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Summary 
 
We consider two methods for inversion of time-lapse 
electrical resistivity imaging (ERI) data based on the 
concept of informed imaging, defined as the incorporation 
of all prior knowledge about a site into the acquisition, 
inversion, and interpretation of data.  The first method uses 
a preconditioned conjugate gradient algorithm with a 
regularization term that incorporates information about the 
conductivity structure from the preceding time step.  The 
second method uses the extended Kalman Filter (EKF) to 
invert each imaging experiment given knowledge about 
model structure and the error structure from all previous 
imaging experiments.  We demonstrate the use of these 
inversion algorithms on real and synthetic time-lapse data 
acquired while monitoring infiltration processes in the near 
surface. 
 
Introduction 
 
Monitoring hydrologic processes in the vadose zone is of 
great importance in developing management strategies for 
groundwater resources.  Flow and transport behavior in 
variably saturated media control the rate at which, and path 
along which, fluids or contaminants reach groundwater 
aquifers.  Electrical resistivity imaging (ERI) is sensitive to 
changes in the subsurface conductivity structure, which is 
highly dependent on the water saturation distribution in the 
vadose zone.  Time-lapse ERI, therefore, has been widely 
used for environmental and hydrologic monitoring 
experiments. 
 
ERI monitoring of near-surface processes has included 
tracking infiltration (Daily et al., 1992), estimating 
transport properties (Binley et al., 2002), and quantifying 
plume evolution in saturated media (Singha and Gorelick, 
2005).  In most applications of ERI to environmental 
monitoring, inversion of time-lapse data has relied on either 
differential or absolute imaging methods.  In differential 
imaging, data are transformed before inversion by taking 
the difference or ratio of data collected at later time steps 
relative to data collected during the initial imaging 
experiment.  The differenced data are then inverted to 
recover relative log-conductivity values (see e.g. Park, 
1998; or Chambers et al., 2004).  In absolute imaging each 
imaging experiment is inverted independently of other data 
and absolute estimates of the conductivity values are 
recovered (Zhou et al., 2001).  The reference model for 
starting the inversion in absolute imaging is often the same 

for each time-step, though the conductivity model from the 
previous time step has also been used, as in Oldenborger et 
al. (2007), in which the authors compare absolute and 
differenced imaging approaches using 3D time-series data 
for an injection withdrawal experiment in a shallow 
aquifer. 
 
In this study we use ERI to monitor infiltration beneath the 
Harkins Slough Recharge Pond (HSRP), part of a coastal 
aquifer management project in an agricultural region of 
Northern California.  Water diverted to the HSRP is used to 
recharge the aquifer beneath the pond, slowing saltwater 
intrusion and supplementing water resources to meet 
demand during the irrigation season.  We consider two 
methods for inverting the data collected from the study 
within an informed imaging framework, meaning all 
existing information about a site and experiment is 
incorporated into the acquisition, processing and 
interpretation of ERI data.  Both of the approaches applied 
in this study incorporate information gained from the 
inversion of data acquired from imaging experiments at 
earlier time steps into the inversion of data at the current 
time-step.  In the first approach, we use the inverted 
conductivity model from the previous time step as a 
reference model for the inversion at the current time-step, 
incorporated as a regularization term within a Gauss-
Newton (GN) inversion algorithm (Pidlisecky et al., 2007).  
We also propose a stochastic inversion method using the 
extended Kalman Filter (EKF), which incorporates 
information about both the evolution of the physical system 
being monitored and the structure of the model error 
covariance to update estimates of model parameters.  The 
EKF model updates are recursive; hence, information from 
all previous time-steps is included in the current update. 
 
Field Experiment 
 
Our primary interest at the HSRP is to image infiltration in 
the top few meters of the near surface.  Prior investigations 
using 1D electrical resistivity probes recording to a depth 
of 2 m and grain-size analysis of 5-m cores suggest a 0.5-m 
thick layer of fines-rich sediment at the surface, with 
medium to coarse-grained sand below this layer.  It is 
hypothesized that clogging from very-fine particulates in 
the water column or bioactivity in the fines-rich layer 
causes an observed decrease in infiltration rate with time, 
limiting the effectiveness of the pond.  However, it may be 
that infiltration rates are simply limited by the permeability 
within the top layer, and initial rates are artificially high 
from tilling of the pond base prior to infiltration.  Operators 
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require a better understanding of flow behavior below the 
pond to understand the parameters controlling fluid flow in 
the near surface.   
 
Prior to the diversion period in 2008-2009, electrodes were 
implanted along a 20-m line at a depth 0.25 m below the 
base of the pond.  Forty electrodes were used with a regular 
separation of 0.5 m.  Using an imaging experiment of 154 
Wenner arrays with source-receiver offsets ranging from 
0.5 m to 2.5 m, measurements were collected across the 
length of the line.  Imaging experiments were repeated at 
approximately 1.5-hour intervals for 3 months during the 
diversion period.  Water diversion began approximately 7 
weeks (1158 hours) after the start of the monitoring 
experiment.  A number of power surges resulted in 
incomplete or lost data, resulting in a total of 1936 
complete data sets over approximately 19 weeks (3080 
hours). 
 
Inversion Methods 
 
For the first inversion approach, we use a 2D version of the 
GN algorithm presented by Pidlisecky et al. (2007).  This 
application uses two-grids in the model update.  At each 
iteration, a ‘fine’ grid of 318 by 124 cells is used to 
calculate the Jacobian, the sensitivity of measurements to 
changes in model parameters, and predicted data, and a 
‘coarse’ grid of 147 by 51 cells is used to estimate model 
parameters.  Multiple grids are used to improve estimates 
of the Jacobian, especially near source locations, while 
limiting the number of model parameters; this combination 
increases the stability of the inversion process. The model 
update at each iteration is estimated using a precondition 
conjugate gradient (PCG) algorithm. 
 
We incorporate information derived from the inversion of 
data from previous imaging experiments through a 
regularization term.  Within the objective function of the 
inversion, the regularization term penalizes large 
differences between the current estimated model and a 
reference model, taken here to be the inverted conductivity 
structure from the previous time step.  Inclusion of the 
regularization term incorporates our knowledge that the 
short sampling interval, relative to the time-scale at which 
the water moves through the subsurface, means there are 
only small variations between adjacent imaging 
experiments; i.e. the conductivity structure at the current 
time-step should be very close to the conductivity structure 
at the preceding time-step. In addition to this explicit 
regularization, the PCG algorthim is solved to a low 
tolerance, which results in further model regularization.   
 
The second approach uses a stochastic framework to 
incorporate previous knowledge through the use of the 
extended Kalman Filter (EKF).  Kalman (1960) first 

proposed a prediction-filter method for evaluating time-
series stochastic data that incorporates knowledge acquired 
from all previous time-steps to estimate parameters at the 
current time-step.  This method is based on iterative 
updates to the expression describing the evolution of the 
measured physical system and the measurement process.  
The EKF is a modified version of the original Kalman 
Filter that is adapted to predict and filter nonlinear 
processes.  We follow here the derivation of the EKF 
presented by Leikhoinen et al. (2009), who were the first to 
apply the EKF to electrical resistivity monitoring data.  In 
their study they consider a cross-borehole configuration for 
imaging infiltration with a 24-hour sampling interval.  We 
adapt the method for our application of dense temporal 
sampling of an infiltration experiment using surface-based 
ERI.  For our experiment we alter the update of the 
physical state being monitored at each time-step.  
Furthermore, we must consider that our data resolution will 
be decreased as a result of the acquisition geometry.   
 
We consider a system of two stochastic processes 
describing the evolution of the physical system (the state 
equation) and the measurement process (the observation 
equation).  These are represented by (1) and (2), 
respectively.  
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In this representation, σ is an m-dimensional vector of 
model parameters (the conductivity values); F is the state 
update matrix; U is the n-dimensional vector of 
measurements (potential differences); V is the operator 
describing the measurement process; and k is the time 
index.  The vectors ω and υ are stochastic noise 
components with 0-mean and variances sω2 and sυ2, 
respectively.  Linearization of the expression for the 
measurement process about the current time-step has the 
form Uk ~ Vk(σk-1)+Jk(σk- σk-1)+εk.  The prediction-update 
iterations for each new measurement then have the form: 
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Equation (8) is the error covariance matrix, where i can be 
ε, or ω.  The first terms in equations (9) and (10) describe 
the data misfit between the predicted and observed data 
based on the linearized expression of the measurement 
process.  The second terms represent regularization of the 
model solution, where α is a weighting parameter, R is a 
smoothing operator and σ* is a reference conductivity 
model. 
 
Equations (3) and (4) are predictions of the conductivity 
model and the model error covariance based on data 
acquired up to the k-1 time-step.  Equations (5)-(7) filter 
the predictions based on the most recent observed data.  In 
this application, where we assume very dense temporal 
sampling, we can approximate the state evolution as a 
simple linear process, rather than a nonlinear process as 
assumed in the original derivation.  Our linear assumption 
is consistent with similar applications of electrical 
impedance tomography used in medical imaging 
(Vaukhonen et al., 1998; and Kim et al., 2002).  Another 
important difference in our application is that we are 
working with surface ERI data, not cross-borehole data.  
Although the acquisition geometry does not change the 
form of the prediction-filter equations above, it has 
important implications for measurement resolution of our 
data. 
 
Inversion Results using the GN-Algorithm 
 
Using the GN algorithm described above, we invert the 
time-series data acquired at the pond.  The time-lapse 
imaging data from each time-step are inverted to a 
tolerance of 4.5% with a maximum of 10 iterations and a 
reference model, after the initial time step, equal to the 
solution at the previous time step.  The reference model for 
the initial time-step is a simple, layered conductivity model.  
If the misfit between the predicted data and observed data 
is less than the tolerance at the initial iteration for an 
imaging experiment, the inversion process is skipped and 
the model remains unchanged.   A number of inverted 
models from different time-steps are included as Figure 1.  
The results are presented as relative differences with 
respect to the initial imaging experiment to better show 
changes in the estimated structure.  The inverted 
conductivity models clearly show wetting from a rain event 
at ~300 hours, followed by drying back to initial subsurface 
conditions prior to the diversion of water to the pond.  After 
diversion begins at 1160 hours, however, the models again 
show alternating periods of wetting and drying in the 
deeper sediments, but the hydraulic head in the pond 

remains relatively constant until monitoring ends.  The 
inverted conductivity models indicate a complex infiltration 
process that cannot be explained by a simple model of 
clogging in the fines-rich layer as initially predicted.   
 
Although the amount of spurious noise and structure 
introduced into the model is limited by only processing 
data with variation above the misfit tolerance, the inversion 
results still become noisy after a large number of time-steps 
using this method.  Resetting the reference model to the 
initial reference model after ~200 inversions and 
proceeding with the method as described above does help 
to limit this effect.  However, this behavior highlights some 
of the challenges of using this method: 1) weighting the 
reference model relative to the data misfit to find the 
appropriate balance of informing the inversion through 
previous information and allowing variations in data to 
drive the inversion process, and 2) limiting the introduction 
of artifacts into the model estimates from the inversion 
process. 

 
Synthetic Example Monitoring with Surface ERI 
 
Because the EKF has not been applied previously to 
surface ERI data, we test the method on a synthetic 
infiltration experiment to verify that the method works 
when measurement resolution is lower (because of 
acquistion geometry) than in previous cross-borehole 
applications.  We begin by simulating an infiltration 
experiment by solving Richards equation numerically for a 
hydraulic head analysis using COMSOL.  The structural 
model and values of hydrologic parameters used in the 
simulation are consistent with the current conceptual model 

 
Figure 1:  Six time-lapse relative difference conductivity structures 
with respect to the initial conductivity model inverted using GN-
algorithm.  A: 325.5 hours (rain event); B: 627 hours; C: 1160 
hours (diversion begins); B: 1338 hours; C: 1678.5 hours; D: 
3029.5 hours. 
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and available information about hydrologic properties of 
the HSRP, though the model here is downscaled from the 
pond.  We simulate variably saturated fluid flow within the 
model space for 50 hours on an FEM grid of 5816 elements 
and 3609 nodes.  The estimated effective saturation is 
output every hour.  Effective saturation values are 
converted to conductivity values using an Archie’s Law 
relationship with bulk fluid conductivity of 0.5 S/m, and 
cementation and saturation exponents of 1.5 and 2, 
respectively (Archie, 1940).  The conductivity distributions 
at 1, 10, 20, and 30 hours simulated with this process are 
included in Figure 2 for reference.    
 
Surface electrical resistivity measurements are simulated 
for 125 Wenner arrays using 40 electrodes and electrode 
offset spacing of 1:5 electrodes; data are then contaminated 
with 3% Gaussian noise.  We note that, with the acquisition 
geometry used, the change in observed data between 
imaging experiments after 30 hours was less than the 
measurement noise.  We, therefore, do not expect that 
inversion of these data will result in meaningful updates to 
the estimated conductivity structure. 
 

 
We estimate the conductivity structure at each time step 
using the EKF prediction-filter recursions described above.  
We assume a model covariance of 1e0I; observation 
covariance of 2e-2I; and initial prediction error covariance 
matrix of the form I.  We assume a standard smoothing 
operator for R, with weighting coefficient equal to √2.  
Because time-steps are too small to allow distinguishable 
flow evolution between steps, we approximate F as the 
identity.  This form of the state update incorporates our 
knowledge that the conductivity structure at any time-step 
should be close to the structure at the previous time-step, 
avoiding the computational expense of simulating the full 
solution of Richards equation at each time step and the 

assumption of several unknown values of hydrologic 
parameters.  We use the same two-grid application 
described in the previous example.  A fine grid of 320 by 
100 cells is used to calculate the predicted data and 
Jacobian, while a coarse grid of 80 by 20 cells is used to 
update model parameters.  Figure 3 shows the estimated 
conductivity models at time-steps consistent with the four 
conductivity distributions in Figure 2.  The estimates show 
very good agreement with the ‘true’ structure, though the 
magnitudes of the conductivity values are very different 
from each other and the true models. 
 

 
Conclusions 
 
We present two methods for incorporating existing 
information from time-lapse ERI data into the inversion 
process within an informed imaging framework.  
Regularization of the inversion of the current estimate 
using prior estimates of the conductivity structure is applied 
to densely sampled monitoring data at an infiltration pond 
in Northern California.  The extended Kalman Filter is 
shown to be a viable tool for the stochastic inversion of 
time-lapse surface ERI data.  The recursive nature of the 
method allows for the incorporation of information from all 
previous imaging experiments into parameter estimation of 
the current experiment.  Future investigation is required to 
determine the feasibility of applying the EKF to parameter 
estimation from continuous, automated ERI monitoring 
experiments. 
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Figure 3:  Four time-lapse conductivity models inverted using 
EKF.  The models A-D correspond to the ‘true’ conductivity 
distributions A-D in Figure 2. 

 
Figure 2:  Four time-lapse conductivity models created based on 
the numerical solution to Richards equation for the effective 
saturation during an infiltration experiment and conversion to 
conductivity using an Archie’s Law relationship. A: 1 hour; B: 5 
hours; C: 20 hours; D: 30 hours. 


