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Our rational experimental design algorithm uses 
a prior conductivity model to select source con-
figurations based one key criteria: maximizing 
the orthogonality of current vectors from any 
two source configurations within a specified 
region.  Choosing sources based on this prin-
ciple maximizes the amount of unique informa-
tion content between two configurations by 
sampling the region from as different an angle 
as possible.  The algorithm further selects arrays 
that provide sufficient current density to discern 
signal from measurement noise.   

Current Density Orthogonality

Magnitude of the current den-
sity within a region of interest 
for 2 source locations:
a) (13.5,0) (17.5,0)
b) (25.5,0) (29.5,0)

Current vectors within a 
region of interest for 2 
source locations:
a) (-2.75,0)    (2.75,0)
b) (-22.75,0) (22.75,0)
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Background and Motivation
Electrical resistivity imaging (ERI) surveys typically use one of a small number of standard  data acqui-
sition arrays, originally designed to have analytic solutions to Poisson's Equation in a homogeneous 
half-space.  However, research has shown that non-standard arrays may produce improved-quality 
data. [1] The value of non-standard arrays,  given experimental constraints raises the question: 
how do we design a survey, in terms of spatial and temporal sampling, to image a subsurface 
process or region most accurately?

38 surface electrodes maximum
0.5 m minimum offset
σa = 5 mho/m, σb = 50 mho/m
|Current density| > 0.5 (noise threshold)

9 unique configurations
9 pole potential measurements
   per source 

We use three sensitivity measures to evaluate the  performance of the algorithm-selected array (ASA).  
The Furman measure perturbs model elements relative to a homogeneous field, calculating the change 
in the electrical response at specified locations.[3]  The depth of investigation (DOI)[4] measure uses in-
verted models to determine the depth below which the data no longer inform the inversion. The reso-
lution matrix uses the column-sums of the Jacobian to measure the average impact a change in a 
model parameter has on data observed at all other locations in the model. [5]

While previous work has focused on classical optimized experimental design theory to address this 
question[2], we propose instead a method for rational experimental design.  By rational design, we 
mean incorporating prior information about a site and the expected target  into the design pro-
cess for an acquisition array.
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Our method for rational experimental design is  being tested 
on an infiltration pond off Harkin's Slough in Watsonville, CA.  
Using well log information from monitoring wells around the 
pond, as well as seismic and GPR data from the pond base, we 
developed a prior conductivity model of the pond.  With this 
starting model we applied the rational experimental design 
algorithm in which the target is the infiltration process at ~ 5 
m depth.  We are monitoring infiltration in this zone with 
time-lapse ERI using both an ASA and a Wenner array to test 
the performance of the two arrays in a  real -world setting.

The three sensitivity measures give very different evaluations of the ASA performance relative to 
the four traditional arrays and in the model variations.  
The Furman measure is only included in the initial results because it is insensitivie to changes in the 
conductivity model.  It only depends on the electrode locations in each array.  This measure sug-
gests the Wenner, Schlumberger sounding, and gradient arrays have the greatest sensitivity to the 
imaged region.  By contrast, the DOI indicates the ASA, Wenner and gradient arrays provide the 
best sensitivity.  Evaluating the inverted models and the model resolution provides the greatest 
correlation between measured sensitivity and reliability of inverstion results.  These results suggest 
a uniform, increased level of sensitivty to the target interior has a larger impact on the reliability of 
inverted data than sensitivity magnitudes alone.
The 5 model variations used to evaluate array performance, given model uncertainty, support this 
interpretation.  Based on reliability of the initial conductivity inversions, only the Wenner array is 
used for comparison.  Examining the relationship between how well the target is constrained in the 
inversions, and the Δ DOI and model resolution for these scenarios, highlights the two main conclu-
sions of our study:  

1) An elevated sensitivity to the target interior in the model resolution corresponds to a 
 better-constrained inversion. 
2) The ASA produces clearly more reliable inversion results only when the target, or some 
 portion of the target, falls in the specified region of interest, emphasizing the importance 
 of good prior information in rational experimental design.
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