbXfBtve+HdUuZdJXVIoNWudODiWG2xmTHG4dUyR2Nem0UAeCunhI+O\/BsvhKK8nh\/tDFxfyzXDxlihwg804LdSdo449a6tvEGl+Dviv4ludfuvsNvqVrZtazSI2yTYrKwBAIyCelen0UAeLa1p1joPxE1+88R6vr+kadqhhntL7TrmWKFyE2skhQHDAjjPatzw3D4Mj07xHqtnd6zrVpNAkWoT3wln85AGG1SygvgE5xnAIr02igDxKy1PTbDXdEtvh34h1e\/SS9jiutJl8ya3htf42\/eLmLaMd\/wr22iigAooooAKKKKAOQ+JXh++8QeEiulqr6lY3MV9axscB5Iznb+IJx74qinxd8NCxBn+3RaqFw2km0kNyJP7gXbgnPfOK72igDxC70HU9G8A2+t6vavHd3HiiLXdQhjUubaMvyCBz8owT6ZPpW\/wCOvEOkeJ\/Cuj3mj3sd5bJ4hs4XdAcBgwJHIHZh+deoUUAcH8Tf9Z4LP\/U0Wf8A6DJXKa\/p1loXxI12\/wDEWq69pOm6qsEtrfabcSxRFkTY0cpQHDDGVz2Jr2eigDy7Q7Xwy+j+LNS0HU9X1OWTTminu9QeVw4CPtCu6jdjnOM4yK6j4bAL8NfDgAx\/oER\/8dFdTVHVzqo02U6Klm9\/keWt6zLF1GclQT0zjjrQBeryzxfc+BY\/E95Ne63qvh\/XkVUkubLzomnAUFeilJAAcdCeMVv+Z8Tf+fTwj\/4E3P8A8brr7bzzaw\/ahGLjYvmiIkoHxztzzjOcZoA8W8Qanr178HtCvtZt5rjURrUBjWSIRSXCCRvLLL2LAD+fetbxf4m07x9HpPhvw99oub6TUIJ7oNbvH9ijRtzNJuA2kdMf\/Wz3Xivw3\/wk9jY232v7N9lv4bzd5e\/d5bZ24yMZ9e3pW9QB414j06z0T4l63qfiHVNe0rS9Wjt3t77TbiWKIPGmxo5SgPPGVzxgmr+k6D4e1\/R\/FQ8M6tq+p3t7pxtHvNRkldGLK2xVd1GcHrjOAfevVqKAPNfC3xH0DS\/DWmaPqzXNhrNlbx2kunvayGXeihflAU5BxkEetXj\/AMl9T\/sV2\/8ASoV3lFAHB\/Db\/j\/8bf8AYx3H\/oCVxt5pF7\/wnb\/DhYT\/AGHeaiuuM38ItuWeHHZTMoA+te2SK7ROsbhHKkKxGdp7HHeuZ8N+ErjSNXv9a1bVm1bV7xEhNwbcQrHEvIREBOBk5PPJoA6iiiigAooooAKKKKACiiigApHUOjKehGDS0UAeR+A\/FmlfD\/wwvhTxTNJp1\/ps0yJ5kEhW4RpGdXjKghgd3bnisXUrO7b4S\/EDX7q1mtE1q++020My7XEIkQIzDsTzx\/jXu1FAHl2hk\/C3Ujp+pASeHtVn82DVmHzwzv8A8s7hu4P8Ln6H21PDYB+MPjZuCfs2n4P\/AGzau9ooA8k8X3WmH4jXFt43vdQtdBFnGdNSKSaOCaTJ8zcYuS4OMAnp+FRfDJLSLXfiAmn2dzZ2WLUwQ3LOZNhhchjvJb5hhsHkAgcdK9gooA8PwD8A\/B4IyDqFpx\/23Ndp8T\/ueD\/+xosP5tXeUUAeNeI9Os9E+Jet6n4h1TXtK0vVo7d7e+024liiDxpsaOUoDzxlc8YJrpvh\/a+GJdW1LU9B1XWNUmaKOKe7v5JZFYZJVVd1G7GD0zjI9a7+igAooooAKKKKACiiigAooooAKKKKACiiigArn\/Hf\/JPPEv8A2Crr\/wBFNXQUUAed+Afh\/wCE08LeHdX\/ALBs2v5NPt52mkUuTIY1Ytg5GcnNVW1W28CfFDxHf68ZLfTNcitpLa+8tmjV4kKNGxUHB5yM9q9OooA8t0Iya3qfjvxZDBNFpd9aJb2TyoUNwI4mDSbTg7ckYP8AhWTPc3lt8GPBRWe+t9JdoF1Wex3ebHb4OeV5C5xkjn869oooA8It08K\/8LN8GS+EobyW1NxOJr6Wad45H8o4RfNJyQMklR3Fd34TA\/4Wv8Qzjndp3P8A2713lFAHkLaRc69bfFbS7IZuZ7lREucbmESkL+OMfjVbxF8QdJ1L4SXukW0Ny2sjTvJuNPNu6tbFVAdnJGFVQCc554HU17PRQBl+Gv8AkVdH\/wCvKH\/0AVqUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUActrHj3S9L1d9It7TUdW1KNQ81rplt5zQg9C5yFXPoTn86teH\/ABdZeIbi4tEtNQsb62VXltb+2MMiqcgMOoIOD0Jrmfgyom8IXmpSjN\/falcy3bn7xfeRg\/QAce9bXxG1+68M+C7zUtPVP7QJS3t2cZCvI4XJ+mc\/UCgDq6K8p8UabrPw98Op4pt\/FOsajNZSxG\/t76fzIblGcKwVMfIctxjoPWuhW\/u2+NjWIup\/sX\/COLOLfzD5fmfaSN+3puxxnrigDtaK4vT767f4w61YvdTtaR6VbyJAZCY1Yu2WC9AT61yPgvRNd8V+Ajqd54v1yG4WS4Wz+z3RULtkYAyE5MnzAjBOAoAGOtAHqeq61p+iQQTajceTHPOltGdjNukc4VflBxk9+lX68R8R3E\/jH4WeCdZvry7iupdQt4Zfs0xjV2aTYXIHG4bMqf4STjrW\/wCPLHUPCXgWOPRdc1aS7m1W32T3t68rjcwXZuznYccr05PrQB6fRXnXiXwvrGi+FNQ1PTPEmuXmrWxjvcXF2fLkMRLOgjXACspYFRwcL6UviHxFJ4lk8I6ToV5PB\/bTrf3E1vIUeO0jAZhuU5UsSF\/AigD0SiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOEPhPxD4d1nUL3wfe6d9j1GY3FxpupK4jSY\/eeN05GeMggj9MLeeEvEHirQ9UsPFeqWSJdxqtvBpsLBLZ1bcJNzncxyF44GAfWu6ooA85vfCfjPxRa2uj+KNR0f+xopUkuWsUk868CEEKwb5UBIBOM89K1PEfhrXG8W2fijw1c2C38do1jcQX4fypYS28YKZIIbnp\/8AX7KigDiPDHhTXtO8b6p4i1q\/s7l7+0jiK26sojZSflVSPuAY5JJJycDNX\/A3hu88M+C4dGvZIJLhHnYtCxKYeRmHJAPRh2rqKKAPOIvh7qa\/CnSfDf2y0TVtMmS5ilG54TIkpcA8BsEHHSruteH\/ABT4n8NwWmqf2NBfQ6nBcj7LLKYzFGwY8sud3XjGOnNd1RQBDdXNtZ2zz3c8UEC\/ekmcKozxyTxXl3wf0CCO91zXreV5tO+0S2Gjs\/RbRZWc7f8AZLtx\/u16ffWFlqdo9pqFpBd2z4LQ3EYkRsHIypBBwQDUkFvDa26QW8McMMY2pHGoVVHoAOAKAJKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\/\/2Q=="}}}},"Programming - Python - Working with pandas":{"basics":{"enable_pair_programming":0,"title":"Programming - Python - Working with pandas","visible":1},"details":{"instructions":"For this exercise, you will use clinical data for endometrial cancer patients. The data file is tab delimited.\n\nThe rows represent different patients; the columns represent different data points about these patients. For example, there is a column that indicates the country of origin for each patient, their tumor grade, etc. On the far right, you will see data representing the patients' tumor size and number of pregnancies.\n\nPlease write a Python script that uses `sys.argv` to accept a single argument. This argument will be the path to the data file. Use the `pandas` module to read the file into a `DataFrame`. When reading the data, use the `index_col` keyword argument to indicate that the first (0th) column contains row names. Use the `sep` keyword argument to indicate that the values are tab-separated.\n\nPrint the data value from the first row and first column (not counting row names and column names).","back_end":"python_script","output_type":"txt","allow_any_response":0,"solution_code":"from sys import argv\nimport pandas\n\nfilePath = argv[1]\n\ndata = pandas.read_csv(filePath, index_col=0, sep=\"\\t\")\n\nprint(data.iloc[0,0])","solution_description":"","hint":"When using `pandas` to read a file, you do **not** need to use the `with` statement. The pandas package does that for use behind the scenes.","max_submissions":0,"starter_code":"","credit":"The data were provided by the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the [Payne lab](https:\/\/payne.byu.edu).","data_files":{"Endometrial.tsv":"Patient_ID\tSample_ID\tSample_Tumor_Normal\tProteomics_Tumor_Normal\tCountry\tHistologic_Grade_FIGO\tMyometrial_invasion_Specify\tHistologic_type\tTreatment_naive\tTumor_purity\tPath_Stage_Primary_Tumor-pT\tPath_Stage_Reg_Lymph_Nodes-pN\tClin_Stage_Dist_Mets-cM\tPath_Stage_Dist_Mets-pM\ttumor_Stage-Pathological\tFIGO_stage\tLVSI\tBMI\tAge\tDiabetes\tRace\tEthnicity\tGender\tTumor_Site\tTumor_Site_Other\tTumor_Focality\tTumor_Size_cm\tNum_full_term_pregnancies\nC3L-00006\tS001\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t1.0\t38.88\t64.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t2.9\t1\nC3L-00008\tS002\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage IV\tIA\t0.0\t39.76\t58.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tPosterior endometrium\t\tUnifocal\t3.5\t1\nC3L-00032\tS003\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t51.19\t50.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t4.5\t4 or more\nC3L-00090\tS005\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t32.69\t75.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t3.5\t4 or more\nC3L-00098\tS006\tTumor\tTumor\tUnited States\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t\t20.28\t63.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t6.0\t2\nC3L-00136\tS007\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t55.67\t50.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t4.5\t3\nC3L-00137\tS008\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t1.0\t25.68\t60.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t5.0\t2\nC3L-00139\tS009\tTumor\tTumor\tUnited States\t\t50 % or more\tSerous\tYES\tNormal\tpT3a (FIGO IIIA)\tpNX\tcM0\tStaging Incomplete\tStage III\tIIIA\t1.0\t21.57\t83.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t4.0\t4 or more\nC3L-00143\tS010\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1 (FIGO I)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t34.26\t69.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t5.2\t2\nC3L-00145\tS011\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t36.57\t59.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t4.7\t3\nC3L-00156\tS012\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.83\t56.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t2.2\t2\nC3L-00161\tS014\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tNo pathologic evidence of distant metastasis\tStage I\tIB\t1.0\t68.39\t46.0\tNo\tWhite\tHispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior Endometrium\tUnifocal\t7.0\t2\nC3L-00358\tS016\tTumor\tTumor\tUnited States\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tcM0\tStaging Incomplete\tStage I\tIB\t1.0\t26.22\t90.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior endometrium\tUnifocal\t4.5\tUnknown\nC3L-00361\tS017\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t42.98\t64.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t2.7\tNone\nC3L-00362\tS018\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t55.86\t38.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t13.5\tNone\nC3L-00413\tS019\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t0.0\t42.19\t60.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t3.2\t3\nC3L-00449\tS020\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.82\t59.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior endometrium\tUnifocal\t7.0\tNone\nC3L-00563\tS021\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t34.72\t62.0\tYes\tAsian\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t3.0\t1\nC3L-00586\tS022\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN2 (FIGO IIIC2)\tcM0\tStaging Incomplete\tStage III\tIIIC2\t1.0\t21.45\t50.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and posterior endometrium\tUnifocal\t6.0\t2\nC3L-00601\tS023\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t25.03\t57.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior\tUnifocal\t3.5\t3\nC3L-00605\tS024\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t38.54\t73.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t2.7\tUnknown\nC3L-00767\tS025\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t65.71\t56.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tMultifocal\t2.3\t4 or more\nC3L-00769\tS026\tTumor\tTumor\tOther_specify\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t46.64\t56.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tMultifocal\t4.5\t2\nC3L-00770\tS027\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t45.83\t73.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tMultifocal\t2.7\t4 or more\nC3L-00771\tS028\tTumor\tTumor\tOther_specify\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tcM0\tStaging Incomplete\tStage III\tIIIA\t1.0\t22.86\t86.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tPosterior endometrium\t\tMultifocal\t6.0\tUnknown\nC3L-00780\tS029\tTumor\tTumor\tOther_specify\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t46.41\t69.0\tYes\tWhite\tHispanic or Latino\tFemale\tOther, specify\tPosterior and Anterior Endometrium\tUnifocal\t1.7\t2\nC3L-00781\tS030\tTumor\tTumor\tOther_specify\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage II\tII\t1.0\t71.09\t48.0\tNo\tWhite\tHispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior Endometrium\tUnifocal\t5.5\t4 or more\nC3L-00905\tS031\tTumor\tTumor\tUnited States\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN1 (FIGO IIIC1)\tStaging Incomplete\tNo pathologic evidence of distant metastasis\tStage III\tIIIC1\t1.0\t44.81\t64.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tanterior and posterior\tUnifocal\t4.5\tUnknown\nC3L-00918\tS032\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t1.0\t43.0\t68.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBoth anterior and posterior endometrium\tUnifocal\t3.0\t2\nC3L-00921\tS033\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage II\tII\t1.0\t32.32\t66.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t4.0\t3\nC3L-00932\tS034\tTumor\tTumor\tOther_specify\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t47.82\t67.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tleft cornu\tUnifocal\t1.0\t3\nC3L-00942\tS036\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t31.58\t64.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tUnifocal\t4.5\tNone\nC3L-00946\tS037\tTumor\tTumor\tOther_specify\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t1.0\t17.64\t64.0\tNo\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tMultifocal\t3.9\t1\nC3L-00947\tS038\tTumor\tTumor\tOther_specify\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t36.84\t71.0\tYes\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tMultifocal\t1.8\t2\nC3L-00949\tS039\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t1.0\t37.69\t64.0\tYes\tWhite\tNot reported\tFemale\tOther, specify\talong anterior and posterior surface\tUnifocal\t2.5\t2\nC3L-00961\tS040\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t28.5\t59.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tMultifocal\t4.5\t2\nC3L-00963\tS041\tTumor\tTumor\tOther_specify\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t1.0\t34.89\t59.0\tYes\tWhite\tNot reported\tFemale\tOther, specify\talong anterior and posterior surface\tUnifocal\t2.6\t1\nC3L-01246\tS042\tTumor\tTumor\tOther_specify\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t39.14\t62.0\tNo\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tUnifocal\t2.3\t1\nC3L-01248\tS044\tTumor\tTumor\tOther_specify\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage II\tIB\t0.0\t59.78\t42.0\tNo\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tUnifocal\t6.3\t1\nC3L-01249\tS045\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t38.89\t65.0\tNo\tWhite\tNot reported\tFemale\tOther, specify\tTumor occupies 75% of endometrial surface\tUnifocal\t6.5\t1\nC3L-01252\tS046\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t38.41\t76.0\tYes\tWhite\tNot reported\tFemale\tPosterior endometrium\t\tUnifocal\t0.9\t4 or more\nC3L-01256\tS048\tTumor\tTumor\tOther_specify\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t0.0\t34.37\t75.0\tYes\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tUnifocal\t4.3\t4 or more\nC3L-01257\tS049\tTumor\tTumor\tOther_specify\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t17.11\t71.0\tNo\tWhite\tNot reported\tFemale\tOther, specify\tTumor involves 75% of endometrial cavity per diagnostic pathology report\tUnifocal\t8.0\t2\nC3L-01275\tS050\tTumor\tTumor\tOther_specify\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage I\tIB\t1.0\t32.06\t65.0\tNo\tNot Reported\tNot reported\tFemale\tOther, specify\t100 PERCENT OF ENDOMETRIAL SURFACE INVOLVED\tUnifocal\t5.0\tUnknown\nC3L-01282\tS051\tTumor\tTumor\tUnited States\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t1.0\t31.96\t64.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t3.0\tUnknown\nC3L-01304\tS053\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t41.44\t68.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t3.7\t3\nC3L-01307\tS054\tTumor\tTumor\tUnited States\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM1\tpM1\tStage IV\tIVB\t1.0\t31.63\t74.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t3.5\t3\nC3L-01311\tS055\tTumor\tTumor\tUnited States\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t37.11\t55.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t3.0\tNone\nC3L-01312\tS056\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t31.96\t56.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and Posterior\tUnifocal\t4.0\t1\nC3L-01744\tS057\tTumor\tTumor\tOther_specify\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage I\tIA\t0.0\t46.45\t62.0\tNo\tWhite\tNot reported\tFemale\tAnterior endometrium\t\tUnifocal\t2.2\t2\nC3L-01925\tS058\tTumor\tTumor\tUnited States\t\t50 % or more\tSerous\tYES\tNormal\tpT3b (FIGO IIIB)\tpN1 (FIGO IIIC1)\tStaging Incomplete\tpM1\tStage IV\tIVB\t1.0\t27.66\t65.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior and posterior endometrium\tUnifocal\t4.5\tNone\nC3N-00151\tS059\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIB\t0.0\t27.1\t60.0\tUnknown\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t\t2\nC3N-00200\tS060\tTumor\tTumor\tUnited States\tFIGO grade 2\tNot identified\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN1 (FIGO IIIC1)\tStaging Incomplete\tStaging Incomplete\tStage III\tIIIC1\t\t46.85\t72.0\tYes\tBlack or African American\tNot-Hispanic or Latino\tFemale\tOther, specify\tanterior and posterior endometrial cavity\tMultifocal\t9.0\t4 or more\nC3N-00321\tS061\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t26.0\t64.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.5\t2\nC3N-00322\tS062\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t31.0\t70.0\tNo\t\t\tFemale\tOther, specify\tEntire Uterine Cavity\tMultifocal\t2.6\t2\nC3N-00323\tS063\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.0\t78.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t4.0\tUnknown\nC3N-00324\tS064\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t0.0\t35.0\t66.0\tYes\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t2.3\tUnknown\nC3N-00326\tS065\tTumor\tTumor\tUkraine\tFIGO grade 1\tNot identified\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t35.0\t45.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.3\t2\nC3N-00328\tS066\tTumor\tTumor\tUkraine\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t31.22\t62.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t3.0\tUnknown\nC3N-00333\tS067\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t31.0\t65.0\tNo\t\t\tFemale\tOther, specify\tEntire Uterine Cavity\tMultifocal\t1.0\tUnknown\nC3N-00334\tS068\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t32.83\t68.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.4\t1\nC3N-00335\tS069\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t29.52\t57.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t2.5\tNone\nC3N-00337\tS070\tTumor\tTumor\tUkraine\tFIGO grade 3\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t29.07\t67.0\tNo\t\t\tFemale\tOther, specify\tEntire Uterine Cavity\tMultifocal\t1.3\t1\nC3N-00339\tS071\tTumor\tTumor\tUkraine\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t21.83\t45.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.3\tUnknown\nC3N-00340\tS072\tTumor\tTumor\tUkraine\t\tunder 50 %\tSerous\tYES\tNormal\tpT3a (FIGO IIIA)\tpN1 (FIGO IIIC1)\tcM0\tStaging Incomplete\tStage III\tIIIC1\t1.0\t27.0\t60.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t3.5\t2\nC3N-00377\tS073\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t34.0\t64.0\tYes\t\t\tFemale\tOther, specify\tUterine cavity\tMultifocal\t1.0\tUnknown\nC3N-00379\tS074\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t36.81\t41.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity.\tMultifocal\t2.5\t1\nC3N-00383\tS075\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t46.0\t61.0\tNo\t\t\tFemale\tOther, specify\tUterine cavity\tUnifocal\t4.0\t1\nC3N-00386\tS076\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t27.31\t44.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity.\tMultifocal\t2.3\t2\nC3N-00388\tS077\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t20.55\t59.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity.\tMultifocal\t4.0\t1\nC3N-00389\tS078\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t17.85\t62.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.5\t1\nC3N-00729\tS079\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage II\tIB\t0.0\t29.62\t86.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tboth anterior and posterior\tMultifocal\t4.0\t4 or more\nC3N-00734\tS080\tTumor\tTumor\tUnited States\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage III\tIIIA\t1.0\t38.97\t53.0\tNo\tWhite\tNot-Hispanic or Latino\tFemale\tAnterior endometrium\t\tUnifocal\t4.0\tNone\nC3N-00743\tS081\tTumor\tTumor\tUnited States\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t48.46\t53.0\tNo\tBlack or African American\tNot-Hispanic or Latino\tFemale\tOther, specify\tInvolves fundus, anterior and posterior walls\tMultifocal\t3.5\t2\nC3N-00836\tS082\tTumor\tTumor\tUkraine\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM1\tStaging Incomplete\tStage I\tIA\t0.0\t30.47\t75.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.0\t3\nC3N-00847\tS083\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tcM0\tStaging Incomplete\tStage III\tIIIA\t0.0\t34.53\t65.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t4.3\t2\nC3N-00848\tS084\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t33.65\t66.0\tYes\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t3.0\tNone\nC3N-00850\tS085\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t28.84\t65.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.0\t1\nC3N-00858\tS086\tTumor\tTumor\tPoland\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT3b (FIGO IIIB)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage III\tIIIB\t1.0\t36.0\t65.0\tNo\t\t\tFemale\tAnterior endometrium\t\tMultifocal\t11.0\t2\nC3N-00866\tS087\tTumor\tTumor\tUnited States\tFIGO grade 1\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t23.88\t77.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tAnterior, posterior and fundus\tMultifocal\t3.0\t4 or more\nC3N-00880\tS088\tTumor\tTumor\tPoland\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIA\t0.0\t27.0\t61.0\tNo\t\t\tFemale\tAnterior endometrium\t\tUnifocal\t3.2\t1\nC3N-01003\tS090\tTumor\tTumor\tPoland\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT3b (FIGO IIIB)\tpN0\tcM1\tpM1\tStage IV\tIVB\t0.0\t31.0\t73.0\tYes\t\t\tFemale\tAnterior endometrium\t\tMultifocal\t3.0\t4 or more\nC3N-01211\tS091\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t1.0\t39.2\t59.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.4\t1\nC3N-01212\tS092\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpNX\tcM0\tStaging Incomplete\tStage III\tIIIA\t1.0\t30.48\t63.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t1.5\t2\nC3N-01217\tS093\tTumor\tTumor\tUkraine\tFIGO grade 1\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpNX\tcM0\tStaging Incomplete\tStage I\tIB\t0.0\t36.2\t58.0\tNo\t\t\tFemale\tOther, specify\tEndometrium\tMultifocal\t0.8\tNone\nC3N-01219\tS094\tTumor\tTumor\tUkraine\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT3a (FIGO IIIA)\tpN0\tcM0\tStaging Incomplete\tStage III\tIIIA\t0.0\t26.14\t58.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t5.0\t1\nC3N-01267\tS095\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT1b (FIGO IB)\tpN1 (FIGO IIIC1)\tcM0\tStaging Incomplete\tStage III\tIIIC1\t1.0\t30.85\t57.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tMultifocal\t1.2\t2\nC3N-01346\tS096\tTumor\tTumor\tPoland\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpN2 (FIGO IIIC2)\tcM0\tNo pathologic evidence of distant metastasis\tStage III\tIIIC2\t1.0\t34.0\t63.0\t\t\t\tFemale\tAnterior endometrium\t\tUnifocal\t5.5\t1\nC3N-01349\tS097\tTumor\tTumor\tPoland\t\t50 % or more\tSerous\tYES\tNormal\tpT1b (FIGO IB)\tpN0\tcM0\tNo pathologic evidence of distant metastasis\tStage I\tIB\t1.0\t31.0\t77.0\tYes\t\t\tFemale\tAnterior endometrium\t\tMultifocal\t5.0\t4 or more\nC3N-01510\tS098\tTumor\tTumor\tUnited States\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpNX\tStaging Incomplete\tStaging Incomplete\tStage II\tII\t1.0\t40.72\t53.0\tYes\tWhite\tNot-Hispanic or Latino\tFemale\tOther, specify\tBulky tumor involving both anterior and posterior walls\tMultifocal\t8.5\tNone\nC3N-01520\tS099\tTumor\tTumor\tUkraine\tFIGO grade 2\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t29.37\t69.0\tNo\t\t\tFemale\tOther, specify\tEndometrium\tMultifocal\t1.0\t2\nC3N-01521\tS100\tTumor\tTumor\tUkraine\tFIGO grade 3\tunder 50 %\tEndometrioid\tYES\tNormal\tpT1a (FIGO IA)\tpNX\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t29.4\t75.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t4.2\t2\nC3N-01537\tS101\tTumor\tTumor\tUkraine\tFIGO grade 2\t50 % or more\tEndometrioid\tYES\tNormal\tpT2 (FIGO II)\tpN0\tcM0\tStaging Incomplete\tStage II\tII\t0.0\t35.42\t74.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t1.5\t1\nC3N-01802\tS102\tTumor\tTumor\tUnited States\t\tunder 50 %\tSerous\tYES\tNormal\tpT2 (FIGO II)\tpN0\tStaging Incomplete\tStaging Incomplete\tStage II\tII\t1.0\t24.32\t85.0\tYes\tBlack or African American\tNot-Hispanic or Latino\tFemale\tOther, specify\tentire uterine cavity\tUnifocal\t3.8\t1\nC3N-01825\tS103\tTumor\tTumor\tUkraine\t\tunder 50 %\tSerous\tYES\tNormal\tpT1a (FIGO IA)\tpN0\tcM0\tStaging Incomplete\tStage I\tIA\t0.0\t34.06\t70.0\tNo\t\t\tFemale\tOther, specify\tEntire uterine cavity\tUnifocal\t5.0\tUnknown\nC3L-00006.N\tS105\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00361.N\tS106\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00563.N\tS130\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00586.N\tS107\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00601.N\tS108\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00605.N\tS131\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00769.N\tS109\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00770.N\tS132\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00771.N\tS133\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00930.N\tS110\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00932.N\tS111\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00947.N\tS112\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-00963.N\tS113\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01246.N\tS114\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01249.N\tS115\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01252.N\tS116\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01256.N\tS117\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01257.N\tS118\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01282.N\tS119\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01304.N\tS120\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01307.N\tS121\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01311.N\tS122\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3L-01744.N\tS123\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00200.N\tS134\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00333.N\tS124\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00383.N\tS125\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00729.N\tS126\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00858.N\tS127\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-00866.N\tS128\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-01211.N\tS135\tNormal\tMyometrium_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nC3N-01346.N\tS129\tNormal\tAdjacent_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX1.N\tS136\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX10.N\tS145\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX11.N\tS146\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX12.N\tS147\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX13.N\tS148\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX14.N\tS149\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX15.N\tS150\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX16.N\tS151\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX17.N\tS152\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX18.N\tS153\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX2.N\tS137\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX3.N\tS138\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX4.N\tS139\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX5.N\tS140\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX6.N\tS141\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX7.N\tS142\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX8.N\tS143\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\nNX9.N\tS144\tNormal\tEnriched_normal\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\n"},"what_students_see_after_success":1,"date_created":"2021-04-04 15:46:21.375506","date_updated":"2025-07-14 15:53:01.986464","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Test 1":{"before_code":"","after_code":"python code.py Endometrial.tsv","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"S001","jpg_output":""}}}},"Programming - Python - writing a function":{"basics":{"enable_pair_programming":0,"title":"Programming - Python - writing a function","visible":1},"details":{"instructions":"Please write a function called `calculateAverage` that accepts a single argument: a list that contains numeric values. Your function should return the average of these values.","back_end":"python","output_type":"txt","allow_any_response":0,"solution_code":"def calculateAverage(l):\n return sum(l) \/ len(l)","solution_description":"","hint":"One way to calculate the average is to first calculate the sum and then divide by the number of elements in the list.","max_submissions":0,"starter_code":"","credit":"","data_files":{},"what_students_see_after_success":1,"date_created":"2021-02-03 21:08:20.073247","date_updated":"2025-07-14 15:53:13.062525","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Test 1":{"before_code":"","after_code":"print(calculateAverage([1, 2, 3]))","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"2.0","jpg_output":""},"Test 2":{"before_code":"","after_code":"print(calculateAverage([4.56382, 2.91838, 3.92918, 105.21928, -10.1982, -0.0231]))","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"17.734893333333332","jpg_output":""},"Test 3":{"before_code":"","after_code":"print(calculateAverage([0]))","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"0.0","jpg_output":""},"Test 4":{"before_code":"","after_code":"print(calculateAverage([0, 0, 0, 0, 0.0005]))","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"0.0001","jpg_output":""},"Test 5":{"before_code":"","after_code":"print(calculateAverage([4, 5, 8.23, 9.23, 0.0005]))","instructions":"This test uses a list of 5 numbers as input.","can_see_test_code":0,"can_see_expected_output":0,"can_see_code_output":1,"txt_output":"5.2921","jpg_output":""},"Test 6":{"before_code":"","after_code":"print(calculateAverage([-1, -2, -3, -4, 4, 3, 2, 1]))","instructions":"This test uses a list of 8 numbers as input.","can_see_test_code":0,"can_see_expected_output":0,"can_see_code_output":1,"txt_output":"0.0","jpg_output":""}}}},"Programming - R - Hello, world!":{"basics":{"enable_pair_programming":0,"title":"Programming - R - Hello, world!","visible":1},"details":{"instructions":"Declare a variable called `greeting` and assign a value of `Hello, world!` to that variable (don't forget the quotation marks because this will be a character variable). Then print the value of this variable.","back_end":"r","output_type":"txt","allow_any_response":0,"solution_code":"greeting = \"Hello, world!\"\nprint(greeting)","solution_description":"","hint":"","max_submissions":0,"starter_code":"","credit":"","data_files":[],"what_students_see_after_success":0,"date_created":"2023-09-21 03:43:21.027625","date_updated":"2025-07-14 15:53:22.866055","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Default test":{"before_code":"","after_code":"","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"[1] \"Hello, world!\"","jpg_output":""}}}},"Programming - R ggplot2 (data visualization)":{"basics":{"enable_pair_programming":0,"title":"Programming - R ggplot2 (data visualization)","visible":1},"details":{"instructions":"For this exercise, use `Location_Data.tsv`. Use `ggplot2` to make a [scatter plot](http:\/\/docs.ggplot2.org\/current\/geom_point.html) that compares the total number of species (x axis) identified at each location against NDVI (y axis) at the same location. Color the points according to the predominant species type. Change the **size** of the points according to elevation. Use the `theme_dark` theme.","back_end":"r","output_type":"jpg","allow_any_response":0,"solution_code":"library(tidyverse)\n\nlocationData \u003c- read_tsv(\"Location_Data.tsv\")\n\nggplot(locationData, aes(x=NumSpecies, y=NDVI, col=PredominantSpeciesType, size=Elevation)) + \n geom_point() +\n theme_dark()","solution_description":"","hint":"In this exercise, you will need to specify a variable for the x-axis and the y-axis.","max_submissions":0,"starter_code":"","credit":"","data_files":{"Location_Data.tsv":"LocationID\tNumSpecies\tNumCoreSpecies\tNumTransientSpecies\tPredominantSpeciesType\tNDVI\tElevation\tLongitude\tLatitude\n2001\t75\t45\t15\tCore\t0.738277446\t172.3666667\t-87.6\t34.86\n2006\t63\t38\t18\tCore\t0.703928642\t180.7285714\t-86.68\t34.5\n2017\t71\t52\t12\tCore\t0.815699268\t149.9\t-87\t33.52\n2019\t71\t50\t13\tCore\t0.799953598\t106.877193\t-88.17\t33.47\n2021\t62\t35\t13\tCore\t0.805781902\t63.81818182\t-87.83\t32.27\n2027\t70\t42\t12\tCore\t0.771619379\t118.6774194\t-85.55\t32.31\n2029\t71\t50\t10\tCore\t0.7657445\t92.53448276\t-85.06\t32.14\n2034\t67\t48\t9\tCore\t0.80480125\t109.2931034\t-86.61\t31.44\n2043\t60\t47\t8\tCore\t0.802562756\t163.5849057\t-87.1\t33.11\n2045\t72\t49\t7\tCore\t0.80217484\t247.328125\t-87.76\t34.13\n2047\t70\t55\t8\tCore\t0.793304276\t88.17241379\t-87.82\t33.13\n2050\t70\t41\t16\tCore\t0.76203119\t74.11538462\t-86.71\t32.32\n2105\t64\t43\t9\tCore\t0.79182131\t258.2833333\t-86.47\t34.21\n6014\t86\t62\t14\tCore\t0.445505461\t1813.636364\t-112.43\t34.64\n6018\t34\t13\t15\tTransient\t0.131184214\t446.1636364\t-114.21\t33.65\n6024\t54\t20\t22\tTransient\t0.313627827\t60.80701754\t-114.39\t32.83\n6025\t48\t23\t15\tCore\t0.245327353\t106.1969697\t-113.54\t32.92\n6032\t102\t55\t26\tCore\t0.37562125\t1451.35\t-110.79\t31.51\n7004\t80\t47\t22\tCore\t0.775822244\t50.72222222\t-92.69\t33.59\n7005\t75\t45\t20\tCore\t0.761304001\t93.09090909\t-93.47\t33.37\n7015\t61\t29\t23\tCore\t0.846760465\t449.1754386\t-94.04\t34.97\n7019\t78\t37\t24\tCore\t0.732349357\t91.25454545\t-91.34\t35.91\n7020\t72\t46\t12\tCore\t0.828096974\t312.5737705\t-92.71\t35.63\n7021\t75\t46\t13\tCore\t0.779800753\t239.5438596\t-92.19\t35.57\n7109\t54\t23\t20\tCore\t0.624194332\t63.51724138\t-91.7\t34.7\n14001\t73\t38\t19\tCore\t0.714063971\t522.3661972\t-123\t41.82\n14014\t81\t53\t14\tCore\t0.715391395\t169\t-123.58\t38.8\n14018\t69\t31\t21\tCore\t0.487610042\t2328.794521\t-119.83\t38.34\n14021\t54\t23\t19\tCore\t0.462464777\t59.82089552\t-120.86\t37.59\n14054\t77\t44\t28\tCore\t0.387606453\t300.1111111\t-119.3\t36.63\n14071\t80\t58\t11\tCore\t0.690251111\t126.4615385\t-122.86\t38.04\n14080\t44\t22\t17\tCore\t0.556408429\t60.57142857\t-122.23\t39.76\n14097\t73\t45\t21\tCore\t0.479332406\t331.1038961\t-122.38\t40.51\n14098\t76\t56\t11\tCore\t0.538698139\t286.7857143\t-121.03\t38.72\n14108\t72\t53\t8\tCore\t0.55838311\t477.2622951\t-121.69\t36.45\n14140\t29\t12\t10\tCore\t0.244145698\t602.9836066\t-119.72\t35.09\n14153\t75\t44\t16\tCore\t0.522742447\t372.875\t-120.92\t38.76\n14155\t58\t30\t16\tCore\t0.530170305\t13.85\t-121.15\t37.51\n14159\t53\t29\t18\tCore\t0.499592859\t30.58823529\t-121.6\t39.49\n14164\t78\t37\t18\tCore\t0.707759261\t692.5\t-123.03\t40.65\n14166\t59\t34\t14\tCore\t0.530614457\t1249.851351\t-121.89\t41.99\n14168\t98\t55\t28\tCore\t0.48840872\t1308.666667\t-122.01\t41.82\n14186\t72\t47\t16\tCore\t0.534349013\t70.01960784\t-122.71\t38.54\n14188\t85\t41\t26\tCore\t0.629225781\t1549.5\t-120.44\t38.76\n14189\t79\t58\t8\tCore\t0.486143313\t202.0714286\t-121.67\t37.25\n17004\t64\t33\t20\tCore\t0.457563293\t1710.5\t-105.03\t40.5\n17009\t87\t39\t33\tCore\t0.551410561\t2055.125\t-107.64\t39.96\n17011\t84\t41\t28\tCore\t0.460559786\t2250.509804\t-105.27\t39.22\n17013\t31\t16\t10\tCore\t0.362459295\t1452.381818\t-103.64\t39.85\n17037\t41\t19\t14\tCore\t0.483467375\t1195.672414\t-102.71\t40.26\n17040\t64\t34\t18\tCore\t0.61339764\t3008.449275\t-106.22\t39.54\n17044\t45\t16\t20\tTransient\t0.41359125\t1308.355556\t-102.42\t39.38\n17052\t75\t37\t27\tCore\t0.71757814\t2660.870968\t-108.02\t37.79\n17055\t51\t26\t18\tCore\t0.423889459\t2301.122449\t-105.74\t37.18\n18003\t77\t41\t20\tCore\t0.837358667\t171.983871\t-72.51\t41.7\n18009\t90\t52\t25\tCore\t0.852066731\t216.1454545\t-73.5\t41.53\n21001\t68\t46\t10\tCore\t0.688340366\t17.32758621\t-75.68\t39.5\n21002\t66\t40\t13\tCore\t0.678810244\t19.87272727\t-75.58\t39.75\n21003\t84\t54\t13\tCore\t0.614335422\t5.819672131\t-75.53\t38.95\n21004\t68\t46\t10\tCore\t0.735303631\t18.11290323\t-75.46\t39.02\n25001\t62\t44\t6\tCore\t0.73856\t52.94230769\t-87.4\t30.92\n25002\t45\t22\t13\tCore\t0.406660886\t8.772727273\t-86.27\t30.37\n25003\t59\t35\t12\tCore\t0.653856598\t63.62295082\t-86.48\t30.51\n25009\t57\t38\t11\tCore\t0.60125588\t5.795454545\t-85.3\t29.78\n25014\t53\t39\t10\tCore\t0.63655538\t22.03921569\t-82.39\t29.19\n25020\t50\t35\t8\tCore\t0.702742088\t39.02\t-82.3\t28.32\n25022\t46\t30\t8\tCore\t0.678290632\t45.11666667\t-81.86\t28.17\n25025\t51\t27\t16\tCore\t0.64961695\t5.75\t-80.87\t28.74\n25027\t46\t26\t11\tCore\t0.633669906\t35.96078431\t-82.14\t27.66\n25031\t47\t26\t17\tCore\t0.657923796\t10.36923077\t-80.38\t26.96\n25037\t56\t34\t11\tCore\t0.744654643\t40.14814815\t-82.16\t30.25\n25052\t61\t47\t11\tCore\t0.73739593\t58\t-86.78\t30.72\n25066\t47\t28\t7\tCore\t0.711040338\t32.21153846\t-82.17\t28.64\n25067\t46\t25\t14\tCore\t0.688630915\t18.49152542\t-80.89\t28.1\n25073\t45\t33\t5\tCore\t0.609799381\t34.32786885\t-81.45\t27.76\n25081\t32\t19\t10\tCore\t0.642085277\t11.65454545\t-81.12\t26.55\n25086\t40\t25\t7\tCore\t0.647759817\t10.33333333\t-81.76\t26.94\n25087\t36\t18\t14\tCore\t0.612932981\t5.26984127\t-81.65\t25.93\n25129\t41\t31\t3\tCore\t0.641279498\t46.3125\t-81.71\t27.9\n27010\t67\t42\t9\tCore\t0.670230434\t95.72222222\t-84.71\t31.74\n27021\t58\t44\t8\tCore\t0.689112853\t60.38181818\t-84.4\t31.29\n27027\t76\t53\t10\tCore\t0.762809463\t275.0322581\t-84.78\t34.05\n27033\t67\t46\t11\tCore\t0.684631089\t134.5172414\t-84.26\t32.18\n27046\t68\t46\t17\tCore\t0.80015858\t182.5438596\t-83.81\t33.1\n27054\t65\t41\t13\tCore\t0.680308694\t50.09677419\t-81.69\t32.64\n27057\t65\t41\t12\tCore\t0.706479223\t65.79245283\t-83.8\t30.66\n33013\t72\t26\t34\tTransient\t0.418645923\t1937.310345\t-114.17\t44.61\n33020\t43\t19\t13\tCore\t0.400146366\t1683.603175\t-113.56\t43.46\n33021\t48\t24\t13\tCore\t0.569844983\t1353.52381\t-112.73\t43.11\n33027\t53\t26\t21\tCore\t0.475229611\t1416.68254\t-112.51\t42.85\n33128\t57\t23\t23\tCore\t0.514432756\t1866.45283\t-111.71\t42.96\n33212\t67\t22\t32\tTransient\t0.592318797\t1766.016949\t-115.49\t44.96\n33220\t30\t13\t13\tCore\t0.319363947\t1432.786885\t-113.87\t43.33\n34002\t72\t46\t14\tCore\t0.700053181\t264.2\t-89.33\t42.15\n34014\t70\t35\t23\tCore\t0.631972153\t216.1176471\t-88.18\t41.93\n34022\t80\t45\t23\tCore\t0.678364288\t179.58\t-90.98\t40.65\n34024\t49\t27\t14\tCore\t0.699824\t223.5254237\t-90.5\t40.86\n34025\t73\t38\t22\tCore\t0.695580909\t201.6875\t-89.66\t40.6\n34029\t60\t28\t19\tCore\t0.696848276\t220.5957447\t-88.95\t40.92\n34030\t66\t25\t25\tCore\t0.696548286\t220.6666667\t-88.55\t40.07\n34038\t77\t46\t22\tCore\t0.704662237\t178.3090909\t-90.41\t39.79\n34041\t65\t36\t21\tCore\t0.722290233\t190.6181818\t-89.26\t39.48\n34042\t59\t26\t22\tCore\t0.709166218\t193.3965517\t-89.2\t39.39\n34044\t67\t30\t21\tCore\t0.70685765\t205.8548387\t-88.1\t39.89\n34046\t77\t42\t20\tCore\t0.689591471\t183.1153846\t-88.19\t39.31\n34049\t78\t50\t14\tCore\t0.667936184\t162.7818182\t-90.25\t38.38\n34051\t77\t37\t24\tCore\t0.679242105\t153.9607843\t-89.53\t38.69\n34052\t79\t49\t16\tCore\t0.690772821\t158.8490566\t-89.66\t38.66\n34054\t76\t49\t19\tCore\t0.690951554\t123.4897959\t-88.23\t38.24\n34055\t71\t47\t13\tCore\t0.703801757\t144.5636364\t-88.97\t38.44\n34056\t73\t48\t15\tCore\t0.662337059\t128.6326531\t-88.16\t38.7\n34059\t76\t58\t14\tCore\t0.758551875\t108.6666667\t-89.23\t37.23\n34060\t77\t57\t11\tCore\t0.773808325\t157.6949153\t-89.74\t37.97\n34061\t77\t54\t15\tCore\t0.778291625\t146.4833333\t-88.94\t37.31\n34063\t76\t58\t7\tCore\t0.738893286\t113\t-88.51\t37.07\n35005\t75\t53\t17\tCore\t0.679240239\t223.0689655\t-86.28\t41.02\n35009\t83\t51\t22\tCore\t0.701051757\t317.5769231\t-84.93\t41.6\n35010\t74\t43\t19\tCore\t0.686632463\t234.22\t-87.36\t40.67\n35011\t74\t43\t21\tCore\t0.696913672\t215.5319149\t-87.03\t40.4\n35013\t80\t57\t14\tCore\t0.704402357\t224.0208333\t-86.18\t40.58\n35014\t76\t49\t16\tCore\t0.6782705\t270.1111111\t-86.69\t40.14\n35034\t74\t48\t13\tCore\t0.700648611\t136.4181818\t-87.39\t38.09\n35038\t84\t64\t8\tCore\t0.806616474\t250.0384615\t-85.94\t38.66\n36001\t85\t46\t27\tCore\t0.738705429\t207.04\t-91.67\t40.76\n36003\t68\t38\t17\tCore\t0.708546663\t293.2982456\t-93.17\t40.88\n36006\t67\t39\t17\tCore\t0.672314423\t228.9836066\t-90.29\t41.97\n36011\t75\t45\t24\tCore\t0.696851109\t257.3114754\t-93.1\t41.4\n36013\t70\t34\t23\tCore\t0.688821719\t298.7045455\t-94.14\t41.65\n36028\t66\t38\t18\tCore\t0.628721661\t340.6785714\t-96.37\t42.49\n38010\t63\t31\t22\tCore\t0.480832361\t653.7843137\t-99.27\t37.16\n38014\t74\t44\t15\tCore\t0.685956125\t343.8703704\t-95.9\t38.97\n38015\t74\t41\t21\tCore\t0.683212988\t337.0588235\t-95.85\t38.53\n38017\t62\t37\t11\tCore\t0.646773487\t357.5762712\t-96.56\t38.36\n38026\t74\t44\t15\tCore\t0.691227803\t311.8510638\t-95.56\t39.08\n38028\t64\t42\t10\tCore\t0.610151458\t402.6415094\t-96.87\t39.9\n38029\t72\t48\t15\tCore\t0.650228015\t343.0612245\t-96.02\t39.76\n38030\t69\t42\t17\tCore\t0.602371688\t456.2241379\t-97.01\t39.93\n39001\t83\t59\t13\tCore\t0.856390732\t463.9642857\t-83.7\t36.6\n39006\t70\t45\t16\tCore\t0.708902051\t192.754717\t-86.63\t36.99\n39009\t75\t58\t9\tCore\t0.855226987\t270.9811321\t-85.26\t36.7\n39010\t76\t59\t11\tCore\t0.808384429\t320.7254902\t-84.99\t36.61\n39040\t69\t46\t15\tCore\t0.756491141\t254.5076923\t-84.16\t38.43\n39044\t73\t49\t12\tCore\t0.78139267\t252.5967742\t-83.92\t38.2\n42011\t54\t27\t15\tCore\t0.655417687\t10.06122449\t-91.82\t30.06\n42015\t57\t24\t17\tCore\t0.661626694\t6.740740741\t-93.34\t30\n42018\t55\t36\t8\tCore\t0.672978804\t21\t-91.44\t31.97\n42034\t40\t21\t8\tCore\t0.610050278\t5.9\t-92.45\t30.08\n42119\t70\t42\t18\tCore\t0.778648784\t65.75\t-92.96\t31.56\n44006\t83\t49\t18\tCore\t0.790643894\t487.9571429\t-70.95\t44.92\n44007\t94\t58\t19\tCore\t0.809313478\t286.484375\t-70.96\t44.62\n44012\t88\t46\t23\tCore\t0.788888894\t112.9117647\t-70.56\t44.14\n44013\t90\t59\t16\tCore\t0.814780781\t167.5820896\t-70.29\t44.33\n44019\t97\t47\t32\tCore\t0.783891848\t111.4153846\t-69.43\t44.98\n44031\t90\t47\t29\tCore\t0.812759676\t305.2372881\t-70.19\t45.23\n44032\t90\t53\t26\tCore\t0.784853698\t377.9850746\t-70.21\t45.07\n44033\t89\t55\t24\tCore\t0.809636548\t143.852459\t-69.03\t45.05\n44035\t86\t42\t30\tCore\t0.804175302\t374.2058824\t-69.92\t45.86\n44041\t81\t44\t18\tCore\t0.743040626\t136.6142857\t-68.53\t45.61\n46003\t93\t54\t19\tCore\t0.813160188\t781.295082\t-79.16\t39.43\n46005\t74\t52\t10\tCore\t0.813222045\t308.8852459\t-78.81\t39.61\n46006\t79\t47\t20\tCore\t0.664172056\t159.0701754\t-77.86\t39.61\n46011\t81\t55\t16\tCore\t0.773737905\t167\t-77.09\t39.15\n46012\t51\t36\t6\tCore\t0.726103916\t120.1296296\t-77\t39.11\n46013\t77\t50\t14\tCore\t0.737004808\t205.509434\t-77.03\t39.51\n46014\t73\t44\t13\tCore\t0.7104025\t216.0847458\t-77.02\t39.64\n46015\t79\t48\t18\tCore\t0.748325608\t244.1272727\t-76.96\t39.63\n46016\t74\t46\t18\tCore\t0.739916667\t235.4705882\t-76.81\t39.55\n46017\t79\t49\t15\tCore\t0.753487973\t258.1428571\t-76.76\t39.7\n46022\t68\t46\t13\tCore\t0.712699813\t90.06666667\t-76.84\t39.01\n46029\t73\t50\t13\tCore\t0.771026981\t57.97368421\t-76.84\t38.52\n46030\t73\t48\t11\tCore\t0.8280385\t35.5483871\t-77.07\t38.6\n46032\t78\t53\t11\tCore\t0.754941704\t90.27118644\t-76\t39.62\n46033\t74\t50\t11\tCore\t0.766665119\t81.57142857\t-75.94\t39.51\n46036\t70\t49\t11\tCore\t0.701343268\t10.39285714\t-76.14\t39.26\n46037\t74\t52\t11\tCore\t0.690245915\t17.7\t-76.18\t39.09\n46038\t70\t50\t11\tCore\t0.672850476\t12.63793103\t-75.88\t38.78\n46040\t72\t46\t15\tCore\t0.696582443\t17.45762712\t-76.07\t38.78\n46042\t80\t58\t13\tCore\t0.710857878\t2.396551724\t-76.24\t38.36\n46043\t77\t56\t11\tCore\t0.661790564\t1.769230769\t-76.21\t38.52\n46044\t72\t53\t10\tCore\t0.700037841\t11\t-75.79\t38.52\n46046\t68\t45\t12\tCore\t0.712694186\t13.96721311\t-75.78\t38.44\n46047\t78\t53\t19\tCore\t0.728890592\t5.431034483\t-75.57\t38.16\n46048\t72\t51\t11\tCore\t0.743455938\t8.910714286\t-75.26\t38.22\n46121\t67\t48\t8\tCore\t0.731610216\t35.46774194\t-76.51\t39.03\n46123\t78\t58\t9\tCore\t0.776129744\t34.09090909\t-76.66\t38.98\n47001\t57\t37\t13\tCore\t0.751950273\t22.03125\t-70.16\t41.75\n47014\t84\t53\t23\tCore\t0.82862975\t203.0967742\t-72.35\t42.26\n47018\t88\t55\t18\tCore\t0.856302065\t429.442623\t-72.9\t42.46\n47019\t95\t58\t23\tCore\t0.844759932\t407.7962963\t-72.84\t42.37\n47022\t93\t58\t19\tCore\t0.850945563\t360.4363636\t-73.46\t42.12\n49012\t96\t58\t26\tCore\t0.757285179\t263.0847458\t-87.44\t45.64\n49018\t80\t46\t18\tCore\t0.787216959\t237.9811321\t-86.21\t43.9\n49021\t86\t55\t15\tCore\t0.797515662\t210.7307692\t-86.12\t42.51\n49033\t84\t37\t28\tCore\t0.712986136\t231.122449\t-85.88\t43.06\n49038\t92\t51\t26\tCore\t0.746646889\t300.5806452\t-85.12\t43.59\n49055\t83\t53\t23\tCore\t0.702358188\t296.7037037\t-84.8\t42.1\n49073\t70\t39\t13\tCore\t0.671854861\t217\t-82.89\t42.65\n50003\t70\t30\t30\tCore\t0.658961059\t381.1551724\t-93.49\t43.81\n50008\t67\t41\t11\tCore\t0.649127124\t288.3454545\t-93.33\t44.65\n50015\t86\t47\t24\tCore\t0.652271951\t306.5333333\t-93.88\t45.6\n50017\t72\t38\t14\tCore\t0.65179435\t327.442623\t-94.19\t45.16\n50032\t71\t37\t20\tCore\t0.79590135\t464.0746269\t-90.7\t47.73\n50033\t72\t39\t17\tCore\t0.778131442\t506.3424658\t-91.53\t47.7\n50034\t91\t45\t29\tCore\t0.770724511\t463.34375\t-91.8\t47.06\n50035\t92\t47\t27\tCore\t0.747775921\t386.9473684\t-92.98\t47.06\n50037\t74\t41\t11\tCore\t0.774546799\t406.0833333\t-93.61\t47.34\n50042\t93\t35\t34\tCore\t0.751618243\t424.6875\t-95.11\t47.79\n50044\t78\t39\t24\tCore\t0.650614688\t320.8571429\t-96.3\t47.9\n50048\t61\t26\t13\tCore\t0.710525571\t355.5208333\t-94.55\t48.26\n51023\t63\t40\t17\tCore\t0.676175993\t66.43396226\t-88.62\t33.15\n51030\t56\t40\t8\tCore\t0.777075\t32.05660377\t-88.76\t30.81\n51113\t65\t47\t10\tCore\t0.773478141\t110.9830508\t-89.39\t33.55\n52002\t81\t53\t19\tCore\t0.765876397\t133.44\t-90.74\t36.59\n52007\t80\t41\t24\tCore\t0.666900258\t117.0363636\t-89.52\t37.3\n52010\t73\t53\t12\tCore\t0.795491875\t358.8888889\t-91.55\t37.37\n52011\t68\t47\t7\tCore\t0.843645549\t355.9166667\t-91.42\t37.9\n52014\t76\t37\t16\tCore\t0.765052898\t318.0909091\t-93.51\t37.45\n52016\t71\t35\t14\tCore\t0.703815375\t329.2321429\t-94.11\t37.14\n52021\t83\t43\t22\tCore\t0.760091316\t240.7540984\t-92.43\t38.58\n52027\t84\t45\t20\tCore\t0.701622422\t236.5744681\t-92.18\t39.45\n52131\t77\t44\t19\tCore\t0.693292375\t296.9310345\t-94.06\t39.71\n53002\t90\t46\t27\tCore\t0.57705011\t950.2272727\t-114.46\t48.1\n53009\t45\t21\t19\tCore\t0.391640577\t768.7123288\t-107.86\t48.22\n53014\t74\t19\t30\tTransient\t0.440446648\t963.5245902\t-114.2\t47.71\n53026\t74\t29\t27\tCore\t0.625627188\t1240.15\t-113.66\t46.72\n53027\t76\t34\t24\tCore\t0.584993571\t1591.645161\t-112.49\t46.62\n53028\t54\t30\t13\tCore\t0.42026462\t1375.59375\t-111.91\t46.12\n53036\t78\t43\t23\tCore\t0.597412359\t1853.333333\t-113.95\t45.85\n53038\t67\t33\t20\tCore\t0.438949813\t1310.403509\t-111.76\t45.91\n53040\t85\t51\t24\tCore\t0.459322035\t1252.936508\t-109.54\t45.72\n54022\t74\t40\t17\tCore\t0.685827449\t409.7333333\t-96.73\t42.19\n55011\t46\t15\t22\tTransient\t0.246016786\t1908.737705\t-115.63\t40.09\n58001\t82\t51\t20\tCore\t0.82479875\t204.0298507\t-71.86\t42.9\n58003\t86\t50\t14\tCore\t0.813692679\t213.1296296\t-72.16\t42.8\n58004\t89\t51\t25\tCore\t0.790723971\t35.13207547\t-70.91\t43.23\n58007\t90\t52\t19\tCore\t0.797245513\t154.4310345\t-71.61\t43.24\n58008\t87\t53\t22\tCore\t0.829052002\t122.0882353\t-71.19\t43.24\n58012\t85\t50\t16\tCore\t0.822733777\t222.625\t-71.29\t43.99\n58013\t82\t53\t13\tCore\t0.844914013\t346.3076923\t-72.38\t43.02\n58014\t88\t55\t20\tCore\t0.835863841\t309.3870968\t-72.21\t43.07\n58018\t85\t59\t6\tCore\t0.830358032\t387.9230769\t-71.7\t44.17\n58019\t100\t57\t29\tCore\t0.77608224\t354.3714286\t-71.31\t44.6\n59020\t69\t42\t17\tCore\t0.707120291\t89.86885246\t-75.09\t40.65\n59021\t93\t54\t21\tCore\t0.8522885\t321.0615385\t-74.67\t41.3\n60010\t83\t44\t29\tCore\t0.339711824\t2164.981818\t-105.67\t35.57\n60013\t60\t31\t22\tCore\t0.263912463\t2236.016393\t-108.44\t34.63\n60017\t55\t22\t24\tTransient\t0.318951757\t1219.339286\t-104.22\t34.1\n60019\t65\t17\t32\tTransient\t0.248884602\t2125\t-108.18\t33.92\n60020\t67\t22\t26\tTransient\t0.244205592\t2032.553571\t-107.32\t33.74\n60022\t79\t41\t22\tCore\t0.353188837\t1957.016129\t-105.84\t33.68\n60023\t43\t21\t11\tCore\t0.229368813\t1187.610169\t-104.82\t33.08\n60024\t32\t13\t11\tCore\t0.315441419\t1323.603774\t-103.62\t33.31\n60027\t49\t26\t15\tCore\t0.190623875\t1305.745455\t-106.72\t32.38\n60029\t33\t15\t11\tCore\t0.217434408\t1143.301887\t-104.39\t32.65\n60031\t49\t20\t20\tCore\t0.194037237\t1340.777778\t-108.99\t31.92\n60111\t64\t31\t21\tCore\t0.287252805\t1496.721311\t-104.37\t35.65\n60112\t51\t19\t23\tTransient\t0.282959487\t1246.947368\t-103.5\t35.4\n60201\t68\t33\t26\tCore\t0.227137941\t1822.5\t-108.01\t36.83\n61009\t78\t47\t20\tCore\t0.792257256\t62.79661017\t-73.98\t41.75\n61029\t88\t54\t13\tCore\t0.806288333\t457.3859649\t-75.15\t42.56\n61030\t85\t45\t24\tCore\t0.800616726\t357.4642857\t-75.93\t42.34\n61034\t89\t54\t21\tCore\t0.80532398\t386.2027027\t-75.09\t42.43\n61038\t79\t47\t22\tCore\t0.796747708\t357.8392857\t-76\t42.35\n61045\t93\t45\t24\tCore\t0.830740263\t590.125\t-77.94\t42.27\n61047\t76\t51\t14\tCore\t0.708670556\t309.8979592\t-77.11\t42.89\n61048\t70\t43\t18\tCore\t0.677164756\t283.2075472\t-77.25\t42.77\n61049\t95\t53\t25\tCore\t0.792602763\t401.5454545\t-77.22\t42.66\n61056\t87\t47\t20\tCore\t0.828382389\t547.7868852\t-78.89\t42.27\n61057\t80\t41\t24\tCore\t0.812218232\t455.1355932\t-78.36\t42.59\n61059\t88\t52\t18\tCore\t0.822695068\t492.6491228\t-78.94\t42.05\n61064\t72\t35\t22\tCore\t0.718632697\t138.7894737\t-78.85\t43.06\n61065\t75\t41\t21\tCore\t0.737831266\t95.43283582\t-79\t43.25\n61089\t83\t49\t21\tCore\t0.796467819\t156.375\t-73.3\t43.21\n61100\t81\t49\t15\tCore\t0.821641919\t512.3559322\t-74.18\t44.43\n61111\t75\t47\t19\tCore\t0.775934348\t467.90625\t-78.59\t42.08\n61121\t83\t51\t22\tCore\t0.83584628\t487.4516129\t-74.98\t42.07\n61199\t91\t52\t23\tCore\t0.825893393\t444.2878788\t-74.49\t44.52\n63002\t69\t53\t9\tCore\t0.708513496\t3.745454545\t-76.67\t34.95\n63003\t57\t37\t8\tCore\t0.61547419\t4.244444444\t-77.87\t34.13\n63004\t66\t45\t14\tCore\t0.753647674\t13.23333333\t-78.07\t34.53\n63010\t75\t52\t7\tCore\t0.716137591\t25.1875\t-77.44\t35.96\n63011\t69\t47\t11\tCore\t0.696315878\t28.67307692\t-77.71\t35.28\n63024\t77\t62\t9\tCore\t0.785683264\t87.81666667\t-77.97\t36.25\n63030\t71\t41\t13\tCore\t0.839421929\t982.4285714\t-83.21\t35.31\n63119\t66\t45\t12\tCore\t0.776403875\t371.0344828\t-81.64\t35.82\n64005\t59\t33\t15\tCore\t0.607071279\t576.2413793\t-99.46\t46.8\n64009\t80\t38\t25\tCore\t0.653959699\t423.5666667\t-98.24\t47.48\n64012\t64\t36\t17\tCore\t0.611771818\t511.32\t-99.05\t47.08\n64038\t60\t36\t13\tCore\t0.49829093\t691.35\t-103.05\t48.58\n64039\t62\t39\t9\tCore\t0.5593675\t703.5319149\t-102.69\t48.66\n64042\t63\t44\t13\tCore\t0.587336154\t499.2982456\t-100.05\t47.64\n64044\t85\t58\t16\tCore\t0.712359794\t664.2678571\t-100.24\t48.84\n66002\t64\t33\t15\tCore\t0.606725938\t216.0222222\t-84.12\t41.38\n66021\t76\t48\t13\tCore\t0.806058781\t260.2040816\t-80.74\t41.68\n66042\t68\t43\t13\tCore\t0.661851486\t312.3818182\t-82.76\t40.46\n66073\t72\t47\t13\tCore\t0.825867256\t226.8666667\t-82.16\t39.31\n66075\t80\t49\t16\tCore\t0.760637625\t294.5087719\t-82.53\t39.96\n66076\t79\t49\t16\tCore\t0.86094925\t260.0535714\t-82.28\t39.23\n66082\t73\t47\t14\tCore\t0.859894286\t253.245283\t-81.88\t39.27\n66107\t69\t38\t21\tCore\t0.603692674\t179.1551724\t-83.45\t41.54\n67015\t70\t40\t18\tCore\t0.710550076\t232.2391304\t-96.12\t35.72\n67022\t72\t43\t15\tCore\t0.670051974\t250.5192308\t-94.69\t36.92\n67023\t67\t35\t18\tCore\t0.689790606\t246.2884615\t-95.12\t36.91\n67034\t37\t17\t11\tCore\t0.354413971\t1349.891304\t-102.78\t36.58\n69019\t80\t49\t14\tCore\t0.755147344\t279.6769231\t-122.55\t43.9\n69026\t85\t44\t21\tCore\t0.772719541\t579.8493151\t-123.21\t42.97\n69028\t80\t29\t34\tTransient\t0.61771207\t1284.050847\t-121.8\t42.37\n69029\t66\t34\t19\tCore\t0.526438036\t1834.384615\t-120.79\t42.66\n69033\t69\t34\t15\tCore\t0.629089535\t70.59649123\t-123.26\t44.72\n69034\t83\t45\t20\tCore\t0.685814186\t246.1754386\t-122.77\t44.71\n69057\t79\t48\t19\tCore\t0.779120102\t284.987013\t-124.24\t42.25\n72002\t90\t52\t24\tCore\t0.788345186\t335.3584906\t-80.49\t41.63\n72004\t81\t47\t17\tCore\t0.800295658\t330.8947368\t-80.32\t41.71\n72006\t85\t49\t22\tCore\t0.840329012\t453.3442623\t-79.34\t41.53\n72010\t90\t46\t32\tCore\t0.852502838\t518.7\t-79.04\t41.63\n72016\t83\t44\t21\tCore\t0.841757446\t544.4677419\t-78.85\t41.56\n72022\t94\t43\t29\tCore\t0.812560988\t560\t-77.12\t41.65\n72025\t88\t41\t25\tCore\t0.777974556\t305.2878788\t-77.29\t41.07\n72029\t99\t54\t27\tCore\t0.851609679\t397.4\t-76.66\t41.31\n72031\t97\t54\t25\tCore\t0.828620915\t438.2142857\t-76.02\t41.74\n72033\t92\t56\t19\tCore\t0.823909565\t407.265625\t-76.06\t41.95\n72035\t100\t48\t25\tCore\t0.786112143\t320.8\t-76.45\t41.22\n72047\t74\t46\t12\tCore\t0.837633063\t375.9821429\t-80.34\t40.16\n72049\t92\t46\t26\tCore\t0.808547813\t370.9756098\t-79.23\t40.62\n72050\t88\t55\t16\tCore\t0.785697798\t385.1147541\t-79.55\t40.84\n72053\t81\t40\t18\tCore\t0.796540698\t388.7833333\t-79.7\t40.96\n72054\t89\t52\t15\tCore\t0.797538571\t332.4754098\t-79.23\t40.66\n72056\t90\t48\t20\tCore\t0.806058393\t369.1875\t-79.36\t40.8\n72057\t83\t43\t23\tCore\t0.825844875\t570.9090909\t-78.99\t40.47\n72060\t94\t53\t26\tCore\t0.79549814\t510\t-78.06\t40.91\n72061\t85\t51\t21\tCore\t0.778814103\t411.6428571\t-78.2\t40.42\n72062\t89\t57\t18\tCore\t0.800427159\t346.3387097\t-78.33\t40.44\n72064\t86\t45\t23\tCore\t0.782594419\t337.9137931\t-78.13\t40.57\n72072\t83\t46\t22\tCore\t0.748165889\t189.2419355\t-77.39\t40.56\n72083\t95\t49\t28\tCore\t0.79872901\t274.6\t-75.96\t40.78\n72084\t62\t39\t15\tCore\t0.757766181\t97.40350877\t-75.46\t40.16\n72086\t65\t40\t18\tCore\t0.752511218\t181.9836066\t-75.34\t40.8\n72088\t81\t60\t8\tCore\t0.820462027\t325.2333333\t-80.05\t39.93\n72090\t90\t51\t22\tCore\t0.815947885\t747.0357143\t-79.06\t39.87\n72091\t82\t49\t13\tCore\t0.848727317\t649.0517241\t-78.95\t39.78\n72132\t94\t66\t16\tCore\t0.856578095\t508.3492063\t-76.96\t41.54\n72151\t76\t44\t17\tCore\t0.773076875\t357.0892857\t-79.57\t40.37\n72155\t88\t54\t13\tCore\t0.843678851\t660.3018868\t-79.26\t40.19\n72165\t92\t56\t21\tCore\t0.845088967\t319.546875\t-77.36\t40.32\n72194\t72\t39\t19\tCore\t0.867372875\t483.2363636\t-77.49\t39.74\n80003\t62\t42\t10\tCore\t0.789547039\t12.03571429\t-81.03\t32.25\n80005\t67\t47\t14\tCore\t0.756475677\t37.86363636\t-80.46\t33.32\n81001\t60\t35\t14\tCore\t0.627113429\t441.6595745\t-96.88\t43.33\n81003\t53\t35\t11\tCore\t0.641192857\t514.0508475\t-97.47\t43.94\n81029\t63\t31\t21\tCore\t0.584226524\t1562.919355\t-103.64\t43.82\n82006\t70\t45\t15\tCore\t0.772143063\t142.6603774\t-89.07\t35.36\n82010\t77\t46\t21\tCore\t0.796394695\t129.3389831\t-88.81\t35.34\n82016\t78\t58\t12\tCore\t0.83540525\t240.5087719\t-87.32\t35.87\n82018\t76\t58\t9\tCore\t0.837760449\t244.8490566\t-87.67\t35.49\n82020\t71\t40\t17\tCore\t0.780124125\t241.8333333\t-86.66\t36.5\n82034\t81\t60\t15\tCore\t0.828111118\t363.2727273\t-84.34\t36.04\n82042\t81\t46\t23\tCore\t0.853243853\t942.5576923\t-82.07\t36.31\n82128\t74\t52\t11\tCore\t0.860090813\t234.0175439\t-85.36\t35.1\n83009\t66\t37\t20\tCore\t0.458449787\t192.25\t-99.26\t27.97\n83013\t49\t17\t23\tTransient\t0.576890731\t8.68852459\t-96.5\t28.52\n83026\t56\t30\t22\tCore\t0.611432691\t117.1458333\t-97.02\t29.78\n83033\t61\t41\t12\tCore\t0.734781071\t87.15\t-94.93\t30.71\n83042\t67\t31\t21\tCore\t0.542429375\t508.0925926\t-99.14\t30.35\n83044\t64\t41\t12\tCore\t0.777236346\t82.75925926\t-94.81\t31.2\n83045\t64\t45\t10\tCore\t0.791363278\t121.3469388\t-94.52\t31.88\n83064\t55\t24\t15\tCore\t0.563627326\t368.5166667\t-98.04\t32.16\n83082\t52\t21\t23\tTransient\t0.205827623\t958.1774194\t-103\t29.19\n83098\t62\t22\t29\tTransient\t0.511520762\t15.61538462\t-97.7\t26.53\n83100\t57\t27\t20\tCore\t0.363651585\t1090.263158\t-102.24\t35.75\n83140\t69\t35\t17\tCore\t0.541715238\t379.9365079\t-98.05\t30.24\n85004\t29\t8\t16\tTransient\t0.158902012\t1403.66129\t-114.02\t40.45\n85011\t60\t22\t27\tTransient\t0.425010833\t1501.8\t-111.95\t39.9\n85021\t78\t23\t34\tTransient\t0.215793804\t1901.555556\t-111.18\t37.92\n85024\t72\t26\t30\tTransient\t0.358180655\t1836.065574\t-113.63\t41.96\n85025\t36\t16\t15\tCore\t0.250379122\t1494.98\t-113.89\t41.7\n85109\t16\t4\t6\tTransient\t0.148364318\t1468.703125\t-113.48\t39.61\n87005\t82\t52\t14\tCore\t0.835194563\t321.2037037\t-72.58\t43.47\n87015\t89\t53\t18\tCore\t0.828854167\t350.25\t-72.4\t44.33\n88004\t76\t47\t17\tCore\t0.743689803\t537.1964286\t-79.16\t38.19\n88005\t76\t47\t18\tCore\t0.790389423\t333.1607143\t-78.5\t38.57\n88007\t72\t48\t15\tCore\t0.804384451\t274.8448276\t-78.56\t38.81\n88013\t81\t56\t17\tCore\t0.840066641\t531.8113208\t-82.47\t37.21\n88014\t69\t39\t13\tCore\t0.859001554\t649.5185185\t-81.94\t37.01\n88023\t76\t51\t9\tCore\t0.82546061\t237\t-78.78\t37.7\n88028\t72\t54\t12\tCore\t0.813622766\t79.91666667\t-77.62\t37.21\n88043\t76\t47\t17\tCore\t0.714536722\t21.83333333\t-77.14\t36.6\n88044\t77\t50\t15\tCore\t0.734116892\t35.81481481\t-77.28\t36.59\n89001\t62\t31\t11\tCore\t0.82651972\t62.71428571\t-124.27\t48.25\n89002\t72\t46\t15\tCore\t0.700212425\t58.91666667\t-123.38\t48.11\n89004\t76\t41\t17\tCore\t0.830916197\t185.7424242\t-121.21\t48.7\n89009\t59\t32\t11\tCore\t0.728580756\t28.94\t-124.29\t47.34\n89016\t82\t38\t28\tCore\t0.492757988\t739.5423729\t-117.92\t47.73\n89030\t96\t48\t35\tCore\t0.46868734\t587.8243243\t-119.27\t48.72\n89043\t74\t43\t12\tCore\t0.810315942\t732.3870968\t-121.55\t46.4\n89111\t76\t46\t15\tCore\t0.782213355\t52.78688525\t-121.98\t47.74\n90006\t78\t48\t15\tCore\t0.867797093\t721.3548387\t-81.11\t37.61\n90016\t75\t61\t7\tCore\t0.863421833\t307.3650794\t-81.02\t38.71\n90019\t75\t47\t14\tCore\t0.762258155\t212.0983607\t-81.79\t38.58\n90026\t74\t64\t6\tCore\t0.863246184\t270.3921569\t-80.79\t38.82\n90036\t77\t61\t10\tCore\t0.853228264\t280.7619048\t-81.03\t39.09\n90048\t74\t53\t10\tCore\t0.831212965\t306.3606557\t-78.5\t39.18\n91008\t93\t52\t25\tCore\t0.77057372\t525.890625\t-89.6\t46.17\n91012\t103\t60\t24\tCore\t0.748672578\t354.9130435\t-92.23\t45.59\n91014\t94\t48\t26\tCore\t0.684942297\t318.4821429\t-91.47\t45.31\n91020\t91\t58\t17\tCore\t0.803071105\t477.2903226\t-90.08\t45.32\n91022\t95\t60\t20\tCore\t0.781031149\t468.3333333\t-89.63\t45.31\n91024\t92\t54\t17\tCore\t0.763364766\t505.2666667\t-89.15\t45.92\n91026\t97\t61\t22\tCore\t0.783870756\t513.0166667\t-88.77\t45.46\n91027\t96\t55\t22\tCore\t0.818852217\t426.9615385\t-88.62\t45.37\n91028\t84\t58\t18\tCore\t0.810964728\t355.078125\t-88.01\t45.5\n91029\t98\t62\t20\tCore\t0.782339167\t268.6603774\t-87.87\t45.44\n91036\t85\t46\t23\tCore\t0.747163145\t372.1956522\t-90.35\t44.81\n91039\t71\t36\t23\tCore\t0.716917984\t404.1914894\t-90.06\t44.69\n91044\t98\t66\t19\tCore\t0.742474079\t270.2307692\t-88.95\t44.42\n91045\t94\t62\t14\tCore\t0.723377826\t255.4848485\t-88.17\t44.87\n91048\t82\t46\t20\tCore\t0.629265972\t204.9387755\t-87.7\t44.05\n91049\t97\t44\t30\tCore\t0.68156614\t219.44\t-87.64\t44.58\n91054\t75\t51\t6\tCore\t0.761666597\t323.4821429\t-90.35\t43.78\n91055\t85\t54\t20\tCore\t0.767373245\t272.2166667\t-89.86\t43.44\n91056\t85\t50\t18\tCore\t0.722900364\t257.6071429\t-89.22\t43.53\n91062\t69\t42\t11\tCore\t0.707224015\t321.18\t-88.33\t43.65\n91063\t77\t45\t23\tCore\t0.629939718\t221.74\t-87.87\t43.37\n91068\t78\t44\t17\tCore\t0.693575921\t273.8181818\t-88.7\t42.91\n91069\t80\t47\t18\tCore\t0.707728598\t250.0847458\t-88.05\t42.61\n91070\t68\t41\t16\tCore\t0.657243643\t227.9811321\t-87.98\t42.8\n92005\t45\t29\t7\tCore\t0.418308542\t1264.767123\t-106.71\t44.78\n92019\t80\t31\t30\tCore\t0.384043437\t1738.863636\t-106.12\t42.86\n92028\t53\t21\t19\tCore\t0.490015526\t1270.285714\t-104.28\t42.01\n92030\t70\t40\t20\tCore\t0.514508319\t2077.857143\t-110.73\t44.88\n92053\t63\t36\t14\tCore\t0.440445268\t2419.686275\t-109.63\t43.53\n92063\t60\t27\t26\tCore\t0.372364167\t1520.246377\t-106.87\t43.88\n92083\t33\t15\t11\tCore\t0.265830638\t1827.833333\t-106.99\t42.56\n92087\t78\t39\t21\tCore\t0.507164438\t1918.561404\t-105.29\t42.21\n92104\t49\t17\t21\tTransient\t0.358767283\t2183.71875\t-106.38\t41.68\n92120\t50\t15\t19\tTransient\t0.330541939\t1524.885714\t-105.81\t42.83\n"},"what_students_see_after_success":1,"date_created":"2023-09-21 03:49:18.619859","date_updated":"2025-07-14 15:53:31.264267","enable_pair_programming":0,"verification_code":"","weight":1.0,"min_solution_length":1,"max_solution_length":10000,"tests":{"Default test":{"before_code":"","after_code":"","instructions":"","can_see_test_code":1,"can_see_expected_output":1,"can_see_code_output":1,"txt_output":"","jpg_output":"\/9j\/7gAOQWRvYmUAZAAAAAAA\/9sAQwAIBgYHBgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04MjwuMzQy\/8AAEQgDIAMgA1IRAEcRAEIRAP\/EAB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC\/\/EALUQAAIBAwMCBAMFBQQEAAABfQECAwAEEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29\/j5+v\/aAAwDUgBHAEIAAD8A9\/r3+vf6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK5rxd4ln8OpamCCOUzb87yeNuPT61zXi7xLP4dS1MEEcpm353k8bcen1rmvF3iWfw6lqYII5TNvzvJ4249PrXN\/wDCyr7\/AJ8Lf\/vpq5v\/AIWVff8APhb\/APfTVzf\/AAsq+\/58Lf8A76aj\/hZV9\/z4W\/8A301H\/Cyr7\/nwt\/8AvpqP+FlX3\/Phb\/8AfTUf8LKvv+fC3\/76aj\/hZV9\/z4W\/\/fTUf8LKvv8Anwt\/++mo\/wCFlX3\/AD4W\/wD301H\/AAsq+\/58Lf8A76aj\/hZV9\/z4W\/8A301H\/Cyr7\/nwt\/8AvpqP+FlX3\/Phb\/8AfTUf8LKvv+fC3\/76aj\/hZV9\/z4W\/\/fTUf8LKvv8Anwt\/++mo\/wCFlX3\/AD4W\/wD301MHxLv\/ADGH2C2wAMct7+9MHxLv\/MYfYLbAAxy3v70wfEu\/8xh9gtsADHLe\/vT\/APhZV9\/z4W\/\/AH01P\/4WVff8+Fv\/AN9NT\/8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01H\/Cyr7\/nwt\/++mo\/4WVff8+Fv\/301H\/Cyr7\/AJ8Lf\/vpqP8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01I3xLvwpIsLbOP7zUjfEu\/Ckiwts4\/vNSN8S78KSLC2zj+81L\/wALKvv+fC3\/AO+mpf8AhZV9\/wA+Fv8A99NS\/wDCyr7\/AJ8Lf\/vpqP8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01H\/Cyr7\/nwt\/++mo\/4WVff8+Fv\/301H\/Cyr7\/AJ8Lf\/vpqP8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01H\/Cyr7\/nwt\/++mo\/4WVff8+Fv\/301NX4l35dgbC2wMY5b\/Gmr8S78uwNhbYGMct\/jTV+Jd+XYGwtsDGOW\/xp3\/Cyr7\/nwt\/++mp3\/Cyr7\/nwt\/8Avpqd\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01H\/Cyr7\/nwt\/++mo\/4WVff8+Fv\/301H\/Cyr7\/AJ8Lf\/vpqP8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01H\/Cyr7\/nwt\/++mpG+Jd+BxYW3X+81I3xLvwOLC26\/wB5qRviXfgcWFt1\/vNS\/wDCyr7\/AJ8Lf\/vpqX\/hZV9\/z4W\/\/fTUv\/Cyr7\/nwt\/++mo\/4WVff8+Fv\/301H\/Cyr7\/AJ8Lf\/vpqP8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01H\/Cyr7\/nwt\/++mo\/4WVff8+Fv\/301H\/Cyr7\/AJ8Lf\/vpqP8AhZV9\/wA+Fv8A99NR\/wALKvv+fC3\/AO+mo\/4WVff8+Fv\/AN9NR\/wsq+\/58Lf\/AL6aj\/hZV9\/z4W\/\/AH01MX4l35ZwbC2wDxy3pTF+Jd+WcGwtsA8ct6UxfiXflnBsLbAPHLelP\/4WVff8+Fv\/AN9NT\/8AhZV9\/wA+Fv8A99NT\/wDhZV9\/z4W\/\/fTUf8LKvv8Anwt\/++mo\/wCFlX3\/AD4W\/wD301H\/AAsq+\/58Lf8A76aj\/hZV9\/z4W\/8A301H\/Cyr7\/nwt\/8AvpqP+FlX3\/Phb\/8AfTUf8LKvv+fC3\/76aj\/hZV9\/z4W\/\/fTUf8LKvv8Anwt\/++mo\/wCFlX3\/AD4W\/wD301H\/AAsq+\/58Lf8A76aj\/hZV9\/z4W\/8A301I3xLvwOLC26j+JqRviXfgcWFt1H8TUjfEu\/A4sLbqP4mpf+FlX3\/Phb\/99NS\/8LKvv+fC3\/76al\/4WVff8+Fv\/wB9NR\/wsq+\/58Lf\/vpqP+FlX3\/Phb\/99NR\/wsq+\/wCfC3\/76aj\/AIWVff8APhb\/APfTUf8ACyr7\/nwt\/wDvpqP+FlX3\/Phb\/wDfTUf8LKvv+fC3\/wC+mo\/4WVff8+Fv\/wB9NR\/wsq+\/58Lf\/vpqP+FlX3\/Phb\/99NR\/wsq+\/wCfC3\/76aj\/AIWVff8APhb\/APfTUf8ACyr7\/nwt\/wDvpqP+FlX3\/Phb\/wDfTUf8LKvv+fC3\/wC+mpifEu\/JbNhbcHA5amJ8S78ls2FtwcDlqYnxLvyWzYW3BwOWp\/8Awsq+\/wCfC3\/76an\/APCyr7\/nwt\/++mp\/\/Cyr7\/nwt\/8AvpqP+FlX3\/Phb\/8AfTUf8LKvv+fC3\/76aj\/hZV9\/z4W\/\/fTUf8LKvv8Anwt\/++mo\/wCFlX3\/AD4W\/wD301H\/AAsq+\/58Lf8A76avQ7OY3NlBOwAMkauQO2RmvQ7OY3NlBOwAMkauQO2RmvQ7OY3NlBOwAMkauQO2RmpqmqaiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/ih\/qtN\/wC2v\/slef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUUUUUUUUUUUUUUxf9Y\/4Uxf8AWP8AhTF\/1j\/hT6fT6KKKKKKKKKKKKa33fxFNb7v4imt938RTqdTqKKKKKKKKKKKKKKKYn35PqP5CmJ9+T6j+Qpiffk+o\/kKfT6fRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8KYv+sf8ACmL\/AKx\/wp9Pp9FFFFFFFFFFFFNb7v4imt938RTW+7+Ip1Op1FFFFFFFFFFFFFFFMT78n1H8hTE+\/J9R\/IUxPvyfUfyFPp9PoooooooooooopG6fiP50jdPxH86Run4j+dLS0tFFFFFFFFFFFFFFFMTq\/wDvUxOr\/wC9TE6v\/vU+n0+iiiiiivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8++KBxFpvB\/5a\/wDsleffFA4i03g\/8tf\/AGSvPvigcRabwf8Alr\/7JXn+f9k15\/n\/AGTXn+f9k0Z\/2TRn\/ZNGf9k0Z\/2TRn\/ZNGf9k0Z\/2TRn\/ZNGf9k0Z\/2TRn\/ZNGf9k0Z\/2TRn\/ZNGf9k0wH963B6D+tMB\/etweg\/rTAf3rcHoP60\/P+yafn\/ZNPz\/ALJoz\/smjP8AsmjP+yaM\/wCyaM\/7Joz\/ALJoz\/smjP8AsmjP+yaM\/wCyaM\/7Joz\/ALJprH5D8p6U1j8h+U9Kax+Q\/KelOz\/smnZ\/2TTs\/wCyaM\/7Joz\/ALJoz\/smjP8AsmjP+yaM\/wCyaM\/7Joz\/ALJoz\/smjP8AsmjP+yaM\/wCyaM\/7Joz\/ALJoz\/smmKf3j8HtTFP7x+D2pin94\/B7U\/P+yafn\/ZNPz\/smjP8AsmjP+yaM\/wCyaM\/7Joz\/ALJoz\/smjP8AsmjP+yaM\/wCyaM\/7Joz\/ALJoz\/smmsfl+6eoprH5funqKax+X7p6inZ\/2TTs\/wCyadn\/AGTRn\/ZNGf8AZNGf9k0Z\/wBk0Z\/2TRn\/AGTQCScBTRn\/AGTRu\/2TXV2HgLVLu3WaZ4rbcMhJMlvxA6U0yj0NQtcoDgAmsfWdCvtDmVLuMFH+5Khyrf596UOG6A09JVk+6DWXEryTMiIzMzABQMknA4pqn55OD1\/pQrYaQ4PX+ld7pvw8D26yajdOkjDPlxAfL9SetIZfQfnUTXXPyrx6ms\/xB4Km0q2a8tJWuIE5dSMOg9fcUqyZ4I5p0dwHOCMH2rk8\/wCyafn\/AGTU2f8AZNGf9k0Z\/wBk0Z\/2TRn\/AGTRn\/ZNGf8AZNNY8fdPUfzprHj7p6j+dNY8fdPUfzp2f9k07P8AsmnZ\/wBk0Z\/2TRn\/AGTRn\/ZNGf8AZNGf9k0Z\/wBk0Z\/2TRn\/AGTRn\/ZNGf8AZNGf9k0Z\/wBk0Z\/2TRn\/AGTRn\/ZNMQ8vwfvUxDy\/B+9TEPL8H71Pz\/smn5\/2TT8\/7Joz\/smjP+yaM\/7Joz\/smjP+yaM\/7Jr3bSudHsv+veP\/ANBFe7aVzo9l\/wBe8f8A6CK920rnR7L\/AK94\/wD0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/ih\/qtN\/wC2v\/slef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUUUUUUUUUUUUUUxf9Y\/4Uxf8AWP8AhTF\/1j\/hT6fT6KKKKKKKKKKKKa33fxFNb7v4imt938RTqdTqKKK6Lw94SuNcQ3DyfZ7UHAcrkufYf1pjuF46mopZxGcYy1dVZeA7Sx1K2u1upJFhfeY5FB3EdOfrimGQkEYqFrlmQrtAz3FdbTKgqC6s7a+h8q6gSaPO7a4yM+tAJHSlVipypINVk0PSo5Y5Y9Oto5I2DKyRhSCPcUuTzz160vmPz8x561oUlNprossbRuAysCCD3BooHBzXid1pt5aTSRy2sy7HKklDjOfWrAIPetAOrAEEVYPh7WFg846bchMZ+4c4+nWjcueopPNjzjeM\/WszpS0+pYLO5vZPKtbeWZ+DtjUscZ9qa5wPxFNcgLyQORUl3p95YMFu7WaAnp5iEZ+lKCD0NKrK33SD9KrUtLVmzsLvUJvJtLd5n6kKOn1PakJAHJpGZVGWIFWb7w\/qumxebd2UiR93BDAfUgnFAZT0NNWVHOFYE1m0tPooopidX\/3qYnV\/96mJ1f8A3qfT6fRRRRRRXuul\/wDIIsv+uCf+givddL\/5BFl\/1wT\/ANBFe66X\/wAgiy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/8AFD\/Vab\/21\/8AZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRRRRSP8AcP0pH+4fpSP9w\/SlpaWiiiiiiiiiiiiiiimL\/rH\/AApi\/wCsf8KYv+sf8KfT6fRRRRRRRRRT4oZZ5BHDG8jnoqKSfyFHSgkAZJxS3VrcWpC3EEsLHGBIhU\/rTWIK8HuKaSGXgg8jpUdOp1FFFez+HhEPDun+Vjb5CdPXHP65qu33z9aoS581s+taVJTKpQanBPqt1p4IE1uqsRnqGGf04\/MUpGFB9acUIRW7GrtJTaKKKKKKKKKKKKKKK808f6fDaarDcwqF+0oS4Hdgev45FTRHK49Kt2zFkIPau18N6bBpuh2yRKN8kaySN3ZiM\/8A1qjcksaryuXkOexwKv3dnb39u1vdQrLE3VWpASDkU1WKnKnBrndV8DabdWzfYY\/stwB8pDEqT6EH+lOWQg88ipUuHB+Y5Fa2g6NFommJbJhpD80sgH3m\/wAO1NZtxzTJJDI+e3YVouiyIyOoZGGCpGQRSUzpXjOraf8AZtfubC2UtibZGo5PJ4H64qwpyoJq+jZiDH05rsLH4dwfZlN\/dy+cRkrDgBfbJBz+lRmU54FQNdHPyqMe9c54i8KzeH3Eqy+daythXxgqcdDSxHO71JzUkEgfd2JOcVg1JU1FFFFFFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRXuul\/8giy\/wCuCf8AoIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/wBa30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8KYv+sf8KYv+sf8ACn0+n0UUUUUUUUV6\/wCGNJg0zRbfYg86aNZJXxySRnH0HSoHYljVGZy8hz0BwBV\/UtNttVsZLW6QMjDg45U9iPemg4NMVirAivFJozDNJE33kYqcexqzWiDkA0+0tZb27itoV3SysFUe5oJwMmkYhVJPQV7BoOkHRdNW0+0vNg7juxhSeoX0FV2bcc4qjI\/mPuwBVyc3J+SAIuR\/rH5Cn\/d7\/mKBjvTRjvn6VyVx4KvY7ptQstYf7cWL7nTbuJ9wePpiniQYwV4qcXCkbWj+WqumeLNUstXks9cSR1UbW2RDdGf73yjkf5FKUUrlaV4EZA0ePz6108XijRJpkiTUYi7nAByOffI4\/Go9p546dah8p+flPHWtOeeG2haaeRY4lGS7HAFJjJpoBJwBk1Q0TWrfW7aWWA\/6uRkKnrjPynHuP60rKVPNOkjMZAPcVp0lMooorivE3hnWNbvmuVktRHGuyKLeckep4xk1IjqoxzViGaONcYOT1NdNoltc2ei2lvduGnjjCtjt6D8BgfhTGILEioZCGkYr0Jq\/SU2iiiiiiiiiuI1rSLfR\/E1jrW4\/Z5rkCbec7HOfm+nU+2KkViyFe+KsRuZIWj7gcV2\/Wo6r1y3j24hi8PGFyPMlkUIO\/ByT\/n1p8Q+aprYEy57Ac15fU1XKKKKKKK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CK910v\/AJBFl\/1wT\/0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz\/wCKH+q03\/tr\/wCyV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUUUUUUUUUUUUUUxf8AWP8AhTF\/1j\/hTF\/1j\/hT6fT6KKKKKKKKK9I8L+LbJ9Ohs7+dYJ4VCBpDhXUdDnscetROhzkciqk0DBiyjIPpV7WvGGm6dZuba4iubkjEaRNuAPqSOMU0Ie4wKYkLk8gge9eVMxdizHLE5J9anq9Wl4evY9O16zupuI0fDH0BBGfwzmkYZUimSqWiYDrXsqOroHRgysMgg5BFV6odKWiiiiikCgEkAAnqfWiiofsVr57z\/ZofNf7z7Bub6milycYyap3vh\/StQj2T2UfrlBsIP1FKGYdDTlldTwxpmi+HrPQ3uDalz5xH3zkqB2z+NKzlsZoklaTG7HHpWtTaZRRRRRRRRRSEgAknAHU0UVz2g+K7TVbie2klVJRK3khuPMTPy49\/anshUA1LJCyAEDIxz7V0VMqKiiiuJ8d332q2j020jed0k8yYxqWCYBABx35\/SpIxg5PFWLZdpLscDGBnvXL2XivWdOgFvFdZjXhVkUNt9gTzTyik5xUzQxsckc+1Zd3qN5qdy897O80mcAt0A9AOgpI+N4\/2qIlC7wBgBqgp9SUUUUUUV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+girdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8AFD\/Vab\/21\/8AZK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/rz+vP6KKKKKKKKKKKKKKKYP8AWt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP8AcP0paWlooooooooooooooopi\/wCsf8KYv+sf8KYv+sf8KfT6fRRRRRRRRRQASQAMk0UV2cHw6uprESTXqRXBGRF5eQPYnP8AT86iaQHgDiqz3IzgLkZ61yd5aTWN3LazrtlibawqUHIyKsKwZQR0NQUUtXbbV9Ss4fJt764ij\/upIQB9PSkKg9QKaURjkqCfpXoHhXxXb31rDZXsuy9XCKXPEvpg+vt3qJ0IOR0qtNCVJZRlf5V1lMqCiiiiiijIFFFQR3cE9xJBFKjyRAGQKc7c5wD78GjBxSlSACRgHpU9FJRRRRRRRRRRRRWdBoOl2t+b2GzjS4JJ3DPGRg4HQUpZiME8U8yuV2ljitGkplZmtaaupwQQNK8f74ElGKkrzuXj1FKpxk0+N9hJxnir8MEVtCsMMaxxoMKqjAFJ1ppJJyTk1x3j7R7c2A1ONFSdHCyEDG9T6+4OKkiY5x2qe2c7th6dq84Tq\/8AvU5Or\/71Tp1f\/ep9Pp9FFFFFFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRXuul\/8giy\/wCuCf8AoIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/wBa30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8KYv+sf8KYv+sf8ACn0+n0UUUUUUUUU6OQxSpIv3kYMM+1FBGRivVLfxvoslkJ5rgwyY+aIoSwPoMDmoCjA+1UmgdWxjI9a841rUf7V1i5vQmxZW+VT1AAAGfwFTKNqgVbjXZGF9KoUtOooorS0GzvLzWLf7DGHlidZcscKoUg5J9KRiApzTJWVYzuPB4r2eq9UKoX15eQsq2Onm8PO8+csYX2yeppQB3OKcqqfvNt\/DNXIXaSJGdDG5ALIeqn0pKaeD1zXI\/EDUIE0qOx3BriSQPtB5VRnk\/wCfWpIgd2e1T2qneW7AUz4dW2zT7y5IYGWQKMjghR2\/76NEp5Apbo\/Mo9BXaVHVeiiiiiiiiiiiiiiiiiiozHvlDyKv7tsx85xxjP15Iopc4HHfrUlFJXn3jvX45\/8AiUW+T5b7pmIxyOij+f5VLGuPmNWraIj5z36VwidX\/wB6lTq\/+9UqdX\/3qfT6fRRRRRRXuul\/8giy\/wCuCf8AoIr3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn\/AMUP9Vpv\/bX\/ANkrz+vP68\/ooooooooooooooopg\/wBa30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/wBw\/SlpaWiiiiiiiiiiiiiiimL\/AKx\/wpi\/6x\/wpi\/6x\/wp9Pp9FFFFFFFFFFFFXo9D1S5s\/tMNhO8PUME6j1HrTWYYxnnIqN5EHy7hnIqiRg4NOqSnxRSTyLHFG0kjHCqgyT9BR0oJAGScCprvTr2x2m7tJoA33TIhANICD0NIrq33WB+ldZ8O7u3ivLy2kZVmmVTHnvjOQPzH5UyUHANQXSkqpHQda9EqKqtFFFQXVpDeRhJd+AcgpIyEfipBpQcUoYqeMfiK4PxN4QjtZYry2lkMMsqxyiRtxTccZyeo+tSI+eD1qzDOWBUgZAyMV39vBFbW8cEKBIo1Cqo7CoicnNViSSSepouJltraWdwSsSFzj0AzQBk4oAyQPWktpGmtopWAUuobaDnGR0oPWgjBIqWikoooooooooooooooqjqOr2OlW7S3VwiYHCZ+Zj6AUoUk8CnIjOcKK8d1C8bUNRuLtxgzSF8eme1TgYAFX1XaoX0FU06v\/vU1Or\/71NTq\/wDvU+n0+iiiiiivddL\/AOQRZf8AXBP\/AEEV7rpf\/IIsv+uCf+givddL\/wCQRZf9cE\/9BFW6t1boooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFFFFMX\/AFj\/AIUxf9Y\/4Uxf9Y\/4U+n0+iiiiiir+iWCanrVrZyMQkj\/ADEdcAZP8qRjhSabI2yNmHUV6\/HpdhFbfZks4BDjGzywQfr61Bk5zk1RLsTncc\/WrSqqIFUBVUYAHAApKbXjniWS3l8R3z2u0xGTgr0JwNx\/PNTpnYM1fiBES7uuK6X4cxW7S30rBTcKFC56hTnOP0psuePSobsnCjtXbX9jb6lZyWt0m+JxyO49x71GCQciq6sUYMOorhT4Emj8QxxRSsbAYkMp+8AD93jv71J5nye9WftIMRJHzdMV6GAAAB0FRVVoooooorI8S2lzqGiyWVqm6WZ0UEnAUBgxJPpxTkIDZPanwsFkDN0FX7JblLOJLt0knVQHdOAx9aQ4zx0prYLHaMCn3VtHeWsttMCY5VKMAcHB96QHBzQCVYEdRRbQC2tYYAzMIkCBm6nAxk+9BOTmhjlifWpaKSiiiiiiiiiiiiiiivJPFej3Wl6q0txL5y3LNIsuMZOeQR2xmp0YFeO1XoZA6YAxjjFYNOqSmJ1f\/epidX\/3qYnV\/wDep9Pp9FFFFFFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/AFWm\/wDbX\/2SvP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/wBw\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8ACmL\/AKx\/wpi\/6x\/wp9Pp9FFFFFFTWtzLZ3UVzA22WJgyn3FBGRikIDKQehru4\/iNB9lBksJPtGOiuNpP16j8qi8o568VWNqc8MMVlx2HiXxJP9rZpobO6cbsS7VCdOFzyMfnSttVcDqKczRRLtGCw9q7O38KaLb2wh+wRScYLyDcx98\/4UwuxPWoTNITncR9K4nX7CTwjrkF1psrpFKCyAnOMEblPqOnWpFO9SDViJhPGQ45FdtY+KdIvbRZjewwtj5o5nCsp9Oev4VGUYHpmq7QurY2k+4FbCsrorqcqwyD6im1HS0UUUUVRsNNFhNcutxM6TyGQRMcpHnso7UUpbPar1FJRRRRRRRRRRRRRRRRRRUVzcR2ltJcS7hHGpZtqknA9hQBk4pQCxAHU02zu4r+ziuoSTHKoZc9cUpGDihlKsVPUVPSUlcn480+5vdMtmtYJJmjlOVjQscEdeO3FPiIBOantmCuckDI715zBZXVzdC1ht5HnJx5YXkfX0qUkAZzxVosAuSRj1q9deF9Z0+B7i5sXWIHJZWV8D3wTimIwy3PU5FRxyoWYBuS3FZVSVLRRRRRRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEV7rpf\/IIsv+uCf+girdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8UP9Vpv\/AG1\/9krz\/wCKH+q03\/tr\/wCyV5\/8UP8AVab\/ANtf\/ZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP8AWt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP9w\/SlpaWiiiiiiiiiiiiiiimL\/rH\/CmL\/rH\/AApi\/wCsf8KfT6fRRRRRRRRRRRRXqOneMtGTR4Wmn8mSKMK0O0k5AxgetQshB9vWqbwPvPGQT1rUtvEekXVp9pS+hVAMsJG2svsQaQowOMUwxOGxtP4Vx\/idNR8S3MU2n2E72UCkRyFdvmZ6sAeccCnphByRmp4dkIIZhuPUelcbLFJBK0UsbRyKcMrDBB+lSdasAgjIORXovg3W9Sv7ZLWSy8yGEbftRcqMDoOhyaikUA5z+FVJ40U7g2Ce1de2442kDnnIzxUdQUy5WdrdxbOiTY+UuMigYzzSjGeelS0UlFFFFFFMklji2eY6pvbau44yfT60UAE9BT6KKjaBGnSY7t6KVGGIGDjPHfoOtHalycY7VJRSUUUUhAZSpAIPBBoorzzwdrt1bX66L5XnwtI2whsGPqSfcdTUsigjd0q1PGpXzM4OPzr0Soqq0UUVGLeFbhrgRIJmUKZAo3EemaM8YpcnGM8elSEAjBGQaKSvFtct4rXXb2CAARJMwUDtz0\/DpVhTlQTWhGS0ak9cVn0tOooor3XS\/wDkEWX\/AFwT\/wBBFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/+KH+q03\/tr\/7JXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKKKKKKKKKKKR\/uH6Uj\/cP0pH+4fpS0tLRRRRRRRRRRRRRRRTF\/wBY\/wCFMX\/WP+FMX\/WP+FPp9PqeziSe+t4ZX2RySKrN6AnBNB4BpGJCkjqBXsLaDpbWP2Q2MAh24wEGR756596r7mznNUfNfdu3HNeNzosdxLGjbkVyFb1APWrA6VeHIBqOilpVVXkRXbapYAn0Gaa\/3fxFNf7v5V7ja2lvZ2iW1vGqQqMBQP8AOagJJOTVBmLNknmp6KSuG+ItlD9mtb4ACbf5TEdWGCRn6Y\/WpIjyRVi1Y5Ze3Wus0iBbbRrOFYzGFhXKEYIOOc++c0xjljULnMjHOeau0lNoooooooooooorM1nQrTW4FjuTKrJ9xkcjafXHQ\/lSqxXpT45GjPGPesTwguow6lqdpe3U062pWNS7kjnPIz7AU6TGAQMZqSfYURlAG7muuplQUUUUUUUyVGkhdFcxsykB16qfUUUDg9M1g6J4RtNFuhdLPNNcAFctgLg+3\/16czlhjHFSyTtINuABXQ02oqhlu7aB9ktxFG2M7XcA49aMH0pQpPQE0+OWOZd0UiuvTKnIopCCOoxT6KK8Y8QWy2mv30KsWUSkgk5PPP8AWrCnKg1fiO6JT7Vm0tPooor3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKKKKKKKKKKKR\/uH6Uj\/AHD9KR\/uH6UtLS0UUUUUUUUUUUUUUUxf9Y\/4Uxf9Y\/4Uxf8AWP8AhT6fT6KKK1W8S6w1j9jN\/KYcbccZx6bsZ\/Wm7FznFM8qPdu2jNZVOp9FFFNb7v4imt938RTW+7+IrtPC\/jI2QFnqkrNbAARyYyY8djjkj+VNePPI61FNBu+ZBz3HrXS3HjfQ4Pu3Ekxx0jjP9cU0Rse1Qi3kPYD6muF8R+JJNdu42WPy7aH\/AFcZOST6mpETaPerMUQjU85J6mvU7C9i1GwhvIc+XKu4Bhgj2qEjBxVJlKMVPUVYJCqWJAA5JNJSUKyuoZSCpGQQeDRRS0UVT1XUY9J0ya9lRnSID5V6kk4H6kUqjccU5ELuFHesHw1qfiDVZRdXMVuunsTyVIY\/7vrz605wq8DOakmSJBgE7q6qmVDWHolpqFtqurS3kSiO4m3xOrA5AyBx9MU5iCFx2qSRlKIFPIHNblNqOuV8VeK5dBvbaC3iSVmXfIr56E4GCO\/Bpyrlc+4FSxRB0JJxyAKr+H\/GU2r62trcRRQRPG2wKSSX4PJPtmnNHtXI5p0sASPcCSc812VR1BRRRXOeM9Vl0vRlNtOYriWQKpXGcdT\/AJ96fGu5uRxUtugeTkZAFeWzzzXMzTTyPJI3JdzkmpgMdKuAADAGBW94W8TnQZJIpo2ktJTlgv3lb1HrTHTd9ajmh8wAg4YV1N38QdMS3Y2iSzTdFVl2gH3P+FMVCxPscGoEt2ZjkgAHBrzm5uJLu5luJm3SSsXY+5qYDAxVsAKAB0FRUUtFFFe66X\/yCLL\/AK4J\/wCgivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFV4b+zuLmW2hu4JJ4v9ZEkgLJ9QDkVXhv7O4uZbaG7gkni\/1kSSAsn1AORVeG\/s7i5ltobuCSeL\/WRJICyfUA5FOurq3srdri7uIoIVxuklcKoycDJPHWnXV1b2Vu1xd3EUEK43SSuFUZOBknjrTrq6t7K3a4u7iKCFcbpJXCqMnAyTx1qpba\/o15cJb2ur2E8z\/djiuUZm78AHJqpba\/o15cJb2ur2E8z\/AHY4rlGZu\/AByaqW2v6NeXCW9rq9hPM\/3Y4rlGZu\/AByaW517RrK4a3utWsIJ0xujluUVlyMjIJz0NLc69o1lcNb3WrWEE6Y3Ry3KKy5GRkE56Glude0ayuGt7rVrCCdMbo5blFZcjIyCc9DV9WV1DKQykZBByCKvqyuoZSGUjIIOQRV9WV1DKQykZBByCK4D4of6rTf+2v\/ALJXAfFD\/Vab\/wBtf\/ZK4D4of6rTf+2v\/slef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFFFFMX\/WP+FMX\/AFj\/AIUxf9Y\/4U+n0+iiinxQyzyCOGN5HPRUUkn8BR0oJAGScCiWGWCQxzRvG46q6kEfgaOtAIIyDkU+0gN1eQW4YKZZFTJ7ZOKCcAmkY7VJ9BmvXYPDOjQWYtv7PgdcYLSIGY++7rVcsxPWqLSuxzuNcFeeErmXxJdafpygwx4ffIcBAwyAT\/k8VKHGwE1ZWcCIM\/U+nertt8PL37bGt1cQi2xl3iJLfQAj9aQyjHA5ppul2nAOfeuhs\/A2j2l0Jyss4A4jmIK59cADNNMjEelRtcyMuOB7iujRFjRURQqKMBVGAB6UyoeprjPFHjGKBbnTbFd8xBjebPyrnqB6mpEj6E1YhgJw7dOuKl8A6q11p8thNIC9uQYweuw\/4H+YolXBz60lymGDAcHrXYVHUFUdX01dX0yWxeRo0k25ZRk8EH+lKp2nNOR9jhsZxVqCFLa3jgjGEjUIo9gMUh5OaQnJJPU1JRSUUUVzWteM7PR7yWzMEs06AH5SAuSM4J6\/pT1jLDOeKljt2kUNkAGvNtW1KfVr+S8uCN7kYUdFHYCpCAqgD1H86tBAkYUeo\/nVZHeORXRirqcqynBB9adT+tew+HNVTVtFgm8wNMqhJh3DjqT9ev41A67WNUJU2SEY47VrU2mVhWWjyz6vd6hqqrLIshS1Q\/MscfUED1\/wpxbCgL+NSM4CKqcDHze5rQ1PSrTVrR7e6iVsjCvj5kPqDSBipyKajsjZBrxaaIwTyRMQSjFTj2OKsdRV8HIB9ahTq\/8AvUxOr\/71NTq\/+9VmCzubokW9vNNjr5aFsflTyQOppxYL1IH1qN0eJykiMjjgqwwRRSg56U2iivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKzfEVzLZ+GtUuYGKzQ2krow7MEJBrN8RXMtn4a1S5gYrNDaSujDswQkGs3xFcy2fhrVLmBis0NpK6MOzBCQawb\/TrTSdL8OzWUUcUtveW0SSKoDMshCOCe+QxJ9xmsG\/0600nS\/Ds1lFHFLb3ltEkiqAzLIQjgnvkMSfcZrBv9OtNJ0vw7NZRRxS295bRJIqgMyyEI4J75DEn3Ga66SKOZCkqK6HqrDINddJFHMhSVFdD1VhkGuukijmQpKiuh6qwyDWBp9pa6hr01\/HbQpb2DNbW5RAN0nSR\/w+4Po\/rWBp9pa6hr01\/HbQpb2DNbW5RAN0nSR\/w+4Po\/rWBp9pa6hr01\/HbQpb2DNbW5RAN0nSR\/w+4Po\/rVB9M1q0uNX1BbHS7hZLlp1inBaSVAiqAG6JwvGQeT2qg+ma1aXGr6gtjpdwsly06xTgtJKgRVADdE4XjIPJ7VQfTNatLjV9QWx0u4WS5adYpwWklQIqgBuicLxkHk9q6GDURc6HBqVnayzrNCksUCFVchgCB8xCg4Pc10MGoi50ODUrO1lnWaFJYoEKq5DAED5iFBwe5roYNRFzocGpWdrLOs0KSxQIVVyGAIHzEKDg9zXn3xAv7u7jsftOkXdjt8zb58kTb87emx26e+OteffEC\/u7uOx+06Rd2O3zNvnyRNvzt6bHbp7461598QL+7u47H7TpF3Y7fM2+fJE2\/O3psdunvjrXGb2\/55t+Y\/xrjN7f882\/Mf41xm9v+ebfmP8AGje3\/PNvzH+NG9v+ebfmP8aN7f8APNvzH+NG9v8Anm35j\/Gje3\/PNvzH+NG9v+ebfmP8aN7f882\/Mf40b2\/55t+Y\/wAaN7f882\/Mf40b2\/55t+Y\/xo3t\/wA82\/Mf40b2\/wCebfmP8aN7f882\/Mf40b2\/55t+Y\/xo3t\/zzb8x\/jTQzea37tug7j3poZvNb923Qdx700M3mt+7boO496dvb\/nm35j\/ABp29v8Anm35j\/Gnb2\/55t+Y\/wAaN7f882\/Mf40b2\/55t+Y\/xo3t\/wA82\/Mf40b2\/wCebfmP8aN7f882\/Mf40b2\/55t+Y\/xo3t\/zzb8x\/jRvb\/nm35j\/ABo3t\/zzb8x\/jRvb\/nm35j\/Gje3\/ADzb8x\/jRvb\/AJ5t+Y\/xpGdtp\/dt09RSM7bT+7bp6ikZ22n923T1FLvb\/nm35j\/Gl3t\/zzb8x\/jS72\/55t+Y\/wAaN7f882\/Mf40b2\/55t+Y\/xo3t\/wA82\/Mf40b2\/wCebfmP8aN7f882\/Mf40b2\/55t+Y\/xo3t\/zzb8x\/jRvb\/nm35j\/ABo3t\/zzb8x\/jRvb\/nm35j\/Gje3\/ADzb8x\/jRvb\/AJ5t+Y\/xo3t\/zzb8x\/jRvb\/nm35j\/Gje3\/PNvzH+NNVm8x\/3bdu4pqs3mP8Au27dxTVZvMf923buKdvb\/nm35j\/Gnb2\/55t+Y\/xp29v+ebfmP8aUM5OBExJ9x\/jRvb\/nm35j\/Gje3\/PNvzH+Nen+CNEudLtp5r22EU823bkgsF9DjpUbvvxwRVWeUSEAZAFZfxHmtS1nGgD3a7t20jKp2z+PT8aVCwzhSR7U+2LgEhSVPpXCLLIjBlRwwOQQRwfzp+9v+ebfmP8AGp9zf88m\/Mf412kPxIu4rMJNpqyzgY8wSBQT6lf\/AK\/5VGVI52Nj8P8AGq7QHOQrAenH+NbngfVTqdtfSTkfbGuDJIOM7SABj2GMUNnj5So96bMpBX5SqgYGa6W7u4LG1kubmQRxIMsxpoBJwKjVSxwBk1ylt8Q7Ca\/8ma1mgtz0nYg8+6jkD86dsf8AuH9Kk+zyY+6c\/hVzVPGulWdmz2swupyPkjjHf3J6CjY390mkEEhPKHFeYRxXt\/JI8NpcTvks5jTdjPc4qTeR\/wAsyPxH+NWjJtAyhH1I\/wAadYzX8N6jWMc63IOF8vrnpikLnHMbY+o\/xoZsqd0Zx7kf417FpEOpRWY\/tS6Se4bBIVAoT2yOv1qI4ycdKpsVLHaMCr4z3OaKbS0UVXuo3mWOJN6hnBZ1OCoBz+uMfjQDg9KUHBzViikqtJp9nMjJJawurcsGQHPuaXJ9aUMw6Mfzryzxlo0ei6qq2yN9nmUOgz9055HP+eafvYr90nkcjFWUlZ4+VJIIyRiuf3t\/zzb8x\/jTt7f882\/Mf41Lvb\/nm35j\/GvU\/A+kRWejR3xX\/SbobiT\/AArngD+f41G7FjgjGO1VZ5C74xgDtXU02oqy9a1210KOCS6V2WWTZhMEgYyTj06fnSgE9BmnIjPnaM4rPfxXHfhrbQoJby7ZeCV2JH7sWx\/9egqVwSpx9RTjEyYMikL7EVxOp+ENasLd7qSFJ1GWkML5K+pIOP0qTzewUn8qnFypIAU\/pWDYxNdXsVuFI82ZUzkcZIFNR2G\/5D971FKrsN58s9c9RXuNnZwafaR21tGI4kGAB\/M+9NJJOTVRmLMSTk1zfjzTIJ9Dkv8Ayx9otyuGHBZSQCD+eaVGIOACfapbeRlfaASD2ry7e3\/PNvzH+NSb2\/55t+Y\/xqzvb\/nm35j\/ABr3fSSTo1iSME28fB7fKK930kk6NYkjBNvHwe3yivd9JJOjWJIwTbx8Ht8oq5VyrlFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFRzwx3NvJBMgeKVSjqejKRgio54Y7m3kgmQPFKpR1PRlIwRUc8MdzbyQTIHilUo6noykYIrEtfDk8cljHd6m91Z2DBraExBWyAVUyNn5ioPGAOeTmsS18OTxyWMd3qb3VnYMGtoTEFbIBVTI2fmKg8YA55OaxLXw5PHJYx3epvdWdgwa2hMQVsgFVMjZ+YqDxgDnk5rXhiuUkuWluhKsj5hXywvlLgDGc\/Nzk5464rXhiuUkuWluhKsj5hXywvlLgDGc\/Nzk5464rXhiuUkuWluhKsj5hXywvlLgDGc\/Nzk5464qHRtNGkaRbWIlMrRL88pXBkYnLNjtkkn8ah0bTRpGkW1iJTK0S\/PKVwZGJyzY7ZJJ\/GodG00aRpFtYiUytEvzylcGRics2O2SSfxrPn0C+Y3UNtrU0NldOzyRGIPIm77wjcn5QeeoOM8YrPn0C+Y3UNtrU0NldOzyRGIPIm77wjcn5QeeoOM8YrPn0C+Y3UNtrU0NldOzyRGIPIm77wjcn5QeeoOM8YrZtraKztYbaBAkMKLHGo\/hUDAH5Vs21tFZ2sNtAgSGFFjjUfwqBgD8q2ba2is7WG2gQJDCixxqP4VAwB+VcJ8UP9Vpv\/bX\/ANkrhPih\/qtN\/wC2v\/slcJ8UP9Vpv\/bX\/wBkrz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/wBw\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8ACmL\/AKx\/wpi\/6x\/wp9Pp9WLG4W01C2uWXesUqyFfUAg4pCMgikYblI9RivWm8T6Mtl9q\/tCEpjOwN8\/029c1DsbOMVR8mTdt2mvI7qYXF3NOF2iSRn2+mTnFTjgYq8owoHoK1vDnhuXX5pP3vkwRY3vjJyegAprvt+tMllEQHGSe1devw80oW5R57lpD0k3AY\/DFRmQn0xVc3Lk9Bj0rhLqK70DWZoIp3jmgbaJIyVJHUfmMVKMMvTg1aUrLGCRkHsajvdVv9RCi8u5ZlXorNwPwoCgdBQqKn3VAqWy0HVNRtzPaWckkQ\/i4AP0z1\/CgsAcE0jSohwzAGqDo8cjRyKVdThlYYIPpS0\/rXpPgjUdOj0FbczRRXCOxlV2Clsng89eMD8KhkB3Z7VUuEcyZwSO1dVHBFCztHEiGRtzlVA3H1PrTM1CSTjJ6VJRSUdqKKxovE+mSamNO8x0ui5jKOmMMO2elO2HGe1SGFwm7HGM1s02o6xrHxNp2o6k1hbNI8oLDO35SF759KcUIGTUjQuqbjjFbNNqOvMPiDcSS66kLKAkUa7PfJyT\/AE\/CpEH7v8R\/OrUAAhz3LD+dcrUtWK9G8GeJLQ6bHp13MsM8OQhkOA65yOfUdMfSopEOciqtxE28uoyD1xW5q\/iPT9JtHkeeOWXHyQo4LMe30HvTVQselRJEztjBA7mvLNW1i71q7+0XbgkDCIowqD0FTKoUYFXUjWNcLXcfDoQ\/2Vdlcef5\/wA\/rt2jb+u6o5fvD0xVa6zvX0xXZHpzUdQV4bctHFq121qcRrcsYivYA8Y\/SpY+jZ9f6VeiyVbd1zz+Qr0bS\/Hemz2q\/b3NtcAYf5CysfUYB\/WmtGc8ciq72zhvl5FYXizxbDqtt9gsA3kFg0kjDG\/HQAenfmnIm05PWpYICh3N17CuPqSp6910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIr3XS\/wDkEWX\/AFwT\/wBBFW6t1boooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/wCKH+q03\/tr\/wCyV5\/8UP8AVab\/ANtf\/ZK8\/wDih\/qtN\/7a\/wDslef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFFFFbOi+FNS1pJLiARxQZwJJSQGI64wCTUe4LI2e+KhaVY5Gzkk46VX1fRL3RJ1iu0GHGUdDlW+hp6sGHFPSRZBlT+FZ1LT6KKK2vD3hyfxBPIqSiGGIDfIRnk9AB36U13Cio5ZREBxkntXovh7RR4ftpbQ3Cy+bLvR9u0ngcYz7VEzbjnFVZZPNIbGMCn+INft9BsvOkAkmY4jhDYLe\/wBPekAJpEjLn27mvJb68l1G\/mu5seZK24gdB7CpwMDAq8qhVCjoK3PB2j2+pay6XsZKQx+Z5TcbjkDn25psjELxUc8hSPKnqcZr01mtNMstzGK2toh7KqiouSfU1T+Z27kmvIfEN9BqOvXd1bDELsNpxjOABn8cZqdBhQDV6JSkaqetZlLT69a8K6rfanpiNeWjptXCzkjEvvjr\/SoHUA8H8KpTIqOdrD6elb9NqKiiiuB+IlpbxG0vEUJcOxViOCwAGCfp\/WpYieR2qzasTuXtXLSa\/q01qbaTUJ2iIwQW5I9Cepp+1c5wKmESBshRmmaNqb6PqsN6i79hwy5+8p4IoYblIpZEEiFTXqg8QWx077b9nvtm3ds+yvn+WPxziodpzjI\/OqXlHftyv515XruqPrOqS3jrsDEBEz91R0FSY2oB7j+dW1Ty4wvuP51Qp9SUUUVNa2lxeziG2heaQ9FRcmgkAc0hYKMkgCrN9oupaage7s5YkPG4jI\/MUgYHoaRZEfhWBpumateaPdfaLOXYxGGUjKsPQigqGGDQ6K4wwrX1Dxvq2oWrW\/7mBHGGMKkEj0yScfhTRGoOetMW3RWzyfrXMJ1f\/eoTq\/8AvU5Or\/71Pp9Poooooor3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKKKKKKKKKKKR\/uH6Uj\/AHD9KR\/uH6UtLS0UUUUUUUUUUUUUUV634Qvba68O20cDLvgXZIg6q3v9etQP981RnBEzZrG+Il5bmztrMMrXPm+YQOqrgjn65H5U6IHJPapLVTuLdsYrz2patUUUV0fhTxKmgyzJcRPJbzYJ2feUjvz160x03dOtRTReYAQcEVP4q8VprSQ29nHJHDG\/mF34YtjAxjp1NCJt5NJDCY8liCTxXLTSPKd0js7Ejljk0rfd\/EVIwwvHqK9B+H2mWxspdRdFefzDGhIzsAA6e5zTJSc47VXunO4J2xmus1GLdaSSxsI54kZopcDKnH8vUUwdfaoUPzAHkE8ivKNV8SalrMSw3Uq+UpzsRdoJ9T61MqBelXUiSM5Uc+9TeHfDM+vyO\/meTbRnDSEZJPoB60O4X60kswiHTJPauug+H2mxXEcj3FxKqkFkbGG9unSozKcdBUBunIIwB711qqFUKoAUDAA7UyoKWiikbIUlRk44BOM0UV47r2rXWu6qZJYihX93HCvO3np7nNTqoVavxoI0wD7k0snhfW4bX7Q+nyiMDJwQWA\/3Qc\/pRvXOM0CaMnG4Zq34KsoL3xHGJ1DLEjSKrdCwxj+efwpJCQnFNuGKxHHc4r1eoapV5R46soLPxC3kKFEyLKyjoGJIP8s\/jUqkmMZ9RVuFi0Iz2YCudqSp6KKK9M+H9tCmhyXCgGaSUh274GMD+v41DKTuxVS6JMgHYCuoubeK7tZbedQ0UilWB9KYDg5FQglSCOorwxgA7AHIB4PrVmtGkoopidX\/AN6mJ1f\/AHqYnV\/96n0+n0UUUUUV7rpf\/IIsv+uCf+givddL\/wCQRZf9cE\/9BFe66X\/yCLL\/AK4J\/wCgirdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/wDFD\/Vab\/21\/wDZK8\/+KH+q03\/tr\/7JXn\/xQ\/1Wm\/8AbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/AFrfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/3D9KR\/uH6Uj\/cP0paWlooooooooorrPDvgw6xYC9uLloYnJEaouScHGT+NMeTacAVBLceW20DJ71j69osuhaj9mkcSIy743AxuX6djxTlbcM1JFIJEyBj1FZcE0sE7tFI8bccoxBpq\/6x\/wAKAAZHyM9KVmZ2LMxZjySTkmn0+kooooorpfDnhGXW4TdTTeRbA7VIXLOe+Pb3pjvt46moZZxGcAZNdbpvgbS7GRpJ912T90SjhfwHWmGRj04qF7l2GB8v0pNe8G6fe2MjWVulvdINyeWMBiOxHTmkDnoTxSJMwIDHIz3rjvDPiO50WdoEgNzDM3MK\/e3eq+9SugbvirE0QkGScEd66TUtc1fWUbS9P0i5tpJkO95xtITv14H1pgVV+YsD9KiSOOM72cEDpitbTfCOlWdikU1pFcTFf3kkgySe+PQU0uxPXFMed2bIYgdgK09N0y20q1NtaKVi3l8E55NISWOTTHcu2W61cpKbRRRRRRRRRWBb+E7G014apEz5+ZjG\/IDHuPTvTi5K7alM7NFsP51v02oqz9P0mysJZ57aFBJPIzM4HPJ6D0HtSlicA9qc7swAJ4ArQpKbXB\/EbToxDa6ioAkLiF\/9odR+WDT0PGPcfzqe3c4Kdsg\/rXBVNVuiiitnQfEd3oMr+UqywScvExwCfUHsaayBqjliWUc8Ed61dW8eXWoWb21tbC1WQbXffubHcDgYpFjAOSc0xLYK2Sc49q5Gn1PRRRTE6v8A71MTq\/8AvUxOr\/71Pp9Poooooor3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKKKKKKKKKKKR\/uH6Uj\/AHD9KR\/uH6UtLS0UUUUUUUUV2PhvxpFpOnLY3kEkiRk+W8WCcE5wQSO\/eo3j3HINQS25d9ykDPXNa1x4fn8Wyx6neymzhaMCCBRubb1yx9TnOPpSBgnA59TUYlEA2KNxzyajvvh5ZJYyNZzz\/alXI8wgqxHbAHFIr4ck9+tCXBEhLAYPWvPKmq3RRRRRRXqHgbU7a40OKxDqtxblgUJ5IJJyPzqGQENnsap3KESFuxrqaZUNFFFQ\/ZLcXAuBBH5wBUSbRuAPbNGTjGaXccYycelTUUlFFFFFFFFFFFFFFFFFFFFFRzxedC0fmOm7qyHBx9e1ApQcHOM0QQR20KQwoEjQYVR2oJyaCSTk9ac7pEjPIyoijJZjgAUUmMnArzPxv4hg1WWKzs3328LbmkHR26cew5596kVSq5PXI\/nVqGIou5upI4\/GuUqWrFFFFFFFFFFFFFFFFMTq\/wDvUxOr\/wC9TE6v\/vU+n0+iiiiiivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP\/ih\/qtN\/wC2v\/slef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP8AcP0pH+4fpS0tLRRRRRRRRRSlWUAlSAemR1oor2vSL+DUtMguLdlKlACo\/hOOQfpVdgQSDWe6lHINZHi7xCukWBggZTeTggDPKL3b\/D\/61OjXcfYU+CPzHyegryqpqu0UUUUUV0\/hPRLqXWrO6uLOYWgJcSMhCkgEj8M4pjsNpAPNQzyARsAw3elepVDVOuQ1jxJH4b8QvF5Pm29xGssiocMr5IyPqAOPxp4XcmfQ4qZY\/MhznBBwKgbxtHqmoWdjZxSwRzTIskrkBsZHAweM9M5pfL2gk8077OUVmYgkDgCu2qOq9VZYbp9St5Y7jZaojeZFgfO3G3t069\/Sl4weOacCuwgjnsatUlNoooooooooooopDnHygH6nFFFYF1r8+n6\/Dbahbpb2MqlY5924M\/HU9h2\/HNOCgrkHJ9KlEQaIlTlh1Fb29Nm\/cuzGd2eMU2osc4rk\/F\/iOyj0maxtp457icbCI23BF7kkfyp8aHdkjAFTwRMXDEEAeteZt0\/EfzqVun4j+dWm6fiP50tLS0UUUUUUUUUUUUUUUxOr\/wC9TE6v\/vUxOr\/71Pp9Poooooor3XS\/+QRZf9cE\/wDQRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUUUUVq+G1tX8Q2S3u3yC\/IboTg7c\/jimvnYcdaZLu8ptvXFek+LEtG8N3f2oJhU\/dE9Q\/8ADj8f0zUSZ3jFVIC3mrj8a8nt7u5tGLW1xLCT1Mblc\/lU5APUVdKhuoB+tQNI8s8jyOzucEsxyTTF\/wBY\/wCFNUYkfHtS0+n0UUVY08wLqVqbkAwCVDJn+7kZ\/SkOcHHWkbOw4644r29WQxh1ZdmMgg8YqvWd3rgL74gXUV1cw2sFvJGsjLFKc8rng4zUoiGBkmrS2oIBJIOORXGX13PfXMlzcyGSaRgWY05gAuB6ipioVAAMAEUlvFNNOkdujvMT8qxgls+2KcenNKSAMnGPevXvDlzqNzpmNUheK6jbady7d4wMH\/PpUDgA\/L0qjKFD\/Icg1r02mUUUVlaxqL2NzpkcTLvubpYmVu6EHJ+o4pyjIPsKfGgYOT2Ga1abTKKKKCcDJ6UUUdaKKy9TtrHVLq20+52yNGftJi9VHHPtlh9cGnAlQSPpT0LICw4zxmr7W8DW\/kNDGYcbfLKjbj0xTcnOabk5zk59a8k8UaZFpWvTW8HEJAdF\/ug9vzzU6HcuTV2Fy8YJ69KxW6fiP50rdPxH86e3T8R\/OlpaWiiivQvA+gWr6eNTuYlllkYiMOMhADjOPXINRSMc4FVbiVt2wHAHWul1XQ7HVrR4Z4EDEfJKqgMh9Qf6UxWKnrUSSMjZB\/CuNs\/h3cS2++7vVgkPRFj34+pyKkMozwM1O10AflXI+tc7reiXWh3gguMMrDdHIvRh\/j7U9WDDIqWOQSLkfiKyU6v\/AL1NTq\/+9QnV\/wDep9Pp9FFFFFFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/AFWm\/wDbX\/2SvP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/wBw\/Skf7h+lI\/3D9KWlpaKKKKKK2vClhb6j4gggugGiwzbD\/EQM4\/z6U1yQpIqOZikRK9a9G8QaVY3eh3Cywxp5MTPG4AGwgZ49vaolYhhVWJ2WQYJ5PNeP1PV6mL\/rH\/CmL\/rH\/CmL\/rH\/AAp9Pp9XtM0e+1iZo7KAyFRlmJAC\/UmkLBetNeRYxljim6jpd5pVz5F7CY3IyOcgj1BFAIYZFCOrjKnNRi+uxbfZhdTiD\/nl5h2\/l0owM5wM0u1c5wM+uKr0tLXTeEPDkGuTTy3Zb7PBgbFOC7H39OKZI2ABUNxIUUAdTXfab4d0zSLt7mzhMbOuzBYsAM9s881GXLDBNVnld1wxzWrTaZVLVFupLIw2q\/NKwjd92DGhOGYepApVxnmnJgNk9ufrVuNFijWNc7VAUZOTge9JTScnNc34o0a7u7zT9R0+IzXNrKCYy4UFQd3c46j9aejAAg9DU0MiqrIxwCOuK6OKVZUDAFTjlW4K+xplREYp9FJSMoZSrAEEYIPeiiqel2drZWKR2ZBhJLKwOc5Oev6UrEk89ac7MzZbrVDxLdLpVtFqyIrTQOEweC6N1XP6\/UUqDcdvrTol3kpngj8qoN8QNJFvvEdwZMf6vYBz9c4pfKbPanfZXzjIx6157qupS6tqU17MAGkPCjooHAFSqNoxVpECIFHaqTdPxH86G6fiP50rdPxH86WlpaKKK7fwb4ptbC0OnX7+WgYtFKRkDPUH057+9RyISciq88JZt68+oro9Q8Y6RZQ7kuVuZD0SE5\/EnoKYI2PbFRLA7HkYHvW3DNHcQpNC6vG43Kyngim9KjIIODwa4T4i3kDvZ2iMGmj3O+P4QcYH41LEDyasWqkbm7GuCTq\/+9Sp1f8A3qmTq\/8AvU+n0+iiiiiivddL\/wCQRZf9cE\/9BFe66X\/yCLL\/AK4J\/wCgivddL\/5BFl\/1wT\/0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/ih\/qtN\/wC2v\/slef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUUUUVJDNLbTJNDI0ciHKspwQaOtIQCMEZFal\/4o1fUrT7Nc3WYj94KoXd9cU0IoOQKYsKI2QOax6dUlMX\/WP+FMX\/AFj\/AIUxf9Y\/4U+n0+u08Da7Y6dFcWl5IsJkcOkjdDxjBPao5FJwRVe4jZyGUZxxioPHGt2WqT2sNm4lEG4tIOhJxwPypY1Kg570tvGyAluM9q5Kn1PRRRW14d8Ry+H7iRhF50EuBJHnB46EH8TTJFyPeopoxIo7EdK0fEPjN9XtBaWsDQRFgzsWyzYOQOOnPNCx7Tk80kVvsbcTk10PgHUPtWlzwSzPJcRy7jvYk7SBjr9DTJRgg44qK5XDggYBFdbTKgoooooorm\/GD3VlZ2+p2AYXFvJhmUZHlkHO4dxkCnx4JIPQ1LBtZijdCP1rCsviRL863lgjEHhoX29vQ5\/nQI8swB6HH6U\/7NlmCtjBxz9K7qzn+12MFwUC+dGr7c5xkZxTSMEioGG1iPQ1JFDHCuyJAidlUYA\/CkpCSetcX8RLe4Nna3AmP2ZX2NF23EHDfkCP\/wBdSREZIxzVi1I3MMc46157UtWqKKKRun4j+dI3T8R\/Okbp+I\/nS0tLRRRRRRRRRVq21O\/s4zHbXtxCh6rHIVH6UhAPUCkKKxyVB+oqszM7l3YsxOSSck0tLUadX\/3qYnV\/96mJ1f8A3qfT6fRRRRRRXuul\/wDIIsv+uCf+givddL\/5BFl\/1wT\/ANBFe66X\/wAgiy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/8AFD\/Vab\/21\/8AZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRRRRSP8AcP0pH+4fpSP9w\/SlpaWiiiiiiiiiuq8N+DxrVk15cXDRRFiqKgyTjqfpTHk2nAFQyz+W20DJ71j65pEmiam9m7iQYDI4GNyn2\/OnK24Zp8biRN3Sspf9Y\/4U1f8AWP8AhQv+sf8ACn0+n1szeFdZg083slmREF3MNw3KPUjrTd65xmoxNGW2hua2Ph9DZS6hdGdUa5VVMIcZ453Ee\/Smy5wMdKZdFgoxnHerfjPSFvtWtotLthJeMjGdYwBgcbS3Yd+tEbYU5PHam277UJc4XtmuP1DSr7SpFjvbZ4S33ScEH6EcU8MG6Gp1dXGVOaot938RSN938RQ33fxFOp1OrY8LTGHxLYkSMgeQIdpxnPY+2cU1\/uGo5hmJuM8V7DUFUaKKKKKKjuHhjtpXuCohCkuW6bcc5oHXilGSRjr2rw238g3\/AO9yLcyjd6heM\/pUy\/ek9c\/0FXVzmTHXP9BXttvNarawi2ZWhAVYxF8wA6Dp2qI5zzVIhtxz175qzSUlcf8AEGC9l0yF4lU2kT7pcfeB6A\/Tn9akiIz71PalQ5z949K82qWrdaWl6FqOsFvscBZFOGkY7VB+ppGYL1NMeRI\/vH8KNX8Palo6K93BiNmAEiHcufT2\/Gmlgw4PcfzpBKkg+U85HH41m0+pKKKKKKKKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRWR4h8T6P4UsYr3Wrs21vLMIEYRPIWcgkDCAnop\/KsjxD4n0fwpYxXutXZtreWYQIwieQs5BIGEBPRT+VZHiHxPo\/hSxivdauzbW8swgRhE8hZyCQMICein8q5\/\/hbvgj\/oLT\/+C+5\/+N1z\/wDwt3wR\/wBBaf8A8F9z\/wDG65\/\/AIW74I\/6C0\/\/AIL7n\/43XVvqtlHq8OlPNi9mheeOLaeUUgMc4xwWHGc811b6rZR6vDpTzYvZoXnji2nlFIDHOMcFhxnPNdW+q2Uerw6U82L2aF544tp5RSAxzjHBYcZzzVyrlXKKKKKKKKKKgu7y1sLc3F5cRW8AKqZJXCKCSABk+pIA9zUF3eWthbm4vLiK3gBVTJK4RQSQAMn1JAHuagu7y1sLc3F5cRW8AKqZJXCKCSABk+pIA9zUV3qtlY3ljaXM2ye+kaK3TaTvZVLEZAwPlBPOKiu9VsrG8sbS5m2T30jRW6bSd7KpYjIGB8oJ5xUV3qtlY3ljaXM2ye+kaK3TaTvZVLEZAwPlBPOKuVcq5RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/AMUP9Vpv\/bX\/ANkrz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP8AWt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP9w\/Srmmabcatfx2dsAZH7scBQOpNBIUZNI7hFLHpWrrnhK80O2W5eWOaEkKzJkFT7j0pFcMcUyOdZDgAg1z9OqWiiiui0Dxdc6HbPbeQk8JJZQW2lT9fSmMgY5ziopYBIc5waytW1SfWNQe8uNoZsAKvRQOgFOUBRgU9EEahRWz4S8Kxa6tzc3U0iQI4jCx43FsAnkg8cioyxWRsd8VDLMY5GAAJOOtOv8Awlf6draJYQSXkS7ZVYjHf7rHpninBwV54pyzq8Z3EKeldhq3ii00\/T28+GdLmRCFgkiIycf3vukfQmmKhJ4Ix61AkLM3BBUHqDXlCsVYMpII6EVNV2vQfh5dW5t7uBnH2tpA53Hllx+uDn86ilByD2qrdKcqf4cVq+K7WPVYbXSkdBdTSh1zyUQA7m+mOPcmkQ7ct2pkJKFn7AVHH4E0Rbfy5IpZHxzKZCDn6Dj9KQyMaDcSE9QB6Yrh\/EugNoN+sauZLeUFonPXjqD7jj86lRtw96swy+auehHWuk8CaFbPa\/2rcIJJd5EIbkJjv9c\/ypkjHO0VFcyHOwHAxzXdVHVaseDxRpFxemzS6xP5nlhWRhubOODj1pxRgM44qQwuF3Y4xmtim1HXM+PI9\/hp3EjLslU4BwGycYPr1z+FPj+\/U1sf3vTtXlUS7pmXOMsBn8BT0+\/J9f6CrK\/fk+v9BXuVhYwabZRWtugWOMY6dT3J9zURJJyaosxdix6mrNJSVmeIZoofD1+0xGwwMoz3JGB+pFKv3x9afECZVx614zVir9eyeGooYvDdgIANphVjj+8Rlv1zUD\/fOaoTEmVs+tTa3FDNod8lwB5fksTntgZB\/AikX7w+tJHnzFx1zXitWK0KKKKKKKKKKKKKKKKYnV\/96mJ1f\/epidX\/AN6n0+n0UUUUUV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRXuul\/8AIIsv+uCf+girdW6t0UUUUUV5x8YLk2dj4SuhBNcGHxNZyeTAu6STAkO1RkZY4wB615x8YLk2dj4SuhBNcGHxNZyeTAu6STAkO1RkZY4wB615x8YLk2dj4SuhBNcGHxNZyeTAu6STAkO1RkZY4wB61pxfEOSSVI\/+EJ8XpuYDc9ggAz3P7zpWnF8Q5JJUj\/4Qnxem5gNz2CADPc\/vOlacXxDkklSP\/hCfF6bmA3PYIAM9z+86U++\/5K\/o\/wD2Brr\/ANGw0++\/5K\/o\/wD2Brr\/ANGw0++\/5K\/o\/wD2Brr\/ANGw1ylr45uvEkEur2vj\/wAP6DCZXFnptyIWZ0ViFacuwZS2M4XGAR1rlLXxzdeJIJdXtfH\/AIf0GEyuLPTbkQszorEK05dgylsZwuMAjrXKWvjm68SQS6va+P8Aw\/oMJlcWem3IhZnRWIVpy7BlLYzhcYBHWtSXx3f3XgPw94wgaO2tRfRx6tCNrp5RkMLlWwTgPhgQenWtSXx3f3XgPw94wgaO2tRfRx6tCNrp5RkMLlWwTgPhgQenWtSXx3f3XgPw94wgaO2tRfRx6tCNrp5RkMLlWwTgPhgQenWt\/UdX1CX4h6RoWnziO3jtZb7Uv3YJaP7kSAkHGX3HjBwlb+o6vqEvxD0jQtPnEdvHay32pfuwS0f3IkBIOMvuPGDhK39R1fUJfiHpGhafOI7eO1lvtS\/dglo\/uRICQcZfceMHCVz2u6n4jsRf3+oeNtH0AxPI1pprwxSCSNc7N7M24swxwuMZ79K57XdT8R2Iv7\/UPG2j6AYnka0014YpBJGudm9mbcWYY4XGM9+lc9rup+I7EX9\/qHjbR9AMTyNaaa8MUgkjXOzezNuLMMcLjGe\/Sqvje9vvEvwa03WRdtZPciymnhijVldnli\/vAkBWO4YPbByKq+N72+8S\/BrTdZF21k9yLKaeGKNWV2eWL+8CQFY7hg9sHIqr43vb7xL8GtN1kXbWT3Ispp4Yo1ZXZ5Yv7wJAVjuGD2wciuo1S+1PSNX8Iad\/aD3Au7qSG7lkiQNOFgkYZAAC\/MoPy46V1GqX2p6Rq\/hDTv7Qe4F3dSQ3cskSBpwsEjDIAAX5lB+XHSuo1S+1PSNX8Iad\/aD3Au7qSG7lkiQNOFgkYZAAC\/MoPy46Vm2974n8Y6pq76PrcWiaZpt49jF\/oSzyXMkeA7NuOAm7gAcnB5FZtve+J\/GOqau+j63FommabePYxf6Es8lzJHgOzbjgJu4AHJweRWbb3vifxjqmrvo+txaJpmm3j2MX+hLPJcyR4Ds244CbuABycHkVSm8d64ngm4uha2x13T9Zj0q5iXIimfzUUlSckBlcYPbPtVKbx3rieCbi6FrbHXdP1mPSrmJciKZ\/NRSVJyQGVxg9s+1UpvHeuJ4JuLoWtsdd0\/WY9KuYlyIpn81FJUnJAZXGD2z7VevbvxT4b8QaFLf63b6jZareiymtBZrEIWZHZWjYEtgbMYYn\/C9e3finw34g0KW\/1u31Gy1W9FlNaCzWIQsyOytGwJbA2YwxP+F69u\/FPhvxBoUt\/rdvqNlqt6LKa0FmsQhZkdlaNgS2Bsxhif8ADva72u9ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/wCKH+q03\/tr\/wCyV5\/8UP8AVab\/ANtf\/ZK8\/wDih\/qtN\/7a\/wDslef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PooorqPBOjWerX1w14vmJAoKxE43E55PsMfrTJGKgY71DcSMijbxnvVrxxoVhpiW1zZxiEyMUaMHg8ZyPT\/wDVSRsTkGkt5GfIY5x3rjakqekf7h+lI\/3D9KR\/uH6Vp6FqzaLqsd4sfmKAVdM4ypoZdy4psieYhXOK9baK21jTEFxDvgnRX2MfXBHSoOVPHUVSyY3ODgivKvE2lRaPrcltAxMRUOgJyVB7VMjblyauQuZIwT1rHp1SUUUUUUVs+GNbvtM1L7NatGY7mREZJBlQScZ4I5qIqGd89sVBJGrs5OeB2r2Co6qVna5p8Op6RcW8yg\/IWRj\/AAsBwaVThgadGxSQEV4vVitClVmVgykgjoQaKK3vCeqR2PiKOe7k+SVTG0jnO3PQk\/UCmuMpgVFOhaIhR05xXrIIIBByD3qCqVedfEHUoLm8trKFg7W+4yEc4Jxx9eP1qWIEAn1q1aoQpY9+lJ4O8UW+mQNYX7FIS2+OXGQpPUHHaiRCTkUs8Jc7l69xXRap400uztHNrOtzcEfIiA4z6k+lNWMk8jAqFLd2b5hgV5glxLHdLcq5EyuJA3+1nOfzqbHGKuEAjHbpXpOn+PdLntlN6Xt5wPmAQspPsR\/WoTEc8ciqjWzg\/LyK5rxZ4qXWlS1tEZbVG3Fn4Lt247Cnom3k9amhh8v5m61yaffk+o\/kKE+\/J9R\/IU9PvyfUfyFehaN4+t0s0h1OOXzUAXzYxuD47n0NNaI54qGS2JYlCMHsai1L4hyeco0y2Xyx95rgZLfgDx+dKIvU\/lQlqMfOefaua1fxDqOtFRdygRqcrFGMKD6+\/wCNPVQvSpkiWP7o59TVC2tZ7ydYLaF5ZW6KgyaUkAZNOLBRknArvNCtfFWiWvlCyint85ELzKGU+xzgVExRj1warSNDI2dxB9cVi+KPE2q3itp9xamxTILx87m57n0+lKEAAIOeR\/OnxwooDBtxyOfxrl6kqeiiiiiiiiiiiiiiimJ1f\/epidX\/AN6mJ1f\/AHqfT6fRRRRRRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEV7rpf\/IIsv+uCf+girdW6t0UUUUUVxHxL0nV9UsfD82i6cdQn07W7e\/kgEyRFo4w5PzOQOpA\/GuI+Jek6vqlj4fm0XTjqE+na3b38kAmSItHGHJ+ZyB1IH41xHxL0nV9UsfD82i6cdQn07W7e\/kgEyRFo4w5PzOQOpA\/Gnf8ACU+NP+ic3P8A4N7X\/wCKp3\/CU+NP+ic3P\/g3tf8A4qnf8JT40\/6Jzc\/+De1\/+Kq9Ppl\/P8Q9K1f7Nts4tLnglYup2SO8bBcZyeFbkDHFXp9Mv5\/iHpWr\/ZttnFpc8ErF1OyR3jYLjOTwrcgY4q9Ppl\/P8Q9K1f7Nts4tLnglYup2SO8bBcZyeFbkDHFczpeieIfCFg+g2HhTT9YtY5JPsN+9ykeyNmLBZlYbiVzjK5yAOlczpeieIfCFg+g2HhTT9YtY5JPsN+9ykeyNmLBZlYbiVzjK5yAOlczpeieIfCFg+g2HhTT9YtY5JPsN+9ykeyNmLBZlYbiVzjK5yAOldYvh2a98CSaBrFxFPcXNo8NxNDEsa72ByVUAAAE8cdgTzXWL4dmvfAkmgaxcRT3FzaPDcTQxLGu9gclVAAABPHHYE811i+HZr3wJJoGsXEU9xc2jw3E0MSxrvYHJVQAAATxx2BPNZPw40TXbGzvdT8URqmtXnlQuqyB9sUMYROQSMsd7nHd6yfhxomu2Nne6n4ojVNavPKhdVkD7YoYwicgkZY73OO71k\/DjRNdsbO91PxRGqa1eeVC6rIH2xQxhE5BIyx3ucd3rE8PeHPEeh6Vc6MvhrTptSkabf4hmuEKz72YiRxgylgGxt6cfeArE8PeHPEeh6Vc6MvhrTptSkabf4hmuEKz72YiRxgylgGxt6cfeArE8PeHPEeh6Vc6MvhrTptSkabf4hmuEKz72YiRxgylgGxt6cfeAqw\/h3xBdfBaDQG0tYdXslt0W3e4QrN5MqNkOCQNwQ4z071Yfw74guvgtBoDaWsOr2S26LbvcIVm8mVGyHBIG4IcZ6d6sP4d8QXXwWg0BtLWHV7JbdFt3uEKzeTKjZDgkDcEOM9O9b2qWOqavq3hDUTpz2\/2S6kmvInlRjAGgdRkg4b5mA+XPWt7VLHVNX1bwhqJ057f7JdSTXkTyoxgDQOoyQcN8zAfLnrW9qljqmr6t4Q1E6c9v9kupJryJ5UYwBoHUZIOG+ZgPlz1rNt7LxP4O1PV49I0SPW9N1G8kvocXqQSW8kmC6tvGCm7kFckZPBrNt7LxP4O1PV49I0SPW9N1G8kvocXqQSW8kmC6tvGCm7kFckZPBrNt7LxP4O1PV49I0SPW9N1G8kvocXqQSW8kmC6tvGCm7kFckZPBqqfBesw+EzHIIrnV77XodWvVhcCOP98jMELYyqog9ziqp8F6zD4TMcgiudXvteh1a9WFwI4\/3yMwQtjKqiD3OKqnwXrMPhMxyCK51e+16HVr1YXAjj\/fIzBC2MqqIPc4rovF+k32qXfhl7ODzVstZiurg71XZEI5AW5Izyw4GTzXReL9JvtUu\/DL2cHmrZazFdXB3quyIRyAtyRnlhwMnmui8X6Tfapd+GXs4PNWy1mK6uDvVdkQjkBbkjPLDgZPNdNXTV01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef\/FD\/AFWm\/wDbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/AFrfQf1p9Pp9FFFWLK\/utOuRcWkzRSgY3L3HoR3pCARg0jKrjDDIqTUNUvdVmEt7cNM6jC5wAPoBwKAAvQUioqDCjFU6WnUj\/cP0pH+4fpSP9w\/SlpaWul0vxtqOmWK2nlxTpGMRmTOVHpweRTDGCc1C9ujtuyRnrisO\/vrjUryS7uX3yyHJPYegHtTgABgVKqhFCjoK0PC1lbah4htre6AaI5Yof4iASBSOSFJFMmYrESvWvQ\/EOkadNoN0Xt4YzDEzxuqBSpAyMY7e1RIx3DmqsUjiReScnmvI6nq9SRO0dwXQkMpBBHY0xf8AWP8AhTF5kf8ACvWNE8X6fqVsguJ47a6A+dJG2gn1Unj8OtMaMg8ciqskDIeASPaqPifxfZw2M1nYTLPcSqULxnKoD157n6UqIc5PAp0MDFgzDAHr3rzapat1b0zTbjVb+O0tlBkfueijuT7UhIUZNNdwilj0ruU+HNp5GHv5jNj7wUbc\/Tr+tR+ac9Kr\/amz90YrldYh1jw7MbB764EBGU8uVgjrn0z+lOJVlzgZyKlBSVNwUZyM8Vm2VnNqF9DaQDMsrbRn+ZpxOBmpGYKpY9BXo9t4B0mK3CTmaaXHMm\/bz7Af\/XqIytniqhuXJ4wB6Vz194FuY9aitbSTdbSgsJX\/AOWYGMg46nkY9aeJBtyetSrcgxksOR2Heu+0\/SbLTLRbe2gRVAwzFRl\/cnvURYk5Jqszs7ZJrlfEfg9LzVrVtPRIBPu8\/A+VQMfNj8cfXFPSTCnPbpU0U+1G3c46VrWngvRLaEK9sZ3xy8rHJ\/AcCmmRj3xTGuJCeuPpVS7+H+lz3KS27y2ybsyRqdwYe2eh\/OhXK5PUmlS4Zd2cEnvU9z4G0Wa2McMLwSY4lWRic+4JwaUSNnrSC4kByTkemK8yvbSSxvZrWXHmROUOOhx3qUHIzVxWDKGHQ11\/hvwVDqFgl7qEkgWUZjijOOPUn3pjyYOBUEtwVbaoHHUmux0jQrHRIpEtEbMhyzucsfbPpUbMW61BJI0hG7tWlSUysPxVo0Wr6NL8o+0QqZIn75HJH0OKVTgj0zT4nKuOeCRmvIqsVfooooooooooooooopidX\/3qYnV\/96mJ1f8A3qfT6fRRRRRRXuul\/wDIIsv+uCf+givddL\/5BFl\/1wT\/ANBFe66X\/wAgiy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn3xQz5Wm4H\/PX\/2SvPvihnytNwP+ev8A7JXn3xQz5Wm4H\/PX\/wBkrz\/Lf3f1rz\/Lf3f1rz\/Lf3f1oy3939aMt\/d\/WjLf3f1oy3939aMt\/d\/WjLf3f1oy3939aMt\/d\/WjLf3f1oy3939aMt\/d\/WjLf3f1oy3939aMt\/d\/WjLf3f1pgJ81uOw7\/WmAnzW47Dv9aYCfNbjsO\/1p+W\/u\/rT8t\/d\/Wn5b+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tNYnYfl7etNYnYfl7etNYnYfl7etOy3939adlv7v607Lf3f1oy3939aMt\/d\/WjLf3f1oy3939aMt\/d\/WjLf3f1p0cssMqyRFkkQ5VlbBB9RSZP939aQ5IwV4+taN94j1fUrYW91du8PdQAufrgc\/jSBcHIT9aasaocqnP1rMy3939adlv7v60\/Lf3f1pik+Y\/Hp3pik+Y\/Hp3pik+Y\/Hp3rS0S0TUNatLWbiKSQBsHt6fj0pxZgCcfrSu7KhO3oPWvW5dD0uWzNq1jAIsYACAEe4PXPvUO45zk1SEjht245rxu7i+z3k8CncscjIGz1AOM1MC2Pu\/rV4MxUHb1966n4eTRprc8cmBJJCQhJ64IJH9fwpsmSvSobncYxxwDXpdRVVrO1PRLHWJbd72MyLASVXOAc464+lKCQCPWnK7ICB3qxb6fZWu37PaQRFehSMAigknqTSFmbqxP1NWaSkrA1TxRY6VrFvZztkMp81158rONuf1\/SnBCRkCpEhd0LAfT3pbvxlolqgP2rzif4YV3H\/CgRse1AgkP8OPrSeHfEA1+4vZFi8qOHYsatgtg5yT9cdPahlKgZokjMYUHvW\/TajooorD13xfoPhzTpr3UtSgjjiJXYrhnZv7oUck8f41Pa2k95MIoULMfyA9TVi0sbi+nWGCIsx59AB6k18jeKfGWp+JdfvdQa5mhhnlZo4EcgIuflHHUgY5rtbPS7a0t0TykZwPmcrkk16BYaTa2VtHH5SO4UBnZcknvX0X8JvH2k634P0\/Tp76GHVLGFbeWCaQKzhRhXXP3gQBn0OfbPM61pk1teySpETDIxZWUcDPb2rkdf0m4tdQlmSJmgkYurKOBnsfSvR4pop4xJDIkiHjcjAisogqcEEH0NYzKVOGBB9DT6SkqjrF5HYaRdXMhACRnGe5PAH4nApR1FOQZcD3rxPLf3f1qfLf3f1q\/lv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60Zb+7+tGW\/u\/rRlv7v60xCcvx\/F60xCcvx\/F60xCcvx\/F60\/Lf3f1p+W\/u\/rT8t\/d\/WjLf3f1oy3939aMt\/d\/WjLf3f1oy3939aMt\/d\/WvdtK\/5A9ln\/n3j\/8AQRXu2lf8geyz\/wA+8f8A6CK920r\/AJA9ln\/n3j\/9BFW6t1boooooorl\/EnjD\/hH9RjtPsH2jfEJN3nbMZJGMbT6Vy\/iTxh\/wj+ox2n2D7RviEm7ztmMkjGNp9K5fxJ4w\/wCEf1GO0+wfaN8Qk3edsxkkYxtPpWP\/AMLN\/wCoR\/5M\/wD2FY\/\/AAs3\/qEf+TP\/ANhWP\/ws3\/qEf+TP\/wBhR\/ws3\/qEf+TP\/wBhR\/ws3\/qEf+TP\/wBhR\/ws3\/qEf+TP\/wBhR\/ws3\/qEf+TP\/wBhR\/ws3\/qEf+TP\/wBhR\/ws3\/qEf+TP\/wBhViw+In23Uba0\/svZ58qR7vtGdu4gZxt561YsPiJ9t1G2tP7L2efKke77RnbuIGcbeetWLD4ifbdRtrT+y9nnypHu+0Z27iBnG3nrXcV3FdxRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/8AFD\/Vab\/21\/8AZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRWloWjS65qQtInEYCl3cjO1R7d+opGbaM0ySQRpuIzV\/xP4Vk0CCOdbjz4JDsyV2lWxnHX2NM37lYYwcUxJhKrDGCBWDFFJPKsUSM8jnCqoySak6VMSAMngVavtJv9M2G8tZIQ\/3Sw4P4ikDA9DTVdX+6QapUtOrT03w9qmrRNLZ2peNTjeWCgn0GTzSFgvU0x5UQ4Y81RubaezuHt7iJo5UOGVhyKUEEZFOBDDIORUVFLTF\/wBY\/wCFMX\/WP+FMX\/WP+FSo7xSLIjFXUhlYHBBHen08jIwa6m28WeINUMWmQPCJpjsEoTDe5z0HHcCmFFXmoTBEmXIOB2rotO8A6dausl3I904HKn5Uz9Bz+tMMpPTionuWPCjbUGp+CGbU4LnRpUswBlssflYdCv8AntSiTghuaVLj5CJBurUh\/wCEltrq2inezubZnAlmRCHA9xnH5Cm\/IQcZBph8kgkbgew7Vv02oqKKKKKK83+IdokWq21yowZ4yG9yp6\/kR+VSxHgirdq2UI9DXHVJU9a3h7W5NC1IXAUvE42yoO49vcU1l3DFMljEiY79jXp9p4i0i9hEkV\/AuRysjhGH1BqEow7GqbROpwVP4Vla740sbG3kisJkubsjAKHKofUnofoKVE3E57dadFAXb5uAOtfPfxL82TTLSQksvnneT\/eIOP610XhoqLqYfxFOPpn\/APVXVeFyou5h\/F5fH0z\/APqrzSulrqKKKK+mfgIL3\/hF9rzkWyZYQkZ5ZmwR6cA\/XiuL8QFDq0u3rwCfwFcH4oKHV5do54BP4CvRdf8AElvoAhE0EkrTBtoQjHGOufrWYqFqyIojLnBAxXnPiHxNd68yq4ENsjArCpzz6k9zUmwKPfI\/nVlYVjXjk5HP41jU+paKKKKKKKKKKKKKKKYnV\/8AepidX\/3qYnV\/96n0+n0UUUUUV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+girdW6t0UUUUUV5f8R\/+Rht\/+vRf\/Q3ry\/4j\/wDIw2\/\/AF6L\/wChvXl\/xH\/5GG3\/AOvRf\/Q3rhr+\/ttMtHuruURxL1J7n0A7muGv7+20y0e6u5RHEvUnufQDua4a\/v7bTLR7q7lEcS9Se59AO5rj5fiVbLNiLTpXiz95pAp\/LB\/nXHy\/Eq2WbEWnSvFn7zSBT+WD\/OuPl+JVss2ItOleLP3mkCn8sH+ddLoviCx12FntXIdPvxOMMv8A9b3rpdF8QWOuws9q5Dp9+Jxhl\/8Are9dLoviCx12FntXIdPvxOMMv\/1veuk0H\/kYdM\/6+4v\/AEMV0mg\/8jDpn\/X3F\/6GK6TQf+Rh0z\/r7i\/9DFe4V7hXuFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/AFWm\/wDbX\/2SvP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/1rfQf1p9Pp9FFFFFFFFFX9H1e40XUFu7cKxwVZW6Mp7foKRlDDBpsiCRdpq74j8UXOvxJE8KQwRncEU5y2MZJ\/z1pmwKjfSo1hESsc5JFReGdSg0rXYLq5UmIAqWAyVyMZpzgspAp8yF4yo610vjLxHpl\/pK2dnKJ5GcOWCkBAPr3\/8Ar02NCGyeKhgidX3MMDFcHUlWa9Q8I61px0CC2a4hglgBV0kYL3JyM9ahdTuJx1qnPG\/mk4JB9K5DxnqNrqWu+ZaMHjjjEZkXo5BJyPzx+FSRgheant0ZI8N1Jziuep1S0xf9Y\/4Uxf8AWP8AhTF\/1j\/hT6fT60NE1EaVrNtespZY2+YDrggg4\/A0jDcpFNkTfGV9a9as9a0\/UFBtLpJmI3bEPzge69R+NQFSOoxVFo2X7wx71fpKbRRRSAhlDKQQeQR3oopaKKxte8V6D4XiSTWtUt7MOCUVzl2A64UZJ\/AVPbWVzeMRbwtJjqR0H41ZtLC6vmItoHkx1I6D8elUrNdF8cQ2uuQSNd6dtZbfcjRhyGIZiCAcZGPwPWknhms5WglXbIMZGQcflRPFPYSvbyqElGNwyDjj2q1f+EtHvrdo1tI7d8fLJCu0qfoOD+NRh2B65qJZ5FOdxPsa8pvbSSwvprSXHmROVOOhx3qYHIzV1WDKGHQ1BS0taXh7Q59d1J4IzsjUhpZCM7RgfrUe4K0h9\/6CoWkEZkJ5OeB+ArvNQ+HXh7UtCuNKuLVmWZNpnLZkVuzA9AQfbFPtrya1uUnjOGU9OxHpSWuo3FpdpcRNhlPTsR6GvnzxB8D\/ABhpF46WNmuqWufknt3UEjtlGOQfpke9dXbeIbGeMGRzC\/dWB\/nXZWnifTriMGWQwSd1cH9CKybD4c6uuoGLWYTYpG37yNiDIfYAdPqabeeILaOMi2PmyHocYUUXniO1jiP2VvOkI4OMKK9W0bUbnQGX+zmEKqgj2YypUdBiuYkJmdmkJZmOSfeuUm\/0hmaUlmY5JPXNO1PVbzV7kT3ku9wNqgDAUewpoUKMCmoioMKKot0\/Efzobp+I\/nSt0\/EfzpaWlooooooooooooooopidX\/wB6mJ1f\/epidX\/3qfT6fRRRRRRXuul\/8giy\/wCuCf8AoIr3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CKt1bq3RRRRRRXl\/xH\/5GG3\/69F\/9DevL\/iP\/AMjDb\/8AXov\/AKG9eX\/Ef\/kYbf8A69F\/9DevBviRdytqlrZ5IiSHzMerEkZ\/Ifzrwb4kXcrapa2eSIkh8zHqxJGfyH868G+JF3K2qWtnkiJIfMx6sSRn8h\/OuJria4mtjwtdyWfiWxaMn95KsTD1Vjg\/zz+FbHha7ks\/Eti0ZP7yVYmHqrHB\/nn8K2PC13JZ+JbFoyf3kqxMPVWOD\/PP4V7voP8AyMOmf9fcX\/oYr3fQf+Rh0z\/r7i\/9DFe76D\/yMOmf9fcX\/oYr3CvcK9wrjfifHq58C6tNpmqpYpDZzPOPs+95VC\/dVtw2ZGRnBPPGMVxvxPj1c+BdWm0zVUsUhs5nnH2fe8qhfuq24bMjIzgnnjGK434nx6ufAurTaZqqWKQ2czzj7PveVQv3VbcNmRkZwTzxjFW\/G95dWngmb7FO8FxcPb2izIcNH50qRlgexAckH1xVvxveXVp4Jm+xTvBcXD29osyHDR+dKkZYHsQHJB9cVb8b3l1aeCZvsU7wXFw9vaLMhw0fnSpGWB7EByQfXFZb6TZeD\/GXh5dGiNta6l9otbuBZGKylYjKkhBJy4MZG7qQxyTWW+k2Xg\/xl4eXRojbWupfaLW7gWRispWIypIQScuDGRu6kMck1lvpNl4P8ZeHl0aI21rqX2i1u4FkYrKViMqSEEnLgxkbupDHJNc6bJY\/hcnj3c58SeUuqm881txBbeYev+r2fJs6Y5xnmudNksfwuTx7uc+JPKXVTeea24gtvMPX\/V7Pk2dMc4zzXOmyWP4XJ493OfEnlLqpvPNbcQW3mHr\/AKvZ8mzpjnGea6JNGsvF\/i7xH\/bUbXNvp0kNnZwmRlEOYVleRQCMOTIBu6gKMGuiTRrLxf4u8R\/21G1zb6dJDZ2cJkZRDmFZXkUAjDkyAbuoCjBrok0ay8X+LvEf9tRtc2+nSQ2dnCZGUQ5hWV5FAIw5MgG7qAowa1\/AN9dah4MsZL2Zp7mFprV5mOTIYpXi3E9yQgJ9zWv4BvrrUPBljJezNPcwtNavMxyZDFK8W4nuSEBPua1\/AN9dah4MsZL2Zp7mFprV5mOTIYpXi3E9yQgJ9zXSV0ldJRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8KYv+sf8ACmL\/AKx\/wp9Pp9FFFdR4K1yz0e6uUvTsSdVxLtJ2kZ4OPXP6UyRSwGO1Q3EbSKNvOO1dRL490iO8MI86SID\/AFyJxn0wcH8aZ5TYqEWzlc8A+lZ+s+PoGtXh0uOTzXGPOkGAnuB3NKsXPzU+O2O7L4x6CovBmq6z5It\/sMt3ZKcLICFKewLEA\/SiQL1zg0XCJnO4BvT1rovFevy+HPC19q0VhPdzQR7kt40LEnpztzhRnJPoDUllbi6vI4GkWNXOCxPSiwtVvL6K3aVY1dsFycY\/+vXx34n8T6n4u1yXVtVlDzuAqqgwkaDoqjsBk\/mT1Nd1Z2kNjbrBCMKOST1J9TXotjYwafarbwKQg5JPUn1NfRnwJ8UWOp+B4NEEqLqGml1eEnDNGWLBwO4+bB9x7iuW8R2ckOotcYJilwQ3ocYx+lcd4psZYNUa52kwzYIbsCBgj9K9Rmmjt4XlmdUjQZZmOABWN1rCAJOAMmvGNbvl1LWru7jGEkkJXPoOB+gqwowoFaEa7I1U9QKoqrOwVVLMTgADJJpadXqfgnSJ9K0iU3UJinnl3kHrtwAM\/r+dV2++xHQn+lUZmDSsQciulpKjooorzX4hwoms28qgBpIfm98E8\/59Kli+6at2p\/dkehrkKkqeiiikbp+I\/nSN0\/EfzpG6fiP50tLS0UUUUUUUUUUUUUUUxOr\/AO9TE6v\/AL1MTq\/+9T6fT6KKKKKK910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+givddL\/5BFl\/1wT\/ANBFW6t1boooooory\/4j\/wDIw2\/\/AF6L\/wChvXl\/xH\/5GG3\/AOvRf\/Q3ry\/4j\/8AIw2\/\/Xov\/ob15F438OTavBFeWa77mAFSg6unXj3HP5mvIvG\/hybV4IryzXfcwAqUHV068e45\/M15F438OTavBFeWa77mAFSg6unXj3HP5mvMJIpIpDHIjI4OCrDBH4V5hJFJFIY5EZHBwVYYI\/CvMJIpIpDHIjI4OCrDBH4V2fgrwxcvfx6neRNFBF80SuMF27HHoOufpXZ+CvDFy9\/Hqd5E0UEXzRK4wXbsceg65+ldn4K8MXL38ep3kTRQRfNErjBduxx6Drn6V6zoP\/Iw6Z\/19xf+hivWdB\/5GHTP+vuL\/wBDFes6D\/yMOmf9fcX\/AKGK9wr3CvcKx\/FWlT654S1bSrV40nvLSSCNpSQoZlIGSATjn0rH8VaVPrnhLVtKtXjSe8tJII2lJChmUgZIBOOfSsfxVpU+ueEtW0q1eNJ7y0kgjaUkKGZSBkgE459KXxBoa6\/4buNKecwPIimOZRkxyIQyPjvhlU474pfEGhrr\/hu40p5zA8iKY5lGTHIhDI+O+GVTjvil8QaGuv8Ahu40p5zA8iKY5lGTHIhDI+O+GVTjvis600bWr\/xBYar4gbT0\/s2ORbaGyZ2DySAK0rFgNvy5AUZxuPzGs600bWr\/AMQWGq+IG09P7NjkW2hsmdg8kgCtKxYDb8uQFGcbj8xrOtNG1q\/8QWGq+IG09P7NjkW2hsmdg8kgCtKxYDb8uQFGcbj8xrKHgzWP7EXwm1zYnw4so\/fZf7SbcSbxBtxt6fJv3fd\/hzWUPBmsf2IvhNrmxPhxZR++y\/2k24k3iDbjb0+Tfu+7\/DmsoeDNY\/sRfCbXNifDiyj99l\/tJtxJvEG3G3p8m\/d93+HNal1o2t6fr+o6noD6e66mkf2iK9Z1EUqLsEqlQd2V2gocfdHzDJrUutG1vT9f1HU9AfT3XU0j+0RXrOoilRdglUqDuyu0FDj7o+YZNal1o2t6fr+o6noD6e66mkf2iK9Z1EUqLsEqlQd2V2gocfdHzDJrV8OaLH4d8P2elRytN5CHfKwwZHYlncjtlixx71q+HNFj8O+H7PSo5Wm8hDvlYYMjsSzuR2yxY4961fDmix+HfD9npUcrTeQh3ysMGR2JZ3I7ZYsce9alalalFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef\/FD\/AFWm\/wDbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/AFrfQf1p9Pp9FFFFFFFFFFFFI\/3D9KR\/uH6Uj\/cP0paWlooooooooooooooopi\/6x\/wpi\/6x\/wAKYv8ArH\/Cn0+n0UUUUUUUUVq+HdLGr63BavnyuXkx\/dH+PT8aa7bVJpkr+XGW79q9hiijgiSKJFSNBhVUYAFQdaoEknJ60+iivmL47+C7Xw9r9rq+nQrDa6nv8yJBhUmXGSB2DAg49Qa67w5fvdWzwSsWeLGCepU12\/hXUpLy0e3mYtJBjax6lT\/hXlNtdXFlcJcWs8sE6HKSROVZT7Ecitl0WRCrqGU9QwyDW88aSoUkRXU9VYZBruvCOveINf15f7S1jUL23t4mbbcXDuoJ4HBOM8\/pWLrcFra6eRFBFG7uANqgH1rD122s7PTiIbeGJ5HAyiAH1r0CubrmK7n4faVHK8+pyqGMTeXFnscZJ+uCPzNRyt0FV7pyMIO\/Jr0Coqq0UUUyaaK3heaaRY40GWZjgAUdaUAk4Aya8g8S6uNa1mS4TPkqBHFn+6O\/4kk1Oi7VxV6FPLjA79TWRTqfRRRSN0\/EfzpG6fiP50jdPxH86v6fo+oaqSLK1eUDgsMBR+J4oLBeppGkVPvNipr\/AMOatpkRlurJ1jHV1IYD64Jx+NAdT0NIsqOcBuay6Wn0UUUUUUUUUxOr\/wC9TE6v\/vUxOr\/71Pp9Poooooor3XS\/+QRZf9cE\/wDQRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEVbq3VuiiiiiivL\/iP\/wAjDb\/9ei\/+hvXl\/wAR\/wDkYbf\/AK9F\/wDQ3ry\/4j\/8jDb\/APXov\/ob1x9cfXH0hRSwYqCR0OKQopYMVBI6HFIUUsGKgkdDilpaWtDQf+Rh0z\/r7i\/9DFaGg\/8AIw6Z\/wBfcX\/oYrQ0H\/kYdM\/6+4v\/AEMV7hXuFe4UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8AFD\/Vab\/21\/8AZK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/rz+vP6KKKKKKKKKKKKKKKYP8AWt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP8AcP0paWlooooooooorpPD\/hC51qMXMsn2e1JwGIyz\/QenvTGkC8dTUUs4jOAMtXMfEzVtH8CXlvplrHdXuoyRiZ98qqkaEkDouSTg8Vp6TpMmpRtK0gjjB2jAySa1NF0mXVYnmeRYolO0YXJJ\/Os\/QdWj1zThfxRtGrMUZTztYAZGe\/BB\/EVWvbJ7C9eJyGBAZWHcVBfWL6ffPC7BsgMrDuP8itOoKr0UUUUUUUUV0Xgi7jtfEsQkIAmRogT6nkfqMfjTJBlKiuFLQnHbmvV6hqlRRRXjPx9srzWLDSbDT4lmlikeeVd4BAwAuM+vzflW14eu4LOeZp3KBlABxkV0Hha7t7Ked7hygdQqnBI\/z0rw+08Ea7cyhXtRAnd5XGB+Aya3pdcsYkyJTIf7qqa6WbXtPiQkTGQ9lRTXo+gaDb6BY+REd8rnMspGC5\/oPaub1C\/kv597jao4VfQVzGo6hJqNx5jjai8Ig7CtaqlU69B+HV9H9murAkCQP5yj1BAB\/LA\/OopRyDVW6U5Vu3Su4qOq9FFFeT+LtYk1HWp4o53a0iYIiBvlJA5OPrnmp0XCjjmrsEYSMEj5jXPU6paKKKKKKmtLY3t9b2qnBmlSMH0ywFNc4XPuKbIdqE+nNe2WdpBYWkdtboEijGFA\/wA9ahJJOTVBmLMSTyamZQylWAKkYIPQ0lJXkHinTI9K16eCEYhbEiD0B7fnmp0O5c1ehcvECevQ1jU6pKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRXl\/wAR\/wDkYbf\/AK9F\/wDQ3ry\/4j\/8jDb\/APXov\/ob15f8R\/8AkYbf\/r0X\/wBDeuKuLmC0gaa4lSKJerucAVxVxcwWkDTXEqRRL1dzgCuKuLmC0gaa4lSKJerucAVz8njzQUk2CeVx\/eWI4\/Wufk8eaCkmwTyuP7yxHH61z8njzQUk2CeVx\/eWI4\/WtnT9VsdVhMtlcpMo6gcFfqDyK2dP1Wx1WEy2VykyjqBwV+oPIrZ0\/VbHVYTLZXKTKOoHBX6g8itzQf8AkYdM\/wCvuL\/0MVuaD\/yMOmf9fcX\/AKGK3NB\/5GHTP+vuL\/0MV7hXuFe4UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8UP8AVab\/ANtf\/ZK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/AHD9KR\/uH6Uj\/cP0paWloooooop8MfmzRx5xuYLn6mjtQTgE17lBDHbQRwRKFjjUKoHYCqx5NZxJJJPU1578RvhJZ+Pb631FNRfT76KMRM\/leYsiAkjK5GCMnnNaul63JpsbRGISxk7gN2CDWxo\/iCTSonhMImiY7gN20g\/XFRzeBdO8G\/DpdPtHaZ4JxO87jDSO2FY47DG0Y\/2R161Xu7+TUL0zSALxtVR2FQXWpS6nqJnkAXK7VUdgK5Co6K6TRPBt9rFsLlpEtrdvuM4yW9wPSmNIFOOpqKSdYzjGTUeueEr7RIftBZJ7bODIgwV+o7UquG46GiOdZDjofSufp1S0oJVgVJBByCO1FFekaL4i1lbJPt+jXk6gcTRR\/Mw\/3TjP1FQuq54I+lVJIo93yuB7VFqHxCgiR47Sxn88cf6QAoU+4BJP6Uoi9Tx7Uq2pPLMMe1cFeXk9\/dyXNzIZJZDlmP8AnpUgAAwKsqoVQAMAVBS0tFFFFFFTWt1PZXKXNtI0cqHKsKCARg0jKGBBGQa7Oy+JDCMpeWG6ReN8T4B49D0\/OoRHlmAPQ1W+zZZgrYAPeqWseOrzUIGt7SIWkTDDMG3OR9e1PWMA5PNPjtlU5Y7jXJ0+p6KKKKKKKKKltrlrO8guUGWhlSQD1IINNcZXHuKbINyEevFe12F\/b6lZx3VtIHjcfiD6H3qEgg4NUGUoxUjmp5JEijaSRlRFGWZjgAUlIBk4FeP+JdTTVtcnuYv9SMJGfVR3\/Hk1Og2qBV+FNkYB696yKdT6KKKKKKYnV\/8AepidX\/3qYnV\/96n0+n0UUUUUV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+girdW6t0UUUUUV5f8R\/+Rht\/+vRf\/Q3ry\/4j\/wDIw2\/\/AF6L\/wChvXl\/xH\/5GG3\/AOvRf\/Q3r5x8X65Lq2sSxK5+yW7lI0B4JHBb8f5V84+L9cl1bWJYlc\/ZLdykaA8Ejgt+P8q+cfF+uS6trEsSufslu5SNAeCRwW\/H+Vc9XPVz1W9N1G50q+ju7VysiHkdmHcH2q3puo3OlX0d3auVkQ8jsw7g+1W9N1G50q+ju7VysiHkdmHcH2r33wpdpfanot3F9yaeFwPTLDivffCl2l9qei3cX3Jp4XA9MsOK998KXaX2p6LdxfcmnhcD0yw4r3evd693rn9Y8R3NrrUWi6Tpn9o6k8BupFecQxQxbtoZnwxyWBAAB6Hpiuf1jxHc2utRaLpOmf2jqTwG6kV5xDFDFu2hmfDHJYEAAHoemK5\/WPEdza61Fouk6Z\/aOpPAbqRXnEMUMW7aGZ8MclgQAAeh6YqGDxrZjw1qWr31rcWkmmSNBeWhw8iSjGEUjht25NpHXcOlQweNbMeGtS1e+tbi0k0yRoLy0OHkSUYwikcNu3JtI67h0qGDxrZjw1qWr31rcWkmmSNBeWhw8iSjGEUjht25NpHXcOlO03xNeya1BpWtaMdMuLuF5rQi5WZZAmNyEgDa4DA45GM4JxTtN8TXsmtQaVrWjHTLi7hea0IuVmWQJjchIA2uAwOORjOCcU7TfE17JrUGla1ox0y4u4XmtCLlZlkCY3ISANrgMDjkYzgnFUB49cwrqv8AY0n\/AAjjXP2Yal9oXdzJ5Yl8rH+q3fxbs4524qgPHrmFdV\/saT\/hHGufsw1L7Qu7mTyxL5WP9Vu\/i3ZxztxVAePXMK6r\/Y0n\/CONc\/ZhqX2hd3MnliXysf6rd\/Fuzjnbir2o+J71NZudL0XRW1SeyiSW8JuVhWPfkqikg7nIGccAAjLDNXtR8T3qazc6Xouitqk9lEkt4TcrCse\/JVFJB3OQM44ABGWGavaj4nvU1m50vRdFbVJ7KJJbwm5WFY9+SqKSDucgZxwACMsM1r6Nq1rrujWmqWZY291GJEDjDLnqCOxByCPUVr6Nq1rrujWmqWZY291GJEDjDLnqCOxByCPUVr6Nq1rrujWmqWZY291GJEDjDLnqCOxByCPUVeq9V6iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUVYsrK41C7S1tYzJK54UUhIAyaRmCqSTgCtfU\/CGq6TaG7kEUka8sYWJKe5yB+lIJFY4qNJ0dtoyD716D4d16DW9PRg6i6RQJo+4Prj0NROu0+1VpYzG3t2NbNNqOvP\/HfiCC4UaTayByjB52U5AI6L\/U\/hUkQ+Y+1WbZPmLHsOK4apas17jYNE2n2xgx5JiXZj+7jiq56nNZzZ3HPXPNV9daJdAvzPjy\/IfOfXHH45xQv3hj1pY8+auOua8WqxWhXYeAdJhvL6e9nQOLbaI1I43HPP4Y\/Wo5WwAB3qC5cqoUd+tek1FVSuM8f6TDJp66miBZ4mCuwH3lPHP0OKkibnHarFs5DbOxrzmpatUUUVb0uwbU9Tt7JDtMr4Leg6k\/lmkJwCaa7bELelevWOiadp1usNvaRAAYLMoLN9T3qAsSeTVFpHY5LGuX8a+G7WOwbU7OJYXjI81EGFYE4zj1yRT43OcGpreVi2xjnPSvO0+\/J9R\/IU5PvyfUfyFTp9+T6j+Qp9Pp9FFFFFFFFFdX4a8HPq8QvLx2itCfkC\/ek\/wFMeTbwOtQzT7DtXlv5V2A8GaB5Ww2Of9oyvn+dRl2Peq5nkP8X6Vgav4avfD8Ul\/od5OsSjMsW7kD19wPenq4bhgKlSVZSFkUZ7GuSvda1LUU2Xd5LKn9wnC\/kOKeFA6Cp1jRPuqBVClp1FFFFFFFFFMTq\/+9TE6v8A71MTq\/8AvU+n0+iiiiiivddL\/wCQRZf9cE\/9BFe66X\/yCLL\/AK4J\/wCgivddL\/5BFl\/1wT\/0EVbq3VuiiiiiivL\/AIj\/APIw2\/8A16L\/AOhvXl\/xH\/5GG3\/69F\/9DevL\/iP\/AMjDb\/8AXov\/AKG9fLF\/A9rqNzBICHjlZTn2NfLF\/A9rqNzBICHjlZTn2NfLF\/A9rqNzBICHjlZTn2NV6r1Xooor3r4eQPbJ4dikBD+bCxB7ZcH+te9fDyB7ZPDsUgIfzYWIPbLg\/wBa96+HkD2yeHYpAQ\/mwsQe2XB\/rX0LX0LX0LXK+IPEMltrkeiaV9hj1SW3E813etiO3h3EAkZBkYkNhAR0JJHflfEHiGS21yPRNK+wx6pLbiea7vWxHbw7iASMgyMSGwgI6EkjvyviDxDJba5HomlfYY9UltxPNd3rYjt4dxAJGQZGJDYQEdCSR3xde0i30v4c38ltdtqci38Gpahc5DNMyTxSSsQvAAROFHQKBWLr2kW+l\/Dm\/ktrttTkW\/g1LULnIZpmSeKSViF4ACJwo6BQKxde0i30v4c38ltdtqci38Gpahc5DNMyTxSSsQvAAROFHQKBWhrNzb6v458JRafPFcNB9pvZHicNshMDRq2R2ZpFx64PpWhrNzb6v458JRafPFcNB9pvZHicNshMDRq2R2ZpFx64PpWhrNzb6v458JRafPFcNB9pvZHicNshMDRq2R2ZpFx64PpXMNcwSfAVNDDR\/wBpmBdH+yFhvF1vEZTHXIPzfTnpXMNcwSfAVNDDR\/2mYF0f7IWG8XW8RlMdcg\/N9Oelcw1zBJ8BU0MNH\/aZgXR\/shYbxdbxGUx1yD83056V1Gj3trpPjPxfDqE8Vs0kkF8jzOFDweQkZYE9g0bA+nHrXUaPe2uk+M\/F8OoTxWzSSQXyPM4UPB5CRlgT2DRsD6cetdRo97a6T4z8Xw6hPFbNJJBfI8zhQ8HkJGWBPYNGwPpx61Z+HEUkfgWxeSMxi4knuo0IwRHLM8icf7rrVn4cRSR+BbF5IzGLiSe6jQjBEcszyJx\/uutWfhxFJH4FsXkjMYuJJ7qNCMERyzPInH+6611VdVXVUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8AFD\/Vab\/21\/8AZK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/rz+vP6KKKKKKKKKKKKKKKYP8AWt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP8AcP0paWloooroPB2p22l675l0wSKWMx7z0Ukggn8sfjTZASvFRToXjwvUHNd34g17TbbRbkfaoZnmiZEjRwxYkY7dqiVSWHFV4onMg+UgA8k15PFLJBIJIpHjdejIcEfjU\/WrpAIwRkVdm1zVZ4jFLqNyyEYKmU8\/X1pNq+gpojQHIQflWYv+sf8ACmr\/AKx\/wpF\/1j\/hT6fT63dH8W6lo0P2eMxzQDpHKCdv0IprIGOe9RyQJIcnIPqKZrPijUdbQRTskcAOfKiBAJ989aFQL060RwrHyOT6msWnVJXU+Cdbh0q\/lt7pwkFyAN56KwzjPtyf0pki7hkdRUNxGXUEdRXp6srKGUggjIIPWoap1wvjvXbeS2Gl20iyOXDTFTkLjov1z\/KpI1OdxqzbRkHeRgdq4e2tbi8mENtDJNIf4UUk1KSB1qwWCjJIA96sXmjalYRiS6spok\/vFePzpAwPQ0iyIxwrAmnaPetpGs2t5JG22NssMclSMHH4E0MNykUOu+NlB617Ha3UF7bpPbSrLE4yGU1XIIODVAqVOCMGuX8c61bwaW+mxyK9zOQGUHOxQc8\/XFPjU7s9qmtoyXDkcCvMU+\/J9R\/IU9PvyfUfyFWE+\/J9R\/IU+n0+iiiiiipII\/OuI4s43uFz9TQeBSE4BNe5QwpbwRwxKFjjUKoHYDgVW6ms4nJJPU0+iikIDAggEHgg0UV4nqtstnq95bJ9yKZ1X6AnFWFOVBrQQ7kU+oqnS06iiiiiiiiimJ1f\/epidX\/3qYnV\/wDep9Pp9FFFFFFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIq3VurdFFFFFFeX\/Ef\/kYbf8A69F\/9DevL\/iP\/wAjDb\/9ei\/+hvXl\/wAR\/wDkYbf\/AK9F\/wDQ3ryDxZ4OOryG+sSqXeMOjcCTHTnsa8g8WeDjq8hvrEql3jDo3Akx057GvIPFng46vIb6xKpd4w6NwJMdOexrhJPDWtxy+W2l3Rb1WMsPzHFcJJ4a1uOXy20u6Leqxlh+Y4rhJPDWtxy+W2l3Rb1WMsPzHFdJ4d8CXDXKXWroI4kO4QZBZz746Cuk8O+BLhrlLrV0EcSHcIMgs598dBXSeHfAlw1yl1q6COJDuEGQWc++Ogr1bQf+Rh0z\/r7i\/wDQxXq2g\/8AIw6Z\/wBfcX\/oYr1bQf8AkYdM\/wCvuL\/0MV7hXuFe4Vlaj4Z0DWLkXOp6Hpt7OFCCW5tI5GCjoMsCccn86ytR8M6BrFyLnU9D029nChBLc2kcjBR0GWBOOT+dZWo+GdA1i5Fzqeh6bezhQglubSORgo6DLAnHJ\/OrOnaRpuj2zW2madaWMDsXaK2hWJSxAGSFAGcADPsKs6dpGm6PbNbaZp1pYwOxdoraFYlLEAZIUAZwAM+wqzp2kabo9s1tpmnWljA7F2itoViUsQBkhQBnAAz7Ciw0nTdK83+ztPtLPzW3SfZ4Vj3t6naBk0WGk6bpXm\/2dp9pZ+a26T7PCse9vU7QMmiw0nTdK83+ztPtLPzW3SfZ4Vj3t6naBk0DSNNGpnUxp9p\/aBXb9q8lfNx6b8Zx+NA0jTRqZ1Mafaf2gV2\/avJXzcem\/GcfjQNI00amdTGn2n9oFdv2ryV83HpvxnH40X2k6bqhiOoafaXZhbdEbiFZNh9VyDg\/Si+0nTdUMR1DT7S7MLbojcQrJsPquQcH6UX2k6bqhiOoafaXZhbdEbiFZNh9VyDg\/SrlXKuUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8UP9Vpv\/AG1\/9krz\/wCKH+q03\/tr\/wCyV5\/8UP8AVab\/ANtf\/ZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP8AWt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP9w\/SlpaWiiiiiiiiiiiiiiimL\/rH\/CmL\/rH\/AApi\/wCsf8KfT6fRRRRRRVuy0u+1En7JaSzAdSq8D6npSEgdTTWdU+8wFOvdI1DT1DXdnNEp43Mvy\/n0oDA9DQrq33WBqt9puEhMaTyLGTyocgflSOOPxFDgYzgZyKjp1Or1rwfp0Nj4ft5UUebcKJJH7nPQfgKgkOWPtVKdy0pHYcCt\/rTaiqtfWFtqNs1vdRLJGw6Ecj3B7GlBIORSqxQ5U4NeOXsU2laldWkczr5UjJlWI3AHipx8wBq+pDoGIHIqkSScnk0tOru9H+H0clqJ9SnmSSUBhFFgbOOhJB5qHftZiO5qq1wVdtgBBPU1k+JvCj6EqXEErTWrttyw+ZD2z6\/Wno+7g9alhm8zgjDVzVPqWiiilVijBlOGByDRRXtOj6pDq+mQ3cRGWGHUfwt3FV2XacVnyIUcqfwq\/SU2q1\/fQabZS3dw22ONcn3PYD3NKBk4FKql2Cjqa8Vurh7u7muZPvyuzt9Sc1YAwMVoKNqgDsKhopaKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRXl\/wAR\/wDkYbf\/AK9F\/wDQ3ry\/4j\/8jDb\/APXov\/ob15f8R\/8AkYbf\/r0X\/wBDeuPrj64+oHvLWOTy3uYVf+6zgH8qge8tY5PLe5hV\/wC6zgH8qge8tY5PLe5hV\/7rOAfyqcEEZHIqcEEZHIqcEEZHIrQ0H\/kYdM\/6+4v\/AEMVoaD\/AMjDpn\/X3F\/6GK0NB\/5GHTP+vuL\/ANDFe4V7hXuFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/wBa30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8KYv+sf8KYv+sf8ACn0+n0UUVo6Fpn9r6zb2ZJCOcuR2UDJpGO1SaZI+yMtXsdvbQ2lukFvGscSDCqo4FVycnJqiSWOScmnSxRzxNFKivGwwysMgijpSAkHI615B4p0ldG1mS3jz5LgSRZ7KT0\/Agipt26PPfIq6j+ZCCeucGtXwl4UXVlN7e7haK2EQHBkI68+lDvt4HWmzzbPlX738q9JggitoEghQJEgwqjoBUJOTzVUkk5PJNSUUlYmpeK9J0+B3+1Rzyj7sUTbiT6HHT8acEYnpipEhdj90gepo0XS7KTT472a2hmuLxfPlkdA2S3OBnoBnH4UMxzjPA4okdgxUEgLwBXE+MtNtdJ1uF7SNUSVRIYh0BB7egNSRksvNWLdy8Z3HpxmvSbG9g1CzjurZw8cgyMdvY+9REYODVRlKsVPUVzfj2\/gh0T7GWBnnZSq9wAck\/pj8adEDuz2FS2ykybuwrzKpquUUUUUUVe0zV73SJzLZzFCfvKeVb6ikKhhzTXRXGGGa6P8A4WNfiLmyti\/TOWx+Wf61GYwO561CbVRzuPWsDVtdv9akDXk2UU5WNRhV\/D+pqRVC9KlSNYx8o\/Gs2lp9FFFFFFFFFFFFMTq\/+9TE6v8A71MTq\/8AvU+n0+iiiiiivddL\/wCQRZf9cE\/9BFe66X\/yCLL\/AK4J\/wCgivddL\/5BFl\/1wT\/0EVbq3VuiiiiiivLviQQPEEBJwBaLkn\/fevLviQQPEEBJwBaLkn\/fevLviQQPEEBJwBaLkn\/fevn3xP4xudRuJLawlaGyU7dyHDS+5Pp7fnXz74n8Y3Oo3EltYStDZKdu5Dhpfcn09vzr598T+MbnUbiS2sJWhslO3chw0vuT6e351ydcnXJ1r6J4jv8ARJ1MMrPBn54HPyke3ofcVr6J4jv9EnUwys8Gfngc\/KR7eh9xWvoniO\/0SdTDKzwZ+eBz8pHt6H3Fe3eEb+DU9S0a8tzmOW5iIz1HzjIPuDXt3hG\/g1PUtGvLc5jluYiM9R84yD7g17d4Rv4NT1LRry3OY5bmIjPUfOMg+4Ne9V71XvVFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFc14h1bxVYX8cWh+GIdVtjEGaaTUVgKvk5XaVOeADn39q5rxDq3iqwv44tD8MQ6rbGIM00morAVfJyu0qc8AHPv7VzXiHVvFVhfxxaH4Yh1W2MQZppNRWAq+TldpU54AOff2rJ\/4SP4if9CBa\/wDg7j\/+IrJ\/4SP4if8AQgWv\/g7j\/wDiKyf+Ej+In\/QgWv8A4O4\/\/iK6Xw9e6zf2EkuuaPHpV0JSqwR3QnDJgYbcAMckjHt710vh691m\/sJJdc0ePSroSlVgjuhOGTAw24AY5JGPb3rpfD17rN\/YSS65o8elXQlKrBHdCcMmBhtwAxySMe3vWtWtWtRRRRRRRRRRRRRRRXn\/AMUP9Vpv\/bX\/ANkrz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP8AWt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP9w\/SlpaWiiiiiiiiiiiiiiimL\/rH\/CmL\/rH\/CmL\/rH\/AAp9Pp9PhhkuJkhhRnkc7VVRkk0dKCQBk9K9H8LeEZ9Iukv7q4XzthXyUGQM+retRO4YYAqpNOHXao49a6+o6goooryvx7ex3fiApGQRbxrExH97JJ\/nj8KlUYj+pFW4VKwc9zmvQvD0aR+HdOWPG026Nx6kZP6k1G33z9arynMr59a0qSmUUUVzVz4H0q7vJ7mVrjfM5chXAAJ9OKeJGAA4qYXDqoAxxSyWWr+H9NZNJkS9gjBKwXK5dR\/slSM\/T8qMqx+bg+opAySv842k9xWH4b09vFN\/cavq585Y2EaR9Fz1xj0GRx3zzTnOwBVqSVvJUInGec1239m2iwPDDCturDBNv+7P5rio885qvuOck5+vNeQ69ZzWGt3VtPM8zo3+sc5LAjIJ\/Aip1OVBFXo2DRggY9qzqWn0UUUUUUUUUjdPxH86Run4j+dI3T8R\/OlpaWiiiiiiiiiiiiiiimJ1f\/epidX\/AN6mJ1f\/AHqfT6fRRRRRRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEV7rpf\/IIsv+uCf+girdW6t0UUUUUV4v8AHGd7aG4kQkN9gVMj\/akZT\/OvF\/jjO9tDcSISG+wKmR\/tSMp\/nXi\/xxne2huJEJDfYFTI\/wBqRlP86+aK+aK+aKKKKKKK9Z+DM7vfQQEkrHqELL7ZYZ\/lXrPwZnd76CAklY9QhZfbLDP8q9Z+DM7vfQQEkrHqELL7ZYZ\/lX1NX1NX1NXKeJ9Bsby8bVtcS41HTLa3CRaZFbPN+9L8y7EyXOCoHHygE9zjlPE+g2N5eNq2uJcajpltbhItMitnm\/el+ZdiZLnBUDj5QCe5xynifQbG8vG1bXEuNR0y2twkWmRWzzfvS\/MuxMlzgqBx8oBPc45i01G9h+Et21leTwmfUTZ2heUtPZwy3QiVHJJKyIj9CcrwO1cxaajew\/CW7ayvJ4TPqJs7QvKWns4ZboRKjkklZER+hOV4HauYtNRvYfhLdtZXk8Jn1E2doXlLT2cMt0IlRySSsiI\/QnK8DtWu+k2Xg\/xl4eXRojbWupfaLW7gWRispWIypIQScuDGRu6kMck1rvpNl4P8ZeHl0aI21rqX2i1u4FkYrKViMqSEEnLgxkbupDHJNa76TZeD\/GXh5dGiNta6l9otbuBZGKylYjKkhBJy4MZG7qQxyTXOmyWP4XJ493OfEnlLqpvPNbcQW3mHr\/q9nybOmOcZ5rnTZLH8Lk8e7nPiTyl1U3nmtuILbzD1\/wBXs+TZ0xzjPNc6bJY\/hcnj3c58SeUuqm881txBbeYev+r2fJs6Y5xnmuiTRrLxf4u8R\/21G1zb6dJDZ2cJkZRDmFZXkUAjDkyAbuoCjBrok0ay8X+LvEf9tRtc2+nSQ2dnCZGUQ5hWV5FAIw5MgG7qAowa6JNGsvF\/i7xH\/bUbXNvp0kNnZwmRlEOYVleRQCMOTIBu6gKMGtfwDfXWoeDLGS9mae5haa1eZjkyGKV4txPckICfc1r+Ab661DwZYyXszT3MLTWrzMcmQxSvFuJ7khAT7mtfwDfXWoeDLGS9mae5haa1eZjkyGKV4txPckICfc10ldJXSUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVzPiHw\/rl9qMeo6H4nudLnSIRtbSQrPbSAEnJQ4IY5wWBzgD0rmfEPh\/XL7UY9R0PxPc6XOkQja2khWe2kAJOShwQxzgsDnAHpXM+IfD+uX2ox6jofie50udIhG1tJCs9tIASclDghjnBYHOAPSsweJfGWhKf8AhIfC66hAoy15oMvmfnA+H6dcE1mDxL4y0JT\/AMJD4XXUIFGWvNBl8z84Hw\/TrgmsweJfGWhKf+Eh8LrqECjLXmgy+Z+cD4fp1wTXReG\/E+keLNMOoaNdG4t1kMTkxshRwASpDAHOCPzrovDfifSPFmmHUNGujcW6yGJyY2Qo4AJUhgDnBH510XhvxPpHizTDqGjXRuLdZDE5MbIUcAEqQwBzgj86161616KKKKKKKKKKKKKKK8\/+KH+q03\/tr\/7JXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKKKKKKKKKKKR\/uH6Uj\/cP0pH+4fpS0tLRRRRRRRRRRRRRRRTF\/wBY\/wCFMX\/WP+FMX\/WP+FPp9Prt\/h3YRyXN3fOAWiAjjz2Jzk\/kB+ZqOU8AVXumICr68mvQqiqrRRRXLeNdYvtJsoBZsqeeWVpMfMuMdP1p8ahic9qmt41dju5x2rxi88T6PbXxtLi\/QXG7DZBIBz3bGB+JrQTS72a386OBinUcjJHsK100m+ntvOjt2KdRyMkew61614I8RwPZppd1IqSp\/qGY8Op7Z9aoSIQc4+tZVzEQxcD6+1dtUdV6KKKKKKKKK5mDULPQvEl5p87rBDdlbmJjwoYjDAntkjNPILICOccVMVaSJXHJXg10iSxyDKOrcZ+U5plQ4xWZc+HNKvL2S7urUTTSYyXY4AAwMDOO1ODsBgGniV1UKDgCsjVfAenXULNYA2s4HHzFkJ9wen4UqyEHnkU9Llwfm+YV5xdW01ndSW1whSWNtrKexqYHIyKtghgCDwahopaKKKRun4j+dI3T8R\/Okbp+I\/nS0tLRRRRRRRRRRRRRRRTE6v8A71MTq\/8AvUxOr\/71Pp9Poooooor3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EVbq3VuiiiiiivJPi3ZDUr1rMnHnWAUH0O58H88V5J8W7IaletZk486wCg+h3Pg\/nivJPi3ZDUr1rMnHnWAUH0O58H88V8wXFvLaXElvOhSWNirKexFfMFxby2lxJbzoUljYqynsRXzBcW8tpcSW86FJY2Ksp7EVFUVRUUUV7X8K9Kk0x9LaZSs1zexSlT1UblAH5c\/jXtfwr0qTTH0tplKzXN7FKVPVRuUAflz+Ne1\/CvSpNMfS2mUrNc3sUpU9VG5QB+XP419KV9KV9KVz+qWXiGHWjqWi3NrPFLAsMthfSukasrMRIjKG2sQxBG3nC8jFc\/qll4hh1o6lotzazxSwLDLYX0rpGrKzESIyhtrEMQRt5wvIxXP6pZeIYdaOpaLc2s8UsCwy2F9K6RqysxEiMobaxDEEbecLyMVnR+CZZ\/CusaffXy\/2hqt0b6W4gjwkM+UMZRSckL5cfU5ODnGazo\/BMs\/hXWNPvr5f7Q1W6N9LcQR4SGfKGMopOSF8uPqcnBzjNZ0fgmWfwrrGn318v8AaGq3RvpbiCPCQz5QxlFJyQvlx9Tk4OcZqzaaNrV\/4gsNV8QNp6f2bHIttDZM7B5JAFaViwG35cgKM43H5jVm00bWr\/xBYar4gbT0\/s2ORbaGyZ2DySAK0rFgNvy5AUZxuPzGrNpo2tX\/AIgsNV8QNp6f2bHIttDZM7B5JAFaViwG35cgKM43H5jWUPBmsf2IvhNrmxPhxZR++y\/2k24k3iDbjb0+Tfu+7\/DmsoeDNY\/sRfCbXNifDiyj99l\/tJtxJvEG3G3p8m\/d93+HNZQ8Gax\/Yi+E2ubE+HFlH77L\/aTbiTeINuNvT5N+77v8Oa1LrRtb0\/X9R1PQH0911NI\/tEV6zqIpUXYJVKg7srtBQ4+6PmGTWpdaNren6\/qOp6A+nuuppH9oivWdRFKi7BKpUHdldoKHH3R8wya1LrRtb0\/X9R1PQH0911NI\/tEV6zqIpUXYJVKg7srtBQ4+6PmGTWr4c0WPw74fs9KjlabyEO+VhgyOxLO5HbLFjj3rV8OaLH4d8P2elRytN5CHfKwwZHYlncjtlixx71q+HNFj8O+H7PSo5Wm8hDvlYYMjsSzuR2yxY4961K1K1KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK5nxFdeMTqMdj4b03ThA0QeTUr+c7EYsQUES\/MSAAc5xzXM+IrrxidRjsfDem6cIGiDyalfznYjFiCgiX5iQADnOOa5nxFdeMTqMdj4b03ThA0QeTUr+c7EYsQUES\/MSAAc5xzWUPhzLq\/z+L\/Eeo63nraI32W165H7uMgtj1JNZQ+HMur\/AD+L\/Eeo63nraI32W165H7uMgtj1JNZQ+HMur\/P4v8R6jreetojfZbXrkfu4yC2PUk11+maTp2i2Ys9Lsbeztgc+VbxhFz64HU8da6\/TNJ07RbMWel2NvZ2wOfKt4wi59cDqeOtdfpmk6dotmLPS7G3s7YHPlW8YRc+uB1PHWrlXKuVl2fiLSb+8Fra3qSStnZ8pCyY67GIw+O+0msuz8RaTf3gtbW9SSVs7PlIWTHXYxGHx32k1l2fiLSb+8Fra3qSStnZ8pCyY67GIw+O+0mr13dQ2NnNd3L7IIEaSR8E7VAyTgc9KvXd1DY2c13cvsggRpJHwTtUDJOBz0q9d3UNjZzXdy+yCBGkkfBO1QMk4HPSs\/T\/Emmarci3tJJ2kKlvntZYxj6soFZ+n+JNM1W5FvaSTtIVLfPayxjH1ZQKz9P8AEmmarci3tJJ2kKlvntZYxj6soFOu\/EWk2N4bS5vUjmXbv+UlY89N7AYTPbcRTrvxFpNjeG0ub1I5l27\/AJSVjz03sBhM9txFOu\/EWk2N4bS5vUjmXbv+UlY89N7AYTPbcRWpWpWpXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKYv+sf8KYv+sf8ACmL\/AKx\/wp9Pp9dn8PdSjgvrixkYKbgBo892Gcj8j+lRyjIB9Kr3SEqGHbrXo1RVVooorl\/GGh6hraWy2fk7IdzMHcgsTjpxjt+tPjYLnNTQSLHndnmvlzXvAfiPTvENxaT2EpZpCyyEjaQTwSa7K21qxNkjtMqFVAKY5B9q7u01zT2sI3MyptUApjkH0r0nT7ZrPTbW1d97QxLGW9SABmuYuJRNcyyqNodywHpk1ytzKJ7qWVV2h3LAemTWzFrmqwReXHqN0qDgASnj6elQ7VPYVAY0JyUH5V6b4T1QapoUJaQvcQjy5dxycjoT9R3+tQuu1vaqc6bJDxweRW5TajoooryHxZqMepeIZ5YmDRRgRIw7gdT+eanQYUVegQpEAep5rsPh7bJFoU04A8yac7j7AAAfz\/OoX\/1jfX+lVrj\/AFzD\/PSuupKiooorzb4h26R6vbTqAGliw3uQev5H9KliPykVbtTlCPQ1x9SVPRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/wDepidX\/wB6mJ1f\/ep9Pp9FFFFFFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRXuul\/8giy\/wCuCf8AoIq3VurdFFFFFFeX\/Ef\/AJGG3\/69F\/8AQ3ry\/wCI\/wDyMNv\/ANei\/wDob15f8R\/+Rht\/+vRf\/Q3rzHX\/AApY69+9cmC6AwJkHX\/eHevMdf8ACljr371yYLoDAmQdf94d68x1\/wAKWOvfvXJgugMCZB1\/3h3rkn+G+pCTEd5aMnq24H8sH+dck\/w31ISYjvLRk9W3A\/lg\/wA65J\/hvqQkxHeWjJ6tuB\/LB\/nW7ongOz06Zbm8l+1zKcqu3CKfp3\/zxW7ongOz06Zbm8l+1zKcqu3CKfp3\/wA8Vu6J4Ds9OmW5vJftcynKrtwin6d\/88V32g\/8jDpn\/X3F\/wChiu+0H\/kYdM\/6+4v\/AEMV32g\/8jDpn\/X3F\/6GK9wr3CvcKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK4bxRPqWu+MrPwfYancaXbfYW1C\/urUhZmj3+WkcbfwEncScZwPz4bxRPqWu+MrPwfYancaXbfYW1C\/urUhZmj3+WkcbfwEncScZwPz4bxRPqWu+MrPwfYancaXbfYW1C\/urUhZmj3+WkcbfwEncScZwPzH+Fulohex1jxBZXnUXUepys+fcMSCPUYof4W6WiF7HWPEFledRdR6nKz59wxII9Rih\/hbpaIXsdY8QWV51F1HqcrPn3DEgj1GK0fAms3+raNd2+qukupaXfS6dczom1ZmjxiQDtuVlOPXPTpWj4E1m\/1bRru31V0l1LS76XTrmdE2rM0eMSAdtyspx656dK0fAms3+raNd2+qukupaXfS6dczom1ZmjxiQDtuVlOPXPTpWn4meSLwrq8kJIkWymKleoOw8itPxM8kXhXV5ISRItlMVK9Qdh5FafiZ5IvCuryQkiRbKYqV6g7DyKytYjhg0Xw79mwoivrNYNv90kKQPbYW\/CsrWI4YNF8O\/ZsKIr6zWDb\/AHSQpA9thb8KytYjhg0Xw79mwoivrNYNv90kKQPbYW\/CtfxDYvqeg3dhHPHA1woi3yfdGSAR+IyPxrX8Q2L6noN3YRzxwNcKIt8n3RkgEfiMj8a1\/ENi+p6Dd2Ec8cDXCiLfJ90ZIBH4jI\/GqAm1TSdc0+2ur8X1tfs8fzQrG0LqhcFdvVSFIweRxzVATappOuafbXV+L62v2eP5oVjaF1QuCu3qpCkYPI45qgJtU0nXNPtrq\/F9bX7PH80KxtC6oXBXb1UhSMHkcc1V0yOCbw34h+0YIlu70XG70DMoz9FC\/hiqumRwTeG\/EP2jBEt3ei43egZlGfooX8MVV0yOCbw34h+0YIlu70XG70DMoz9FC\/hitTR5r1vB+mzRxJPetZQtsmkMYZigzlgpI79jWpo8163g\/TZo4knvWsoW2TSGMMxQZywUkd+xrU0ea9bwfps0cST3rWULbJpDGGYoM5YKSO\/Y1w\/xAn1aWOx\/tGwtLYDzNnkXbTbvu5zmNcdvWuH+IE+rSx2P9o2FpbAeZs8i7abd93Ocxrjt61w\/xAn1aWOx\/tGwtLYDzNnkXbTbvu5zmNcdvWuMzJ\/cX\/vr\/wCtXGZk\/uL\/AN9f\/WrjMyf3F\/76\/wDrUZk\/uL\/31\/8AWozJ\/cX\/AL6\/+tRmT+4v\/fX\/ANajMn9xf++v\/rUZk\/uL\/wB9f\/WozJ\/cX\/vr\/wCtRmT+4v8A31\/9ajMn9xf++v8A61GZP7i\/99f\/AFqMyf3F\/wC+v\/rUZk\/uL\/31\/wDWozJ\/cX\/vr\/61GZP7i\/8AfX\/1qMyf3F\/76\/8ArUZk\/uL\/AN9f\/WpoL+a3yrnA\/i+vtTQX81vlXOB\/F9famgv5rfKucD+L6+1OzJ\/cX\/vr\/wCtTsyf3F\/76\/8ArU7Mn9xf++v\/AK1GZP7i\/wDfX\/1qMyf3F\/76\/wDrUZk\/uL\/31\/8AWozJ\/cX\/AL6\/+tRmT+4v\/fX\/ANajMn9xf++v\/rUZk\/uL\/wB9f\/WozJ\/cX\/vr\/wCtRmT+4v8A31\/9ajMn9xf++v8A61GZP7i\/99f\/AFqMyf3F\/wC+v\/rUjGTaflXp\/e\/+tSMZNp+Ven97\/wCtSMZNp+Ven97\/AOtS5k\/uL\/31\/wDWpcyf3F\/76\/8ArUuZP7i\/99f\/AFqMyf3F\/wC+v\/rUZk\/uL\/31\/wDWozJ\/cX\/vr\/61GZP7i\/8AfX\/1qMyf3F\/76\/8ArUZk\/uL\/AN9f\/WozJ\/cX\/vr\/AOtRmT+4v\/fX\/wBajMn9xf8Avr\/61GZP7i\/99f8A1qMyf3F\/76\/+tRmT+4v\/AH1\/9ajMn9xf++v\/AK1GZP7i\/wDfX\/1qMyf3F\/76\/wDrU+0t7m8vVt7eEPNIwVVDd\/ypgZw7navbPzf\/AFqZudWclV7Z+b\/61eseGvC0Oi25ecRzXj8s+3IT2XP8+9IzlvaoJZmk9h6Zqn4n8Jm+Iv8ASwkN5GMlF+XzCOhBHRqVZCBjGfqaWOcoNpG4e5rCsfiBqdmnk31lHcMnylvMKP8Ajwf5CgxueiqP+Bf\/AFqc1uzHKhR\/wLP9K67w14gfxBDcStarbrEwUKJN5PHXoKaVZfvY\/A1FJGYyA2OfStykplcb8RbSOTRYbsKPOimCg9Mqeo\/MClBI4Az06mpYWYEgc59TXmuZP7i\/99f\/AFqlzJ\/cX\/vr\/wCtVrMn9xf++v8A61PjSeaVY44g7uQqqpyST26UbpP7q\/8AfX\/1qCzgZKr\/AN9f\/Wr0zwt4Tn0greXN06XDLhoYiNmPRiRzTGkLDBAqtLP5g27R9a62mVDXB+ONX1u0b7IkMcNlMCBMjks47gnHH0\/WnICTkKp+rf8A1qmgXJyFDEep\/wDrV5\/mT+4v\/fX\/ANapMyf3F\/76\/wDrVZzJ\/cX\/AL6\/+tXcfDzWkie40q4ZUMknmQkngtgAr+gI\/GoiGLOSBwexz2qtMjMzvgcHnBz2r0SkqGiiisq\/8Pafqt4tzfRtMVTYiFyFUZz27804MVGBT1lZFwpxWBrvgS1e0ebSVaKdBkQliVf25yQaUSsPQ\/pUiXLg4bB\/SvN8yA\/cX\/vr\/wCtT8yf3F\/76\/8ArVYzJ\/cX\/vr\/AOtSMZMfdXqP4v8A61Ixkx91eo\/i\/wDrUjGTH3V6j+L\/AOtS5k\/uL\/31\/wDWpcyf3F\/76\/8ArUuZP7i\/99f\/AFqMyf3F\/wC+v\/rUZk\/uL\/31\/wDWozJ\/cX\/vr\/61GZP7i\/8AfX\/1qMyf3F\/76\/8ArUZk\/uL\/AN9f\/WozJ\/cX\/vr\/AOtRmT+4v\/fX\/wBajMn9xf8Avr\/61dDoXhLUtajE5EdvanpI5JLfQY5\/SkMjKcFV\/Bv\/AK1RvcFDgqCfZv8A61bN18ObhIS1pfxyyD+CSMoD+IJpDMey\/rTftf8AsfrXE3Frd2N1NbXMHlzI2GVj04+nIpIy53EKvX+9\/wDWp8bM24qqkE\/3v\/rVHmT+4v8A31\/9an5k\/uL\/AN9f\/Wp+ZP7i\/wDfX\/1qMyf3F\/76\/wDrUZk\/uL\/31\/8AWozJ\/cX\/AL6\/+tRmT+4v\/fX\/ANajMn9xf++v\/rUZk\/uL\/wB9f\/Wr3fSc\/wBj2OQAfs8eQD\/sivd9Jz\/Y9jkAH7PHkA\/7Ir3fSc\/2PY5AB+zx5AP+yKuVcq5RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXB+ItB8Yjx4viLwu+hbW0xbGRNTabORKz5AjHuO\/rxXB+ItB8Yjx4viLwu+hbW0xbGRNTabORKz5AjHuO\/rxXB+ItB8Yjx4viLwu+hbW0xbGRNTabORKz5AjHuO\/rxTM\/F708D\/nd0zPxe9PA\/53dMz8XvTwP+d3Wn4C0HWtDstXfXnsGvtR1OS+b7AzmJQyIMDeAeqn17c1p+AtB1rQ7LV3157Br7UdTkvm+wM5iUMiDA3gHqp9e3NafgLQda0Oy1d9eewa+1HU5L5vsDOYlDIgwN4B6qfXtzXVsqujI6hlYYIIyCK6tlV0ZHUMrDBBGQRXVsqujI6hlYYIIyCKx7Pw1aWc9s4uLuaK0z9lt5pd0cHBHy8ZOASBuJwDxWPZ+GrSzntnFxdzRWmfstvNLujg4I+XjJwCQNxOAeKx7Pw1aWc9s4uLuaK0z9lt5pd0cHBHy8ZOASBuJwDxVm40e3vLe9t7uSe4gu3DGOR+I8AY2YwVwQD9eas3Gj295b3tvdyT3EF24YxyPxHgDGzGCuCAfrzVm40e3vLe9t7uSe4gu3DGOR+I8AY2YwVwQD9eaistBhtb1Lya7u724jUpE91IG8pT12gADJwOTk+9RWWgw2t6l5Nd3d7cRqUie6kDeUp67QABk4HJyfeorLQYbW9S8mu7u9uI1KRPdSBvKU9doAAycDk5PvUV34Zs7ue5Yz3cUF2c3VtFJtjnOAPmGMjIAB2kZ75qK78M2d3PcsZ7uKC7Obq2ik2xznAHzDGRkAA7SM981Fd+GbO7nuWM93FBdnN1bRSbY5zgD5hjIyAAdpGe+a2VUKoVQAAMADtWyqhVCqAABgAdq2VUKoVQAAMADtXAfFD\/AFWm\/wDbX\/2SuA+KH+q03\/tr\/wCyVwHxQ\/1Wm\/8AbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/AFrfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/3D9KR\/uH6Uj\/cP0rf8LeHjrt83msyWsODIw6nPRRSO20e9Mml8tePvHpXplvoel2sQii0+3CgY5jDE\/Unk1CWY9zVMyOTksfzrnfE3g60ms5bvToRDcRgsY0GFcDqAOx+lPSQ5welSwzsGCucg9\/SvN6lq3RRRRRRXW\/DqGN9du5WALxw\/J7ZIBP+fWoXPzN+FVbgkbh6kV6ZTKr0UUV5J4yhjg8UXYjAAba5A9SoJ\/x\/Gp4\/uCr0BJhXNO8KeIBoV84mDNazgCTb1Ujof1NDruHuKSaLzF4+8OlejL4i0Z4fNGp2u3GcGQA\/keah2N6GqvlSZxsP5VzOtfbfGmy30pAunwvua4myqyP7cZwBnt3p2Ag56+lSKFgGXPznsO1YOp+C9V023afEVxEoyxhJJUeuCB+lPEik46VMlwjnHIPvVv4f2SXGsy3LgH7PHlfZjxn8s0SnC49abdNiMD1NemVDVSiiisjxNZJfeHbyNwCUjMqH0ZRn\/wCt+NOQ4cU+Ftsqn1OK8faN0ALoyg9MjGanq\/mo0JEjkHBDD+Qpiffk+v8AQUxPvyfX+grtvCmta9qN8lit2rwou53mTcVUe\/UnkdaR1UDOKimjjVd23n2ruZrD7RLC73M\/7pw4UMArEeoA5qMHGeBVcNgHgc1cpKbSEhVJJAAGST2oorw++kSbULmSL\/VvKzL9CTirA6CtFQQoB64qs3T8R\/Ohun4j+dDdPxH86WlpaKKKKKKs6fbC81K1tScCaZIyfQEgUhOATSMdqMfQZr26KNIYkijUKiAKqjoAO1V6zicnJp1FFcP8RbKP7LaXwAEgfyWPqCCR+WD+dSRHkirFqx3MvbrXn1S1aoooooor3XS\/+QRZf9cE\/wDQRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEVbq3Vuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiud17Q9e1O+SbS\/FdxpECxhGgjs4ZQzZJ3ZcE9CBjpxXO69oevanfJNpfiu40iBYwjQR2cMoZsk7suCehAx04rnde0PXtTvkm0vxXcaRAsYRoI7OGUM2Sd2XBPQgY6cVwviK58RaHdJplt8QNS1TXJhmHTLPS7ZpD\/tOduI05GWbt61wviK58RaHdJplt8QNS1TXJhmHTLPS7ZpD\/tOduI05GWbt61wviK58RaHdJplt8QNS1TXJhmHTLPS7ZpD\/tOduI05GWbt613Hgez8T2Xh4L4u1KK+1SSUyExIqiJCAAnygAkEE5x3xzjNdx4Hs\/E9l4eC+LtSivtUklMhMSKoiQgAJ8oAJBBOcd8c4zXceB7PxPZeHgvi7Uor7VJJTITEiqIkIACfKACQQTnHfHOM10ldJXSUUUUUUUUUUUUUUUV5\/wDFD\/Vab\/21\/wDZK8\/+KH+q03\/tr\/7JXn\/xQ\/1Wm\/8AbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/AFrfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/3D9KR\/uH6Uj\/cP0r0j4dPGdJu0GPME+W+hUY\/kajl+8PpVW6zvU9sV2VR1BSMyopZiAoGST2FFFeFSlWmcoMKWJA9qs1pDpTKKKKKK6XwCly3iZnhIEaxHzs917D65x+VQvjc\/wCFVpyMPnrkYr1SmVWooorx3xPHcx+JL4XRBkMmQR0KkfL+mKnTGwYq\/CQYlx0xWRTqfRRRXuNjbRWVjBbQgCONAq47+9Vyckms5iWYk9TVikpK4LRJ7fSPHeoWIISGdiqegb7wH6kflUjAtGD6VZkBktlbuOtd7UdVqKKKCMjBooqG6tYL23aC5iWWJhgqwzQCQcilDFTkHBrxbVbEabrV9ZqxZYpcKT1xgEfpUsZyXPuP5CrkLb9zepH8hWt4Q1iHR9YL3JxBMnls2Pu8gg\/p+tOkXcvHWieMyR8dRzXpU2uaXb2xuHv7fy8ZBWQMT9AOtQ7WJxg1UEbk42nP0rjIviJNHczeZZLLAXJiw21lXsDwQak8oY61YNqCBhsHvVDWvG15qts1tBCLWBxh8NuZh6Z4wKVYwpz1NOjt1Q5Jya5en1NSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKkt53trmK4j+\/E4dfqDkUEZGKQjIIPQ17Tpep2+rWMd1bsCrD5l7oe4NVyCpwaoOhRipq5SU2vOPHmtw3txFp1s4dbdi0rA5G\/HT8Bn86liHU\/hVq1TAZj16VxtSVYoooooor3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiuA+IN944+2W2m+GNKmawljDXeoW0kXnLkkFIw7AKcAfMc\/e45FcB8Qb7xx9sttN8MaVM1hLGGu9QtpIvOXJIKRh2AU4A+Y5+9xyK4D4g33jj7Zbab4Y0qZrCWMNd6hbSRecuSQUjDsApwB8xz97jkVS8OzX3he1eHTfhtqwklO6e5lvbd5p27tI5fLHJJ9OeMVS8OzX3he1eHTfhtqwklO6e5lvbd5p27tI5fLHJJ9OeMVS8OzX3he1eHTfhtqwklO6e5lvbd5p27tI5fLHJJ9OeMV3Oh6lfapZPPf6PcaVKshQQTyI7MuAd2UJGOSPXiu50PUr7VLJ57\/R7jSpVkKCCeRHZlwDuyhIxyR68V3Oh6lfapZPPf6PcaVKshQQTyI7MuAd2UJGOSPXitOtOtOiiiiiiiiiiiiiiivP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz\/wCKH+q03\/tr\/wCyV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6VqaHrdxod+LiEB0YbZIyeHH9D70MoYYpskYkXB\/A16Db+OtEliDyzSQPjlHjYn8xkVEY2qqbaQHgA\/jXP+JPGy39q9lpyukUgxJK\/BYegHYU5I8HJqWK32nc\/UdBXF1JViiiiiiiuz+G80a6jqMJx5jxoy\/QE5\/mKgf77fhVS5B3E9s16NTagoooryvx1NHL4mkVCCY41RsevX+oqaP7lXbYEQj3Nc1T6looor0Pw340tfsUVnqTtFNGAiy7SQ46DOOhqJ0wcjpVWaAgll5B7V0t\/qUkFm0lnZz3UuPkQIVH1OccfSmAc8kColQFsMwUV5DfG7GoSyXiSR3LOXbepU5JzmpxjHHSry7doC4Irq9I+IEtvCsOpQNOF4E0ZwxHuDwT78Uxos9DioHtgTlDj2NaVx8RbBYz9ms7mSTsJNqj8wTSCI9yKYLVs8sAPas7SPHko1KVtU\/495cbfLXiLHt3Hr3pWj4+XrT5LYbBs6j1710N5420W2tjJFcG4kx8saKQSfckcU0RsT0xUS28hOCMD1NeWXV3JfahdXU2PMlk3nHQZHSnxjDOPcfyFWYlClwOgI\/kKjp9SUUUVZsLC41K8S1tY98r9B2A9T7UhIAyaRmCKWY8V39h8PbGKIG+nlmlxyEO1R\/WozKewqq10xPygAUl\/wDD2ykiJsbiWGXsJDuU\/wBRQJT3FC3TA\/MAR7V5\/qFjcaddPa3UZSVGGQe\/uPankgqCPUfzqxuDoCDxkfzqCnU+iiiiiivTfBvh61ttMh1CeJZLqcb1LDOxe2PfHOfeoZGJOOwqpPKS5UHAH611TxhwQcgkYyDgj8aZUGcV5b4i1XW7XUrnTZ9SleNDgFQE3KRkZ2gdjUyKpAIFXYkjKBwgya5dOr\/71CdX\/wB6nJ1f\/ep9Pp9FFFFFFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRXuul\/8giy\/wCuCf8AoIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/wBa30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKKKKm06+n03UVu7Z9ssZBHofUH2pgALuD7VHtDtIp6HFenaN40sNUkitpEeC6kO0KRlSfY\/40xoyvPUVXkt2QEjlRXSEZBAOPemVDXh9+HGo3IllMsglYNIf4jk81YHQVorjaMDAx0qvS0tFFFek+CNAht7BNTnjDXE3Me4fcX29z6+lRSNk7e1VLiUligPA6+9dhUdQVm6zolprdp5NyuGHKSqPmQ+3+FKrFTxT45GjbI\/EV5Xruiz6FqBtpWDqw3RyAYDD+hqdWDDNXI5BIuRx6isylp9FFFFFFMT78n1H8hTE+\/J9R\/IUxPvyfUfyFPp9Pooor0b4eWKJptxfEDzZZPLB9FAH9T+gqKU8gVVumJcL2AzXZ1HVeiiiuY8b6PHf6K92qgXNqN4YdSmeQf5\/\/AK6cpOQOxIqWFyrhexIry2p6u0UUUUUV6v4O1eDUNEgtw4FxbII3TPOBwCPbGKgkXDE9jVKdCshPY85rfmmjgiaWZ1jjQZZmOABTetRAEnAGTXjniDUV1XXLm7jB8tmATP8AdAwD+OM1YUbVAq\/EmyMKetZKdX\/3qanV\/wDeoTq\/+9T6fT6KKKKKK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIr3XS\/wDkEWX\/AFwT\/wBBFW6t1boooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/wCKH+q03\/tr\/wCyV5\/8UP8AVab\/ANtf\/ZK8\/wDih\/qtN\/7a\/wDslef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFFFFMX\/WP+FMX\/WP+FMX\/WP+FSxSPDKksbFJEIZWHUEd6fTyMjB6V00vj3WJLMwAQI5GDMqEN9euAfwpnlLnPNQi2jDZ5x6Vy5OTk9afU1FFFABJAAyT0FFFe16Kjx6HYRyRtG6W6KyMMEEKBVdvvH61nycyMQcjJq9SU2iiivMPHWq2+o6nDDbOsi26kM68gsTyAe+MCpo1IHPerlshVCTxntXK0+pqKKKRnVBlmC\/U4pQCegJ+lKAW6An6U1PvyfUfyFRp9+T6\/wBBUaffk+v9BT6fT6KKK9D+HmoRtZXGnswEqP5qj1UgA\/kR+tRSjkGqt0p3Bu3Su2qOq9FFFQXlst7ZT2rsVWaNoyV6gEYoBwQaVTtYH0Oa8d1nSJ9F1F7Sb5hjcjgcOvY1YVgwzV+NxIm4Vn0tOooop8cskMgkidkdejKcEfjRQQCMEZqa51G9vFC3N5cTKOgkkLAfmaQADoBSBVXooH0FVqWlpidX\/wB6mJ1f\/epidX\/3qfT6fRRRRRRXuul\/8giy\/wCuCf8AoIr3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn\/AMUP9Vpv\/bX\/ANkrz+vP68\/ooooooooooooooopg\/wBa30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/wBw\/SlpaWiiiiiiiiiiiiiiimL\/AKx\/wpi\/6x\/wpi\/6x\/wp9Pp9FFFFFFFFFdj4A0mO6vZr+ZQy2+BGD03nv+A\/nUcrYGPWoLlyqhR3616RUVVKKKKOtFFVruwtL+IxXVvHMhGMMvT6HtSgkdDSqzKcqSK8r8UaD\/YWpBIyWtpgWiJ6j1B+n9RUyNuHvV2GTzE56jrXFeJ9a\/sPR3uUAad2EcQPTce5+gBNX9Lsvt14I2JCAbnI9K0tKsft96ImJEajc5HpXkF3e3N\/O091O80h6s5z\/wDqrr4YYoIwkSKijsBXZwwRW8YjhjVFHYCtjw14mutFvY0eVnsmYCSInIUeo9CP1qnqWlxXsLMqBZwMq4HU+hqlqmlQ30LsqKtwBlXAxk+hr2AEEZByK4\/pXF9KKKKmtLuexuo7m2kMcqHKsKCARg0jKGBBGQa9S8K+I5NfgnE0KxzQbdxU8NnPOO3SoHTafrVOaIREYOQa6Gm1FRRRXDfEeJPs9hLgeYGdfqMCpIupqxaE5Ydq8\/qWrVFFFFFFFFFFFFMTq\/8AvUxOr\/71MTq\/+9T6fT6KKKKKK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIr3XS\/wDkEWX\/AFwT\/wBBFW6t1boooooorzb4ywWlzpXha31DYbKXxJaJcCRtq+WVkDZPYYzzXm3xlgtLnSvC1vqGw2UviS0S4EjbV8srIGyewxnmvNvjLBaXOleFrfUNhspfElolwJG2r5ZWQNk9hjPNc54x0bwD4b8PTal4Tvbex8Qxsn2A6bfNJLLIWACeWGO8HoQQeK5zxjo3gHw34em1Lwne29j4hjZPsB02+aSWWQsAE8sMd4PQgg8VznjHRvAPhvw9NqXhO9t7HxDGyfYDpt80ksshYAJ5YY7wehBB4r0DWvGb6JqGnaUdJub3Vb+0eWC3tyBvkUqCmTwo+YksTgBT1OBXoGteM30TUNO0o6Tc3uq39o8sFvbkDfIpUFMnhR8xJYnACnqcCvQNa8ZvomoadpR0m5vdVv7R5YLe3IG+RSoKZPCj5iSxOAFPU4FP1PxbdWCaXYxaHNdeIb+Dzv7MinTEAAG8ySn5Qqk7d2DuPQU\/U\/Ft1YJpdjFoc114hv4PO\/syKdMQAAbzJKflCqTt3YO49BT9T8W3Vgml2MWhzXXiG\/g87+zIp0xAABvMkp+UKpO3dg7j0FS+H\/Fb6pqlzo2qaXLpOs28Qna1klWVZIicCSN14Zc8HgEGpfD\/AIrfVNUudG1TS5dJ1m3iE7WskqyrJETgSRuvDLng8Ag1L4f8VvqmqXOjappcuk6zbxCdrWSVZVkiJwJI3XhlzweAQayYPiFe6gk+o6T4WvL7w9A7q2oxzxq8oQkM0UR5dRg9wT2BPFZMHxCvdQSfUdJ8LXl94egd1bUY541eUISGaKI8uowe4J7AnismD4hXuoJPqOk+Fry+8PQO6tqMc8avKEJDNFEeXUYPcE9gTxWJ4E8URaB8JvDCR2k+oahfvNDZWUBAeZvNkJOW4VQOSx6VieBPFEWgfCbwwkdpPqGoX7zQ2VlAQHmbzZCTluFUDkselYngTxRFoHwm8MJHaT6hqF+80NlZQEB5m82Qk5bhVA5LHpXV6P4uurjXU0PXtEk0fUZ4mmtgbhZ4rhVxuCuuPmGQSpA45rq9H8XXVxrqaHr2iSaPqM8TTWwNws8Vwq43BXXHzDIJUgcc11ej+Lrq411ND17RJNH1GeJprYG4WeK4Vcbgrrj5hkEqQOOagm8a39xqWr6bofhu41G70uYRzb7lIIyCisMO2csckYx25IyMwTeNb+41LV9N0Pw3cajd6XMI5t9ykEZBRWGHbOWOSMY7ckZGYJvGt\/calq+m6H4buNRu9LmEc2+5SCMgorDDtnLHJGMduSMjOYvxPurvw2fEem+FL640iBC93LLOkTx7f9ZsQ5L7cHJ+UcHHQ1mL8T7q78NnxHpvhS+uNIgQvdyyzpE8e3\/WbEOS+3ByflHBx0NZi\/E+6u\/DZ8R6b4UvrjSIEL3css6RPHt\/1mxDkvtwcn5RwcdDW1q+o6bPrPg+ZrI3TXlw7Wc\/msnkE27tu2j72VyMHpnPatrV9R02fWfB8zWRumvLh2s5\/NZPIJt3bdtH3srkYPTOe1bWr6jps+s+D5msjdNeXDtZz+ayeQTbu27aPvZXIwemc9qhl8bXl1quraVofh+bUb7TJhHMHuFgiAKKyneQeTkgAA\/dJOBjMMvja8utV1bStD8PzajfaZMI5g9wsEQBRWU7yDyckAAH7pJwMZhl8bXl1quraVofh+bUb7TJhHMHuFgiAKKyneQeTkgAA\/dJOBjNzS\/GVrqHhK61+Wzurf7GZkurQqHljkiJDoMcMcjj1yOlXNL8ZWuoeErrX5bO6t\/sZmS6tCoeWOSIkOgxwxyOPXI6Vc0vxla6h4Sutfls7q3+xmZLq0Kh5Y5IiQ6DHDHI49cjpWWvjrWLSaxm1nwhc6fpl7PHBHc\/bI5XjaQgJ5kY5UEkZwTistfHWsWk1jNrPhC50\/TL2eOCO5+2RyvG0hATzIxyoJIzgnFZa+OtYtJrGbWfCFzp+mXs8cEdz9sjleNpCAnmRjlQSRnBOK1Nd8XLo2u2Oixabc3t9fQSS20cJUBmQqCpJwFGGJLHsp6kgHU13xcuja7Y6LFptze319BJLbRwlQGZCoKknAUYYkseynqSAdTXfFy6NrtjosWm3N7fX0EkttHCVAZkKgqScBRhiSx7KepIBqaf4u1S9udU0m48PfY9ds4FuI7V7xWiuI2JAZZQvHIIOV\/+tU0\/xdql7c6ppNx4e+x67ZwLcR2r3itFcRsSAyyheOQQcr\/9app\/i7VL251TSbjw99j12zgW4jtXvFaK4jYkBllC8cgg5X\/62H4P1fxPd\/BR75YXl1VbCRrKYzm4luGAbDEEfez0XLZwPpWH4P1fxPd\/BR75YXl1VbCRrKYzm4luGAbDEEfez0XLZwPpWH4P1fxPd\/BR75YXl1VbCRrKYzm4luGAbDEEfez0XLZwPpWR4a0v4beIdNtvM1WQ+InjAmuLnUZYr9J8fMQGYHIbPABXjvWR4a0v4beIdNtvM1WQ+InjAmuLnUZYr9J8fMQGYHIbPABXjvWR4a0v4beIdNtvM1WQ+InjAmuLnUZYr9J8fMQGYHIbPABXjvXX3XiC78B+DNKl8TSNqV4Z0s5ZrRSTIWLbW2nknAGR3NdfdeILvwH4M0qXxNI2pXhnSzlmtFJMhYttbaeScAZHc11914gu\/AfgzSpfE0jaleGdLOWa0UkyFi21tp5JwBkdzRF43v7TV7G08Q+GrjSLbUZhBZ3TXMcymU5KpIF+4xxx1Ge\/WiLxvf2mr2Np4h8NXGkW2ozCCzumuY5lMpyVSQL9xjjjqM9+tEXje\/tNXsbTxD4auNIttRmEFndNcxzKZTkqkgX7jHHHUZ79auaz4surXWjouh6LLrGpRxLPcIJ1git0YkLvkbPzNg4UAnAzwKuaz4surXWjouh6LLrGpRxLPcIJ1git0YkLvkbPzNg4UAnAzwKuaz4surXWjouh6LLrGpRxLPcIJ1git0YkLvkbPzNg4UAnAzwKl0Lxfbara6kb23k0u90o41C1uWUmAbdwbcDhkK5IYdcGpdC8X22q2upG9t5NLvdKONQtbllJgG3cG3A4ZCuSGHXBqXQvF9tqtrqRvbeTS73SjjULW5ZSYBt3BtwOGQrkhh1wawj8SLuLT016fwrexeGH2sNRM6GQRsQBKYB8wTkHOScc4rCPxIu4tPTXp\/Ct7F4Yfaw1EzoZBGxAEpgHzBOQc5JxzisI\/Ei7i09Nen8K3sXhh9rDUTOhkEbEASmAfME5BzknHOK2LK+05PHWvqLRYZ4bG1luL0zkiSM+btG08KFwxyOufatiyvtOTx1r6i0WGeGxtZbi9M5IkjPm7RtPChcMcjrn2rYsr7Tk8da+otFhnhsbWW4vTOSJIz5u0bTwoXDHI659qyT8RNQOnHXYvCN8\/hoKZft3nxiUxD\/lqID82zHPUHHOKyT8RNQOnHXYvCN8\/hoKZft3nxiUxD\/lqID82zHPUHHOKyT8RNQOnHXYvCN8\/hoKZft3nxiUxD\/lqID82zHPUHHOK19c8YwadFpCaZaPq17rOTp8EMioJVCb2cu3CqFwc8nkcVr654xg06LSE0y0fVr3WcnT4IZFQSqE3s5duFULg55PI4rX1zxjBp0WkJplo+rXus5OnwQyKglUJvZy7cKoXBzyeRxTNO1CTxVDqeg+I\/Dk+nyLGomheXzYZ43z9yVcZ6cjgjimadqEniqHU9B8R+HJ9PkWNRNC8vmwzxvn7kq4z05HBHFM07UJPFUOp6D4j8OT6fIsaiaF5fNhnjfP3JVxnpyOCOK4TWvhr4QtviT4W0yHRYks7yC8aeISyYcoqFT97PGT0rhNa+GvhC2+JPhbTIdFiSzvILxp4hLJhyioVP3s8ZPSuE1r4a+ELb4k+FtMh0WJLO8gvGniEsmHKKhU\/ezxk9K7WSPSPhtp9hb6To4i06+1OOG4KStiFpRsEh3ZyMqinkdc12skekfDbT7C30nRxFp19qccNwUlbELSjYJDuzkZVFPI65rtZI9I+G2n2FvpOjiLTr7U44bgpK2IWlGwSHdnIyqKeR1zWpqHiH7J4q0nQYbQ3Et9HNNLIJNot4owPmIwc5ZlUDjv6Vqah4h+yeKtJ0GG0NxLfRzTSyCTaLeKMD5iMHOWZVA47+lamoeIfsnirSdBhtDcS30c00sgk2i3ijA+YjBzlmVQOO\/pWF\/wn1\/qGoapYaB4YudSudMunt7gvcpBGMdMO3Vjz8oHGOSMisL\/AIT6\/wBQ1DVLDQPDFzqVzpl09vcF7lIIxjph26seflA4xyRkVhf8J9f6hqGqWGgeGLnUrnTLp7e4L3KQRjHTDt1Y8\/KBxjkjIq3D8QtLk8KS649vdxyQ3P2KTT9gNwLrcF8kKDgsSRjnoc8c1bh+IWlyeFJdce3u45Ibn7FJp+wG4F1uC+SFBwWJIxz0OeOatw\/ELS5PCkuuPb3cckNz9ik0\/YDcC63BfJCg4LEkY56HPHNR23jTULbVLGz8SeG5tGj1CUQWlx9rjuI2lIJEb7cbGOOOoJ71HbeNNQttUsbPxJ4bm0aPUJRBaXH2uO4jaUgkRvtxsY446gnvUdt401C21Sxs\/EnhubRo9QlEFpcfa47iNpSCRG+3GxjjjqCe9djXY12NFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/wBa30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/3D9KWlpaKKKKKKKKKKKKtafp9zql2traRl5G\/ID1J7CkJAGTSMwRcscCu2s\/hxbqm69vpWkbqIQFA\/Eg5\/SovMwzEDrVU3JDsVUc+tQan8PHjiaTTboyMP8AllKACfow4\/SnCX1FOS6ycOMe4riJY3hlaKVGSRDtZWGCDUlWQQRkdKbRRWfq+tWWiW3n3kmM8IijLOfYVYtLKe9l2QrnHVj0H1qzZ2M99L5cC5x95j0H1rtfgv4vtvEVtq1pHCYJbeRJArPkurDGfwK\/qKdq2lyad5LM4cPkZAwARTNd0mTTfIZpA4kBBIGACO1eqVmVj0UUUUUUUUVwvxHkj8mwi48zc7fQYH+fwqSLvVm0Byx7V4l8Q7OW40KKeMFhby7nA7KRjP54\/Otzw7Msd80bHBkTC\/Wui8NzpHqDxscGRML9R2ry6uprrKltraW7uoreFS0srBVA9TTJZFhiaRzhVGSaZLKkMTyucIoyTXu8UflQpHnOxQufXFcI7b3ZsYyc15+7b3ZsYySafTabRRRW54V1tdE1YSS5+zSjZLjt6N+H+NNddy+9RzR+YmB1HSvWoZo7iJZYZFkjcZVlOQRUHSqJBBwRg0skiRRtJI6oijLMxwAKKMZOBXlPi\/XU1rU1W3JNrbgrGf7xPVv0H5VOi7Rz1NXYI\/LTnqetc9TqloooooooooooopidX\/3qYnV\/96mJ1f8A3qfT6fRRRRRRXuul\/wDIIsv+uCf+givddL\/5BFl\/1wT\/ANBFe66X\/wAgiy\/64J\/6CKt1bq3RRRRRRXnfxbghurbwfb3EUc0EviiySSORQyupEgIIPBBHGK87+LcEN1beD7e4ijmgl8UWSSRyKGV1IkBBB4II4xXnfxbghurbwfb3EUc0EviiySSORQyupEgIIPBBHGK62x8KeHNMulurDw\/pVpcL92WCzjjcfQgZrrbHwp4c0y6W6sPD+lWlwv3ZYLOONx9CBmutsfCnhzTLpbqw8P6VaXC\/dlgs443H0IGaxb8A\/F7RCR00i7I\/7+Q1i34B+L2iEjppF2R\/38hrFvwD8XtEJHTSLsj\/AL+Q1geONPt7H4hWfiHV7nVbXRpdMNjJd6dNLGbeVZC48wx8hGDEZ6ZAzWB440+3sfiFZ+IdXudVtdGl0w2Ml3p00sZt5VkLjzDHyEYMRnpkDNYHjjT7ex+IVn4h1e51W10aXTDYyXenTSxm3lWQuPMMfIRgxGemQM1Z8IWuj6p4lvdQ0f8Atm8to7E2qaxf3s0iuXbLRxLJ1A2glgcZ496s+ELXR9U8S3uoaP8A2zeW0dibVNYv72aRXLtlo4lk6gbQSwOM8e9WfCFro+qeJb3UNH\/tm8to7E2qaxf3s0iuXbLRxLJ1A2glgcZ496o+GPHWl+DPB9t4d12K4ttd01DbCwW3dmumBIQxEDDh+MH1PPrVHwx460vwZ4PtvDuuxXFtrumobYWC27s10wJCGIgYcPxg+p59ao+GPHWl+DPB9t4d12K4ttd01DbCwW3dmumBIQxEDDh+MH1PPrWH4VSbRvCnw88S3FrNJYaYL+3vvKiMj24ldgJNoydoKYOOgNYfhVJtG8KfDzxLcWs0lhpgv7e+8qIyPbiV2Ak2jJ2gpg46A1h+FUm0bwp8PPEtxazSWGmC\/t77yojI9uJXYCTaMnaCmDjoDXWDVrXxv8QvDl5oJe507RhczXV95TLHukj8tYkYgbm5ycdAK6wata+N\/iF4cvNBL3OnaMLma6vvKZY90kflrEjEDc3OTjoBXWDVrXxv8QvDl5oJe507RhczXV95TLHukj8tYkYgbm5ycdAK1fBn\/Iw+NP8AsLj\/ANJ4q1fBn\/Iw+NP+wuP\/AEnirV8Gf8jD40\/7C4\/9J4q5jQf+Tc9V\/wCvHVP\/AEZPXMaD\/wAm56r\/ANeOqf8AoyeuY0H\/AJNz1X\/rx1T\/ANGT1pTf6z4Yf7\/\/ALZPWlN\/rPhh\/v8A\/tk9aU3+s+GH+\/8A+2T1q+DAP+Ei8aHHP9rr\/wCk8VavgwD\/AISLxocc\/wBrr\/6TxVq+DAP+Ei8aHHP9rr\/6TxVzdjfavpvw88aXmgwtLqUWuXxiCx72A8\/DMF\/iKqWYDuR3rm7G+1fTfh540vNBhaXUotcvjEFj3sB5+GYL\/EVUswHcjvXN2N9q+m\/DzxpeaDC0upRa5fGILHvYDz8MwX+IqpZgO5HesPxJqHh640ewv7LXNd1x7TULW4ubmWSYwWyLKpZpEAWNTjjG3cM9OCaw\/EmoeHrjR7C\/stc13XHtNQtbi5uZZJjBbIsqlmkQBY1OOMbdwz04JrD8Sah4euNHsL+y1zXdce01C1uLm5lkmMFsiyqWaRAFjU44xt3DPTgmu8upYrj4raBPEyvG+jXTow6EGSHBH4Gu8upYrj4raBPEyvG+jXTow6EGSHBH4Gu8upYrj4raBPEyvG+jXTow6EGSHBH4GiPn4z33\/YvQ\/wDpRLRHz8Z77\/sXof8A0oloj5+M99\/2L0P\/AKUS1jeBNSvn+DEVv4dMMuvabbmJra4QjZMrEmNgSMEjgcjqKxvAmpXz\/BiK38OmGXXtNtzE1tcIRsmViTGwJGCRwOR1FY3gTUr5\/gxFb+HTDLr2m25ia2uEI2TKxJjYEjBI4HI6inal41+Hmv2q2\/iKwJvymG0+80yRrmNiPuqNmc9sqfxp2peNfh5r9qtv4isCb8phtPvNMka5jYj7qjZnPbKn8adqXjX4ea\/arb+IrAm\/KYbT7zTJGuY2I+6o2Zz2yp\/Gucv4dT0P4WeFTe2V48sPiK3mtbCU7p1h81mihOf4tuBjtkDjFc5fw6nofws8Km9srx5YfEVvNa2Ep3TrD5rNFCc\/xbcDHbIHGK5y\/h1PQ\/hZ4VN7ZXjyw+Irea1sJTunWHzWaKE5\/i24GO2QOMV0XiLxNp\/jeXSdB8O+deXX9pW9xdv9nkjFlFE4dmcso2t8uAvXn8+i8ReJtP8AG8uk6D4d868uv7St7i7f7PJGLKKJw7M5ZRtb5cBevP59F4i8Taf43l0nQfDvnXl1\/aVvcXb\/AGeSMWUUTh2Zyyja3y4C9efzoa5ZadofxG1zUfEWoaxpunarHbyWt7ZXM0MO+NNjRyGM8NwGG7jBNUNcstO0P4ja5qPiLUNY03TtVjt5LW9srmaGHfGmxo5DGeG4DDdxgmqGuWWnaH8Rtc1HxFqGsabp2qx28lre2VzNDDvjTY0chjPDcBhu4wTVvSNDttd8OeMH0W31MDVLU2dtf6pdSu95iNgrASDcqAuQD3GemKt6Rodtrvhzxg+i2+pgapamztr\/AFS6ld7zEbBWAkG5UBcgHuM9MVb0jQ7bXfDnjB9Ft9TA1S1NnbX+qXUrveYjYKwEg3KgLkA9xnpirFj8SLK18M2em2un3U3ieKCO3\/sQwOkglACkElcKg5O\/pgfhVix+JFla+GbPTbXT7qbxPFBHb\/2IYHSQSgBSCSuFQcnf0wPwqxY\/EiytfDNnptrp91N4nigjt\/7EMDpIJQApBJXCoOTv6YH4VJd6dNrHi3x1pkbLHPeaDbW6tnhWdZ1H4ZNSXenTax4t8daZGyxz3mg21urZ4VnWdR+GTUl3p02seLfHWmRssc95oNtbq2eFZ1nUfhk1yNlc+HbbwvBpd3d+LW8QRWq28mgpfXau8gXaUVQdvlnHDD5dp\/CuRsrnw7beF4NLu7vxa3iCK1W3k0FL67V3kC7SiqDt8s44YfLtP4VyNlc+HbbwvBpd3d+LW8QRWq28mgpfXau8gXaUVQdvlnHDD5dp\/Cus8U2+h6Pofhix1vSLyDTbaPYuoWtxIX0t1jAXLoNxB5Xd04GRXWeKbfQ9H0PwxY63pF5BpttHsXULW4kL6W6xgLl0G4g8ru6cDIrrPFNvoej6H4Ysdb0i8g022j2LqFrcSF9LdYwFy6DcQeV3dOBkUeBNUu7rxPeWmmazqGueF47NXS+v4\/mS5348tJdqmQbOSeccc88ngTVLu68T3lppms6hrnheOzV0vr+P5kud+PLSXapkGzknnHHPPJ4E1S7uvE95aaZrOoa54Xjs1dL6\/j+ZLnfjy0l2qZBs5J5xxzzzd8Q\/8ld8F\/8AXtqH\/oCVd8Q\/8ld8F\/8AXtqH\/oCVd8Q\/8ld8F\/8AXtqH\/oCVveMND\/4SPwhqmkjAkuIGEJJxtlHzIfwYKfwre8YaH\/wkfhDVNJGBJcQMISTjbKPmQ\/gwU\/hW94w0P\/hI\/CGqaSMCS4gYQknG2UfMh\/Bgp\/CuS+GF7c+LbvUPGl\/bmGWaGHTrdHXBRY13SkezSs3\/AHwK5L4YXtz4tu9Q8aX9uYZZoYdOt0dcFFjXdKR7NKzf98CuS+GF7c+LbvUPGl\/bmGWaGHTrdHXBRY13SkezSs3\/AHwKzvCvjPSfDOseM4daeWzgfXp5IrpoXaORtqAxgqD8wwDg9dwxnms7wr4z0nwzrHjOHWnls4H16eSK6aF2jkbagMYKg\/MMA4PXcMZ5rO8K+M9J8M6x4zh1p5bOB9enkiumhdo5G2oDGCoPzDAOD13DGeazdQ0TUdb8O3viMafqENvJ4lj1ZLSDdHdNaogiLqBhlcjLgdeBjqKzdQ0TUdb8O3viMafqENvJ4lj1ZLSDdHdNaogiLqBhlcjLgdeBjqKzdQ0TUdb8O3viMafqENvJ4lj1ZLSDdHdNaogiLqBhlcjLgdeBjqKv2p8L67rmkWui3fiHX5I7uO4l8\/Ubow2YQ7hJJ5nG4EABDySe1X7U+F9d1zSLXRbvxDr8kd3HcS+fqN0YbMIdwkk8zjcCAAh5JPar9qfC+u65pFrot34h1+SO7juJfP1G6MNmEO4SSeZxuBAAQ8kntXrleuV65RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/AMUP9Vpv\/bX\/ANkrz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP8AWt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP9w\/SlpaWiiirmmaZc6tfJaWq5duST0UdyfakJCjJpruEXceld\/a\/D3TI4gLmaeaTHJUhR+A\/wDr1EZT2xVZrpyeAAKx9f8AArWVs93p0rzRoNzxP94D1BHX6U5ZMnBp8VzuO1wAT3FbvgPTo7bQhd7R5tyxJbuFBIA\/Qn8abIctj0qO5YmTb2FdTTKhoooqvPYWdzu8+0gl3dd8YOaXJHQmlDMOjEfjXn\/i\/wAKRabF\/aFgpW33ASRZzsJ6Ee1SRvng9atQTFztbr2NfNXi3UJNQ8R3ZdjshcwovYBTj9Tk\/jXbaRbrb6bCAOXUOx9Sa73R7ZbbTIQo+Z1DsfUmneEPFd\/4N8Qwavp5BZPkliY\/LLGeqn8h9CAalvrKK\/tWgl6HkMOqn1qXULCLUrNrebgHlWHVT619SeGvix4R8SWqONUgsLkj57a9cRMp9ATw34H8q4+70W9tHI8lpE7PGMg\/4Vwt7oGoWUhHkNKnZ4huB\/wrpbvxBpNlGXmv4OP4UcMx\/Ac1QCsexrPWJ2PCmsK0+IOnS3EiXEMsEWf3cmN2R7gdPwzTjEccc1I1q4AwQT3FWbvx1osEJaCWS5kxwiIV\/MsBQI2PXikW2kJ5AH414r8Q\/H08V15mEa+mX92n8MKduO\/f9TWxo+k\/bWLyEiBDg46sfSt7Q9GF4SzkrAhwSOrH0ryW71rU752a5vrh93UbyF\/IcV08VlbQACOCNcd9vP511cNjawKBFbxrjvt5\/OqkXl+avm7vLz823rj2qZ92w7MbscZ6VM+7YdmN2OM9K9Z8M+H9J0+Jb2zLXDyKCk8nXBHYdv51x+o6neXM0tvOBGsbYKL6+\/rXGalql7dTS284Eaxtgxr6+\/rXR1QrPoooooooooq3Z6nfafn7JdzQg9QjkA\/h0pCAeoprIrfeUGi+1XUL9At3eTTKCPlZzjr6dKQqAOB3H86TYqj5VA5H86qU6n0UUUUUUUUUUUUUUUxOr\/71MTq\/+9TE6v8A71Pp9Poooooor3XS\/wDkEWX\/AFwT\/wBBFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRVurdW6KKKKKKKKKKKKKKKKKKKKKMUYoxRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRWH4m8PHxDHpSLciD7BqdvfklN28RNnb1GM+v6Vh+JvDx8Qx6Ui3Ig+wanb35JTdvETZ29RjPr+lYfibw8fEMelItyIPsGp29+SU3bxE2dvUYz6\/pW5W5W5RRRRRRRRRRRRRRRRRRRRRRRRWXr8WtT6W0Wg3Fnb3rMB5t3GzqqnOSApHzDgjPHHNZevxa1PpbRaDcWdveswHm3cbOqqc5ICkfMOCM8cc1l6\/FrU+ltFoNxZ296zAebdxs6qpzkgKR8w4IzxxzSeGtCg8M+HLHRrZi8drEEMhGDIx5Zj7liT+NJ4a0KDwz4csdGtmLx2sQQyEYMjHlmPuWJP40nhrQoPDPhyx0a2YvHaxBDIRgyMeWY+5Yk\/jUHhvw8dAk1pzcif+0tTlvwAm3yw6oNvU5xt68delQeG\/Dx0CTWnNyJ\/wC0tTlvwAm3yw6oNvU5xt68delQeG\/Dx0CTWnNyJ\/7S1OW\/ACbfLDqg29TnG3rx16VuVuVuUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/wDFD\/Vab\/21\/wDZK8\/+KH+q03\/tr\/7JXn\/xQ\/1Wm\/8AbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/AFrfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/3D9KR\/uH6Uj\/cP0paWlooor0D4cRReTfy8GXcqn1C4J\/U\/wAqjlzx6VWu8\/L6V3NRVWooorH8OzwG1ubKEj\/Q7mWLaOw3kj9Dj8DTnByCe4qSUHcGP8QBrYptR0UUUUUVk+JzGPDOoGTG3yiBn17frinJ98U+HPnLj1r4\/wDGeky6dr88xU+RdMZY37Enlh9Qf6V22i3a3Onomf3kQCMPp0r0LQ7xLnTo0yPMiARh9Oh\/KudrRrSrT0DSpdX1eC3RSYwwaVuypnn\/AAqpqN4llZPKx+bGEHqe1VNSvUsbGSVj82MIPVj0r2yuKrhaKKKKKK8d8ZSvL4rvt+flZVUegCiux0ZVXSoNvcEn65NdroiKukQbe4JP1yawqv1oUUUV6r8P5Hfw0FbOEmZV+nB\/mTXJa8irqzlerKpb69P6CuO8Qoqau5XqyKW+vT+QFdVWZWXRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRWXqXiLStIuFt7668qVkDhfLZuMkZ4B9DWXqXiLStIuFt7668qVkDhfLZuMkZ4B9DWXqXiLStIuFt7668qVkDhfLZuMkZ4B9DVP\/hN\/Dv8A0EP\/ACDJ\/wDE1T\/4Tfw7\/wBBD\/yDJ\/8AE1T\/AOE38O\/9BD\/yDJ\/8TR\/wm\/h3\/oIf+QZP\/iaP+E38O\/8AQQ\/8gyf\/ABNH\/Cb+Hf8AoIf+QZP\/AImj\/hN\/Dv8A0EP\/ACDJ\/wDE0f8ACb+Hf+gh\/wCQZP8A4mj\/AITfw7\/0EP8AyDJ\/8TUkHjDQbm4it4b7dLK4RF8lxkk4A5WpIPGGg3NxFbw326WVwiL5LjJJwBytSQeMNBubiK3hvt0srhEXyXGSTgDla3K3K3KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP\/ih\/qtN\/wC2v\/slef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP8AcP0pH+4fpS0tLWz4e8Pz69dsit5cEeDLLjOPYe9NZgo96jllES+pPQV6Xo\/h7T9DMrWaOJJVVZHeQksFzjjoPvHoO9RtIzqFJ+UEkDHr\/wDqqrJO8qhWI2qSQMdM\/wD6hWrTKjrjPH\/xE0vwTpkgaVJ9XkT\/AEayU5ZmPRmA6Ln88YFX9N0ubUJQcFYAfnkPQD2960tJ0efU5gdpS3U\/PKeAB6D3rgfC+r6loaW9w8nmXLRj7SH6SMeWz+OeabdmOW5lMYxGWO3Hp2p98Ip7mUxjEe47Mdh2r0ez8f6PcJ\/pHm20g+8rIWH4Ef4Cqmw7iBzis8277iBg4qT\/AITvRDcrFvm2HrL5fyj+v6Uvltil+zSYzx9M1pN4k0VYvMOp2230Dgn8utN2N6GmeVJnGw\/lXC+LPFa6wos7MMtorbmZhgyHtx2FSom3k9aswQ+X8zfe\/lXGXtja6jbNb3cKTRN\/Cw\/UehqeCeW2lEkLlHHcVaguJbaUSQyFHHcVzbfDzRWl3h7tVz9wSDH8s\/rWkPEV6ExthJ\/vFTn+dag8S3wTaVhJ\/vFTn+db1hpVlpNt5NlAsSEgkjksfcnk1nXd1PdtvnkLnIx6DnsKzLy7nvH8yeQueMeg57Cr1RVFRRRRRRXn\/j3w9NJP\/a9rGXUqBcKoyRjo30xwfTFdBoGooqfY5WCnOYye+e1dH4e1JFj+xTMFOcxk9DntXAV0FdFVmxsLnUrtLW0iaSVzwB29z6Co5547aFpZXCqO5qK4uIrWFpZnCoO5r2TQ9NTSNMjsUO7yx8zf3mPJP5muIurpry+nnPG5hgegwMVwl3dNe39xOwxuYYHoMDFaVRVFRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/wDepidX\/wB6mJ1f\/ep9Pp9FFFFFFe66X\/yCLL\/rgn\/oIr3XS\/8AkEWX\/XBP\/QRXuul\/8giy\/wCuCf8AoIq3VurdFFFFFFeX\/Ef\/AJGG3\/69F\/8AQ3ry\/wCI\/wDyMNv\/ANei\/wDob15f8R\/+Rht\/+vRf\/Q3rj64+uPoooooorQ0H\/kYdM\/6+4v8A0MVoaD\/yMOmf9fcX\/oYrQ0H\/AJGHTP8Ar7i\/9DFe4V7hXuFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef\/FD\/AFWm\/wDbX\/2SvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/AFrfQf1p9Pp9FFFFFFFFFFFFI\/3D9KR\/uH6Uj\/cP0paWlr1bwNAkXheCRQN0ru7\/AF3Ff5AVDIfnNUrgkzEeldHTKiooorxnxx4FdfGtz4qvCbqOYoIBj5YNqgAEeuQSD7+taceqSDTUsogI1Gd5HVsmtm31dxpaafEBGozvI6vk5rMqrUFMX\/WP+FMX\/WP+FMX\/AFj\/AIU+n0+iiiiiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiisq58M6LdymSbToC5OSVG3P1xircep3sS7UuXwOgJz\/OrkWq30KbUuZNo6AnP86uWen2enxmOztooFPXYoGfqe9QzXE1w26aVnPbcelQT3M9y26aV5D23HOKmT78n1H8hVdPvyfUfyFV0+\/J9R\/IU+n0+gAk4FFFFFFFFFFFFI3T8R\/Okbp+I\/nSN0\/EfzpaWlooooooooooooooopidX\/AN6mJ1f\/AHqYnV\/96n0+n0UUUUUV7rpf\/IIsv+uCf+givddL\/wCQRZf9cE\/9BFe66X\/yCLL\/AK4J\/wCgirdW6t0UUUUUV5f8R\/8AkYbf\/r0X\/wBDevL\/AIj\/APIw2\/8A16L\/AOhvXl\/xH\/5GG3\/69F\/9DeuPrj64+u3svh60+npLcXpiuHUMECZC57HnmozLg8Diq7XWGwFyB71x97aS2F7NaTACSJirY6H3p4ORkVOrBlDDoas6D\/yMOmf9fcX\/AKGK0dB\/5GHTP+vuL\/0MVo6D\/wAjDpn\/AF9xf+hivcK9wr3CuY1vVNTufEdv4b0WeK1uGtjeXd5JF5nkRbtihF4BdmDcngBTweK5jW9U1O58R2\/hvRZ4rW4a2N5d3kkXmeRFu2KEXgF2YNyeAFPB4rmNb1TU7nxHb+G9FnitbhrY3l3eSReZ5EW7YoReAXZg3J4AU8Hin6ZB4n0zW47W+vRrGlzxO32t4Y4ZbaQYwrBcB1YE4IXII560\/TIPE+ma3Ha316NY0ueJ2+1vDHDLbSDGFYLgOrAnBC5BHPWn6ZB4n0zW47W+vRrGlzxO32t4Y4ZbaQYwrBcB1YE4IXII561HfeO9Osri9VbPUrq0sHKXt7bW++G2YDLBjnc20H5tobb3xUd94706yuL1Vs9SurSwcpe3ttb74bZgMsGOdzbQfm2htvfFR33jvTrK4vVWz1K6tLByl7e21vvhtmAywY53NtB+baG298VZ1HxfpthqFvp6R3V7eXMC3EENnF5hkjLY3A5wAOpJIGMc5IBs6j4v02w1C309I7q9vLmBbiCGzi8wyRlsbgc4AHUkkDGOckA2dR8X6bYahb6ekd1e3lzAtxBDZxeYZIy2NwOcADqSSBjHOSAYL7xvYWVzdoljqV3bWLFL28tbffDbsBkhjnLEA5OwNjvioL7xvYWVzdoljqV3bWLFL28tbffDbsBkhjnLEA5OwNjvioL7xvYWVzdoljqV3bWLFL28tbffDbsBkhjnLEA5OwNjviuigniubeOeCRZIZVDo6HIZSMgg9wRXRQTxXNvHPBIskMqh0dDkMpGQQe4IrooJ4rm3jngkWSGVQ6OhyGUjIIPcEVJUlSUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8UP9Vpv\/AG1\/9krz\/wCKH+q03\/tr\/wCyV5\/8UP8AVab\/ANtf\/ZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP8AWt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP9w\/SlpaWu68Ca9DAjaVdOE3NugZjwSeq\/wBR+NRyLn5hVa5iJ+cD6139RVWoooqnq0Edxo95FMAUaFs57cdfw60qnDCnISJFI65rxKrFaFMX\/WP+FMX\/AFj\/AIUxf9Y\/4U+n0+iiiiiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiiiiiiiit3wl4eXXdQn85mW2gwZNvViRwB+RqIttZ\/Un+gqvJL5ZfHUnj8hXeTeC9Clh8tbQxkdHSRt36k03zG9aiFxIDndn8K1rLTrPToRFaW8cSgY+Ucn6nqaQknqajZ2c5Yk1Bqmh2Grwsl1ApcjiVRh1+hoDFehpySMh4P4V5Lq+mS6RqctnMclDlWH8SnoanU7hmrqOHQMKo0tOpG6fiP50jdPxH86Run4j+dLS0tFFFFFFFFFFFFFFFMTq\/wDvUxOr\/wC9TE6v\/vU+n0+iiiiiivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRVurdW6KKKKKK8v+I\/8AyMNv\/wBei\/8Aob15f8R\/+Rht\/wDr0X\/0N68v+I\/\/ACMNv\/16L\/6G9cfXH1x9d\/Y\/EKCPTkS7tZmukULlCNrkdySePyNRGI54PFVmtSX+VhiuJ1C9k1HUJ7yUAPK5YgdB6CpAMACrCqEUKO1T6D\/yMOmf9fcX\/oYrR0H\/AJGHTP8Ar7i\/9DFaOg\/8jDpn\/X3F\/wChivcK9wr3CuR1uC+0bxfD4mtLG41C0lsvsN7BbANLGFcvHIqn74BZwQOeQQDg1yOtwX2jeL4fE1pY3GoWktl9hvYLYBpYwrl45FU\/fALOCBzyCAcGuR1uC+0bxfD4mtLG41C0lsvsN7BbANLGFcvHIqn74BZwQOeQQDg1JZazrGveIrNrGxvtP0S3SRrqS\/tvKe5cjCIiN84AJLFsDOAPWpLLWdY17xFZtY2N9p+iW6SNdSX9t5T3LkYRERvnABJYtgZwB61JZazrGveIrNrGxvtP0S3SRrqS\/tvKe5cjCIiN84AJLFsDOAPWse3u9R8O6ZrOhNoGoXt3NdXctk8EO+G5WeRnXfJ92PBfa2\/H3cjNY9vd6j4d0zWdCbQNQvbua6u5bJ4Id8Nys8jOu+T7seC+1t+Pu5Gax7e71Hw7pms6E2gahe3c11dy2TwQ74blZ5Gdd8n3Y8F9rb8fdyM1a8OaDdaN4n0mCaJpEsvDUVk10EOwurgEBvfbnHXFWvDmg3WjeJ9JgmiaRLLw1FZNdBDsLq4BAb325x1xVrw5oN1o3ifSYJomkSy8NRWTXQQ7C6uAQG99ucdcVgto7aRLrNndaX4ovLue9uLiz\/s6\/uY7a5WVy6hijhIiC21twHTPOawW0dtIl1mzutL8UXl3Pe3FxZ\/2df3MdtcrK5dQxRwkRBba24DpnnNYLaO2kS6zZ3Wl+KLy7nvbi4s\/7Ov7mO2uVlcuoYo4SIgttbcB0zzmvSdHsU0zRbGwjhWFLa3jhWJXLhAqgbQx5IGMZPNek6PYppmi2NhHCsKW1vHCsSuXCBVA2hjyQMYyea9J0exTTNFsbCOFYUtreOFYlcuECqBtDHkgYxk81dq7V2iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiiiiiiiiiiikf7h+lI\/3D9KR\/uH6UtLS0UUVsad4n1XTpItt3JLChGYpG3Aj056U0op7VG8KOD8oBPcV6FZ+MtFu4A73Qt3x80coII\/HoaiMbA9M1WaCRT0z7isHxR4yt7iyksNMZn80bZJsEDb3Az609IyDk1JDbkMGft0FcHUlWaYv+sf8ACmL\/AKx\/wpi\/6x\/wp9Pp9FFFFFFbOgeHLrXpm8siK3Q4eZhkA+gHc01nC\/Wo5ZVjHPJ9K7Ffh3pYiw1zdl8feDKB+WKj80+gqD7U+ei4rlPEfhS50NBOr+faFgPMAwVOejD+tO3hlx0ORUqzCQY6NkcVgVJU1FFFFFFFFFFFFFFFdV4C1q306\/u7W6dY0uCpWRjgBgOhPbOf0qFlJZyOx\/oKqzRly5UZIPT8BXpysGUMpBB5BHemVXpaKKKKK83+Iuz+17XGN\/kfN9Nxx\/WpYvun61btfuN6Zrjqkqekbp+I\/nSN0\/EfzpG6fiP50tLS0UUUUUUUUUUUUAZOB1oor0\/w14PtNNtVnvYUnvH+YhxkR+wHr71AWOWweCc1SklYswU4UnNdHNZWtzF5U1tFJHjG1kBFJkjvUYZgcgkGvNvGHhlNHkS7tAfskrbShOfLb0+h\/pUsb7uD1q3BMZBtb7w\/WuWp9TV7rpf\/ACCLL\/rgn\/oIr3XS\/wDkEWX\/AFwT\/wBBFe66X\/yCLL\/rgn\/oIq3VurdFFFFFFeX\/ABH\/AORht\/8Ar0X\/ANDevL\/iP\/yMNv8A9ei\/+hvXl\/xH\/wCRht\/+vRf\/AEN64+uPrj6KKKKKK0NB\/wCRh0z\/AK+4v\/QxWhoP\/Iw6Z\/19xf8AoYrQ0H\/kYdM\/6+4v\/QxXuFe4V7hRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn3xQz5Wm4x\/y1\/8AZK8++KGfK03GP+Wv\/sleffFDPlabjH\/LX\/2SvP8A5vavP\/m9q8\/+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2pg3ea3ToP60wbvNbp0H9aYN3mt06D+tP8Am9qf83tT\/m9q0NI0W\/1q4MVpGpC\/fkY4VPqaRmKjnFMeTyxlsfSurHw3fysnVF8zHQQcfnupnmn0qL7X\/sfrXMazoGoaHMFukUxt9yVCSrf4H2pysW6YqWOXzB8uM+lZfze1O+b2p\/ze1NbdsPTpTW3bD06U1t2w9OlO+b2p3ze1O+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2pCSoJO0Ackk0DcTgAZoG4nAAJrAu\/GuiWkpjN15rDr5Klh+fQ\/hWhFouoTLu8lUB\/vtg\/lWjDoeozIG8lUB6b2wfyqzpfiPTNWmZLW6QynpG+VY\/QHr+FQXGmXtmWeaHCHHzA5FV7nS76yLPNBhDj5gcj9K1\/m9qrfN7VW+b2o+b0FHze1Hze1dbpXgK\/voFmu5ktFYZVSu58e4yMUwy4PQGoHuQpwAD+Nd\/pGmx6RpkNlEdwjHL4xuJ6mo2O45qu7l3LHvV6kptQXtpHfWM9rKAUlQqc+\/egcHNKp2sCO1eGfN7VY+b2rQ+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2o+b2qjcazp1pJ5dxf2sUg6q0oBH4VPHZ3cy7o7eRl9QpxU8VleTLujtpHX1CnFWYLmK6iElvNFNGf4o3DD8xUUkcsTbZIyjejAg1FJFNC22SMo3owINOTdvfp1\/oKiTdvfp1\/oKiTdvfp1\/oK3vDGvPoWol5FLW0oCyqvX2I9x\/U0rKWHakljMi44yOlerWWoWmoQiW0uI5kP908j6jtURBB5FU2VlOGBFQaprVhpELSXU6qwHEYOXb6CgKW6ClSNnOFH415HrGqT6xqct5KAu84Vc\/dUdBUygqMDFXUQogUYqj83tS\/N7U75vamtux26j+dNbdjt1H86a27HbqP5075vanfN7U75vaj5vaj5vaj5vaj5vaj5vaj5vaj5vaj5vaj5vaj5vaj5vaj5varWmMqarZtLt8sToXz6bhmkO7B6U1t2xsY6V7hUFUKKKK5zxyyL4WnDY3M6BM+u4f0zTo87+Klt8+cMV5R83tU3ze1XPm9q920rP9j2Wev2eP\/0EV7tpWf7Hss9fs8f\/AKCK920rP9j2Wev2eP8A9BFW6t1boooooory\/wCI\/wDyMNv\/ANei\/wDob15f8R\/+Rht\/+vRf\/Q3ry\/4j\/wDIw2\/\/AF6L\/wChvXH1x9cfRRRRRRWhoP8AyMOmf9fcX\/oYrQ0H\/kYdM\/6+4v8A0MVoaD\/yMOmf9fcX\/oYr3CvcK9woooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9Pr2HwvYx2Hh60VAN0sYlc+rMM\/wCA\/CoHOXNUZmLSt7HArYptR1na5Yx6jot1byKDmMsh9GAyD+dKpwwNOjYpIpHrXk2k6Rd6zeC3tEBIGWduFQepNTswUZNXndY1y1dlH8OLcw4l1CUyEclEAAqIyZBGKrtdE5AUYrndf8KXmhr524T2pOPNUYKn\/aHapFcN7GpYplk46H0rAp1S0UUUUUV558QNdl+0DSLdysaqGnwfvE8hfpjn8a6Lw\/YJ5f2yRcsTiPPb3rpPDmnp5ZvZFyxOI89vU1wdb1dDSo7RuroxVlOQwOCDSEBgQQCDwQaQgMpVgCDwQe9eveENbfWtGDTnNzA3lyH+96N+P8wa5DWLFbK8xGMRONyj09RXGa1YLY3uIxiKQblHp6iu88I2kd54mtElAKKTJg9yoJH64rNc4Q1lTsVhYj6V67UFUaKKKKKKxPE+txaNpMjbx9plUpCmecnjP0FKoyfanxoXYccA815DVir9FFFFFFcP468STWTLpdlIY5HXdNIpwQD0Uenr+VbmhaakwN1OoZQcIp6E+tb3h\/S0nBu51DKDhFPQn1rzgnJya6Sunq7peq3ekXi3NpKUYH5l\/hcehHcVBdWkN5CY5lBHY9x9Kgu7SG9hMUyAjse4PqK9k0m\/j1SwjvYuElAOPQ4wR+ByK4me3a1vJ4H6o2M+vA5rhLi3a0vbiB+qPjPqMDBrtNA8G3WsRLdTyfZrU\/dOMs\/0Hp71C0gXgcmq0s4jOAMmukb4eaaI\/wB1d3aSdmLKR+WB\/OmeafQVF9qfPKriuO17w5eaFKDKRLA5wkyjgn0PoakVw31qeOVZBxwfSsanVJRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKK9C8NeOLd7VbTVXMU0fyLMRlXHbPoagKklsDocVTeFizFBkA9K6KbxJosEXmNqVsw9EcOfyGTRsY9jTBFITjYfxrzvxR4lbXbhI4laO0iOUVurH+8alRNo96tQxeWMnljXP06pa910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+givddL\/5BFl\/1wT\/ANBFW6t1boooooory\/4j\/wDIw2\/\/AF6L\/wChvXl\/xH\/5GG3\/AOvRf\/Q3ry\/4j\/8AIw2\/\/Xov\/ob1x9cfXH0xpY0kWNpEDt0UsMmnBGKlgpIHUgdKcEYqWCkqOpA4FPptNrQ0H\/kYdM\/6+4v\/AEMVoaD\/AMjDpn\/X3F\/6GK0NB\/5GHTP+vuL\/ANDFe4V7hXuFc\/rfjXQvDs8kWqXF1CY0EjutjPIir6l0Qr+tc\/rfjXQvDs8kWqXF1CY0EjutjPIir6l0Qr+tc\/rfjXQvDs8kWqXF1CY0EjutjPIir6l0Qr+tT6L4o0rxBJImnSXTlFDkzWU0IwfQyIoP4VPovijSvEEkiadJdOUUOTNZTQjB9DIig\/hU+i+KNK8QSSJp0l05RQ5M1lNCMH0MiKD+FbNbNbNFFFFFFFFFQRXcM11cWyFzLblRIDGwA3DIwSMHj0zioIruGa6uLZC5ltyokBjYAbhkYJGDx6ZxUEV3DNdXFshcy25USAxsANwyMEjB49M4qep6noooqA3tst+lgZkF08TTLFn5iikAt9AWUfjUBvbZb9LAzILp4mmWLPzFFIBb6Aso\/GoDe2y36WBmQXTxNMsWfmKKQC30BZR+NT1PU9FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/ABQ\/1Wm\/9tf\/AGSvP\/ih\/qtN\/wC2v\/slef8AxQ\/1Wm\/9tf8A2SvP68\/rz+iiiiiiiiiiiiiiimD\/AFrfQf1pg\/1rfQf1pg\/1rfQf1p9Pp9eseDtWi1HQ4Ydw8+2URunfA4B+mKgkXDexqlOhSQnsea6Gm1FWN4n1aLStFnZmHnSqY4l7kkYz+HWnIu5hUkKF5B6Dk1S8CWkcHhuOdQN9w7Mx78EqB+n60shy+PSnXLEykdhXTUyoahuraO8tJbaZd0cqFWHsaAcHNKpKsCOorw112OynqDirNaNJRRRRRXj\/AI1ieLxXeFwcPtZT6jaP8MfhXYaK6vpMOP4cg\/XJrtNCdX0eDb\/DkH65NYFaFaNFFFeifDSJxbajMQfLd0UfUAk\/+hCud8TOpktk\/iAYn6HH+BrmvFLqZbZP4gGJ+hx\/ga9H0rUH0rVLe9QbjE2SvqOhH5E1gMNwIrnXXehU969i07UrTVLVbi0mWRCOR3U+hHY1AQVODVFkZDhhijUNStNLtWuLuZY0A4GeWPoB3NABY4FCoznCjNeZ3XjXWpriZobowwuxKRhFO0dhnGalEa46VbW3jAGVyfXNYF1cz3cpmuJXlkYjLO2TSsAF49RTyAq4AwMimU6nUUUUUUV5D43jdPFl4XzhwjKfUbAP6V2GiMraTDt7ZB+uTXZ6Cyto8IXtuB+uTXPVoVpUUUV7L8LLE3mnWFrLkJPckf8AAd3P8jXHa86nVp9vVQoP1xXFeIpF\/ta4K9VVQfrj\/wDVX0iiLGioihVUYAA4ArHrnetOooqjrFgmpaTc2rrneh2+zdj+dKpwwNOjbY4b3ryg+HNZEe\/+zLnH+4c\/l1qfevqKu+bHnG8fnWa6NG5R1KsDgqwwRS0\/rTG6fiP50jdPxH86Run4j+dLS0tFFFFFFFFFFFFFFFMTq\/8AvUxOr\/71MTq\/+9T6fT6KKKKKK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIr3XS\/wDkEWX\/AFwT\/wBBFW6t1boooooory\/4j\/8AIw2\/\/Xov\/ob15f8AEf8A5GG3\/wCvRf8A0N68v+I\/\/Iw2\/wD16L\/6G9cfXH1x9eHatLdvrF094X+0iU7s9Qc9vb0rubRYRZxCEDytoxjvXfWaQrZRCEDytgxjvXsGgvcvoNk15u+0GIbt3U+mffGK4+\/ES384hx5Yc4x0ritRES6hOIMeWHOMdK6HQf8AkYdM\/wCvuL\/0MVPoP\/Iw6Z\/19xf+hip9B\/5GHTP+vuL\/ANDFe4V7hXuFc18Q\/wDknHiT\/sGz\/wDoBrmviH\/yTjxJ\/wBg2f8A9ANc18Q\/+SceJP8AsGz\/APoBq9qk8tt4OvZ4XKSxae7o46qwjJB\/Or2qTy23g69nhcpLFp7ujjqrCMkH86vapPLbeDr2eFyksWnu6OOqsIyQfzrlB9ptPBOn3eo+JtSS91c2xlaGMyyOSm4w26KPkJAPzYJwCx55HKD7TaeCdPu9R8Takl7q5tjK0MZlkclNxht0UfISAfmwTgFjzyOUH2m08E6fd6j4m1JL3VzbGVoYzLI5KbjDboo+QkA\/NgnALHnkVrDUL\/T77xRYRSazDbQaMt7bLqk4llSQ+cpZW3MwU7F4Y5BU8AHmtYahf6ffeKLCKTWYbaDRlvbZdUnEsqSHzlLK25mCnYvDHIKngA81rDUL\/T77xRYRSazDbQaMt7bLqk4llSQ+cpZW3MwU7F4Y5BU8AHmWNNTsbDwjrj61fzXt\/cW0N5G8xMEiSocgR\/dXBxhgM8ck5qWNNTsbDwjrj61fzXt\/cW0N5G8xMEiSocgR\/dXBxhgM8ck5qWNNTsbDwjrj61fzXt\/cW0N5G8xMEiSocgR\/dXBxhgM8ck5qrqU+padqV\/ea7qGvaayXrPa6hb\/vtPS33\/IskSHj5eGLqOSSGxiqupT6lp2pX95ruoa9prJes9rqFv8AvtPS33\/IskSHj5eGLqOSSGxiqupT6lp2pX95ruoa9prJes9rqFv++09Lff8AIskSHj5eGLqOSSGxirev+INU0t\/GEllNM8sc9hb2qgh\/JM2xCyKxC5+fIBwCcZ4q3r\/iDVNLfxhJZTTPLHPYW9qoIfyTNsQsisQufnyAcAnGeKt6\/wCINU0t\/GEllNM8sc9hb2qgh\/JM2xCyKxC5+fIBwCcZ4qXRV12y8TaesFn4jTTp\/MS+\/tm7gmXhCVdNsrMrbgAVUbcMeBipdFXXbLxNp6wWfiNNOn8xL7+2buCZeEJV02ysytuABVRtwx4GKl0VddsvE2nrBZ+I006fzEvv7Zu4Jl4QlXTbKzK24AFVG3DHgYrIR9XPw4i8Vy69qJ1OCXfGqzEQmMT7NjRjh8r1LZOTwQABWQj6ufhxF4rl17UTqcEu+NVmIhMYn2bGjHD5XqWycnggACshH1c\/DiLxXLr2onU4Jd8arMRCYxPs2NGOHyvUtk5PBAAFdDd6bDJ8Y9OuTNdh\/wCx7iTat1IEyssCgbQcYwxyMYJAJGQDXQ3emwyfGPTrkzXYf+x7iTat1IEyssCgbQcYwxyMYJAJGQDXQ3emwyfGPTrkzXYf+x7iTat1IEyssCgbQcYwxyMYJAJGQDXbV21dtRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9afT6fU1rd3FjcLPazPFKvRlOKCARg0jKGGCMit8eO9bEWzzIS398xDP+H6Uzy1qL7NHnofzrCvb+61G4M93O80h7sensB2FOAAGAKlVVUYUYFdv4C1yFbc6TcOEkDFoCTwwPVfrnn8ajlXncKr3MZzvA+td1UdVqx\/EeuQ6Lpsjlx9pdSIUzyT6\/QU5F3H2qSKMyOPQdTXj1T1eoooooorm\/Fnhga9bpLAVS9hGFLdHX+6f6VpaTqn2CQpICYXPOOoPrWpo+qnT5CkgLQOeQOqn1rzC70nULGUx3NnNGw9UOD9D0NdRDd286hopkYexrqoby2uEDRTow9jz+VXNK8Mapq0yrFbPFFn5ppVKqB\/X8Kgu9UtLRTulVnHREOT\/9aoLvVrSzQ7pVdx0RDk\/\/AFq9a0nTINH06Kyt\/uoOWPVm7k1yd3dSXly80nVug9B6Vx95dyXt088nVug9B6VdqCoKfHLJC26KRkb1U4NFBAPUUSSyTPulkZ29WOTRQAB0FMooprfd\/EU1vu\/iKa33fxFOp1OoooooormvFnhga9Ak1uVS9iGFLdHX+6f6Vp6Tqn2CQpICYXOTjqp9a1NH1X+z5CkgJgc5OOqn1rzS50XVLSUxz2FwrDj\/AFZIP0I4NdNHe2sy7kuIyP8AexXUxX1pMm6O4jI\/3gD+VauieDNS1OdGuIZLW1ByzyLhiPRQefx6VUvtatrWMiN1ll7KpyB9TVO\/1y1tYyInWaXsqnIH1NevaFJHo17avAmIrWRNqD+6AOPyrkHdppp3c5Z2yT74rjJHe4lnd2y7tkn3xXuUE8dzBHPC4eORQysO4NV+hqgQQSD1FSUUlFFFFFFYPibw7BrVk7oireouY5AMFv8AZPt\/KnI+0+1SQymNuvynqK8jcEcEYII\/nUzdPxH86ut0\/EfzpaWlooooooooooooooopidX\/AN6mJ1f\/AHqYnV\/96n0+n0UUUUUV7rpf\/IIsv+uCf+givddL\/wCQRZf9cE\/9BFe66X\/yCLL\/AK4J\/wCgirdW6t0UUUUUV5f8R\/8AkYbf\/r0X\/wBDevL\/AIj\/APIw2\/8A16L\/AOhvXl\/xH\/5GG3\/69F\/9DeuPrj64+q8thZzzrPLaQSTL92R4wWH0NSLcTJGY0lkVD1UMQD+FSJcTxxmNJpFQ9VDEA\/hVio6jrQ0H\/kYdM\/6+4v8A0MVoaD\/yMOmf9fcX\/oYrQ0H\/AJGHTP8Ar7i\/9DFe4V7hXuFUdZ0qDXNEvtKuXkSC8geCRoiAwVhgkEgjPPpVHWdKg1zRL7Srl5EgvIHgkaIgMFYYJBIIzz6VR1nSoNc0S+0q5eRILyB4JGiIDBWGCQSCM8+lSXVhFd6VNp0jOIZoGgZlI3BSu0kcdcVJdWEV3pU2nSM4hmgaBmUjcFK7SRx1xUl1YRXelTadIziGaBoGZSNwUrtJHHXFZ194Xs73R9P083F1AdOMbWl1DIFliZFKBs42nKkgggg5PFZ194Xs73R9P083F1AdOMbWl1DIFliZFKBs42nKkgggg5PFZ194Xs73R9P083F1AdOMbWl1DIFliZFKBs42nKkgggg5PFVE8EWa3t1ePqWpzXF5ZNZXTyzK3nIc4JG3CldxxtCjk5BzVRPBFmt7dXj6lqc1xeWTWV08syt5yHOCRtwpXccbQo5OQc1UTwRZre3V4+panNcXlk1ldPLMrechzgkbcKV3HG0KOTkHNX5vDtpNp2k2TSTiLTJYZYSGGWMQwu7jkeuMfhV+bw7aTadpNk0k4i0yWGWEhhljEMLu45HrjH4Vfm8O2k2naTZNJOItMlhlhIYZYxDC7uOR64x+FZc\/gHTp2u4v7Q1RNNvJWmuNMS4At5GY7n\/h3gMckqrAHJ45rLn8A6dO13F\/aGqJpt5K01xpiXAFvIzHc\/8ADvAY5JVWAOTxzWXP4B06druL+0NUTTbyVprjTEuALeRmO5\/4d4DHJKqwByeOa0Z\/C2mXTax9qjeeLVljW4idsKAi7Rtxgg9DnOQeRitGfwtpl02sfao3ni1ZY1uInbCgIu0bcYIPQ5zkHkYrRn8LaZdNrH2qN54tWWNbiJ2woCLtG3GCD0Oc5B5GKi0zwnb2GpRahcajqOp3UEbRW730wfyFbG7aFUDJwAWOWx3qLTPCdvYalFqFxqOo6ndQRtFbvfTB\/IVsbtoVQMnABY5bHeotM8J29hqUWoXGo6jqd1BG0Vu99MH8hWxu2hVAycAFjlsd6P8AhEbD\/hEv+Eb865+x\/wB\/cvmf6zf1246+3Sj\/AIRGw\/4RL\/hG\/Oufsf8Af3L5n+s39duOvt0o\/wCERsP+ES\/4Rvzrn7H\/AH9y+Z\/rN\/Xbjr7dKt3ehQ3Wv2OtC5uYLq0ikhxEy7JY3Kkq4IPGUU8YPHWrd3oUN1r9jrQubmC6tIpIcRMuyWNypKuCDxlFPGDx1q3d6FDda\/Y60Lm5gurSKSHETLsljcqSrgg8ZRTxg8da1K1K1KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/+KH+q03\/tr\/7JXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKKKKKKKKOhoorTTxJrMMBjTUrgKBxlskfiaYyrtJwM4qN4kwTtGcVQmnmuZTLPK8sjdXdiSfxNPxjpTwABgDAqOilooooooooorzDxT4yurq8ltNOmaG1jJUvGcNIR1OewrqNL0aKKFZrhA8rDO1hwv4etdXpOiQwwpNcxh5mGdrDIX8PWuWjvbuGXzYrmZJOu5XIP51qNBE6bWiRl9CoxWs0ELpsaJGX0KjFejeDPFcuqOdPv2DXKrujkxjeB1B965zWtJS1X7RbjEZOGX+6f8K5nXNIS0UXNuMRE4Zf7p9vauyrGrEoooooooooprfd\/EU1vu\/iKa33fxFOp1Oooooooooooooooopiffk+o\/kKYn35PqP5CmJ9+T6j+Qrf0TxTf6IvlRlZrbOfKk6D6HtSsgb60kkKycng+orqrHx+l5fW1sdPMfnSKhczZC5OM9KYYsAnNQtbbVJ3ZwM9K7Oo6r0UUUUUV4fqpRtUvGjx5ZuGK49N3FTn7g\/Cr4\/1a568VWp1PooooooooooooooopidX\/wB6mJ1f\/epidX\/3qfT6fRRRRRRXuul\/8giy\/wCuCf8AoIr3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CKt1bq3RRRRRRXB+NvDuq6vrMNxY2vmxLbqhbzFXncxxyR6iuD8beHdV1fWYbixtfNiW3VC3mKvO5jjkj1FcH428O6rq+sw3Fja+bEtuqFvMVedzHHJHqK5v\/AIQjxF\/0D\/8AyNH\/APFVzf8AwhHiL\/oH\/wDkaP8A+Krm\/wDhCPEX\/QP\/API0f\/xVH\/CEeIv+gf8A+Ro\/\/iqP+EI8Rf8AQP8A\/I0f\/wAVR\/whHiL\/AKB\/\/kaP\/wCKo\/4QjxF\/0D\/\/ACNH\/wDFUf8ACEeIv+gf\/wCRo\/8A4qj\/AIQjxF\/0D\/8AyNH\/APFVc0nwfr1trNjcTWO2KK4jd285DgBgSeGq5pPg\/XrbWbG4msdsUVxG7t5yHADAk8NVzSfB+vW2s2NxNY7YoriN3bzkOAGBJ4avVK9Ur1SiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/ih\/qtN\/wC2v\/slef8AxQ\/1Wm\/9tf8A2SvP\/ih\/qtN\/7a\/+yV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP61PBBLczpBCheWRgqqOpJp5OBmnEgAk9BXoGmfD61SFX1KaSSYjlIztVfbPU\/pURlPaqz3TE\/IAB707Ufh9ZyQs2nzSRTAcLIdyn+o\/WgSnvQl0wPzAEe1cTfaHqemruu7OWNM434yv5jipAwPQ1YWRH+6wNZ9LTqR\/uH6Uj\/cP0pH+4fpS0tLRRRRRRRRRUN2HNnOIs+YY2249ccU+LaJk3fd3DP0p8O0Tx7\/ALu4Z+ma8Grva9CooorY8KsU8TWLhgoVyzMTgBQp3E\/hmqeqgNpk64ySMAepzx+tUtXAbSrhcZJUAD1ORj9a63U\/iNFFO0enWnnKpx5sjYB+g64rItvDjuga4l2E\/wACjJH41j2vhl3jDXM2wn+BRkj6mpNJ+IdvczrDqNuLbccCVGyo+o7fXmm3fh2SKMvbyeZj+AjB\/CmXnhuSKMvbSebjkoRg\/h612wIIBByDWJ0NYXQ4NFFFNb7v4imt938RTW+7+Ip1Op1FFFFFFFFFFFFFFFMT78n1H8hTE+\/J9R\/IUxPvyfUfyFPp9PpVYqwZSQQcgjtRRXq3hvxTbavbRwzyLHfKMMjHG8+q+v0qF0KnjpVKWEoSQMr\/ACroqZUVcv4o8VW+m2slraSrJeuCvyHIi9z7+1PRCTk9KmhhLsGYYX+deWt0\/EfzqVun4j+dW26fiP50tLS0UUUUUUUUUUUUUUUxOr\/71MTq\/wDvUxOr\/wC9T6fT6KKKKKK910v\/AJBFl\/1wT\/0EV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/+KH+q03\/tr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rXXfD+COXX5JHALRQMyexJAz+RP50Sn5fxpl0SIgPU16dUNU6KKKa6LIjI6hkYYKsMgiigHByK8k8V6Omj600UIxBKvmRj+6D1H4EfyqdG3L71ehk8yPJ6jg1hP9w\/Slf7h+lPf7h+lLS0tFFFFFFFFFFFFeb+KfBV0l3Le6XEZoZCWaFfvIT1wO4+ldJpetxNCsF0+x1GA56MPeun0nXYmhWC7fY6jAc9GHv6GuWj0bVJpfKTT7ovnGPKYY+vHFarXtqi7jcxY\/wB8VrNfWiLua5hA\/wB8Vt3\/AIen8PeGmurogXd1IsO1Tny0ILHn1O0D6fWqNvqMeo6kIov9TEpfJH3jwB+HNUbfUo9S1QQxZ8mJS+SPvNwB+HNctWrWtRRRXr\/gq6kuvC9qZSS0e6ME9wDx+mB+FcfrcSxapKFGA2Gx7nrXF67EsOrShBgNhse5HNdBWfWdTW+7+Iprfd\/EU1vu\/iKdTqdRRRRRRRRRRRRRRRTE+\/J9R\/IUxPvyfUfyFMT78n1H8hT6fT6KKKKKKsG+vDH5Zu5ynTb5hx+VJgegpNq5ztGfpVelpaRun4j+dI3T8R\/Okbp+I\/nS0tLRRRRRRRRRRRRRRRTE6v8A71MTq\/8AvUxOr\/71Pp9Poooooor3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rWv4e1Y6LrEV0QTFykqjqVPX+h\/ClZdy4olTzIyvftXr9rdwXtulxbSrLE4yGU1AQQcGqLKVOCMGpqKSiiivMfH95Hca5HBGQfs8QVyP7xOcflipohhc+tXLZSIyT3Ncm\/3D9Kc\/3D9Klf7h+lLS0tFFFFFFFFFFFFFFFMX\/WP+FMX\/WP+FMX\/AFj\/AIVl+J9LbV9BuLaNczAB4v8AeHb8RkfjV\/TLoWd\/HKxwn3W+hrQ0q7FlqEcrHCH5X+hrxqSKSGRo5UZHU4ZWGCD7iuzVldQysGU9CDkGu3V1dQyMGU8gg5Bqew0661O6W2tIWkkb06AepPYVHcXEVrEZJnCqP1+lR3FzFawmWZwqj17\/AEr2fRtNTSNJt7FDu8pfmb+8x5J\/M1xd5cm7u5JyMbjwPQdq4e9umvLySdhjceB6DtV6oKr01vu\/iKa33fxFNb7v4inU6nUUUUUUUUUUUUUUUUxPvyfUfyFMT78n1H8hTE+\/J9R\/IU+n0+iiiiiiiiiiiikbp+I\/nSN0\/EfzpG6fiP50tLS0UUUUUUUUUUUUUUUxOr\/71MTq\/wDvUxOr\/wC9T6fT6KKKKKK910v\/AJBFl\/1wT\/0EV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/+KH+q03\/tr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6ntr26s2LWtzNCT1Mblc\/lSEA9RSFQ3UA\/UV1Gl+Pry0hEN7CLsLwJN21\/x4OaY0QPQ4qF7ZWOVO32qXUfiFczwtHY2q27EY8x23kfQYx\/OgRAHk5pFtQDlmz7Vxru0js7sWdjksTkk1JVjpTH+4fpSP8AcP0pH+4fpS0tLRRRRRRRRRRRRRRRTF\/1j\/hTF\/1j\/hTF\/wBY\/wCFPp9PqG4tLa6ULcW8UwHaRA386fHNLEcxyOh\/2WIp8c0sJzFI6H\/ZYilgtoLVNlvDHEn92NQo\/SkeSSVt0js59WOaJJZJW3SSM59WOalptMoooprfd\/EU1vu\/iKa33fxFX49I1KaLzYtPunjPIZYWIP6Uu4eooLoDgsufrVN0aNyjqVYcEEYIpad1pKKKKKKKKKKKKYn35PqP5CmJ9+T6j+Qpiffk+o\/kKfT6fRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/8AepidX\/3qYnV\/96n0+n0UUUUUV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+girdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8AFD\/Vab\/21\/8AZK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/rz+vP6KKKKKKKKKKKKKKKYP8AWt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wn0+n0UUUUUUUUUUUUj\/cP0pH+4fpSP8AcP0paWloooooooooooopk00dvC80zqkaAszMcACnIjSOqIpZmOAB3pyI0sioilmY4AHeuEvviMkdy62Fn5keeJJWxn8B\/jW3beGSQXuJ9rN\/Cgzj8a3rbwsSC9xPtZsfKgzj8au6L4\/tb+4S2voPssjnCyBsoT7+lR3vh+W3jMkD+ao5K4wf\/r1FfeHZbeMywSeao5K4w3\/167GsasSiiiiiiiiiu+8D+HYJLYardxiRmYiBWGQADjd9c\/yqKRudo\/Gq1zKc7B+Nd3UdVqw\/Enh6DWrFysareIuYpAOSf7p9j+lORip9qkilMbdfl7ivIiCDg9anq9RRRRRRRRRTE+\/J9R\/IUxPvyfUfyFMT78n1H8hT6fT6KKKKKKKKKKKKRun4j+dI3T8R\/Okbp+I\/nS0tLRRRRRRRRRRRRRRRTE6v\/vUxOr\/71MTq\/wDvU+n0+iiiiiivddL\/AOQRZf8AXBP\/AEEV7rpf\/IIsv+uCf+givddL\/wCQRZf9cE\/9BFW6t1boooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFcZ8RruSLSLa2QkLPLl8dwo6fmQfwra8ORK95JIRkovH41ueGYVe9llYZMafL7ZrzOumrqaKKK9n8LXcl74ZsZ5SS5QqSep2krn9K4vVYlg1OdEGF3ZA+oz\/WuH1aFYNVuI0GF3ZA9MjP8AWtiqdUqKKKKKK9d8ITxz+F7PYR8ilGHoQT\/+v8agk++aozgiZq3KbUdNd1jRndgqqMknsKKOprw25kWW6lkUYV3LAexNWR0rRAwAKiopaKKKKKKYn35PqP5CmJ9+T6j+Qpiffk+o\/kKfT6fRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9afT6fRRRXXeFvCA1WIX18WW1JwiLwZMd89hTHfbwOtQTT7DtX73f2rtl8M6KsXljTbfb6lcn8zzUe9vU1X86TOd5rlfEvgqK3tpL3SwwEY3SQE547lT1\/CnpJk4b86mhuCSFfv0NcI\/3D9Ke\/wBw\/SrD\/cP0paWloooooooooooorC8WaI2t6MYocfaIm8yLPGT3H4j9cVf0m+FjeB3\/ANW42t7e9aGj34sL0O\/+qcbX9vevIJoZbeZopo2jkQ4ZWGCDXXo6yIHRgynkEHINdmjpIgdGDKeQQcg1Z03TLvVrxLa0iLux5PZR6k9hUdzdRWkJlmYKB0Hc+wqO6uobOEyzOFUdB3PsK9p02xTTdNt7OM5WFAufU9z+Jrirmdrm5kmbgu2celcNdXDXV1JO3Bds49KtVFUNdT4b8Hy6xGLu6doLQn5do+aT6eg96Y8m3gcmoZZxGdqjLfyrr18EaCI9ptGJ\/vmVs\/zxUfmN61B9olz979Kqf2Zc+ERLd6bvu7A\/NPaufnX\/AGlPfH8v0UtvGCOfWlLiYAMMN2IqzH450J4t7XEkbf3GibP6ZH60eW3pSG3kB6A\/jXM+JPGh1K3ey09HjgfiSR+GcegHYU5I8HJ61NFb7Dubk9hXH1JU9FFFFFFFFFMT78n1H8hTE+\/J9R\/IUxPvyfUfyFPp9PoooooooooooopG6fiP50jdPxH86Run4j+dLS0tFFFFFFFFFFFFFFFMTq\/+9TE6v\/vUxOr\/AO9T6fT6KKKKKK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CK910v\/AJBFl\/1wT\/0EVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivP\/ih\/qtN\/7a\/+yV5\/8UP9Vpv\/AG1\/9krz\/wCKH+q03\/tr\/wCyV5\/Xn9ef0UUUUUUUUUUUUUUUwf61voP60wf61voP60wf61voP60+n0+iiivcbGFLewt4Y8bEjVVx6AVXPJNZzEliT1JqxSUlBAIwelFFeHapAttqN5Cgwkcrqv0BIFTnmM\/Sr+cw59VqvTqfRRRRRRRRRRRRRRRVO40+yvZGN1aQTkYwZYw2Pzp0FxPDI4imkQcfdYinQXM8EjiKaSMHH3WIqe3tbe0j8u2gihT+7GgUfkKWSWSVt0kjO3qxzSySyTNulkZ29WOTUtMplTWkH2q9gt8482RUz9TignAJpGOFJ9BXuEUSQQpDEoWNFCqo7AdKrVnEknJ60+iigjIwaKK8W1+1j0\/XL23TCxJISo7AHkD9asJllHcmtCIl41PUkVmpIkgyjqw\/2TmnMrL95SPqKeysv3lI+op1JSUUUUUUUUUUxPvyfUfyFMT78n1H8hTE+\/J9R\/IU+n0+iiiiiiiiiiiikbp+I\/nSN0\/EfzpG6fiP50tLS0UUUUUUUUUUUUUUUxOr\/wC9TE6v\/vUxOr\/71Pp9Poooooor3XS\/+QRZf9cE\/wDQRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEVbq3VuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiikZlRC7MFVRkkngCkZlRC7MFVRkkngCkZlRC7MFVRkkngCsay8T2d7cW8Ygu4YrrP2W4mi2xz8Z+U5yMgEjcBkDjNY1l4ns724t4xBdwxXWfstxNFtjn4z8pzkZAJG4DIHGaxrLxPZ3txbxiC7hius\/ZbiaLbHPxn5TnIyASNwGQOM1pX17b6dZTXl3II4IV3OxGcD6dz7VpX17b6dZTXl3II4IV3OxGcD6dz7VpX17b6dZTXl3II4IV3OxGcD6dz7VQsvEMF1fR2c1ne2U8yl4FuogvmgcnaQTyBzg4PtVCy8QwXV9HZzWd7ZTzKXgW6iC+aBydpBPIHODg+1ULLxDBdX0dnNZ3tlPMpeBbqIL5oHJ2kE8gc4OD7VDP4mEd\/dWlvo+qXhtnEcktvHGU3FVbAJcHow7VDP4mEd\/dWlvo+qXhtnEcktvHGU3FVbAJcHow7VDP4mEd\/dWlvo+qXhtnEcktvHGU3FVbAJcHow7Vto29FYqVyM7W6j2NbaNvRWKlcjO1uo9jW2jb0VipXIztbqPY1wPxQ\/1Wm\/9tf\/AGSuB+KH+q03\/tr\/AOyVwPxQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9afT6fRRRXqvhDXodT0yK1kcC7gQIyk8so6MPXjrUMi4OexqlPGUckD5TXSUyoqKKKr3lha6hAYbu3jmjIxhxnH09KM0oYr0JFeU+J9COhakI0Ja2lG6Jj19wfcf1FTo24e9XYZPMTJ6jrWJTqkooorjNe8ew6fcPa6dEtxKhw8jn5AfQY6\/pW1YaA9xGstw5jQ8hR94j+lbmneHnuI1luXMaNyFH3iP6Vhw\/EXVklBmgtZE7qFKn8Dmrz+HLQrhJJVb1yD\/Sr7+GbNkwkkqt2JIP9K7nQvEFpr9qZLfKSp\/rIm6r\/iPesK\/0+awlCycq33XHQ1gahp02nShZPmRvuuOhrTX\/AFj\/AIVRX\/WP+FUF\/wBY\/wCFPp9PoooqSCZre4jmT70bBx9Qc0HkUhGQR617bY3sOoWMN3A2Y5V3D29R9RVcjBwaz2UqxU9RVikpKwPGfiq08GeGLrWbtd\/l4SGIHBlkP3V\/qfQAmrNhZvf3aQIcZ5ZvQetW9NsJNSvktozjPLN\/dHc18feIvE+qeKNVnv8AUrgs8rlvLThE9gPbp6129pY29lEEhjAwOWPU\/U16FZafbWEKxwRgYGCx+8fqazLe5ntJhNbzPFIOjIxBqeSJJUKSIrqezDNTyRRzIUkRXU9mGa7rSPiIFijh1WB2ccGeLHPuV\/w\/KsG88Okuz2sgAPIjbt9DWBe+GiXZ7SQAHkRv2+hrubS7t762S5tZVlhcZVlrCmhkglaOVCrr1BrAmhkt5WilQo69QanplR0UUUxPvyfUfyFMT78n1H8hTE+\/J9R\/IU+n0+iiiiiiiiiiiikbp+I\/nSN0\/EfzpG6fiP50tLS0UUUUUUUUUUUUUUUxOr\/71MTq\/wDvUxOr\/wC9T6fT6KKKKKK910v\/AJBFl\/1wT\/0EV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKyvEySSeFdXSIEyNZTBQvUnYelZXiZJJPCurpECZGspgoXqTsPSsrxMkknhXV0iBMjWUwUL1J2HpWVrDwzaL4d+zYYSX1m0G3+6CGJHtsDfhWVrDwzaL4d+zYYSX1m0G3+6CGJHtsDfhWVrDwzaL4d+zYYSX1m0G3+6CGJHtsDfhW5q8lhDpc0upKrWke13DLuyQwK4Hc7gMD1xW5q8lhDpc0upKrWke13DLuyQwK4Hc7gMD1xW5q8lhDpc0upKrWke13DLuyQwK4Hc7gMD1xWdbWuoavqtpqd\/ALK3tNz21qTulLMpXdIRwPlJwoz15PGKzra11DV9VtNTv4BZW9pue2tSd0pZlK7pCOB8pOFGevJ4xWdbWuoavqtpqd\/ALK3tNz21qTulLMpXdIRwPlJwoz15PGKovo0BttW1Gz1+8jl8+aYvFLtjhkUYIZOjY2gHdngdqovo0BttW1Gz1+8jl8+aYvFLtjhkUYIZOjY2gHdngdqovo0BttW1Gz1+8jl8+aYvFLtjhkUYIZOjY2gHdngdq2rG6vtR8NWd3H5MN7cW0cv71CyKzKCcqCDjk962rG6vtR8NWd3H5MN7cW0cv71CyKzKCcqCDjk962rG6vtR8NWd3H5MN7cW0cv71CyKzKCcqCDjk964L4gJq6R2P9pXFjKP3mz7NA8ePu5zuds9q4L4gJq6R2P9pXFjKP3mz7NA8ePu5zuds9q4L4gJq6R2P9pXFjKP3mz7NA8ePu5zuds9q4zEn95fy\/+vXGYk\/vL+X\/ANeuMxJ\/eX8v\/r0Yk\/vL+X\/16MSf3l\/L\/wCvRiT+8v5f\/XoxJ\/eX8v8A69GJP7y\/l\/8AXoxJ\/eX8v\/r0Yk\/vL+X\/ANejEn95fy\/+vRiT+8v5f\/XoxJ\/eX8v\/AK9GJP7y\/l\/9ejEn95fy\/wDr0Yk\/vL+X\/wBejEn95fy\/+vRiT+8v5f8A16aBJ5rcrnA7fWmgSea3K5wO31poEnmtyucDt9a6zwV4fTV7uW4vQHtoMDYARvY+vsP8KGZ14JXn0FMmkkjAGVyfQV6T\/Z9l5Pk\/ZIPKxjZ5Y2\/lTMn1NVtzZzuOfrXm\/jDQ\/wCwr+C705jDDMTtAJzG49Dnp\/8AXp6s7cAr+IqzDI8qlSV49R1q34P8Rapda5DZ3t8ZYHRgFZRksBkc9expGRgMnb+Aps0O1C2F\/AV6NTKr0UUVwvxJZfs+noCvmb3IyO2Bn+lPjDc7SB9RU9sGy20gfUV57iT+8v5f\/Xp+JP7y\/l\/9erGJP7y\/l\/8AXrJ8T3s+n+HL24jcBwgRSBggsQuR+dXdKgNxqcEchUpnJGOuBn+lXdItzc6rBHIVKbskY64Gf6V4zXbV3dFFFdF4FkkHjPTLaOTZ9rmW1Pp852jPtkg\/hVHWIRNpU+QMopdSexHNZ+twibSLgkDMaGRSexHP+NeslJY55EYqGU4Ix3riF3725Xt2rhV3l2wV7dqXEn95fy\/+vTsSf3l\/L\/69OxJ\/eX8v\/r0Yk\/vL+X\/16MSf3l\/L\/wCvRiT+8v5f\/XoxJ\/eX8v8A69GJP7y\/l\/8AXoxJ\/eX8v\/r1saJ4j1LQnIgeOSBjloXBwfcc8GkZHbqV\/KmSQtJ1K59QK6xfiPB5eW02QP6CUY\/PH9KTyj6io\/srf3hXj3xp8UX+vWumxSIkVmsruIkyfmwACT3OCfSt\/wALRhZ7liQW2qB9MnP9K6TwjAsc90xIL7VA+mTn+leQV01dXRRRRRRXXeAdUmttZ\/s\/f+5uQcKegcDOfyBH5Vj+IrQS2P2hQBJERyR1U9qxfEloJbD7QgAkiI5I6qeMV6diT+8v5f8A165TEn95fy\/+vXI4k\/vL+X\/16MSf3l\/L\/wCvRiT+8v5f\/XoxJ\/eX8v8A69NUSb35Xr6e1NUSb35Xr6e1NUSb35Xr6e1OxJ\/eX8v\/AK9OxJ\/eX8v\/AK9OxJ\/eX8v\/AK9GJP7y\/l\/9ejEn95fy\/wDr0Yk\/vL+X\/wBejEn95fy\/+vRiT+8v5f8A16MSf3l\/L\/69GJP7y\/l\/9ejEn95fy\/8Ar0Yk\/vL+X\/16MSf3l\/L\/AOvRiT+8v5f\/AF6MSf3l\/L\/69Iwkx1XqO3\/16RhJjqvUdv8A69Iwkx1XqO3\/ANelxJ\/eX8v\/AK9LiT+8v5f\/AF6XEn95fy\/+vRiT+8v5f\/XoxJ\/eX8v\/AK9GJP7y\/l\/9ejEn95fy\/wDr0Yk\/vL+X\/wBejEn95fy\/+vRiT+8v5f8A16MSf3l\/L\/69GJP7y\/l\/9ejEn95fy\/8Ar0Yk\/vL+X\/16MSf3l\/L\/AOvRiT+8v5f\/AF6MSf3l\/L\/69GJP7y\/l\/wDXpqCTL4K\/e9Kagky+Cv3vSmoJMvgr970p2JP7y\/l\/9enYk\/vL+X\/16diT+8v5f\/XoxJ\/eX8v\/AK9GJP7y\/l\/9ejEn95fy\/wDr0Yk\/vL+X\/wBejEn95fy\/+vRiT+8v5f8A16930nP9jWO7Gfs8ecf7or3fSc\/2NY7sZ+zx5x\/uivd9Jz\/Y1juxn7PHnH+6KuVcq5RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRWZaeH9KsLsXNtaKki58v5mKx567FJwmf9kCsy08P6VYXYuba0VJFz5fzMVjz12KThM\/7IFZlp4f0qwuxc21oqSLny\/mYrHnrsUnCZ\/wBkClutA029t7uC4t2aO7kWWYCVxudcYIIORjaOmOlLdaBpt7b3cFxbs0d3IsswErjc64wQQcjG0dMdKW60DTb23u4Li3Zo7uRZZgJXG51xggg5GNo6Y6VFZeGdL0+7S6t0uRKmdpe8mccjH3Wcg9e4qKy8M6Xp92l1bpciVM7S95M45GPus5B69xUVl4Z0vT7tLq3S5EqZ2l7yZxyMfdZyD17inXPhrR7u6e5nslZ5CGkUOwSQju6A7W\/EGnXPhrR7u6e5nslZ5CGkUOwSQju6A7W\/EGnXPhrR7u6e5nslZ5CGkUOwSQju6A7W\/EGtXpWr0rV6V5\/8UP8AVab\/ANtf\/ZK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wu7+HupwwyXGnysFeUh4s\/xHGCPr0\/WklHQ1FdISAw7cGvQaiqrXnvxB1OGea30+JgzwkvKR\/CTwB9ev6VLEOpq1aoQCx79K4y3nktbiOeFyksbBlYdiKkIyMVOQCCD0NenaR42029gVbyRbW4Awwf7hPqD\/AI1C0ZHTkVUe3dT8o3Crd94u0WxhaQ3iTsBkJAd5P5cD8absbGcU0QyH+Ege9eaa3rE+t6i11KNq42xxg5CL6VOqhRirccYjTaPxNVbKyuNRu0tbWMySueAP5n2oJAGTTmYKpJOBXU3vwng1fRprK\/1J0aYDJhQYUggjr15HtT7W+a0uknRQSnY9+MUlpqj2d2lxHGCUPRj14xXjPj74Oav4MtG1K3uF1LS1P7yVE2PFnoWXJ47ZB+uK6jTddgv3ETKYpj0BOQ30NdbpPiO31KQQuhhnPRSchvoa81rWrarrfhzau3i601Hyi8Vg4nJPTePuD\/vrB+gNZmuXSwac8efnlGwD27\/pWVr90sGmSRbvnmGwD27\/AKV6huLzyMxyzHJPqa49f9Y\/4Vxi\/wCsf8KdT6fRRRRRRRRRRRRWN4n0Ya3oz26kCdGDxE9N3ofYgkVc02++wXaykExn5XA9DV3S7\/8As+8WUgmNvlcD0NePXNtPZ3DwXETRSocMrDBFdjHKk0YkjYMh6EV2sUsc0ayRuHRuQRWn4a8L6t4t1ZdO0e1M0xG52Jwka\/3mPYf5FR3d5BZQmWd9q9AO5PoKivb630+3M1w+1egHcn0Ar2Ky\/ZsdrYG+8SqlwRysFpuVT9SwJ\/IVhSeKxv8A3dplfVnwT+lc5J4zAf8AdWRKerSYJ\/Sslvg1rfhDxBb6iZ4b\/TIdzNPECrLwQNyHpyeoJH0ou9fgvdNliCNHM2BtPI6+tOufEltqGlywhGinbACnkHnsa26w6w6KKKYn35PqP5CmJ9+T6j+Qpiffk+o\/kKfT6fRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/96mJ1f\/epidX\/AN6n0+n0UUUUUV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRXuul\/8AIIsv+uCf+girdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8UP8AVab\/ANtf\/ZK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP68\/rz+iiiiiiiiiiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/Wt9B\/WpASCCCQR0Ip9PrS\/wCEh1jyfK\/tK52Yx\/rDn8+tJtX0FM8qPOdg\/Ks0BpHwAWZj06kmlp\/StZfC+tvF5g02bb6EAH8jzTd6+tM86PON4rLlhkglaKaN45FOGVxgj8Kd1p4IIyDkVG\/3D9KR\/uH6Uj\/cP0paWlrv\/hzbR+Te3RAMu4Rg+g6n8+PyqKU9BVa6Jyq9utd1UdVqiuraG9tJrW5jWWCZGjkRujKRgg\/hTkdo3V0JDKcgjsacjtHIsiMVZSCCOxr5ak+GNjbahNHJfzyRRyMoVVCkgH15rom8SztGNkCK2OpJNda3iidohst41YjqST+ldRYafa6ZarbWcKxRL2Hc+pPc1k3FxLdSmSZy7Hue1Y9xczXUxlmcu57ntUy\/6x\/wquv+sf8ACq6\/6x\/wp9Pp9FFFFFFFFFFFFNb7v4imt938RTW+7+Iqte6ZY6ioW8tIpsdC65I+h6irEF1PbHMMrpnrg8GrEF3cWxzBM6Z6hTwa9R+GnhPTvC\/hkGyiKyXzmeVmOTj+Fc+gHT6n1qO\/v57+VWmYHYu0Y4H1qrqmo3Go3CmdgfLXaAOB7n612dVKo0jKroyOoZWGCCMgiijpXi+u2K6brd3aJ9yN\/k9lPI\/QirCnKg1oRtvjVvUVn0tOpiffk+v9BTE+\/J9R\/IUxPvyfUfyFY954u0SxlMUt8rSDgiJS+PxHFaMOkX06BlgIU9CxA\/nWlBo1\/cIHSAhT0LEL\/OrGm+INL1ZtlneI8nXyzlW\/I9aiudPurQZmhZV\/vDkfmKiutOu7MZnhZV\/vDkfmK06rVVoooooopG6fiP50jdPxH86Run4j+dLS0tFFFFFFFFFFFFFFFMTq\/wDvUxOr\/wC9TE6v\/vU+n0+iiiiiivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP\/ih\/qtN\/wC2v\/slef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9Pooor0TwDo0K2R1WVA00jFYiR91RwSPcnP5VFK3O2qtzId2wdB1rtajqvXNeM9Gh1DR5bsIBc2yl1cDkqOSD7YyafG2Gx2NS28hWQL2NeVP9w\/SpX+4fpVx\/uH6UtLS103g3XotHvpIbptttcYBb+4w6H6c\/wAqZIu4cdRUM8RkUEdRXqKSJLGrxurowyGU5BFQ1TIwcGsfxD4gttEsnPmK12y4iiByc+p9BTlUsfapIojI3T5e5ryFmLMWY5JOSTU9XqSiimL\/AKx\/wpi\/6x\/wpi\/6x\/wp9Pp9FFFFFFFFFFFFNb7v4imt938RTW+7+Ip1Op1eseDNQjvfDsEYYebbjynX0x0P5f1qCQYb61SuFKyk9jzXQ02oqRmVFLMQFAySTwBRRXjGvXy6lrl3dpyjv8h9VAwD+QqwowoFaEa7I1X0FZ1LTq4Xx7rs1oBpls5RphvmYHnb0A\/HBz9Petnw5YJLLNdSqCEcKgPrgc1ueGtPSaWa7lUMEcKgPrgc151XT11NOjkeGRZI3ZHU5VlOCDSMqupVgCpGCD3pGVXUqwDKRgg9DXsXhTWW1vREmlx9ojby5cdyO\/4gj9a47VrIWV8yJ\/q2G5fYelcVq9iLG\/aNP9Ww3J7D0rbqjVCiiikbp+I\/nSN0\/EfzpG6fiP50tLS0UUUUUUUUUUUUUUUxOr\/71MTq\/wDvUxOr\/wC9T6fT6KKKKKK910v\/AJBFl\/1wT\/0EV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/+KH+q03\/tr\/7JXn9ef15\/RRRRRRRRRRRRRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6KKK9O8BahHcaH9j3AS2zHK9ypOQfzJFQyjDZ9ap3KkSbuxrq6ZUNYnivUI7Dw9db2G+dDDGvclhj9Bk05Blh7VJCpaVfY5NeQP9w\/Spn+4fpV1\/uH6UtLS0UUVNDeXNupWG4mjU9QjkA\/lRgHtSFQeoBqJmZ2LMSzHqSck0UtJRRRRRXFeLvFsulXLWFhtFyQDJKRnZkcAD171saLoy3W65uM+UThVHG7Hf6VtaJoq3Ya6uc+UThEHG7HU\/SuMj8Ua5HN5o1O4LZzhmyv5HitxtLsWTYbaPHsMH863m0mwZNhtYwPUDB\/OvRvCniUa\/aOkyql3DjeF6MD0YVzmrab9glUoS0L\/dJ6g+lczrGl\/wBnTKUJaF\/uk9QfQ10VZ1ZtFFFFFFNb7v4imt938RTW+7+Ip1Op1XdM1W70i7FxaSbW6Mp5Vh6EUhUMMGmuiuuGFdjD8R18oefpx8z1SXg\/mOKj8r0NQG054fj3FYmueMb7WImt0QW1s33kRss3sT6U5YwvPU1JHAsZz1Nc5T6loooryz4hQOniISkHZJEu0+46j+X510\/huRWsJEH3kkOR9QK6rwxKr6fKg+8kpyPqBXJ1s1t0UUV6Z8OIHTR7mZgQkk2F98Dk\/r+lcz4kkVryJB1VOfxNct4nkVr2JB1VOfxNdnWLWHRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/8AepidX\/3qYnV\/96n0+n0UUUUUV7rpf\/IIsv8Argn\/AKCK910v\/kEWX\/XBP\/QRXuul\/wDIIsv+uCf+girdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUV5\/8AFD\/Vab\/21\/8AZK8\/+KH+q03\/ALa\/+yV5\/wDFD\/Vab\/21\/wDZK8\/rz+vP6KKKKKKKKKKKKKKKYP8AWt9B\/WmD\/Wt9B\/WmD\/Wt9B\/Wn0+n0UUVPZ3tzp9ytxazNFKvRl\/zyKQgEYNIyhhhhkV0y\/ELVVi2mC0Z8ffKt\/LNN8pfU1D9lTPVq57UtVvNWuPPvJjIw4UdAo9AO1OChRxUqIqDCjFUn+4fpQ\/3D9KV\/uH6UtLS0UUUUUUUUVZsLC41O9jtLZN0rnj0A7k+1ISAMmkZgilj0FegWXw90+KEfbJ5ppcc7DtUfTvUZlPYVVa6Yn5QAK+Y\/iXpT6N8Q9Ys2VwglDxF+coygrz34OPwrttGkWTSLcrjhcH655rv9ClWbRbZlx93Bx6g81ydX60a7H4cxSNrtxKoPlrbkMe2SwwP0P5VjeI2UWEan7xkyPyNYniZ1GnxofvGQEfgDmvTq5iuVooooooprfd\/EU1vu\/iKa33fxFOp1OooooooooooooooorH13QrfXrOS3lOyRG3RSgZKnA\/Me1WNNv5LC7kkQblJAZfUYFWdL1CTTruSRBuUkB09RgV5teeDtcs5Sn2Jp17PCdwP9fzFdTDrNjMgPnBD3V+CK6yDW7CZAfPEZ7q\/BFW9J8C6pezKbuP7Jb5+ZnI3Eew\/xqG7121gQiFvOk7AdPxNQ3niC0gQiFvOk7Beg+pr0+zs4LCzitbdNkUS7VH+e9cxNM9xM8shy7HJNcpPNJcTPNK2Xc5Jqeo6jooopG6fiP50jdPxH86Run4j+dLS0tFFFFFFFFFFFFFFFMTq\/wDvUxOr\/wC9TE6v\/vU+n0+iiiiiivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIr3XS\/+QRZf9cE\/wDQRVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK8\/wDih\/qtN\/7a\/wDslef\/ABQ\/1Wm\/9tf\/AGSvP\/ih\/qtN\/wC2v\/slef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP8AcP0pH+4fpS0tLRRRRRRRRRXd\/DiCMvf3BAMihEB9Ack\/yH5VHKegqtdk4Udq76oqrVwvxE+GOm+PoI5mlNnqcC7YrpV3ZXrtcdxnpzkZ+oOjpery6axUL5kLHJQnHPqK1NH1ubSXZQvmQMcshOOfUV4DqPwm1bStYmsLm\/sisRGZItxyCARwQOx9a3f+EmtjHuWGUt6HAH55rpR4qtXhDpBMWPY4A\/PNdbouiWuhWX2e2BJJzJI3Vz\/ntWHe30t9P5kuABwqjoBWFfX82oT+bLgAcKo6KK0qrVVooooooprfd\/EU1vu\/iKa33fxFOp1Oooooooooooooooopiffk+o\/kKYn35PqP5CmJ9+T6j+Qp9Pp9FFFFFFFFFFFFI3T8R\/Okbp+I\/nSN0\/EfzpaWlooooooooooooooopidX\/wB6mJ1f\/epidX\/3qfT6fRRRRRRXuul\/8giy\/wCuCf8AoIr3XS\/+QRZf9cE\/9BFe66X\/AMgiy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/wAUP9Vpv\/bX\/wBkrz\/4of6rTf8Atr\/7JXn\/AMUP9Vpv\/bX\/ANkrz+vP68\/ooooooooooooooopg\/wBa30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRRRRSP9w\/Skf7h+lI\/wBw\/SlpaWiiiiiiiiiuz+Hl\/HBf3NlIwDXCqyZ7lc8fkf0qOUZAPpVe6UlQw7da9GqKqtIzBFLMQFAySTwBRRXjGv3yalrt5dxnMbvhD6qBgH8hVhRhQKvxLsjVT1xWdS0+iiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiiiiiiiimJ9+T6j+Qpiffk+o\/kKYn35PqP5Cn0+n0UUUUUUUUUUUUjdPxH86Run4j+dI3T8R\/OlpaWiiiiiiiiiiiiiiimJ1f\/epidX\/3qYnV\/wDep9Pp9FFFFFFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/AFWm\/wDbX\/2SvP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/1rfQf1p9Pp9FFFFFFFFFFFFI\/wBw\/Skf7h+lI\/3D9KWlpaKKKKKKKKKcjvFIskbFXU5VlOCD60UdRg11ll8QNRt4RHcQRXJAwHOVY\/XHH6UwxA9OKga1QnIJFZ+r+MdS1hHtjsgtzjKRZy31NIigOw9MURQqkjdyMYJrBqSp6KKKKKKKKKKKKa33fxFNb7v4imt938RTqdTqKKKKKKKKKKKKKKKYn35PqP5CmJ9+T6j+Qpiffk+o\/kKfT6fRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/ooooooooooooooopg\/1rfQf1pg\/1rfQf1pg\/wBa30H9a5fxV4vGiv8AY7RFkvCMsW+7GD0z6n2rZ0rRzer50xKw5wAOrf8A1q2tI0U3y+fMSsGcADq3\/wBauK\/4TTxB5vmfbz1+75aY\/LFbf9i6ft2\/Zx9dxz\/Ot3+w9O2bfs4+u45\/nXbeFfF662\/2O7RYrwDKlfuyAdceh9qw9V0c2Q86EloScHPVawtX0U2I86Fi0BODnqv\/ANauqrKrIooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFFFFMX\/AFj\/AIUxf9Y\/4Uxf9Y\/4U+n0+iiiiiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiiiiiiiimJ9+T6j+Qpiffk+o\/kKYn35PqP5Cn0+n0UUUUUUUUUUUUjdPxH86Run4j+dI3T8R\/OlpaWiiiiiiiiiiiiiiimJ1f\/epidX\/3qYnV\/wDep9Pp9FFFFFFe66X\/AMgiy\/64J\/6CK910v\/kEWX\/XBP8A0EV7rpf\/ACCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/AFWm\/wDbX\/2SvP8A4of6rTf+2v8A7JXn\/wAUP9Vpv\/bX\/wBkrzLVNVtdHsWu7t9qDgAclj6AetcNa2st5OIoVyx5JPQD1NcNaWkt7OIYVyx5JPQD1NcFc\/Ei\/aU\/ZbO2SPPAl3Mf0Irei8N24T97NIzf7OAP610MXhi3Cfvp5Wb\/AGMAf1ra0Dx3BqVwlpfQrbTOcI6nKMfTnpVLUNBe2jMsDmRF5KkfMB\/WqOo+H5LWJprdzLGvLKR8wH9a7CsesWiiiiiimD\/Wt9B\/WmD\/AFrfQf1pg\/1rfQf1rxLXJJJde1B5c7\/tDg57YYjFd3YqqWFuF6eWv8q9AsFVNPt1T7vlr\/KqFWKsVoaDJJF4g094id\/2hBx3ywBH5Gq9+qvp9wG6eWx\/Sq2oKr6dch+nlsf0r2+uHrg6KKKR\/uH6Uj\/cP0pH+4fpS0tLRRRRRRRRRRRRRRRTF\/1j\/hTF\/wBY\/wCFMX\/WP+FPp9Pooooooooooooprfd\/EU1vu\/iKa33fxFOp1Oooooooooooooooopiffk+o\/kKYn35PqP5CmJ9+T6j+Qp9Pp9FFFFFFFFFFFFI3T8R\/Okbp+I\/nSN0\/EfzpaWlooooooooooooooopidX\/3qYnV\/wDepidX\/wB6n0+n0UUUUUV7rpf\/ACCLL\/rgn\/oIr3XS\/wDkEWX\/AFwT\/wBBFe66X\/yCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFef\/FD\/Vab\/wBtf\/ZK8\/8Aih\/qtN\/7a\/8Aslef\/FD\/AFWm\/wDbX\/2SvnL4jXckmtQWpJ8qKEMB\/tMTk\/kBWN4ciVbKSXHzO+M+wrJ8MwqtjJLj53fBPsP8muNrZrbo6UUV7doN1Je6DY3EpJkeFdxPc9Ca4e\/iWC\/njUYVXOB6CuD1CJYNQnjThVc4HoK0ar1Wooopg\/1rfQf1pg\/1rfQf1pg\/1rfQf1rz7xp4UuTeyapYRNLHLzNGgyyt3IHcGum0XVYxCtrcOEZeEY9CPSuo0PV4hAtpcOEZeEZjwR6Vwu1t+zad2cYxzmtzIxnIx61v5GM5GOua7rwX4VuVvE1S\/iaJI+YY3GGZvUjsBWFrWqxmFrW3cOzcOw6AelYGuavEYGtLdw7Nw7L0A9K9Erna5qiiikf7h+lI\/wBw\/Skf7h+lLS0tFFFFFFFFFFFFFFFMX\/WP+FMX\/WP+FMX\/AFj\/AIU+n0+iiiiiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiiiiiiiimJ9+T6j+Qpiffk+o\/kKYn35PqP5Cn0+n0UUUUUUUUUUUUjdPxH86Run4j+dI3T8R\/OlpaWiiiiiiiiiiiiiiimJ1f8A3qYnV\/8AepidX\/3qfT6fRRRRRRXuul\/8giy\/64J\/6CK910v\/AJBFl\/1wT\/0EV7rpf\/IIsv8Argn\/AKCKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/AMUP9Vpv\/bX\/ANkrz\/4of6rTf+2v\/slef\/FD\/Vab\/wBtf\/ZK8H+IGhTXaRapbIXaFNkyqMnbnIP4ZOa5vw\/fpEzWsrBQ53IT6+lc74c1BIWe0lYKHO5CfX0rziukrp6uaZplzq19HaWqFnY8nso7k+1Q3VzFaQNLK2FHQdyfQVDdXUVnbtNK2FHQdyfQV7ZZWqWNjBax\/chjCA+uBjNcTPK088krfedixrhJ5muLiSZvvOxY\/jU9R1HRRRTB\/rW+g\/rTB\/rW+g\/rTB\/rW+g\/rT6fT6bsXfu2jd645pdxxjJx6Uu44xk49M06kpKo6lrGn6RGr31ykW77qnJZvoBzU9tZ3F2xEERfHU9APxqxa2VxeMVgiL46noB+NQ6b4i0rVpDHZ3avKOdjAq34A9fwp9zp13aLumhIX+8DkfpT7rTbuzXdNCVX+8CCP0rTf7h+lVH+4fpVN\/uH6UtLS0UUUUUUUUUUUUUUUxf9Y\/4Uxf8AWP8AhTF\/1j\/hT6fT6KKKKKKKKKKKKa33fxFNb7v4imt938RTqdTqKKKKKKKKKKKKKKKYn35PqP5CmJ9+T6j+Qpiffk+o\/kKfT6fRRRRRRRRRRRRSN0\/EfzpG6fiP50jdPxH86WlpaKKKKKKKKKKKKKKKYnV\/96mJ1f8A3qYnV\/8Aep9Pp9FFFFFFe66X\/wAgiy\/64J\/6CK910v8A5BFl\/wBcE\/8AQRXuul\/8giy\/64J\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/1Wm\/8AbX\/2SvP\/AIof6rTf+2v\/ALJXn\/xQ\/wBVpv8A21\/9krz+vP68\/rJufDGi3kplm06EuTklcrk++MVbi1S9hTaly+30PP8AOrkWq30KbEuX2joDzj86u2en2mnxeVZ20cKHqEXGfr61BNcTXD7ppGc\/7R6VBPcTXL7ppWkPbcelWajqKiiiiiimD\/Wt9B\/WmD\/Wt9B\/WmD\/AFrfQf1p9Pp9FFFFFFeK+JLya98Q30kxJKzNGoP8KqSAK7bTYUh06BUAwUDE+pIzXdaZCkGmwKgGCgYn1JGSazoJ5baeOeFyksbBlYdQRViRFkjZHUMrDBB71ZkjWWNo3UMrDBB717rBKZ7KKVhtZ4wxHpkZrgp1CPIgOQpIzXntwgjeVAchSQDU1JSUUUUUUUUUUUUUUUUxf9Y\/4Uxf9Y\/4Uxf9Y\/4U+n0+iiiiiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiiiiiiiimJ9+T6j+Qpiffk+o\/kKYn35PqP5Cn0+n0UUUUUUUUUUUUjdPxH86Run4j+dI3T8R\/OlpaWiiiiiiiiiiiiiiimJ1f\/AHqYnV\/96mJ1f\/ep9Pp9FFFFFFe66X\/yCLL\/AK4J\/wCgivddL\/5BFl\/1wT\/0EV7rpf8AyCLL\/rgn\/oIq3VurdFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFeffFDPlabgj\/lr2\/wByvPvihnytNwR\/y17f7leffFDPlabgj\/lr2\/3K8\/w3qPyrz\/Deo\/KvP8N6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qMN6j8qYN3mtyOg7fWmDd5rcjoO31pg3ea3I6Dt9afhvUflT8N6j8qfhvUflRhvUflRhvUflRhvUflRhvUflRhvUflRhvUflXEeJvBEuoXr3+nPGJJDmSJ\/lBPqD71uaVri28AgugSq8K6joPQ1v6Try20C290CVXhXUdB6GqGjfD67N2kuqNGkCHJiVtxf2PYCrF74hi8lktAxkIwHYYC1YvvEcXkMlmGMjDAdhgLXojBghGRjHpXMvu2tyOnpXLPu2tkjp6U7Deo\/KnYb1H5U7Deo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KmLu8x+R27Uxd3mPyO3amLu8x+R27U\/Deo\/Kn4b1H5U\/Deo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/Kmtu29R1Hamtu29R1Hamtu29R1HanYb1H5U7Deo\/KnYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5Uxd29+R19PYUxd29+R19PYUxd29+R19PYU\/Deo\/Kn4b1H5U\/Deo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/KjDeo\/Kmtux1HUdvemtux1HUdvemtux1HUdvenYb1H5U7Deo\/KnYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UxN2X5H3vSmJuy\/I+96UxN2X5H3vSn4b1H5U\/Deo\/Kn4b1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5UYb1H5V7tpWf7Hss9fs8f\/oIr3bSs\/wBj2Wev2eP\/ANBFe7aVn+x7LPX7PH\/6CKt1bq3RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRXn\/xQ\/wBVpv8A21\/9krz\/AOKH+q03\/tr\/AOyV5\/8AFD\/Vab\/21\/8AZK8\/rz+vP6KKKKKKKKKKKKKKKYP9a30H9aYP9a30H9aYP9a30H9afT6fRRRRRRRRRRRRSP8AcP0pH+4fpSP9w\/SlpaWiiiiiiiiiiiiiiimL\/rH\/AApi\/wCsf8KYv+sf8KfT6fRRRRRRRRRRRRTW+7+Iprfd\/EU1vu\/iKdTqdRRRRRRRRRRRRRRRTE+\/J9R\/IUxPvyfUfyFMT78n1H8hT6fT6KKKKKKKKKKKKRun4j+dI3T8R\/Okbp+I\/nS0tLRRRRRRRRRRRRRRRTE6v\/vUxOr\/AO9TE6v\/AL1Pp9Poooooor3XS\/8AkEWX\/XBP\/QRXuul\/8giy\/wCuCf8AoIr3XS\/+QRZf9cE\/9BFW6t1boooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooorz\/4of6rTf8Atr\/7JXn\/AMUP9Vpv\/bX\/ANkrz\/4of6rTf+2v\/slef15\/Xn9FFFFFFFFFFFFFFFMH+tb6D+tMH+tb6D+tMH+tb6D+tPp9PoooooooooooopH+4fpSP9w\/Skf7h+lLS0tFFFFFFFFFFFFFFFMX\/WP+FMX\/AFj\/AIUxf9Y\/4U+n0+iiiiiiiiiiiimt938RTW+7+Iprfd\/EU6nU6iiiiiiiiiiiiiiimJ9+T6j+Qpiffk+o\/kKYn35PqP5Cn0+n0UUUUUUUUUUUUjdPxH86Run4j+dI3T8R\/OlpaWiiiiiiiiiiiiiiimJ1f\/epidX\/AN6mJ1f\/AHqfT6fRRRRRRXuul\/8AIIsv+uCf+givddL\/AOQRZf8AXBP\/AEEV7rpf\/IIsv+uCf+girdW6t0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVxXxC0u+1KKx+xWsk\/l+bu2DOM7cfyNcV8QtLvtSisfsVrJP5fm7tgzjO3H8jXFfELS77UorH7FayT+X5u7YM4ztx\/I1xf\/AAi+uf8AQMuP++a4v\/hF9c\/6Blx\/3zXF\/wDCL65\/0DLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/wC+aP8AhF9c\/wCgZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/AHzR\/wAIvrn\/AEDLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP8Avmj\/AIRfXP8AoGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/wB80f8ACL65\/wBAy4\/75o\/4RfXP+gZcf981XTw\/qz3s1uthOZo0RnQLyoYtgn67T+VV08P6s97NbrYTmaNEZ0C8qGLYJ+u0\/lVdPD+rPezW62E5mjRGdAvKhi2CfrtP5VY\/4RfXP+gZcf8AfNWP+EX1z\/oGXH\/fNWP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/AL5o\/wCEX1z\/AKBlx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf8AfNH\/AAi+uf8AQMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/wC+aP8AhF9c\/wCgZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/AHzTX8L65sP\/ABK7np\/cpr+F9c2H\/iV3PT+5TX8L65sP\/Eruen9ynf8ACL65\/wBAy4\/75p3\/AAi+uf8AQMuP++ad\/wAIvrn\/AEDLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP8Avmj\/AIRfXP8AoGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/wB80f8ACL65\/wBAy4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/AL5o\/wCEX1z\/AKBlx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf8AfNV4vD+rSXdxCmnztJFt3qF5XIyM1Xi8P6tJd3EKafO0kW3eoXlcjIzVeLw\/q0l3cQpp87SRbd6heVyMjNWP+EX1z\/oGXH\/fNWP+EX1z\/oGXH\/fNWP8AhF9c\/wCgZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/AHzR\/wAIvrn\/AEDLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP8Avmj\/AIRfXP8AoGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/wB80f8ACL65\/wBAy4\/75o\/4RfXP+gZcf9801vC+ubf+QXc9R\/BTW8L65t\/5Bdz1H8FNbwvrm3\/kF3PUfwU7\/hF9c\/6Blx\/3zTv+EX1z\/oGXH\/fNO\/4RfXP+gZcf980f8Ivrn\/QMuP8Avmj\/AIRfXP8AoGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/wB80f8ACL65\/wBAy4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/AL5o\/wCEX1z\/AKBlx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf8AfNH\/AAi+uf8AQMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/vmq8Hh\/Vpbi5jjsJ2eFwsiheVJUMAfwIP41Xg8P6tLcXMcdhOzwuFkULypKhgD+BB\/Gq8Hh\/Vpbi5jjsJ2eFwsiheVJUMAfwIP41Y\/4RfXP+gZcf981Y\/4RfXP+gZcf981Y\/wCEX1z\/AKBlx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf8AfNH\/AAi+uf8AQMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/wC+aP8AhF9c\/wCgZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/AHzR\/wAIvrn\/AEDLj\/vmj\/hF9c\/6Blx\/3zTW8L65j\/kF3PUfwe9NbwvrmP8AkF3PUfwe9NbwvrmP+QXc9R\/B707\/AIRfXP8AoGXH\/fNO\/wCEX1z\/AKBlx\/3zTv8AhF9c\/wCgZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/AHzR\/wAIvrn\/AEDLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP8Avmj\/AIRfXP8AoGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/wB80f8ACL65\/wBAy4\/75o\/4RfXP+gZcf980f8Ivrn\/QMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/AL5qvbeH9Wna4EWnzuYpTG4C\/dbAOD+BH51XtvD+rTtcCLT53MUpjcBfutgHB\/Aj86r23h\/Vp2uBFp87mKUxuAv3WwDg\/gR+dWP+EX1z\/oGXH\/fNWP8AhF9c\/wCgZcf981Y\/4RfXP+gZcf8AfNH\/AAi+uf8AQMuP++aP+EX1z\/oGXH\/fNH\/CL65\/0DLj\/vmj\/hF9c\/6Blx\/3zR\/wi+uf9Ay4\/wC+aP8AhF9c\/wCgZcf9817BpyNFplpG6lXWFFYHsQor2DTkaLTLSN1KusKKwPYhRXsGnI0WmWkbqVdYUVgexCirNWas0UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUVQg05oddvdRMgK3MEMQTHK+WZDnPv5n6VQg05oddvdRMgK3MEMQTHK+WZDnPv5n6VQg05oddvdRMgK3MEMQTHK+WZDnPv5n6Vfq\/V+iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiqFppzW2r6jemQMLvy8Lj7uxcVQtNOa21fUb0yBhd+Xhcfd2LiqFppzW2r6jemQMLvy8Lj7uxcVfq\/V+iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiqFjpzWeoapdGQML2dJQoGNmIkTHv9zP41QsdOaz1DVLoyBhezpKFAxsxEiY9\/uZ\/GqFjpzWeoapdGQML2dJQoGNmIkTHv9zP41fq\/V+iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiqGm6c1hLqDmQP9rujcAAY2goq4\/8d\/WqGm6c1hLqDmQP9rujcAAY2goq4\/8AHf1qhpunNYS6g5kD\/a7o3AAGNoKKuP8Ax39av1fq\/RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRWBfadc3V9e3OoanPZadCii3FtceTjjLu5HU54APGB05rAvtOubq+vbnUNTnstOhRRbi2uPJxxl3cjqc8AHjA6c1gX2nXN1fXtzqGpz2WnQootxbXHk44y7uR1OeADxgdOawZtQ1DUNE8PLcPqbtcTStI9huilmjRXCE4I27so3JArBm1DUNQ0Tw8tw+pu1xNK0j2G6KWaNFcITgjbuyjckCsGbUNQ1DRPDy3D6m7XE0rSPYbopZo0VwhOCNu7KNyQK6DwzLaNDdQwTakZ4pAJ4NRlZ5YiRx1J4I5BBINdB4ZltGhuoYJtSM8UgE8Goys8sRI46k8EcggkGug8My2jQ3UME2pGeKQCeDUZWeWIkcdSeCOQQSDW7W7W7RRRRRRRRRRRRRRRRRRRRRRRRRRRXE6w8tz4nvlkXX3t7aCFUTTJXRQTvZmOGAY4KjAyeOlcTrDy3Pie+WRdfe3toIVRNMldFBO9mY4YBjgqMDJ46VxOsPLc+J75ZF197e2ghVE0yV0UE72ZjhgGOCowMnjpVt7pdR\/sLTdM1G5+w3cUs8lysp8544wo27z8wJZxk9flI4q290uo\/wBhabpmo3P2G7ilnkuVlPnPHGFG3efmBLOMnr8pHFW3ul1H+wtN0zUbn7DdxSzyXKynznjjCjbvPzAlnGT1+Ujir2hyz2+q6ppE1xLcR2vlSwSTNufy5AflJ74ZG5POCKvaHLPb6rqmkTXEtxHa+VLBJM25\/LkB+Unvhkbk84Iq9ocs9vquqaRNcS3Edr5UsEkzbn8uQH5Se+GRuTzgit2t2t2iiiiiiiiiiiiiiiiiiiiiiiiiiiuT1\/RkhjeSDUtX+23k3l28S6hKqeY2T0B4VRliB2U1yev6MkMbyQalq\/228m8u3iXUJVTzGyegPCqMsQOymuT1\/RkhjeSDUtX+23k3l28S6hKqeY2T0B4VRliB2U03xBHPawaDpaz6tOu9vOltJGE8oSIj5mBHVipOSBTfEEc9rBoOlrPq067286W0kYTyhIiPmYEdWKk5IFN8QRz2sGg6Ws+rTrvbzpbSRhPKEiI+ZgR1YqTkgVo+GZbRobqGCbUjPFIBPBqMrPLESOOpPBHIIJBrR8My2jQ3UME2pGeKQCeDUZWeWIkcdSeCOQQSDWj4ZltGhuoYJtSM8UgE8Goys8sRI46k8EcggkGt2t2t2iiiiiiiiiiiiiiiiiiiiiiiiqOrPqMdg7aWlq1wM\/8AHy7KqjB5+UEnnHHH1qjqz6jHYO2lpatcDP8Ax8uyqoweflBJ5xxx9ao6s+ox2DtpaWrXAz\/x8uyqoweflBJ5xxx9aw\/7WvYvh1Y30cu6\/uLa3RZXGcSSlF3H1wWz+FYf9rXsXw6sb6OXdf3FtbosrjOJJSi7j64LZ\/CsP+1r2L4dWN9HLuv7i2t0WVxnEkpRdx9cFs\/hUqxz6Dr+mQLfXl1a34kikW6l8wrIqbw4J6ZCsCBxyOBUqxz6Dr+mQLfXl1a34kikW6l8wrIqbw4J6ZCsCBxyOBUqxz6Dr+mQLfXl1a34kikW6l8wrIqbw4J6ZCsCBxyOBWV9o1BfCi+LTf3X2nAuzbeZ+58ktny9nT7n8XXPOayvtGoL4UXxab+6+04F2bbzP3Pkls+Xs6fc\/i655zWV9o1BfCi+LTf3X2nAuzbeZ+58ktny9nT7n8XXPOa7qu6ruqKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK4\/U4NUufEM8l3oE+pWEJT7HGtxCsWcZZ2RmG5skgZHAHHrXH6nBqlz4hnku9An1KwhKfY41uIVizjLOyMw3NkkDI4A49a4\/U4NUufEM8l3oE+pWEJT7HGtxCsWcZZ2RmG5skgZHAHHrWvNd635NpdwaZgfOLmxeVPNxn5Srg7c8dCejdQRWvNd635NpdwaZgfOLmxeVPNxn5Srg7c8dCejdQRWvNd635NpdwaZgfOLmxeVPNxn5Srg7c8dCejdQRSaPZ3h1PUNWvYVtpLpYo0tw4YoibsFiONxLnpkAAcmk0ezvDqeoatewrbSXSxRpbhwxRE3YLEcbiXPTIAA5NJo9neHU9Q1a9hW2kulijS3DhiiJuwWI43EuemQABya2q2q2qKKKKKKKKKKKKKKKKKKKKKKKKKKKx7m61u0v5xFpy39rJgwGOVY2iOMEPuPIzzkZPPSse5utbtL+cRact\/ayYMBjlWNojjBD7jyM85GTz0rHubrW7S\/nEWnLf2smDAY5VjaI4wQ+48jPORk89Ky4NC1DSoNJu4US6u7RpzcQRsEDrO29whbj5W24zjIB6VlwaFqGlQaTdwol1d2jTm4gjYIHWdt7hC3HyttxnGQD0rLg0LUNKg0m7hRLq7tGnNxBGwQOs7b3CFuPlbbjOMgHpWno1ldDUNR1W9iEE14Y1SDeGMcaAhQxHG4lmJxkcjk1p6NZXQ1DUdVvYhBNeGNUg3hjHGgIUMRxuJZicZHI5NaejWV0NQ1HVb2IQTXhjVIN4YxxoCFDEcbiWYnGRyOTWzWzWzRRRRRRRRRRRRRRRRRRRRRRRRRRRWS1ncz+Kku5Y8WlralYCSPmldvnOOvCqoz\/ALRrJazuZ\/FSXcseLS1tSsBJHzSu3znHXhVUZ\/2jWS1ncz+Kku5Y8WlralYCSPmldvnOOvCqoz\/tGpdTl1S3lt57C3S6hXcJ7fcEds42lGPGRzwcZz14qXU5dUt5beewt0uoV3Ce33BHbONpRjxkc8HGc9eKl1OXVLeW3nsLdLqFdwnt9wR2zjaUY8ZHPBxnPXiq2j2d4dT1DVr2FbaS6WKNLcOGKIm7BYjjcS56ZAAHJqto9neHU9Q1a9hW2kulijS3DhiiJuwWI43EuemQAByaraPZ3h1PUNWvYVtpLpYo0tw4YoibsFiONxLnpkAAcmtqtqtqiiiiiiiiiiiiiiiiiiiiiiiimTKWhkUDJKkCmTKWhkUDJKkCmTKWhkUDJKkCueTQ7ufwDZ6S22C+htoNu45Cyx7WAJGeNygHHaueTQ7ufwDZ6S22C+htoNu45Cyx7WAJGeNygHHaueTQ7ufwDZ6S22C+htoNu45Cyx7WAJGeNygHHapI7fUdW1uwvL6wNjBYLIwRplcySuu3I25+UKW5OCcjgVJHb6jq2t2F5fWBsYLBZGCNMrmSV125G3PyhS3JwTkcCpI7fUdW1uwvL6wNjBYLIwRplcySuu3I25+UKW5OCcjgVm\/2Pqx8Pr4Wa1H2UEQm\/wDOXabcNnG372\/b8uMYzzms3+x9WPh9fCzWo+ygiE3\/AJy7Tbhs42\/e37flxjGec1m\/2Pqx8Pr4Wa1H2UEQm\/8AOXabcNnG372\/b8uMYzzmuyrsq7KiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivIPFserWnxauvEOjl5Z9I0eCaazX\/AJercyyCRB\/tYG4e6jg15B4tj1a0+LV14h0cvLPpGjwTTWa\/8vVuZZBIg\/2sDcPdRwa8g8Wx6tafFq68Q6OXln0jR4JprNf+Xq3MsgkQf7WBuHuo4Nb3jjUrTWPDnhXUrCYS2tzrmnyROO6mT9D7dq3vHGpWmseHPCupWEwltbnXNPkicd1Mn6H27VveONStNY8OeFdSsJhLa3OuafJE47qZP0Pt2rqZdd8rxja+H\/s2fPsZbzz9\/wB3Y6Lt245zvznPbpXUy675XjG18P8A2bPn2Mt55+\/7ux0XbtxznfnOe3Supl13yvGNr4f+zZ8+xlvPP3\/d2Oi7duOc785z26URa75njG58P\/ZseRYx3nn7\/vb3ddu3HbZnOe\/SiLXfM8Y3Ph\/7NjyLGO88\/f8Ae3u67duO2zOc9+lEWu+Z4xufD\/2bHkWMd55+\/wC9vd127cdtmc579K5mT4i302lX2p6X4Wuryz06WaO8ke5SLAiYhjGDkyEAbuw5wCSCBzMnxFvptKvtT0vwtdXlnp0s0d5I9ykWBExDGMHJkIA3dhzgEkEDmZPiLfTaVfanpfha6vLPTpZo7yR7lIsCJiGMYOTIQBu7DnAJIICy\/EieOystb\/4Ru7Hhu6kjQahJOiyKHYKrmHk7CSOc5746UsvxInjsrLW\/+Ebux4bupI0GoSTosih2Cq5h5OwkjnOe+OlLL8SJ47Ky1v8A4Ru7Hhu6kjQahJOiyKHYKrmHk7CSOc5746VV+Jd5FBrHh+DW7i8tvCkpm+3y2xdVaTAESSsnzKhJPsT16cVfiXeRQax4fg1u4vLbwpKZvt8tsXVWkwBEkrJ8yoST7E9enFX4l3kUGseH4NbuLy28KSmb7fLbF1VpMARJKyfMqEk+xPXpw7SPDegrqGn6n8PdWtIUiuF+328F600M8BGGBTcQHHBB45607SPDegrqGn6n8PdWtIUiuF+328F600M8BGGBTcQHHBB45607SPDegrqGn6n8PdWtIUiuF+328F600M8BGGBTcQHHBB4561qX\/ji4TxNqHhzSdBudS1OzSOQgTLFFsdc7mdvu4yBjBJ9MA1qX\/ji4TxNqHhzSdBudS1OzSOQgTLFFsdc7mdvu4yBjBJ9MA1qX\/ji4TxNqHhzSdBudS1OzSOQgTLFFsdc7mdvu4yBjBJ9MA1e8O+Lodai1GK9tJdK1HS2C39pcOreSCu4MGHDIRkhvY1e8O+Lodai1GK9tJdK1HS2C39pcOreSCu4MGHDIRkhvY1e8O+Lodai1GK9tJdK1HS2C39pcOreSCu4MGHDIRkhvY1in4iagdOOuxeEb5\/DQUy\/bvPjEpiH\/AC1EB+bZjnqDjnFYp+ImoHTjrsXhG+fw0FMv27z4xKYh\/wAtRAfm2Y56g45xWKfiJqB0467F4Rvn8NBTL9u8+MSmIf8ALUQH5tmOeoOOcVt634vtdMstNksYJNUu9WIGnWtsyg3Hy7925uFQLyWPQEVt634vtdMstNksYJNUu9WIGnWtsyg3Hy7925uFQLyWPQEVt634vtdMstNksYJNUu9WIGnWtsyg3Hy7925uFQLyWPQEVRs\/Fs15cX+i67oUum6ili90IPtCyx3EP3WKSLjkEgEEAjIPNUbPxbNeXF\/ouu6FLpuopYvdCD7QssdxD91iki45BIBBAIyDzVGz8WzXlxf6LruhS6bqKWL3Qg+0LLHcQ\/dYpIuOQSAQQCMg81DY+KrHSPAfhqWw0mdpdRt4YtO0qCXzHJMe4LvbHyqo5dugGahsfFVjpHgPw1LYaTO0uo28MWnaVBL5jkmPcF3tj5VUcu3QDNQ2Piqx0jwH4alsNJnaXUbeGLTtKgl8xyTHuC72x8qqOXboBmrmk+L7uXXYdE1\/RJNG1C5jeW0\/0hZ4rgJgsFdcfMAclSOnNXNJ8X3cuuw6Jr+iSaNqFzG8tp\/pCzxXATBYK64+YA5KkdOauaT4vu5ddh0TX9Ek0bULmN5bT\/SFniuAmCwV1x8wByVI6c1UufHOpXF9qUfh\/wALz6taaZO1td3Au44f3qgF0jQ5LkZHpzwM1UufHOpXF9qUfh\/wvPq1ppk7W13cC7jh\/eqAXSNDkuRkenPAzVS58c6lcX2pR+H\/AAvPq1ppk7W13cC7jh\/eqAXSNDkuRkenPAzXVaZfpqul2t\/FFNElxEsgjnTZImRnDDsR0NdVpl+mq6Xa38UU0SXESyCOdNkiZGcMOxHQ11WmX6arpdrfxRTRJcRLII502SJkZww7EdDVurdW6KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK4yz\/5LJq3\/YEtv\/RstcZZ\/wDJZNW\/7Alt\/wCjZa4yz\/5LJq3\/AGBLb\/0bLXC+LbG68I+IdH0OGBm8P6n4gtL2yK\/dtJhKDLD7K2d6jjHzDHU1wvi2xuvCPiHR9DhgZvD+p+ILS9siv3bSYSgyw+ytneo4x8wx1NcL4tsbrwj4h0fQ4YGbw\/qfiC0vbIr920mEoMsPsrZ3qOMfMMdTXYeJ9UtfDfxH0bWtVZ4NMk064szd7C0ccpkjZQ5A+XIU4JrsPE+qWvhv4j6NrWqs8GmSadcWZu9haOOUyRsocgfLkKcE12HifVLXw38R9G1rVWeDTJNOuLM3ewtHHKZI2UOQPlyFOCaPD1+dZ+KGq6nBa3Kac2k28VvcyxMizgSyEsuQDjJI564yOCCTw9fnWfihqupwWtymnNpNvFb3MsTIs4EshLLkA4ySOeuMjggk8PX51n4oarqcFrcppzaTbxW9zLEyLOBLISy5AOMkjnrjI4IJreHP+SUeIP8Arrqv\/o2Wq3hz\/klHiD\/rrqv\/AKNlqt4c\/wCSUeIP+uuq\/wDo2Ws\/Xv8Ak3XSP+vLSv8A0ZBWfr3\/ACbrpH\/XlpX\/AKMgrP17\/k3XSP8Ary0r\/wBGQV1fiTxHfeG9cs7i7tHm8NTQOlzPb27SyW0wIKs4XJ8srkcKcHrXV+JPEd94b1yzuLu0ebw1NA6XM9vbtLJbTAgqzhcnyyuRwpwetdX4k8R33hvXLO4u7R5vDU0Dpcz29u0sltMCCrOFyfLK5HCnB61xGr3HhbxTrOkzeBLQSa\/HqEUj6hY2jwpDEDmQzPtVWBUEbSSTnHfniNXuPC3inWdJm8CWgk1+PUIpH1CxtHhSGIHMhmfaqsCoI2kknOO\/PEavceFvFOs6TN4EtBJr8eoRSPqFjaPCkMQOZDM+1VYFQRtJJOcd+dCLxPYeGvi54vk1QSw2U1vY7rwRM0cTCNsK5UHbuycE8fKfatCLxPYeGvi54vk1QSw2U1vY7rwRM0cTCNsK5UHbuycE8fKfatCLxPYeGvi54vk1QSw2U1vY7rwRM0cTCNsK5UHbuycE8fKfapbG1m8b3PjbVLGKS30\/VNNXTLCeaNo\/tBCSZl2kA7cyAA98GpbG1m8b3PjbVLGKS30\/VNNXTLCeaNo\/tBCSZl2kA7cyAA98GpbG1m8b3PjbVLGKS30\/VNNXTLCeaNo\/tBCSZl2kA7cyAA98Guasrnw7beF4NLu7vxa3iCK1W3k0FL67V3kC7SiqDt8s44YfLtP4VzVlc+HbbwvBpd3d+LW8QRWq28mgpfXau8gXaUVQdvlnHDD5dp\/Cuasrnw7beF4NLu7vxa3iCK1W3k0FL67V3kC7SiqDt8s44YfLtP4V1esWn\/CKX\/gvWGsZV0nSbWWyuki3XDWavGgVuBllBTaWx0Oa6vWLT\/hFL\/wXrDWMq6TpNrLZXSRbrhrNXjQK3AyygptLY6HNdXrFp\/wil\/4L1hrGVdJ0m1lsrpIt1w1mrxoFbgZZQU2lsdDmtSHxnb+JpdRt9Ft3utKh0+R5dTwyx+aeBEmQN5xkkjgcDqa1IfGdv4ml1G30W3e60qHT5Hl1PDLH5p4ESZA3nGSSOBwOprUh8Z2\/iaXUbfRbd7rSodPkeXU8MsfmngRJkDecZJI4HA6muJuNLL+EPhtrtwdRGm6dY+XePpzyLNCksKASAx\/NtBXDY7NXE3Gll\/CHw2124OojTdOsfLvH055FmhSWFAJAY\/m2grhsdmribjSy\/hD4ba7cHURpunWPl3j6c8izQpLCgEgMfzbQVw2OzVs+HU8Pax4z06fQ5tc1qOxSWVtRu9QnkgtmZdgVRJkO7BjkDGAPwrZ8Op4e1jxnp0+hza5rUdiksrajd6hPJBbMy7AqiTId2DHIGMAfhWz4dTw9rHjPTp9Dm1zWo7FJZW1G71CeSC2Zl2BVEmQ7sGOQMYA\/CqOp33he28Q6u93fa14Q1v7U2RZySFb8AAJMI9rRybh2A3Zzn1qjqd94XtvEOrvd32teENb+1NkWckhW\/AACTCPa0cm4dgN2c59ao6nfeF7bxDq73d9rXhDW\/tTZFnJIVvwAAkwj2tHJuHYDdnOfWu\/8EXetX3gzTLnxDEYtUkiJmVo9jH5jtLL\/AAsV2kjsSeB0rv8AwRd61feDNMufEMRi1SSImZWj2MfmO0sv8LFdpI7EngdK7\/wRd61feDNMufEMRi1SSImZWj2MfmO0sv8ACxXaSOxJ4HSt+t+t+iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisPTPDx0\/xbruuG5DjVEtlEOzHl+UrL1zznd6DGKw9M8PHT\/Fuu64bkONUS2UQ7MeX5SsvXPOd3oMYrD0zw8dP8W67rhuQ41RLZRDsx5flKy9c853egxitytytyiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiv\/2Q=="}}}}}}