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ABSTRACT 
 
 Determining the spatial distribution of subsurface properties is critical to 

developing efficient groundwater management strategies.  Though hydrologic methods 

can accurately measure these properties, they often have sparse spatial coverage and 

cannot capture the spatial variation.  Integrating geophysical and standard methods can 

provide more comprehensive measures of spatial and temporal variation in hydrologic 

properties.  Electrical resistivity imaging (ERI) provides continuous maps of the 

subsurface electrical conductivity, which is related to water content in the vadose 

zone, making it particularly useful for groundwater applications.  However, 

differences in measurement scales and the challenge of obtaining accurate images of 

electrical conductivity can limit the ability to integrate ERI with existing hydrologic 

data.  To address these issues I present a framework for informed imaging, the 

incorporation of all available information into the acquisition, inversion and 

interpretation of electrical resistivity data.  This framework includes methods for 

informed experimental design, time-lapse inversion, and integration of different data 

types into a consistent hydrogeologic model. 

 I present an application of informed imaging to monitoring flow beneath an 

artificial recharge pond, which is part of an aquifer storage and recovery project for 

managing coastal groundwater resources.  As a first step in informed imaging, I create 

a hydrostratigraphic model, which incorporates hydrologic, geologic, and geophysical 

data into a systematic framework.  I use this model with the proposed experimental 

design method to select acquisition arrays for ERI experiments.  Monitoring data 

acquired at the pond are inverted using an implementation of the extended Kalman 

filter, which incorporates all previously acquired information into the inversion of data 

at each time-step.  This is the first application of this method to surface-ERI data 

collected in the field.  Furthermore, I present an analysis of the impact of measurement 

support on the estimated correlation structure of properties in anisotropic systems, 

which must be accounted for when integrating processed geophysical data into 

hydrologic models.  The successful application of these methodologies to monitoring 
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flow at an artificial recharge pond leads me to conclude that using an informed 

imaging approach can enhance the use of geophysical methods to developing 

groundwater management strategies. 
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CHAPTER 1. INTRODUCTION 
 

Developing efficient and cost-effective strategies for managing groundwater 

resources requires accurate models of subsurface hydrogeologic structure.  In turn, 

these models need information about the hydrologic properties that govern the 

transport and long-term fate of water or contaminants as they percolate from the 

surface, through the vadose zone, to groundwater aquifers.  In-situ measurements of 

hydrologic properties from boreholes or probes provide accurate values of measured 

properties but are sparsely sampled, limiting their ability to determine the variability 

of those properties in space.  Geophysical measurements are often spatially exhaustive 

and can be acquired at relatively low cost, making them very useful for supplementing 

conventional measurements.  Electrical resistivity imaging (ERI) is a geophysical 

method that is particularly useful to studies of hydrologic processes in the near surface 

because of the high correlation between electrical conductivity, the inverse of 

resistivity, and water saturation in the vadose zone.  Repeatedly imaging the same 

subsurface region provides maps of changes in the electrical conductivity structure 

with time.  These maps of variation in electrical conductivity can be used to track the 

infiltration of water from the surface [Daily et al., 1992; Michot et al., 2003; Robinson 

et al., 2008], or in conjunction with other methods to estimate hydrologic properties 

[Binley et al., 2002; Day-Lewis et al., 2007; Slater, 2007]. 

 Although ERI has been used successfully to monitor hydrologic processes in 

the near surface, the technique still needs refinement to produce more accurate and 

reliable images of changing electrical conductivity structure.  The focus of this thesis 

is to develop a framework for “informed imaging:” the incorporation of all existing 

information about a site into the acquisition, inversion, and interpretation of electrical 

resistivity data.  This framework includes a methodology for informed experimental 

design, in which an a priori model of the subsurface structure and known physical and 

temporal constraints on the acquisition are used to select arrays that provide the 

greatest amount of information about an imaged region.  The informed imaging 

framework also incorporates problem-specific inversion algorithms.  An application of 
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the extended Kalman filter (EKF) is proposed for the inversion of time-lapse ERI data.  

The EKF is suggested for monitoring applications because it incorporates all prior 

information about both the evolution of the physical state and measurement process 

acquired from parameter estimation at previous time-steps into the current estimation.  

The concept of informed imaging requires validation of the theory as well as practical 

application.  Consequently, this dissertation focuses on the application of the informed 

imaging framework to both synthetic and field data. 

This thesis is separated into six chapters and two appendices.  Chapters 3-5 are 

in preparation for submission to peer reviewed journals.   For continuity the abstracts 

of individual chapters are removed. 

Chapter 2 includes both a description of the field site at which the concept of 

informed imaging is tested and a definition of the a priori hydrostratigraphic model.  

Model development requires incorporating diverse hydrologic, geologic, and 

geophysical data sets into a single structural and flow model of infiltration at a 

recharge pond.  The a priori model represents the current understanding of controls on 

hydrologic processes at the recharge pond and identifies regions where interest for 

monitoring exists. 

In chapter 3, a method for informed experimental design is proposed and is 

applied using the hydrostratigraphic model developed in the previous chapter.  

Informed experimental design incorporates prior information about the site as well as 

spatial and temporal constraints on the acquisition process to select arrays, 

combinations of source and potential electrodes, which have high data sensitivity in 

the region to be imaged.  Selection of arrays in this fashion is a computationally 

efficient, robust way to increase the information content of ERI data over what can be 

attained using standard 4-electrode arrays.  The performance of arrays selected 

through informed experimental design is validated through comparison to the 

performance of standard arrays on two synthetic, example problems. Chapter 3 has 

been submitted for publication in Near Surface Geophysics (Mitchell, Pidlisecky, and 

Knight, 2010). 
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Chapter 4 details two methods for inverting time-lapse electrical resistivity 

data acquired in the field.  The first method uses a Gauss-Newton update algorithm 

with a regularization term that incorporates information about the electrical 

conductivity model from the previous time-step.  While this method produces good 

results, it has challenges in applications to monitoring experiments: introduction of 

noise produces artifacts in the estimated structure and can cause the inversion to fail.  

When this occurs a “restart” of the algorithm, which erases all previous information, is 

required.  Furthermore, this approach also requires that imaging experiments be 

treated as ‘snapshots’ of the subsurface conductivity structure, limiting the number of 

measurements that can be acquired to avoid temporal smearing.  Consequently, we 

propose a second method using the EKF, which uses information about the model and 

measurement structures attained from all previous time-steps to estimate model 

parameters at the current time-step.  This method has great potential for continuous 

monitoring because it models both changes in the physical state and the measurement 

process.  Hence, the same arrays need not be used in acquisition of sequential images, 

removing the need to limit the number of acquired measurements.  This chapter is in 

preparation for submission to Water Resources Research (Mitchell, Pidlisecky, and 

Knight, 2010). 

Chapter 5 examines one of the challenges when incorporating geophysical data 

into hydrologic models that results from the impact of measurement support, the area 

or volume of the subsurface sample in a single measurement, on the estimated 

correlation length of the measured property.  Geostatistical analysis is used to examine 

how anisotropy in a 2D synthetic parameter field and how directionally dependent 

increases in measurement support affect the correlation length estimated from 

directional variograms relative to the correlation lengths specified in simulating the 

parameter field.  Chapter 5 is in preparation for submission to Vadose Zone Journal 

(Mitchell, Gulati, and Knight, 2010).     

Chapter 6 summarizes the contributions of this thesis and outlines directions of 

future work that build on this research. 
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Appendix A contains notes on integrating various types of data into a single 

near-surface hydrogeologic structural and flow model using the PETREL and 

ECLIPSE software developed by Schlumberger.  This software is used to develop the 

a priori model of recharge as described in Chapter 2.  This appendix is not an 

introduction to the software, but provides suggestions and pseudo-code for formatting 

different data types typical to near-surface applications.  It also contains modifications 

to the model and flow simulations required to use the software, originally developed to 

model oil and gas reservoirs at depth, for near-surface hydrologic applications. 

Appendix B is a reference of the arrays selected using the informed 

experimental design methodology. 
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CHAPTER 2. HYDROSTRATIGRAPHIC MODEL OF 
THE HARKINS SLOUGH RECHARGE POND FROM 
INTEGRATION OF HYDROLOGIC, GEOLOGIC, AND 
GEOPHYSICAL DATA  
 

2.1 Introduction 

 One of the first steps in the informed imaging process for geophysical 

monitoring is to compile and synthesize all available information about a site.  The 

purpose of this step is to guide the articulation of the scientific question and the 

definition of imaging goals, as well as to begin the process of creating an experimental 

design targeted at monitoring the process of interest.  While the method chosen to 

synthesize prior information will depend on the goals of the geophysical experiment, 

we present below an example of this process for monitoring infiltration at the Harkins 

Slough Recharge Pond (HSRP).  In this example, a model of the hydrogeologic 

structure is developed and used in a flow simulation to aid the design of an electrical 

resistivity imaging experiment for monitoring infiltration in the top 10 m of the 

subsurface.  The process described here is iterative; the model and experimental 

design are updated yearly as more information about the site and monitored processes 

is acquired.  The initial hydrostratigraphic model includes only the geologic and 

hydrologic data available prior to acquisition of geophysical data.  Fluid flow 

simulations based on the structure defined in the initial model demonstrate that a 

model based solely on existing geologic data is insufficient for explaining flow 

behavior below the HSRP.  The hydrostratigraphic model is then updated by 

integrating acquired geophysical data. 

 The HSRP is located above a coastal aquifer between Monterey and Santa 

Cruz, CA.  The region surrounding the pond is agricultural with year-round crop 

rotation.  Precipitation in the winter months meets much of the water demand during 

that period, but throughout the dry summer months the area is highly dependent on 

groundwater resources.  Over the past several decades, groundwater pumping in the 

basin has exceeded natural recharge, causing drawdown in the aquifer and allowing 
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saltwater intrusion.  As saltwater has intruded landward, there have been instances of 

increased salinity in groundwater wells that are used to supply irrigation water.  

Salination of the aquifer could be highly detrimental to the local agricultural economy.   

 Between November 1 and May 31 each year the water agency in charge of 

operating the pond has a right to divert up to 2000 acre-feet (2.5E6 m3) of excess 

surface-flow from Harkins Slough.  Diverted water is filtered of sediments and 

pumped to the HSRP.  We refer to this period as the “diversion season.”  During the 

diversion season water percolates from the base of the pond at ~29 m msl into the 

underlying unsaturated sands, replenishing the unconfined aquifer tens of meters 

below the ground surface.  A clay layer at approximately -5 m msl is assumed to be 

the base of the unconfined aquifer, preventing the continued downward migration of 

water.  As a result, it is thought there is a mounded water table below the recharge 

pond.  A conceptual model of operations at the HSRP is included as Figure 2.1 [after 

Haines et al., 2009].  Water that infiltrates the subsurface from the HSRP is intended 

to serve two purposes: the first is to store water during the winter and spring to 

increase water supplies to meet demand for irrigation in the summer; the second is to 

replenish the aquifer sufficiently to slow the landward progression of the freshwater-

saltwater interface. 

 Over the past nine years of operation, two significant challenges to achieving 

the above goals have arisen.  The first is a decrease in infiltration rates at the pond 

from ~1 m/ day to roughly 0.1 m/day during the diversion season.  The decreased 

infiltration rates mean operators cannot divert the total amount of water to which they 

have rights each year, decreasing the efficiency of the pond.  The second challenge is a 

recovery rate of roughly 25% from wells surrounding the pond, indicating hydrologic 

controls not currently captured in the subsurface model greatly affect the transport of 

water beneath the HSRP.  In response to these challenges, geophysical monitoring at 

the pond has focused on acquiring information at two different scales.  At the shallow 

scale, imaging focuses on monitoring infiltration within the top 2 m of the surface as 

water enters the vadose zone.  It is hypothesized the observed decrease in infiltration 

rate results from accumulation of fine sediments in the top meter below the surface 
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and/or bioactivity in the same zone.  At a deeper scale, we focused on monitoring the 

movement of the water in the vadose zone as it drains to the water table. 

 To aid the development of an electrical resistivity imaging survey designed to 

monitor flow in the near subsurface to address these issues, as well as to examine the 

current understanding of flow dynamics beneath the HSRP, we used Schlumberger’s 

PETREL and ECLIPSE software programs to create a structural model of the 

hydrostratigraphy at the pond and to simulate flow within the modeled region during 

the 2007-2008 water year.  This chapter describes the development of that model and 

provides a preliminary discussion of the value of information provided by geophysical 

methods in developing an understanding of local hydrologic processes.  The chapter is 

organized as follows.  Section 2 describes all data sets available for use in the model 

development.  Section 3 looks at the first iteration of the structural model, using only 

existing hydrologic and geologic information.  Section 4 describes modifications to 

the original model in a second iteration incorporating geophysical data sets.  In 

Section 5, we compare the flow simulation results with a brief discussion of the value 

of information from the additional geophysical information.  Section 6 offers some 

conclusions and suggestions for further development and uses of the structural model 

and flow simulations.  
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Figure 2.1. Conceptual model of operations at the Harkins Slough Recharge Pond [after Haines et 
al., 2009].  Depths are approximate, and the image is not to scale.  
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2.2 Data Sets 

 Because the HSRP is dry during the summer, it is possible to acquire several 

data sets from the base of the pond each year.  A number of hydrologic, geologic, and 

geophysical data sets have been acquired at the HSRP and from a monitoring network 

surrounding the pond.  In the initial structural model and flow simulation only the 

geologic and hydrologic data available prior to beginning geophysical investigations 

are included.  This creates a baseline for the conceptualization and quantification of 

hydrologic processes at the pond.  We update the structural model using geophysical 

data, which enhance our understanding of structure and hydrologic properties beneath 

the recharge pond as well as changes in physical properties as a result of hydrologic 

processes.  Descriptions of the acquired geophysical, hydrologic, and geologic data are 

included below.  Details on the integration of each type of data into the 

hydrostratigraphic model appear in subsequent sections. 

2.2.1 Well Data 

 There are ten recovery wells, nine monitoring wells, and one deep monitoring 

well surrounding the HSRP, located as shown in Figure 2.2.  Wells labeled ‘rw’ are 

the recovery wells, while those labeled ‘mw’ indicate monitoring wells.  All recovery 

wells are drilled to a depth of approximately 55-70 m below ground surface.  We have 

adopted mean sea level (msl) as the datum for reporting depths.  The deepest point in 

the HSRP is approximately 29 m msl.  Given topographic variations, most recovery 

wells are completed to a depth of -10 to -20 m msl and screened from approximately 5 

m msl to -5 m msl.  The screened section in each well is positioned to coincide with a 

gravel layer which overlays a roughly 5-m thick clay aquitard.  Driller’s logs are 

available for each of the recovery wells, and the local water management agency has 

defined a percent-coarse classification of the sediments on 1-ft intervals over the entire 

depth of each well.  The percent coarse definition is derived from textural descriptions 

in the driller’s logs.  For each interval the adjectives are divided into one of three 

classes: texture, modifier or qualifier.  A numeric value is assigned to each adjective 
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according to Table 2.1, and the percent coarse value is tabulated as a weighted 

combination of values within each class according to equation (1) below [Lear, 2009]. 

€ 

value = Text +
0.2*Mod, Mod ≥ Text
−0.2*Mod, Mod < Text
⎧ 
⎨ 
⎩ 

+
0.05*Qual, Qual ≥ Text
−0.05*Qual,Qual < Text
⎧ 
⎨ 
⎩ 

             (1) 

In addition to the lithologic information, electrical conductivity logs were collected in 

rw1 through rw9 during drilling.  Production information from the recovery wells is 

also collected throughout the water year, which runs from October 1 to September 30.  

The production data are reported in the form of extraction rates from each well, 

recorded at hour intervals. 

 The monitoring wells are drilled to a depth of 40-55 m below ground surface.  

Most wells are completed to ~3 m msl and are screened over the bottom 15 m of the 

well.  The pressures in the monitoring wells are recorded every 15 minutes throughout 

the year.  By correcting for barometric pressure, also recorded at 15-minute intervals 

from a weather station installed near the HSRP, the hydraulic heads in the wells, 

which correspond to the water table elevation, is determined.  In model development, 

hydraulic head data in the monitoring wells are averaged on hour intervals.  In 

addition to the nine monitoring wells there is one deep monitoring well northwest of 

monitoring well 7.  The location of this well has not been surveyed, but it is completed 

to a depth of 76.2 m below ground surface.  Given local topography, we estimate the 

bottom of this well is at approximately -30 m msl, and that it monitors the hydraulic 

head in the confined aquifer below the basal clay in the developed model. 

 

 
Table 2.1 Texture, Modifier, and Qualifier descriptors and values applied to the percent coarse 
sediment classification. 
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Figure 2.2.  Location of recovery wells and monitoring wells surrounding the HSRP.  The dashed 
line indicates the boundary of the recharge pond; the solid black line indicates the edges of the 
model space.  A deep monitoring well, labeled in gray as HSPDMW1, is known to exist northwest 
of mw7, though the exact location is unknown. 
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2.2.2 Core Data 

 A total of five shallow cores, ~9 m in length, were collected by A. Pidlisecky 

from base the HSRP in the summer of 2007 using direct push methods.  The locations 

of the 5 cores are shown in Figure 2.3 for reference; cores are labeled bh1 to bh5 in the 

figure.  A. Racz from UC Santa Cruz analyzed these cores for mean, median, and 

mode grain size; magnetic susceptibility; and water content.  However, at the time of 

model building, only data from bh 2 through bh 4 were available.  Grain size and 

water content data were collected at discrete points on meter intervals, and magnetic 

susceptibility is reported at 0.5 m intervals.  The median grain size distributions for 

cores 2, 3, and 4 are plotted in Figure 2.4.  The mode grain size distributions for the 

same cores are included as Figure 2.5.  These plots show that, while the mode grain 

size is largely consistent, there is an increase in the median grain size with depth up to 

approximately 0.6 m, especially for the core from bh 3. 

2.2.3 CPT Logs 

 Cone tip pressure, pore pressure, sleeve friction, and shear wave seismic 

velocity data are available from three cone penetrometer test (CPT) logs collected 

from the base of the pond in August 2007.  The locations of the three CPT logs are 

also plotted in Figure 2.3.  Each log extends to a depth of ~1 m msl.  Pore pressure, tip 

pressure, and sleeve friction are sampled every 0.05 m and are recorded with 

approximately 0.2 m resolution.  The sleeve friction is used to derive a normalized 

friction ratio, which, with the cone tip pressure, defines the soil behavior type (SBT) 

every 0.2 m. The SBT is a soil texture definition based on mechanical properties.  The 

data from the CPT logs are described in detail in Haines et al. [2009], and the reader is 

referred to their work for a complete description of the collected CPT data.  We 

reproduce their results here for the logs collected at location cpt 2, Figure 2.6, to 

highlight some key observations.  Primarily, we wish to emphasize the drop in tip 

pressure and spike in induced pore pressure at ~27 m depth in the plots.  This is 

approximately 3-4 m msl with respect to our datum and indicates a thin clay layer that 

is not apparent in the lithology data observed at the recovery wells.  Below this thin 
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clay layer, cone penetration was limited by a dense sediment layer; this behavior is 

consistent with what we would expect given the existence of a gravel layer at that 

depth.  Lithology logs support the existence of such a layer at this depth.  Similar 

behavior with respect to a spike in induced pore pressure followed by refusal beneath 

the thin clay is observed in the logs collected at locations cpt1 and cpt 3.  In addition, 

shear wave seismic velocity measurements are available approximately every meter. 
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Figure 2.3.  Core locations collected along the base of the HSRP in Summer 2007.  Cone 
penetrometer test logs are indicated by black dots and are labeled cpt 1 to cpt 3; 9-m cores are 
indicated by gray dots and are labeled bh 1 to bh 5. 

 



 15 

 
Figure 2.4.  Median grain size distribution at 9-m cores bh 2 through bh 4. 



 16 

 

Figure 2.5.  Mode grain size distribution for 9-m cores bh 2 through bh 4. 
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Figure 2.6.  CPT logs acquired at location cpt 2 [after Haines et al., 2009].  The first panel shows 
the tip pressure, the second panel records the induced pore pressure, and the third panel shows 
the interpreted soil behavior type.  
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2.2.4 Infiltration Data 

 For three months from the time diversion begins, the water level in the pond is 

recorded on 15-minute intervals.  Samples taken from a pressure gauge near the point 

of influx are corrected using barometric pressure from a weather station at the pond.  

The corrected pressure is converted to depth using a standard hydrostatic pressure-

depth conversion.  In addition to water depth at the gauge, researchers at UC Santa 

Cruz have acquired a LiDar survey of the pond topography, and combined the surface 

topography with water depth information to create volume estimates of the pond as a 

function of time.  The derived values of pond volume provide estimates of infiltration 

rates with time over the entire pond on six-hour intervals during the 2007-2008 

diversion season.  The average infiltration during the diversion season is plotted in 

Figure 2.7.  In addition to pond water elevation data, point infiltration information is 

available from 1D profiles along electrical resistivity probes (described below) every 

12 hours. 
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Figure 2.7.  Average infiltration rate recorded for the HSRP for diversion season 2007-2008.  
Time is given in days after 10 January 2008.  
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2.2.5 Geophysical Surveys 

 Shear-wave seismic, ground-penetrating radar (GPR), and electrical resistivity 

data are available from surveys conducted on the base of the dry pond in the summer 

of 2007.  The locations of survey transects appear in Figure 2.8.  The shear-wave 

reflection seismic data are from two coincident, 2-dimensional lines with geophone 

spacings of 3 m and 1m.  The 3-m seismic line is ~ 285 m long, while the 1-m seismic 

line covers ~80 m in the center of the longer line.  The seismic data have been 

processed as traveltime amplitude data, extending to 0.4 s.  The data acquisition and 

processing details, as well as subsequent shear seismic velocity inversions, are 

reported in Haines et al. [2009].  The processed seismic section is included as Figure 

2.9.  A deep reflection in the seismic section corresponds well to the deep clay layer 

identified in geologic driller’s logs, considered to be the aquitard at the bottom of the 

unconfined aquifer.  However, the seismic section has another, shallower reflection 

that indicates a possible second clay layer nearer the surface that could impact flow 

behavior.  This clay layer occurs at approximately the same depth as the clay layer 

identified in the CPT logs. 

 Coincident with the seismic line, a 2-dimensional line of electrical resistivity 

imaging (ERI) data with 6-m electrode spacing was acquired in the summer of 2007.  

The data were collected using an IRIS Syscal unit, and have been inverted using the 

RESINV2D inversion algorithm of Pidlisecky et al. [2006].  The inverted conductivity 

model is shown in Figure 2.10.  A standard L2 regularization was applied to the 

inversion.  The electrode locations have been depth corrected for the inversion; the 

conductivity above the electrodes is 0 S/m, and cells above electrodes in the model 

space are not updated in the inversion.  The region of higher conductivity at the base 

of the imaged region is interpreted as a combined increase in water saturation near the 

water table and higher conductivity resulting from a saturated clay layer.  The clay 

layer identified by this survey is interpreted to be the deep clay layer that is the 

aquitard for the unconfined aquifer. 

 Thirteen lines of ground-penetrating radar (GPR) data collected using a 

PulseEcho system at 100 MHz have been processed to time and depth sections.  Each 
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line is between 200 and 300 m in length with approximately 2 m between lines, and 

one line was located to coincide with the seismic and ERT lines.  Transects of the 

GPR surveys are also plotted in Figure 2.8.  Software developed by the Environmental 

Geophysics group at Stanford University has been used to process data and convert the 

time-sections to depth sections assuming a wave velocity of 0.12 ms/m.  The GPR 

depth section coincident with the ERI and seismic sections is shown in Figure 2.11.  

Reflections are interpreted as migrating dunes faces, apparent because of increased 

magnetite-concentration from erosion of magnetite-rich rocks in hills to the east of the 

pond. 

 In addition to the surveys above, three electrical resistivity surveys have been 

acquired during the 2007-2008, 2008-2009, and 2009-2010 diversion seasons.  The 

2007-2008 resistivity survey consists of a single 1D probe and was a proof of concept 

experiment for monitoring the electrical conductivity profile in the near surface.  The 

probe was 3 m long with 0.25 m electrode spacing.  The approximate location of this 

probe is included in the upper panel of Figure 2.12.  During installation a 2-m core 

was removed, and the hole was backfilled with a slurry of soil and water.  The top 

meter of the probe sampled above ground to monitor the bulk water conductivity.  

Temperature sensors on the probe monitored ambient temperature in the pond and the 

ground to temperature-correct estimated conductivity values.   

 The 2008-2009 and 2009-2010 imaging experiments include probe data and 

2D conductivity sections collected from surface surveys.  A second generation of 

probes was constructed.  The probes were again 3 m in length, but electrode spacing 

was 0.1 m, with 25 electrodes per probe.  Eight thermistors attached to each probe 

monitored temperature, and multi-level sampling ports were included.  In the second 

deployment, a direct push truck inserted the four probes to avoid the rapid-flow paths 

created by back filling.  Once again, the top meter of the probe sampled above ground 

surface to monitor bulk-fluid conductivity in the pond.  Figure 2.13 shows a second-

generation probe after deployment in the base of the HSRP in December 2008.  The 

four probes were placed in the base of the pond in a T-shape with 20 m between each 

probe, as shown in the second panel of Figure 2.12.  Electrical resistivity profiles 
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along the probes were collected every 15 minutes during the diversion season using a 

dipole-dipole configuration.  The same 1D probes were used in the 2009-2010 

imaging experiments. 

 Surface lines were added to the imaging experiments in 2008-2009 and 2009-

2010.  In 2008-2009, three surface lines were installed with the probes acting as 

endpoints, as shown in the second panel of Figure 2.12.  Two-dimensional electrical 

resistivity images were collected along each line.  Lines 1 and 2 consisted of 40 

electrodes, each with 0.5 m electrode spacing, and were laid between Probes 3 and 1, 

and Probes 1 and 2, respectively.  Line 3 used only 30 electrodes, again with 0.5 m 

electrode spacing, and was centered between probes 1 and 4.  Furthermore, lines 1 and 

2 were combined to create a 40-m line, though only every other electrode was used to 

create 1 m electrode spacings.  The lines were combined and the spacing opened to 

increase the depth of investigation with line 4.  A standard Wenner array configuration 

and a non-standard array, selected using an informed experimental design algorithm, 

were used to collect 2D electrical profiles every 90 minutes.  The non-standard array 

was deployed on all 4 lines, while the Wenner array was only used on lines 1, 2, and 3.  

Similar Wenner and non-standard acquisition arrays were used for all the surface lines 

in 2009-2010.  However, as shown in the bottom panel of Figure 2.12, the location of 

lines 1, 2 and 3 was shifted to create one long line of electrodes that incorporated 

probes 1, 2, and3.  Line 1 contained 40 electrodes with 0.25 m spacing, extending 

from 5 m NW of probe 3 to 5 m SE of probe 3.  Line 2 consisted of 131 electrodes 

with 0.5 m spacing extending SE from the last electrode of Line 1.  Line 3 in 2009-

2010 was a combination of lines 1 and 2, but the electrode spacing used for this line is 

1 m.  Hence only every fourth electrode of Line 1 and every other electrode of Line 2 

were used in acquiring data on Line 3. 
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Figure 2.8.  Transects of seismic, electrical resistivity, and ground-penetrating radar surveys 
along the base of the HSRP in Summer 2007. 
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Figure 2.9.  Processed seismic section after Haines et al. [2009]. The large reflector at ~0.2 seconds 
is the suspected shallow clay layer.  The deep reflector at ~0.4 s is the clay layer identified in the 
drillers' logs from the recovery wells. 
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Figure 2.10.  Inverted model of the conductivity structure below the HSRP.  Electrode locations 
have been depth-corrected to account for topography, and the white line indicates the base of the 
pond.  Depths are reported in m msl.  The region of higher conductivity is interpreted to be a 
combined effect of the water table and deep clay layer from the conceptual model. 
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Figure 2.11.  Processed ground-penetrating radar depth section collected along the same transect 
as the seismic and ERT sections.  High magnetite content in the sands creates the large reflectors 
identified as dune foresets in the image. 
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Figure 2.12.  Schematic of electrical resistivity monitoring surveys.  Black circles mark the 
locations of probes.  The locations of 2D surface lines are indicated for years 2008-2009 and 2009-
2010.  Line 4 in 2008-2009 is an aggregation of lines 1 and 2; line 3 in 2009-2010 is also an 
aggregation of lines 1 and 2 from that year. 
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Figure 2.13.  Picture of a second-generation 1D electrical resistivity sampling probe.  Probes are 
inserted to a depth of 2 m, with ring electrodes left above the surface to sample bulk fluid 
conductivity.  All probes are fitted with multi-level sampling ports, identified as the white tubes in 
the image. 
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  2.3 Structural Model from Lithologic Data 

 PETREL and ECLIPSE are the software packages developed by Schlumberger 

for advanced visualization and multiphase fluid flow modeling.  PETREL is 

visualization software used to create models of geologic structure.  Associated with 

the structure are the hydrologic properties, such as porosity and permeability, that 

control flow behavior in the model space.  These properties are exported from the 

structural model to ECLIPSE where, combined with fluid properties as well as 

boundary and initial conditions, they are used to model multiphase flow and transport.  

The output from ECLIPSE, time-dependent pressure and flux information, can then be 

reloaded into PETREL and visualized in conjunction with the underlying structure.  

Although originally developed for gas-oil-water reservoirs at depth, the software can 

be adapted to air-water systems in the near surface.  As a first iteration of model 

building, we use only textural data from recovery wells, core data, soil behavior type, 

and infiltration rates to inform the structural and flow models. 

2.3.1 Lithology Transforms 

 As a first step in building the structural model, a unified framework in which to 

define subsurface property information is required.  The subsurface properties required 

for flow simulation are porosity, permeability, initial water saturation, and capillary 

pressure curves.  The first two properties are derived from the existing geologic data.  

As will be discussed below, initial water saturation and capillary pressure curves are 

unknown for this site and are used as calibration parameters in the flow simulation. 

   Because the recovery well data are given in terms of percent coarse values, 

the cores in terms of grain size, and the CPT logs in terms of soil behavior type (SBT), 

a simple petrophysical transformation from soil description to porosity and 

permeability for all three data types cannot be obtained directly.  This causes 

difficulties when attempting to combine the data into a single structural model.  We 

begin by creating a transform to change the numeric values of the percent coarse 

description to SBT based on the texture, modifier and qualifier descriptions used to 

determine the percent coarse classification.  Ultimately, we wish to have all data in 
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terms of grain size, from which it is possible to estimate porosity and permeability.  

However, we chose to transform all data sets to SBT given that the majority of data 

was already defined in a textural context.  SBT was chosen because it allows for 

material types that are analogous to lithologies, for which the PETREL software is 

well suited.  This classification also limits the number of material types to 12 discrete 

classification types.  Furthermore, SBT classifications are easily correlated to average 

grain size.  Table 2.2 includes the information used to make this transformation. 

 

 
 Table 2.2 Texture description conversions to soil behavior type. 
 

 Once all the material classification information is in a common format, which 

will be referred to hereafter as the lithology, grain size data from the five cores and 

studies from the literature are used to define an average grain size and associated 
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porosity for each soil behavior type.  The porosity transformation relies primarily on 

the correlations presented in Beard and Weyl [1973] for the porosity of artificially 

mixed, wet-packed sand as a function of grain size, reported in Table 2.3.  Based on 

differences in the available values of mean, median and mode grain size at each 9-m 

core, it is assumed that the poorly sorted sediment samples are most representative of 

sediments at the recharge pond.  Based on the porosity and grain size estimates for 

each SBT, a Kozeny – Carman equation [Boadu, 2000] is used to estimate the 

transverse permeability as a function of porosity according to: 
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where k is the permeability, φ the effective porosity, and dm the median grain size.  In 

the definition above effective porosity is the porosity that is connected and can 

contribute to flow.   

 While the above relation works well for samples that are primarily sands and 

gravels, the relationship does not hold well for clay-rich SBT classifications, and 

values for these regions are taken primarily from the soil science literature.  [See e.g. 

Fetter, 2001; Rawls et al., 1982].  Rawls et al. [1982] compile several studies 

estimating soil water properties as a function of soil type.  The range of effective 

porosities for clay rich sediments reported in their work is between ~30-50%, and 

permeabilities are close to those used here.  When complete, SBT classifications are 

transformed to the needed porosity and permeability values given in Table 2.4.  For 

this model the transverse permeability is isotropic and defined to be an order of 

magnitude greater than the vertical permeability based on previous studies in the area 

[Lear, 2009].  We note that the transforms applied at this stage are subject to 

potentially large errors as they are based on general studies for synthetic samples.  

Ideally, grain size, water content, porosity, and permeability analyses of core sections 

corresponding to each SBT classification at this site should be used to derive site-

specific values for these hydrologic parameters.  As these data are unavailable for this 

site, the transform described above was required to form some estimate of the 

hydrologic properties of the sediments. 
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Table 2.3 Porosity of wet-packed sand sample as a function of median diameter and sorting, after 
Beard and Weyl [1973]. 
 
 

 
Table 2.4 Mean grain diameter, porosity and permeability estimates for each soil behavior type 
classification 
 
 Having transformed all the geologic data into a single classification scheme 

and derived estimates of porosity and permeability consistent with the lithology, data 

are imported into PETREL.  Because PETREL was originally developed for oil 

reservoir applications, the standard input for any one-dimensional data profile is as a 

‘well.’  In our case, all well logs, cores, and CPT logs fit under this generic heading, 

and are referred to generally as wells throughout the rest of the paper.  One advantage 
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of this approach is that all the data sets associated with a given 1D profile can be 

included as part of the same well regardless of measurement resolution.  For example, 

the SBT information contained in the CPT logs with 0.2 m resolution are easily 

combined with the shear velocity profile data, which have 1 m resolution in the same 

well. In the first iteration of model building, however, we only used lithologic 

information (SBT) and the corresponding derived porosity and permeability values, all 

with the same resolution, for each well. 

2.3.2 Grid Definition 

 Once all 1D well data have been imported, definition of the model grid is 

required.  The model space is defined to have lateral extents of 500 m by 750, 

coinciding with six cells from a regional scale model developed for the water 

management agency by the USGS, San Diego.  The vertical extents of the model 

space are chosen such that our entire model space occupies the top layer of the 

regional scale model.  These extents are used so the fine-scale modeling of the pond 

here can be easily integrated into the larger scale model for context.  The x-

discretization is set equal to the y-discretization at 10 m.  Despite differences in 

absolute length, the model is defined at an angle relative to Cartesian coordinates of 

PETREL, and, hence, has nearly the same number of total cells in the x-direction, 84, 

as in the y-direction, 86.  The x-y grid is shown in Figure 2.14 for reference.   

 Variable spacing is used for the z-discretization.  We set the top boundary of 

the model space according to a topographic model derived from surveyed points along 

the base and at well locations around the pond.  The lower boundary is set to a 

constant depth of -37 m msl, the same constant depth used in the regional model.  The 

base of the model is below the deep clay layer, assumed to be the aquitard bounding 

the unconfined aquifer, that is identified in the recovery wells and seismic data.  The 

average total depth of the model space is then 79 m; the total maximum depth is 96 m.  

The number of layers defined for the model space then determines the z-discretization 

of each cell.  For example, if we set the number of layers to 79, the average z-

discretization of cells will be 1 m, and the maximum z-discretization will be 1.2 m.  

The z-discretization can be made finer or coarser by dividing the model space into 
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vertical subspaces, known as regions, and defining different numbers of layers in each 

region.  For this application, we assume that the entire model space has 80 layers, 

resulting in an average z-discretization of roughly1 m.  

 The well properties are upscaled onto the grid spacing using a linear 

interpolation.  Linear interpolation is also used to populate the model space in the x-y 

directions based on values observed in the wells at each z-depth weighted by the 

inverse of distance to the well raised to the fourth power.  Although PETREL offers 

several geostatistical methods for accomplishing interpolation along wells and 

throughout the model, we have no information at the pond to guide or justify the use 

of these more powerful methods at this stage. 

 As a final step in defining the structural grid, we set the boundary conditions of 

the model space.  At the top boundary, we define two aquifers.  No flow boundary 

conditions are applied at the base and on the sides of the model space.  Although this 

is a poor assumption for the side boundaries of the model space, we have no 

information about the regional flow conditions to justify constant flux or constant head 

conditions along these model boundaries.  At the top boundary, a constant pressure gas 

aquifer with the properties of air is defined to connect to the model space along the top 

face of all cells in the first layer.  Defining this aquifer has the effect of making the top 

boundary of the model space the ground surface.  Because ECLIPSE is designed for 

modeling flow in oil reservoirs at depth, it is not automatically equipped to allow free 

gas exchange along the top boundary as is expected at the ground surface.  The second 

aquifer is a constant flux aquifer, representing the recharge pond.  The constant flux 

aquifer connects to the top face of cells in the top layer that lie within the 35 m msl 

contour line of the topographic surface. Defining the gas and water aquifers in this 

way allows for gas exchange at the base of the pond when there is no defined inward 

flux of water, as well as specified infiltration rates that are consistent with 

observations during diversion.  At this stage only the connection of the aquifers to the 

top face of cells in the first layer of the model are defined.  The following section 

contains details on simulating changing infiltration rates at the HSRP throughout the 
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recharge season.  The final hydrostratigraphic model including the aquifer connections 

is shown in Figure 2.15 for reference. 
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 Figure 2.14.  PETREL grid definition with x-y cell dimensions. 
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Figure 2.15.  PETREL hydrostratigraphic model using lithologic data.  Solid blue lines indicate 
the lateral extents of the model space.  The topography is overlaid over the top boundary of the 
model.  The green cells on the top boundary indicate the constant gas aquifer; blue cells at the 
surface indicate connection of the constant flux water aquifer.  The cells within the model space 
show upscaled porosity data. 
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2.4 ECLIPSE Modeling 

 Once the structural information is in place, the hydrologic properties 

determined in the structural model are transferred to the ECLIPSE environment.  A 

driver file controls the ECLIPSE flow simulation.  Within the driver file, information 

passes into the program through keywords and arguments contained within one of 

seven sections.  These sections define the constraints on the flow simulation including 

grid properties, fluid and rock properties, initial conditions, time-varying boundary 

conditions, and simulation outputs.  Detailed information on the keywords within each 

section and how information is passed into the simulation through keyword arguments 

can be found in Appendix A to this thesis. 

 In the initial simulation, fluid flow is modeled from November 2007 to 

November 2008, using the structural and property model derived from the geologic 

data as described in the section above.  Because no information exists on the relative 

permeability-saturation curve for lithologies within the model space, we use a general 

relationship derived from van Genuchten-type equations.  The relative permeability- 

saturation curve used in this simulation is plotted in Figure 2.16; this curve is treated 

as a calibration parameter.  Before infiltration begins, the water table is assumed to be 

flat at 16 m msl, the spatially weighted average of water table heights collected in the 

monitoring wells in November 2007.  Ideally, the water table should appear as a 

surface representing the spatial variability of the heights observed in the monitoring 

wells.  However, there are no data on the water table below the pond to validate the 

surface in this model.  The flux information for the pond aquifer is taken from the 

pond-averaged infiltration rate as described in Section 2.2.4.  These values are 

constant on two-week intervals with flux values equal to the average flux 

measurement over the same period.  However, because measurements of the 

infiltration rate ended three months after diversion began, while we know there is still 

a large volume of water in the pond at that time, a constant, low infiltration rate equal 

to the last averaged value of infiltration rate is used until July.  At this time local water 

users are permitted to drain the remaining water in the pond, rapidly emptying the 

remaining volume of water.  Infiltration is, therefore, assumed to stop in July. 
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 Given these boundary and temporal flow conditions, the monthly output for the 

estimated water table at the location of the monitoring wells is included as Figure 

2.17.  In this figure, we only plot the calculated versus true water table elevations for 

monitoring wells 2, 3, 4, 6, and 8, as these were the only wells that fell within the 

boundaries of the defined model space.  The figure shows the poor fit between the 

simulated and measured water table elevations throughout the simulation.  Although 

similar trends can be recognized, such as the increasing water table elevations after 

January 2008, the simulated heads underestimate the actual height of the water table, 

reach maximum values of water table elevations slower, and remain elevated for 

longer than the true head values as observed in the wells.  We attribute this to several 

issues with the initial model.  First, because we had no information on regional flow 

behavior near the pond, we assumed no flow boundary conditions, essentially turning 

the model volume into a bathtub with no drain.  Furthermore, the simulation allows 

greater influx of water across the base of the pond than is observed in the field and 

does not account for extraction from the recovery wells, both of which serve to keep 

the simulated water table higher after infiltration has slowed and stopped.  We seek to 

address some of the issues with the structural model that were highlighted in the flow 

simulation by incorporating information observed from geophysical data into the 

model. 
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Figure 2.16.  Relative Permeability - Water Saturation curve applied in the ECLIPSE flow 
simulation. 
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Figure 2.17.  Comparison of observed versus simulated water table elevations at monitoring wells 
2, 3, 4, 6, and 8 from Nov 2007 to Oct 2008.   
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2.5 Structural Model including Geophysical Data 

2.5.1 Structural Observations from Geophysical Data 

 A modified version of the structural model is created based on interpretation of 

geophysical surveys resulting in three significant changes: zonation of the regional 

model, addition of a reduced permeability layer at the pond surface, and the addition 

of a possible, shallow clay layer.  Results from the geophysical surveys and the initial 

flow simulations also highlight uncertainties in the geologic model, prompting a new 

approach to grid population and definition of the boundary conditions. 

 The first, and possibly most significant, addition to the lithologic model is a 

clay layer at approximately 3 m msl, as identified in the CPT logs shown in Figure 

2.5.  This clay layer is shallower than the basal clay identified as the aquitard of the 

unconfined aquifer in the model based on lithologic data.  Although not obvious from 

the SBT data, which is derived from tip pressure and sleeve resistance of the cone 

from the CPT logs, the induced pore pressure shows a spike near 27 m below the 

surface on all three logs.  As high induced pore pressure is indicative of clay, the peak 

in these logs implies there is a thin (~1 m thick) clay layer above the deep clay 

identified in the conceptual model.  This layer does not appear in the recovery well 

lithology logs, indicating this shallower clay layer may be discontinuous or simply too 

thin to be seen at the observation scale of the drillers’ logs.  The presence of the 

shallow clay is also supported by the shear-wave seismic data.  The processed seismic 

section (Figure 2.9) has a clear reflection at 0.2 s, which corresponds to the same 

depth as the peak in induced pore pressure from the CPT logs.  Joint interpretation of 

these geophysical data provides strong evidence for the existence of a shallow, thin 

clay layer.  However, they do not resolve whether the layer is continuous, which has 

significant implications for the flow behavior.  A continuous clay layer will act as a 

flow barrier, while a discontinuous layer may have little impact on the flow behavior. 

 In addition to a shallow clay layer, which may impede flow, the ERT probes 

identify a low permeability zone in the top meter of the subsurface, which would tend 

to decrease infiltration rates.  The 1D electrical profile collected at Probe 2 as a 
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function of time is shown in Figure 2.18.  High values of electrical conductivity, red 

shades, indicate saturated soils while blue shades, low conductivity values, are 

associated with reduced water saturation.  Figure 2.18 shows two infiltration events; 

the first is from a rainstorm, and the second is infiltration from ponding of diverted 

water.  The figure also indicates a half-meter thick layer at the surface that remains 

saturated, regardless of the presence of water in the pond.  Below this layer, however, 

soils never fully saturate and show evidence of drying out after an initial wetting phase 

when diversion begins, even when the water in the pond is at maximum levels.  This 

behavior may be explained in part by grain size analysis of the 9-m cores.  While the 

mode grain sizes are consistent along the length of the cores, the median grain sizes in 

the top half-meter are smaller than along the rest of the cores (see Figures 2.4 and 2.5 

for reference).  This implies more fine-grained sediment in the top half-meter, but a 

consistent dominant grain size, accounting for consistency in the measured soil 

behavior type.  Because of increased fines content the top meter should have lower 

saturated hydraulic conductivity than underlying the sediments.  As the fines-rich 

layer is always largely saturated, this would tend to reduce the amount of water 

delivered to the subsurface, with water held in narrow pore throats.  By contrast, 

studies by Yeh et al. [2005] have shown that sands have a lower matric potential than 

silts, and, by consequence, a higher unsaturated hydraulic conductivity, even at low 

volumetric water contents.  Hence, the deeper sands will to tend to have a higher 

hydraulic conductivity, even at low water saturations, allowing water to drain more 

quickly than it is delivered through the top half-meter of sediments.  This may account 

for the drying of sand below the top layer with time despite the continued ponding of 

water at the surface.  Furthermore, the contrast in pore size between the fine and 

coarser regions of sand further limits the amount of water that can flow into the coarse 

sands because of the higher air entry pressure of the larger pores. 
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Figure 2.18.  Time-lapse plot of the 1D electrical resistivity profile at probe 2.  The time is given in 
days after 01:00:00, 24 December 2008.  Depth is given in meters below ground surface.  The log 
conductivity profile shows repeated wetting and drying below the fine-sediment layer, which 
remains saturated throughout the imaging experiment. 
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2.5.2 Grid Zonation 

 The presence of the fine sediment and clay layers identified by the geophysical 

surveys prompted model redefinition through zonation.  Five model zones are defined 

in the redefinition of the structural model.  The first zone represents the fine sediment 

layer at the surface.  It extends from the model surface to ~0.5 m depth below the pond 

and is divided into 2 layers.  The SBT in this zone is unchanged, but the porosity is 

decreased by 10% and the permeability by a factor of 10.  The second zone extends 

from the base of the fines-rich layer to the top of the predicted shallow clay; the 

properties in this zone are unchanged, and it has 20 layers.  The third zone is the 

hypothesized shallow clay.  The SBT in this zone is defined as clay or silty clay with 

the corresponding porosity and permeability values.  The fourth zone covers the region 

from the base of the shallow clay to the base of the deep clay, and the fifth zone to the 

base of the model.  Properties in these zones are unchanged, and they are segmented 

into 30 and 3 layers, respectively. 

 In addition to zoning the model itself, in the redefined structural model a zoned 

approach to property population away from the wells is applied.  The original 

averaging scheme tended to smooth property values across distinct layers, such as the 

deep clay.  To avoid this, the model space is populated according to SBT away from 

the wells using sequential indicator simulation.  Property values are then assigned to 

each SBT as described above.  While this corrects the smoothing problem of the initial 

model, such an approach requires an input variogram.  As this information is not 

available, an appropriate variogram is estimated through trial and error, resulting in an 

laterally isotropic model with correlation length equal to 500 m.  The locations of the 

aquifers are unchanged from the initial model, completing redefinition of the structural 

model.  The updated lithology distribution that is part of the new model definition is 

included as Figure 2.19.  This updated structural model is the starting point for the 

design of subsequent geophysical monitoring surveys. 
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Figure 2.19.  Soil behavior type distribution through the Y=3250 m slice of the PETREL 
structural model.  The distribution includes the fine-sediment layer at the surface and the 
suspected shallow clay layer at ~30 m depth.  Cool colors are indicative of sand-rich SBTs; warm 
colors represent clay-rich SBTs. 
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2.6 Conclusions 

 Because the concept of informed imaging centers on incorporating all available 

information into the design, acquisition, and interpretation of geophysical surveys, a 

method for synthesizing preliminary information about a site is required.  We have 

demonstrated that one effective way to do this is to combine existing geologic, 

hydrologic, and geophysical data into an advanced visualization database.  We do this 

in the creation of a structural and flow model of the Harkins Slough Recharge Pond 

located near Watsonville, CA.  Operators require better understanding of flow 

processes at the pond to increase operational efficiency, bettering the management of 

groundwater resources in the coastal aquifer. 

 Before data can be compiled, however, it is necessary to create transforms that 

convert different data sets that directly or indirectly measure the same physical 

property into a consistent framework.  In creating a model of flow beneath the HSRP, 

we give an example of this type of data synthesis for combining geophysical data 

(CPT logs) and geologic data (core grain-size analysis and soil texture logs) to derive 

measures of the porosity and permeability of sediments, the physical properties of 

interest.  Once various types of data have been reconciled to a single format, it is 

possible to create an informed initial model of subsurface structure.   

 Evaluation of the structural model using a variably-saturated flow simulation 

identifies important gaps in understanding between what is predicted from the existing 

conceptual model and what is observed at the site. This evaluation highlights the need 

to enhance an understanding of hydrologic properties controlling flow direction and 

rates below the pond.  Identification of poorly understood parameters serves as a basis 

for directing the design and implementation of geophysical surveys that will best 

supplement existing information.  Through an iterative process, data can be 

continuously assimilated into the model, refining an understanding of the structural 

controls on flow behavior at a site.  For geophysical surveys at the HSRP, a refined 

model incorporating acquired geophysical data has become the initial state for guiding 

the design of 1D and 2D electrical resistivity imaging experiments.  These imaging 

experiments will monitor changes in subsurface conductivity structure as a result of 
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infiltration from the HSRP in an attempt to characterize the behavior that causes an 

observed fall in infiltration rates.  Development of hydrologic models from integrated 

data sources drives the scientific questions that are the target of the geophysical 

surveys - what is the nature of infiltration in the very near surface? and how does the 

conductivity structure change in response to subsurface flow?   In addition, the a 

priori model of hydrostratigraphic structure in the informed imaging framework is 

used to guide the design of arrays in terms spatial and temporal sampling that will be 

used to monitor these changes. 
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CHAPTER 3. INFORMED EXPERIMENTAL DESIGN 
FOR ELECTRICAL RESISTIVITY IMAGING 
 

3.1 Introduction 

 Electrical resistivity imaging (ERI) is a non-invasive geophysical method that 

can be used to generate continuous maps of the electrical resistivity structure of the 

subsurface.  Given the relationships between electrical resistivity and subsurface 

properties (reviewed in detail in Lesmes and Friedman [2005] and Knight and Endres 

[2005]) these maps can be related to properties such as clay content, porosity, water 

saturation, or fluid chemistry.  The ability of ERI to identify spatial and temporal 

changes in such properties has led to its increased application in hydrological and 

environmental problems [see e.g. Daily, 1992; Halihan et al., 2005].  In this study we 

consider the problem of designing a time-lapse ERI experiment to monitor infiltration 

at a recharge pond above a coastal aquifer south of Santa Cruz, CA.  Specifically, our 

interest is in developing an efficient method for selecting the electrode arrays that 

should be used for data acquisition. 

Electrical resistivity imaging can be described by Poisson’s equation, subject 

to appropriate boundary conditions, in the form: 

                                   

€ 

j = −σ ⋅∇ φ

∇ ⋅ j = I δ r − rs+( ) −δ r − rs−( )( )[ ]                                            (1) 

where σ is the electrical conductivity structure; φ is the electric potential; j is the 

current density; I is the current; and δ(r-rs) is a Dirac delta function centered at rs,, 

where rs takes on the point current source or sink location.  We refer to a unique 

combination of the locations of the source and sink electrodes as a “source pair” or 

simply as a “source.”  The conductivity term in the above expression is simply the 

inverse of resistivity, and the terms will be used interchangeably throughout this 

paper.  Equation (1) provides the physical relations between current sources, the 

electric potential field, and the conductivity structure that are used for ERI 
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experiments.  In these experiments, the conductivity distribution is unknown, while 

the potential differences, or the difference in the electric potential field, between a 

series of “potential pairs” is sampled for several sources.  The conductivity structure is 

then estimated from the potential measurements associated with different arrays, 

where each array is a unique combination of a source pair and a potential pair.  Using 

the entire collection of arrays to acquire potential difference measurements is termed 

the acquisition of a single image.  We refer to the acquisition of multiple images, in 

order to monitor changes in electrical conductivity, as a time-lapse imaging 

experiment.  

 In order to recover the conductivity structure from a collection of arrays (i.e. 

solve the inverse problem for conductivity), we require a numerical solution to the 

forward problem in equation (1). The numerical solution, subject to appropriate 

boundary conditions, of the forward problem in equation (1) can be written as: 

                

€ 

D ⋅S m( ) ⋅G u(rs) = q(rs) ,                      (2) 

where D and G are the 2D or 3D divergence and gradient operators; S(m) is the 

gridded conductivity structure of the model space; and u(rs) and q(rs) are the potential 

field and source vectors, respectively. We note that the measured potentials, which 

depend on the locations of the potential electrodes, are simply a subset of the potential 

field vector, u(rs).  Hence, the locations of the potential and source electrodes will 

affect the region of the subsurface sampled for each measurement.  While the selection 

of electrode locations for the source pair and potential pair most often relies on one of 

a few standard, 4-electrode arrays (e.g. a Wenner array or dipole-dipole array), it has 

been shown that data sensitivity to the imaged region can be improved by using “non-

standard” electrode arrays [Furman et al., 2002].  The objective of our research is to 

determine electrode arrays that will maximize the sensitivity of the acquired data in 

the subsurface region of interest, taking advantage of multichannel systems and non-

standard array configurations.  Central to our approach is the concept we refer to as 

informed imaging, where we incorporate all prior knowledge about a site into each 

stage of the geophysical experiment, from acquisition to processing to interpretation of 

the data.  
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 A number of studies in the geophysical literature have investigated the 

sensitivity of data acquired using different arrays from the perspective of the forward 

problem [e.g. Furman et al., 2002; Oldenborger, 2005; Spitzer, 1998; Lehman, 1994; 

and Loke, 1999] as well as the inverse problem [e.g. Oldenburg and Li, 1999; Dahlin 

and Loke, 1998; Dahlin and Bing, 2004; Friedl, 2003; Miller and Routh, 2007].  

Several of the studies demonstrate that a standard array might not produce data that 

have the highest sensitivity to the imaged region.  Given the observed increase in 

sensitivity for some arrays, the question arises: how can data sensitivity be optimized 

through the selection of arrays used to acquire a single image of the subsurface 

conductivity structure?  This is the question of optimized experimental design.   

 In this study, where we need to monitor infiltration beneath a recharge pond, 

we develop an approach that we refer to as informed experimental design.  We term 

the method “informed” as opposed to “optimized” design because, unlike previous 

studies, we do not seek a globally optimal solution to the survey design problem.  

Rather, we seek to use the concept of informed imaging, the incorporation of prior 

knowledge into array design, with a simple, robust method that aims to improve data 

quality at our site over what would be obtained using a standard 4-electrode array.  

This efficient, practical approach can be used for a wide range of problems, and 

provides a computationally attractive alternative to methods of optimized design. 

3.1.1 Optimized Design 

Optimized experimental design has been treated in a number of disciplines in 

Earth sciences [Rabinowitz and Steinberg, 1990; Barth and Wunsch, 1990], as well as 

in applied mathematics and the physical and biological sciences.  A detailed 

discussion of this topic can be found in the texts of Pazman [1986] and Pukelsheim 

[1993].  While a number of algorithms and approaches have been developed to 

address complexities unique to different measurement processes, the basic 

mathematical description is common to many applications and is concisely presented 

by Boyd and Vandenberghe [2004].  The work in this field has been extensive, so we 

limit this review to applications of relevance to this study, specifically applications to 

electrical resistivity and electromagnetics.  
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 The approach to optimized design for the acquisition of electrical resistivity or 

electromagnetic data has tended to focus on optimization algorithms for under-

determined, ill-posed problems, which require large computation times.  Haber et al. 

[2008] propose a number of design criteria that can be used to regularize the 

underdetermined problem to obtain a globally optimal design.  Most studies, however, 

have focused on a general linearization of the Jacobian, also referred to as the 

sensitivity matrix, or its inverse [e.g. Curtis, 1999; Bardow, 2006], where the Jacobian 

is composed of the elements: 

     

€ 

Jij =
∂di
∂m j

.                        (3) 

di represents the change to the potential field at discrete element i, for a change in the 

conductivity model component mj.  Experimental design approaches based on 

linearization of the Jacobian generally use global optimization algorithms, such as 

genetic algorithms [Maurer and Boerner, 1998; Furman et al., 2004], or statistical 

descriptions, such as Bayesian optimization approaches [Maurer et al., 2000; van den 

Berg, 2003; Curtis, 2004a/b].  While the above studies focus on four-electrode arrays, 

other studies have begun to consider experimental design for multi-channel systems or 

the use of novel search algorithms to speed the optimization [Stummer et al., 2002; Xu 

and Noel, 1993; Stummer et al., 2004; Coles and Morgan, 2009].   

 In addition to work focused on generally optimal solutions to the design 

problem, a number of studies have examined 4-electrode array selection applied to a 

specific hydrologic or geophysical target [Cherkeva and Tripp, 1996; Goes and 

Meekes, 2004; Wilkinson et al., 2006].  This problem-specific approach reduces the 

complexity of the design problem by disregarding general optimality and instead 

solving for an experimental design that is optimal for recovering an expected 

conductivity structure. 

3.1.2 Description of Field Problem 

 The recharge pond of interest in this study is hydraulically connected to an 

unconfined coastal aquifer south of Santa Cruz, CA.  The pond is located in an 

agricultural region where precipitation occurs primarily in the winter months while the 
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summer is very dry.  The water management agency that operates the pond has the 

right to divert 2 000 acre-feet of water from November 1 to May 31 each year, referred 

to as the “diversion season.”  When flow rates are sufficiently high, water is diverted 

from a near-by slough, filtered of sediments, and pumped into the recharge pond.  The 

water percolates into the unconfined aquifer below the pond, where it is stored and 

recovered in the summer to meet demand for irrigation.  The purpose of the pond is 

two-fold: to provide additional water resources during peak delivery demands and to 

replenish the aquifer to slow salt water intrusion into the aquifer.   

 In the current operational model, shown schematically in Figure 3.1, water 

percolates through a ~20 to 30 m thick unconsolidated sand package of relatively 

homogeneous medium to coarse-grained sand with possible isolated clay lenses.  

Below the sand package, a ~3 to 15 m thick gravel and sand layer overlies a thick clay 

which acts as an aquitard, separating the unconfined aquifer from the underlying 

saturated sandstone.  The pond is designed with the intent that all diverted water 

percolates downward from the pond and mounds above the aquitard, remaining 

available for extraction during the summer. However, decreasing infiltration rates over 

the diversion season limit the amount of water that can be diverted to the pond each 

winter to less than the water agency’s entitled amount.  It is presumed at present that 

fine sediments being deposited and/or microbial activity clog the pore space in the few 

meters immediately below the pond, causing the observed decrease in infiltration rate. 

Operators require a better understanding of the hydrologic processes controlling 

infiltration to improve operational efficiency of the recharge pond.  As part of that 

effort, we propose to use electrical resistivity imaging (ERI) to monitor infiltration in 

the top 5 m of the subsurface.   

Our objective is to define a time-lapse imaging experiment consistent with the 

concept of informed imaging where we use all prior knowledge about the site.  In 

designing an imaging experiment for our particular site, we rely on an existing 

hydrostratigraphic model that synthesizes hydrologic, geologic and geophysical data.  

The developed a priori model identifies regions where there is a poor understanding of 

the subsurface properties and where there is an interest to monitor hydrologic 
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processes.  Furthermore, the developed a priori model guides the experimental design 

process.   

 Information about the material properties of the subsurface is available from 

three 9-m cores, and electrical resistance measurements made using a 2-m probe.  

Both data sources indicate that the top 0.5-1 m below the pond is a fines-rich sandy 

layer, that grades into coarser sand. Information about the infiltration process is 

available as estimates of infiltration rates.  Pond-scale estimates are obtained from a 

detailed LiDar model of the pond base and measured pond height [Schmidt et al., 

2009].  Site-specific estimates are also obtained from 1D electrical resistance 

measurements on a 2-m probe [Pidlisecky and Knight, 2010].  The largest observed 

infiltration rates are on the order of 1 m/day, falling off by an order of magnitude over 

the diversion season. 

Given this prior knowledge, we design a shallow time-lapse imaging 

experiment to monitor infiltration at the contact between the fines-rich layer and the 

underlying coarser sand layer.  We constrain the acquisition of each image such that 

the sampling window is sufficiently small to avoid effects of temporal smearing at 

early times [Day-Lewis et al., 2005].  To meet these temporal constraints we are 

required to limit the number of measurements such that the time for acquisition of a 

single image is significantly less than the time it takes water to infiltrate 0.25 m, which 

we take as a conservative estimate of the rate of change in the imaged process. 
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Figure 3.1. Conceptual model of the Harkins Slough Recharge Pond [after Haines et al., 2009].  
Water percolates through the thick sand package and is extracted from wells screened within the 
sand and gravel layer.  A massive clay at ~40-50 m depth is the basal aquitard for the unconfined 
aquifer. 
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3.2 Methodology 

 The pseudo-code describing our method for applying the concepts of informed 

imaging to experimental design is included as Figure 3.2.  We refer to the arrays 

determined through use of this method as informed imaging (II) arrays. 

 The first step of informed experimental design, [1], is to develop an a priori 

estimate of the conductivity structure of the region to be imaged.  This model should 

incorporate all available geologic, hydrologic, and geophysical data that give insight 

into the controls on the conductivity structure before the time-lapse imaging 

experiment begins. 

 In the next step, [2], we identify the spatial and temporal constraints imposed 

on the experiment.  The spatial constraints include such factors as the total number of 

available electrodes, electrode-spacing, spatial extent of the measurements, and access 

to surface and subsurface electrode locations.  Temporal constraints limit the total time 

for acquiring a single image given the rate at which the physical system is changing.  

Within the temporal constraints we incorporate the instrument configuration, whether 

it is a single or multi-channel acquisition system, the settling time for changing source 

pairs, and the time required for each measurement.  For example, with a multi-channel 

system we can obtain multiple measurements per source pair, reducing the total time 

for the time-lapse imaging experiment. 

 In [3] we define the region of interest (ROI).  In this context, the ROI is a 

subset of the imaged region within which we wish the data to be most sensitive, or 

where we expect greatest variations in the conductivity structure over the entire time-

lapse imaging experiment.  If desired, the ROI can be set to the full imaged region. 

In step [4] we use the a priori conductivity model developed in [1] and the 

design constraints identified in [2] to generate all possible electrode pairs that can be 

sources for the imaging experiment, indexed from 1 to K.  We then calculate the 

current density, jk, generated by each source pair over the imaged region.  The 

magnitudes of the calculated current density vectors are integrated over the ROI in 

step [5] as an approximate measure of how well a source pair illuminates the ROI.   
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 In [6] we filter source pairs based on the integrated magnitudes within the ROI 

calculated in [5].  This limits the total number of electrode pairs evaluated in 

subsequent steps, reducing computation time while preserving source pairs that 

provide a large amount of current to the ROI.  We filter out source pairs producing 

integrated current density magnitudes that are less than 20% the maximum summed 

ROI value.  This is can be considered simply a soft constraint on the design process.  

However, we also note this filter can be used to limit the dynamic range of signals 

generated by source pairs to be consistent with the measurement capabilities of the 

instrument being used to acquire data.  Limiting the dynamic range improves the 

signal to noise ratio of measurements and also provides a greater amount of stability to 

the inversion of collected data. 

 In [7] we begin to evaluate the amount of independent information contained 

in different source pairs to maximize the unique contribution of each source pair 

selected for the imaging experiment.  For all source pairs not filtered out in [6], we 

calculate the dot product of the current density produced by each source i with itself 

and all other sources j.  Each calculated dot product is summed within the ROI. The 

values of summed dot products, aij, are then ranked in ascending order in [8]. 

 In [9] we select as sources the electrode pairs i and j that produce the n/2 

smallest values of aij, where n is the total number of sources permitted in the final set 

of arrays.  Small values of aij imply that the mutual sensitivity of two sources is 

minimized, or that the two sources sample the least amount of mutual information 

about the ROI, according to definitions of mutual sensitivity in Park and Van [1991].  

By selecting the smallest values of aij, we maximize the unique information content 

for each source pair.    

 In [10] we turn our attention to the selection of potential pairs that will be used 

with each source pair to create the arrays used for the imaging experiment.  Here we 

apply the constraints associated with the instrument configuration.  For each selected 

source k, we accept as potential electrodes the electrode pairs, j, that produce the m 

largest akj –values from [9], where m is the number of unique potential pairs per 

source pair k.   We require that selected potential pairs, j, share no common electrodes 
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with source pair k.  In selecting the potential pairs in this manner, we maximize the 

sensitivity of our data over the region of interest according to the definition of 

sensitivity given by Spitzer [1998], which expresses sensitivity as: 

  s dRx y= ∫∫ j j
R

.              (4) 

In this measure, sensitivity is maximized when the integrated dot product of the two 

current density fields created by source and potential pairs x and y over some region is 

the greatest.  In our case, a discretized version of the above expression is summed over 

the ROI, and we accept as potential pairs those electrode pairs that maximize the 

expression for a given source pair.  The combinations of selected source and potential 

pairs identified through this process define the informed imaging (II) arrays. 
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Figure 3.2.  Pseudo-code describing the proposed methodology for informed experimental design. 
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3.3 Measures of Data Sensitivity 

 In order to assess the performance of the II arrays selected for monitoring 

infiltration at the recharge pond we compare the data sensitivity of these arrays to the 

data sensitivity of two standard arrays.  This analysis can be done as part of the 

informed experimental design process, but in most cases will not be needed.  We 

complete this comparison here as a way of demonstrating the validity and value of our 

approach. 

The data sensitivity from the acquisition of a single image is considered both 

from the forward and inverse perspectives.  From the forward perspective we evaluate 

the sensitivity of data acquired with each array independent of any inversion or 

regularization.  This gives a direct measure of the information content of the data.  We 

also consider the extent to which data from different arrays inform estimated 

conductivity models in light of measurement noise and the inversion process.  

Although the selection of II arrays focuses on increasing sensitivity within the ROI, 

we evaluate the data sensitivity over the entire imaged region.  We do this to ensure 

that the II arrays show improved performance over standard arrays even if the defined 

ROI (used to guide the experimental design) does not accurately capture the region 

where significant conductivity variations occur over the entire time-lapse imaging 

experiment. 

3.3.1 Singular Value Decomposition of J 

 As a first measure, we assess the data sensitivity produced by the arrays used 

to acquire a single image throughout the entire imaged region.  Using the method first 

proposed by Tripp et al. [1984], and more recently implemented by Curtis [2004a,b], 

we examine the information content of an imaging experiment through the Jacobian, 

which gives the relationship between the model update, Δm, and the difference 

between acquired and predicted data, Δd, at each iteration in the solution of the non-

linear problem, from the approximate relationship:   

             

€ 

Δd ≈ JΔm.                  (5) 

The general least squares solution to (5) can be expressed 
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€ 

Δm ≈ JTJ( )-1 JTΔd .                                     (6) 

Referring to the definition of the Jacobian given in (3), it becomes evident that the 

rows of the matrix describe the amount of information the data contain on the model 

conductivities for a single array.  Considering the singular value decomposition of JT, 

or the eigenvalue or singular value decomposition of (JTJ), we can immediately 

identify the independent information obtained in the acquisition of an image, as well 

as identify where measurements contain little or no independent information [Curtis, 

2004a].  Comparing the array decompositions, we can see the relative amount of 

unique information obtained by the arrays for each acquired image.  This measure is 

fundamental to evaluating data quality for a time-lapse imaging experiment; a set of 

arrays producing data with greater information content will always have more 

independent rows of the Jacobian. 

3.3.2 Region of Investigation 

While the independence of the rows of the sensitivity matrix is important in 

assessing the information content of acquired data, the estimated conductivity 

structure is also of interest.  Furthermore, as the Jacobian only depends on the 

measurement geometry [Curtis, 2004a], it does not give a measure of how robust data 

will be in the presence of noise.  Therefore, we also evaluate array performance from 

the inverse perspective.  We do this using the “depth of investigation” method, first 

proposed by Oldenburg and Li [1999] and then expanded by Oldenborger et al. 

[2007].  While originally designed to identify the depth range investigated by the 

acquired data, this method can be used more generally to determine the region of 

investigation, i.e. the region in which the inverted model is sensitive to, or dependent 

on, measured data.   Outside the region of investigation model values are more a 

reflection of the reference model applied to the inversion than the data.   

To find the region of investigation, data are inverted using two half-space 

reference models; while the model structure is the same for both models, the first has a 

relatively higher conductivity.  At each point in the inverted imaged region, we 

calculate the R-value as follows: 
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€ 

R(x,z) =
mh (x,z) −ml(x,z)

mrefh−mrefl
      (7) 

where mh and ml are the inverted conductivity models estimated with reference models 

mrefh and mrefl, respectively.  The R-value will be near zero when the inverted 

conductivity is the same regardless of the reference model, indicating high sensitivity 

to the measured data.  When the value of R is equal to 1, the inverted conductivity 

model is entirely dependent on the reference model.   
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3.4 Informed Experimental Design: Application to a Recharge Pond 

 We follow the methodology outlined in Figure 3.2 to identify the II arrays to 

be used to monitor infiltration at the recharge pond.   

In the a priori model of the conductivity structure at the pond, shown in Figure 

3.3, the imaged region is 20 m in length, 5 m in depth. The model has three layers 

representing the fines-rich layer at the surface, a transition region, and the coarser 

underlying sediments.  The conductivity value in each layer of the model is assigned 

based on conductivity values observed at 1D electrical resistivity probes when 

sediments are partially saturated. The model is centered along the upper boundary, 

extending from -10 m to10 m along x, and from 0 m to 5 m in the z-direction. The 

model contains 80 cells in the x-direction and 20 cells in the z-direction, resulting in a 

cell dimension of 0.25 m, which is the minimum electrode spacing.  

We limit possible electrode locations to the surface as there are no boreholes in 

the base of the pond.  A line of 40 electrodes with uniform 0.25 m-electrode spacing is 

implanted in the base of the pond.  This spacing is determined as a compromise 

between fine spatial resolution, which is related to the electrode offsets used in the 

arrays, and keeping electrodes adequately spaced to limit noise in the measurements 

from nearby, highly conductive electrodes.  We are constrained temporally to less than 

10 minutes for the acquisition of a single image as this study is part of a larger 

monitoring effort in which other experiments are being conducted simultaneously with 

the same acquisition system.  Given the constraints of our acquisition system, as well 

as the timing of other ERI experiments taking place at the site, we are limited to 

acquiring a total of 200 measurements for a single image (the acquisition is multi-

channel, so this amounts to 5 sources per potential pair).  During the acquisition 

process, we allow a settling time of 15 ms when sources are switched, a measurement 

time of 3 ms for a single measurement, and stacks of 10 measurements to increase the 

signal to noise ratio. 

The ROI is defined from -7.5 m to 7.5 m in x and 0.25 m to 1.5 m in z, 

maximizing sensitivity to the region in the model space that we associate with the 

contact between the fines-rich and coarser sediment layers while minimizing boundary 
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effects from numerical modeling during our evaluation of the various source electrode 

pairs.  As described earlier, this contact region is identified as the region of most 

interest for time-lapse imaging because it is hypothesized that processes in the fines-

rich layer at the interface control the infiltration rate. 

 We then evaluate the magnitude of the current density within the ROI for all 

possible electrode locations and rank the dot-products for electrode pairs producing at 

least 20% of the maximum value of summed magnitude of current density.  Because 

the ROI is very shallow, we expect the dynamic range of signals from accepted source 

pairs will be sufficiently constrained by this filter.  We accept 20 unique sources with 

5 potential measurements per source, which provides the greatest number of unique 

sources while taking full advantage of the multichannel capabilities of the acquisition 

system.  We also use as arrays the reflections of the selected arrays across the x=0 

line, for a total of 200 measurements.  Arrays that are reflected locations of source and 

potential pairs across the x-axis of the imaged region increase the symmetry of the 

measurements, thus minimizing the bias associated with the acquisition footprint.  The 

100 unique arrays (excluding reflections across the x=0 plane) are included as an 

appendix for reference.  The selected II arrays require a total acquisition time of less 

than 7 minutes for each image. 
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Figure 3.3.  A priori model of conductivity beneath the recharge pond.  The region of interest 
(ROI) is indicated by the dashed lines. 
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3.5 Assessment of II Arrays 

 We evaluate and demonstrate the performance of the II arrays, selected for 

monitoring infiltration at the recharge pond, using the two previously discussed 

measures of data sensitivity and two synthetic examples.  In both synthetic examples 

we consider cases where the “true” subsurface conductivity model that arises due to 

infiltration differs from the presumed a priori model given in Figure 3.3.  This 

acknowledges the fact that our prior information can represent imperfect knowledge 

about the subsurface at the pond.  The first example uses a very simple buried 

conductive structure as a first order approximation of the conductivity variation we 

might expect to see at the pond, where relatively conductive water infiltrates relatively 

resistive sediments.  This example uses an intentionally simple structure to make the 

comparison of the performance of different arrays straightforward.  In the second 

example we consider a conductivity structure that is more representative of an 

infiltration front that we might expect to find when monitoring an infiltration pond.  

While still a simplified model, the second example has a diffusive, curved front 

between the relatively conductive saturated zone and the relatively resistive dry 

sediments. 

  The performance of the II arrays is compared to the performance of two 

commonly used standard arrays: a Wenner array and a dipole-dipole array.  The 

general configurations for these two arrays are shown in Figure 3.4.  In the following 

synthetic examples 125 Wenner arrays with a-spacing from 1 to 10 are used to acquire 

a single image. Dipole-dipole imaging acquires 141 measurements with a-spacings of 

1 to 4, and 5 n-values.  In the image acquisitions for both standard array 

configurations, measurements are taken evenly across the entire line of electrodes.  

Furthermore, for both standard arrays, and the acquisition conditions described above, 

the time required to acquire a single image using a standard array (~10-12 minutes) is 

greater than that required when using the II arrays. 
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Figure 3.4. Schematic representation of Wenner and dipole-dipole arrays.  A and B indicate 
source electrodes; M and N are potential electrodes.  The spacing, a, is the offset of the potential 
electrodes; n is an integer multiplier of a. 
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3.5.1 Example 1 

Data Simulation 

As a first order approximation of conductivity variation at the recharge pond 

we assume a simple geometry for the true subsurface conductivity.  We use a 

conductive structure, with conductivity similar to what we would expect for saturated 

sediments in the vadose zone, within a resistive background.  The model conductivity 

structure used to simulate data is included as Figure 3.5.  The spatial extents and grid 

spacing used to simulate data remain unchanged from the a priori model.  Synthetic 

data for the II arrays and two standard array configurations are created using the 

forward modeling code described in Pidlisecky and Knight [2008].   

 

SVD of JTJ 

Based on the synthetic data, we calculate the singular value decomposition of 

the Jacobian for all three acquired images.  The resulting singular values are plotted on 

a log-linear scale in Figure 3.6.  This plot shows that the singular values for the 

standard arrays are consistently smaller than those of the II arrays, indicating they 

contain less unique information about the imaged region.  The Wenner arrays do track 

the II arrays when the rank of the singular value is small.  This is not surprising as we 

expect these arrays to locate the top and lateral edges of the conductive structure fairly 

accurately, indicating a high data sensitivity to those model cells.  However, the trace 

of the singular value matrix, which approximates the area under the singular value 

spectrum, for the II arrays and this conductivity structure is noticeably largely than the 

traces for the standard arrays. 

 

Region of Investigation 

For the three acquired images, we invert the data using a 2D version of the 

RESINVM3D code developed by Pidlisecky et al. [2007].  This inversion uses a 

Gauss-Newton iterative method with standard L2 regularization and a preconditioned 

conjugate gradient (PCG) approach to finding the model update.  This method 

regularizes the inversion both through the model smoothness constraint and by 
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limiting the number of PCG iterations for finding the model update.  The reference 

models for the two inversions used to calculate R for this example are both 

homogeneous half-spaces, with log-normal conductivity values of -3 and -4.  These 

values are close to the background log conductivity we would expect for partially 

saturated, sandy sediments.  All data sets are inverted to approximately the same misfit 

tolerance of 1e-2 with a maximum of 8 iterations.  In this case the model is depth-

weighted by 1/z [Li and Oldenburg, 1998], and the data weighting is inversely 

proportional to the absolute value of the observed data for all acquired images.  

From the inverse perspective, the sensitivity of the inverted model to the data 

shows similar results to the Jacobian decomposition.  The inverted conductivity 

models obtained with the high-conductivity reference model are shown in Figure 3.7.  

Calculated R-values are overlaid on the plots.  All three arrays seem to locate the top 

and center of the conductive structure fairly accurately.  The R-values suggest that the 

II arrays capture the conductivity contrast at the lateral edges of the conductive 

structure more accurately and consistently than the other two arrays.  While it appears 

that the Wenner and dipole-dipole arrays more accurately capture the lower bound of 

the conductive structure, the R-values indicate that the model is poorly informed by 

the data below the conductive structure for both standard arrays.  The conductivity 

estimates below the conductive structure simply equal the value of the reference 

model. 
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Figure 3.5.  Conductivity model used to create synthetic data for Example 1.  Conductivity values 
are given in S/m. 
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Figure 3.6.  Log singular values of (JTJ) as a function of rank for the II, Wenner, and dipole-
dipole arrays for Example 1.  The greater area under the spectrum of the II arrays indicates 
greater row independence, and, hence, more information content for these arrays. 
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Figure 3.7.  Estimated conductivity structures from Example 1 for the II arrays, Wenner array 
and dipole-dipole array from a homogeneous reference model.  Conductivity values are in S/m.  
The contoured R-values from the DOI measure are overlaid on the estimated structures. 
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3.5.2 Example 2 

Data Simulation 

 In the second example we compare the performance of selected II arrays to the 

same standard arrays, but use as our true conductivity structure one that is more 

representative of an infiltration front that we might expect at the recharge pond.  The 

conductivity model for this example is included as Figure 3.8.  Rather than 

representing the infiltrating pond water as a rectangular region with homogeneous 

conductivity, we represent the pond water as a diffusive front with a range of 

conductivity values that match observations at 1D electrical resistivity probes.  The 

grid and cell sizes remain unchanged from the previous example, and data are 

generated using the same algorithm.  We again consider three resistivity images 

acquired using Wenner, dipole-dipole and II arrays. 

 

SVD of JTJ 

The results of the singular value decomposition of (JTJ) for the three acquired 

images of the infiltration front are plotted in Figure 3.9 as the log singular values as a 

function of rank.  Near the high end of the spectrum, the results for the II and Wenner 

arrays are clustered, but, as the rank increases, the II arrays show larger singular 

values, again implying greater independent information content for those arrays.  

Again evaluating the trace of the singular value matrix we find the area under the 

curve of the II spectrum is nearly an order of magnitude greater than that of the 

Wenner array and more than two orders of magnitude greater than that of the dipole-

dipole array. 

  

Region of Investigation 

The region of investigation analysis of data from this second example uses the 

same parameters used for the first, simpler, structure. However, the conductivity 

values for the two homogeneous half-space models are -3 and -3.5, respectively.  As 

before, the values chosen for the two models are consistent with conductivity values of 

partially saturated sediments observed at the 1D resistivity probes.  Data are inverted 
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to the same misfit tolerance of 1e-2, with a maximum of 8 iterations.  We note that for 

this example, most inversions converge within 4 or 5 iterations. 

 The estimated conductivity values from data inverted using the higher-

conductivity reference model are shown in Figure 3.10 with the R-values from the 

region of investigation measure overlaid.  Again, we see the II arrays capture much 

more of the structure of the conductivity distribution than the standard arrays.  In all 

three acquired images, however, the estimates over-predict the magnitude and under-

predict the extent of the true conductivity structure. This over predication is a function 

of reduced smoothing in our inversion models.  We note that with true field data, 

where errors are unknown, we would be forced to increase smoothness and would 

likely underestimate the magnitudes of the conductivity, and over-estimate the extent 

of the conductivity.  Nonetheless, the II arrays show a much deeper range on the 

region of inverted model space that is informed by the data.  The image acquired with 

the dipole-dipole arrays shows a very restricted DOI region, indicating that these data 

only inform a very small portion of the entire imaged region.   

 For this example, we repeat the DOI analysis for the same image acquisitions 

after the data have been contaminated with 3% Gaussian noise to assess the robustness 

of the various imaging experiments in the presence of noise.  The results are included 

as Figure 3.11.  In all three acquired images we see minimal impacts on the recovered 

conductivity structures; values and extents increase only slightly but all three types of 

arrays capture attributes very similar to the noise-free data.  However, examining the 

R-values of the region of investigation shows that the portion of the model space that 

is informed by the data decreases in all three images.  The II arrays still inform the 

model space to a larger degree, indicated by higher R-values where variations in the 

conductivity structure are greatest.  This implies that image acquisition with II arrays 

is robust in the presence of noise, even when the a priori estimated conductivity 

structure used to generate the II arrays differs significantly from the true conductivity 

structure of the subsurface. 
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Figure 3.8.  True conductivity structure used to create the synthetic data for Example 2.  
Conductivity values are reported in S/m. 
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Figure 3.9.  Log singular values of the (JTJ) decompositions as a function of rank for the II, 
Wenner, and dipole-dipole arrays in Example 2. 
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Figure 3.10.  Estimated conductivity structures from Example 2 for the II, Wenner, and dipole-
dipole data.  Estimated conductivity values are given in S/m.  Contoured R-values from the DOI 
calculation are overlaid on the conductivity models. 
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Figure 3.11.  Estimated conductivity structures with overlaid R-values for the field imaging 
experiments using the II, Wenner and dipole-dipole data contaminated with 3% Gaussian noise.  
Estimated conductivity values are reported in S/m. 
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3.6 Conclusions 

 Our current research involves the use of ERI to improve the understanding of 

the processes responsible for the dramatic decrease in infiltration rates observed in a 

recharge pond.  Faced with the challenge of designing an imaging experiment, with 

spatial and temporal constraints on electrode locations, we asked the question: How 

can we use all prior information available at the site to design the electrode arrays?   

In this study we present a methodology for informed experimental design, the 

incorporation of prior information about a field site into the design process.  We apply 

the methodology to the challenge of selecting arrays for monitoring infiltration in the 

top few meters beneath a recharge pond.  When we compare the performance of the II 

arrays, selected with the informed design methodology, to two standard arrays we find 

that the II arrays that have greater data sensitivity to the imaged region and are more 

robust in the presence of noise.  We conclude that this robust, computationally-

inexpensive, and fast array-design method allows us to design arrays that are better 

than standard arrays for monitoring changes in conductivity structure during 

infiltration. 

 We note that in this study we selected a single set of arrays to be used for the 

entire imaging experiment.  There is no reason, however, not to continuously update 

the array design as the experiment progresses.  Further research is required to assess 

the benefits of using different imaging arrays that are designed to best capture the 

evolving conductivity structure over the course of a time-lapse imaging experiment.  

Future studies should also examine the increased data sensitivity that can be acquired 

by iteratively applying the method to update the experimental design as more 

information about the subsurface becomes available.  In the spirit of informed 

imaging, it is clear that every acquired image potentially adds more information that 

could be used for “real-time” experimental design.  These investigations could further 

clarify the sensitivity of the method to the a priori model, identifying the minimum 

amount of prior information required for the method to perform adequately as well as 

identifying scenarios in which the method does not greatly improve the quality of 

acquired data over that obtained with standard arrays. 
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CHAPTER 4.  ASSESSMENT OF AN EXTENDED 
KALMAN FILTER APPROACH TO INVERSION OF 
TIME-LAPSE ELECTRICAL RESISTIVITY IMAGING 
DATA FOR MONITORING INFILTRATON 
 

4.1 Introduction 

 Monitoring hydrologic processes in the vadose zone is of great importance in 

developing management strategies for groundwater resources.  Flow and transport 

behavior in variably saturated porous media can greatly alter the rate at which, and 

path along which, fluids reach groundwater aquifers at different sites.  While point 

measurements, such as Time-Domain Reflectometry probes, can give very accurate 

information about changes in water saturation with time [Robinson et al., 2008], these 

data are often insufficient for characterizing changes in saturation at the modeling 

scale.  Electrical resistivity imaging (ERI) is a geophysical method that is sensitive to 

changes in the subsurface conductivity structure, which is highly dependent on the 

water saturation distribution in the vadose zone.  Time-lapse ERI, therefore, has been 

widely used for environmental and hydrologic monitoring experiments.  In this study 

we use ERI specifically to monitor infiltration beneath the Harkins Slough Recharge 

Pond (HSRP), part of a coastal aquifer management project in an agricultural region of 

Northern California. 

4.1.1 Monitoring the Vadose Zone with Electrical Resistivity 

 In electrical resistivity imaging (ERI), currents are injected into the ground 

through electrodes on the surface or in boreholes, and the induced voltages or 

potentials are measured at a number of different locations.  This is repeated for several 

current and potential electrode locations for the acquisition of a single image.  The 

electrical conductivity structure of the imaged region is estimated based on the 

measured potential data and the applied current configurations.  If we consider 

repeatedly acquiring images of the same region at different times, it is possible to 
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conduct a time-lapse imaging experiment from which changes in conductivity 

structure with time can be identified.  Using appropriate petrophysical transforms [e.g. 

Archie, 1940], we can convert variations in the conductivity structure with time to 

temporal changes in hydrologic properties, such as water saturation. 

 ERI monitoring of vadose zone processes has included tracking infiltration and 

estimating transport properties.  Daily et al. [1992] used cross-borehole ERI arrays to 

monitor infiltration from point and line (trench) sources.  ERI has also been used in 

conjunction with ground penetrating radar measurements to estimate transport 

properties in the subsurface [Binley et al., 2002].  

4.1.2 Inversion of Time-Lapse ERI Data 

 Reconstruction of time-lapse ERI data has largely relied on two approaches: 

differenced and absolute imaging.  Differenced imaging has generally taken two forms 

when applied to monitoring vadose zone processes.  The first form, proposed by Daily 

et al. [1992] inverts the ratio of a measured potential value at later times and the 

measured value in the initial image.  A homogeneous reference model is used to invert 

each time-lapse image for the relative conductivity structure with respect to the initial 

conductivity structure. This approach has been applied to mapping fluid migration in 

3D ERI inversions [Park, 1998] and to estimating hydrologic parameters such as 

hydraulic conductivity or break-through curves [Binley et al., 2002; Chambers et al., 

2004].  The other form of differenced imaging, proposed by LaBrecque and Yang 

[2001], inverts a transformed data set, the difference between measured voltages at a 

given time-step and measured voltages at the initial time-step.  The differenced data 

are then inverted with respect to a homogeneous reference model. The output of this 

approach to differenced imaging is an estimated change in conductivity structure with 

respect to the first time-step. Kemna et al. [2002] expanded this approach, using the 

initial inverted conductivity model as the reference model in later time-steps, 

removing the condition of a homogeneous reference model applied in the initial 

derivation.   

 As opposed to differenced imaging, absolute imaging inverts data sets for each 

time-step independently, sometimes using the inverted conductivity structure from the 
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previous time-step as the reference model for the current time-step.  This approach has 

been applied to 3D data sets for studying vadose zone transport [Zhou et al., 2001; 

Slater et al., 2002; Labrecque et al., 2004; Looms et al., 2005; and Singha and 

Gorelick, 2005].  Oldenborger et al. [2007] assess the performance of differenced 

imaging and absolute imaging using results from the previous time-step for 

regularization on inversion of 3D time-series data from imaging of an 

injection/withdrawal experiment in a shallow aquifer.  The authors found that both 

approaches result in greater model structure than is attained without using a time-lapse 

approach, but that neither approach can be used to predict adequately the full amount 

of injected/withdrawn fluid. 

4.1.3 Description of Field Problem 

 Our primary interest at the HSRP is to image infiltration in the top few meters 

of the near surface.  The pond is located in an agricultural region near the northern 

California coast, which has a Mediterranean climate, meaning rainfall occurs primarily 

in the winter while the summer is very dry.  The purpose of the recharge pond is two-

fold.  First, it is used to store diverted storm-flow run-off during the winter to meet 

demands for groundwater deliveries; second, it is used to replenish the unconfined 

aquifer, which has been overdrawn for several decades, thus allowing saltwater 

intrusion.  The water agency in charge of operating the pond has a right to divert 

approximately 2.5e6 m3 of surface water from the Harkins Slough to the pond from 

November to May each year.  However, decreasing infiltration rates over the diversion 

period reduce the operational efficiency of the pond, infiltrating only ~1e6 m3 in a 

year. 

 Prior investigations using 1D electrical resistivity probes recording to a depth 

of 2 m, and grain-size analysis of 5 9-m cores suggest a 0.5-m thick layer of fines-rich 

sediment at the surface, with medium to coarse-grained sand below this layer.  It is 

hypothesized that clogging from very-fine particulates in the water column or 

bioactivity in the fines-rich layer and below causes the observed decrease in 

infiltration rate with time.  However, it may be that infiltration rates are simply limited 

by the permeability within the top layer, and initial rates are temporarily increased as a 
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result of tilling of the pond base prior to infiltration.  Operators require a better 

understanding of flow behavior below the pond to understand the parameters 

controlling infiltration rates.   

 In this study we use ERI to monitor infiltration beneath the HSRP to develop a 

more complete understanding of infiltration processes. We adopt an informed imaging 

framework [Mitchell et al., 2010], meaning all existing information about a site and 

experiment is incorporated into the acquisition, processing, and interpretation of ERI 

data.  We consider two methods for the inversion of data within this framework.  Both 

of the approaches incorporate information gained from the inversion of data acquired 

from imaging experiments at earlier time-steps into the inversion of data at the current 

time-step.  In the first approach, we apply an absolute inversion scheme where the 

inverted conductivity model from the previous time-step is a reference model for the 

inversion at the current time-step, incorporated as a regularization term within a 

Gauss-Newton inversion algorithm [Pidlisecky et al., 2007].  We also propose an 

inversion method using the extended Kalman filter (EKF), which incorporates 

information about both the evolution of the physical system being monitored and the 

structure of the model error covariance to update estimates of model parameters.  The 

EKF model updates are recursive; hence, information from all previous time-steps is 

included in the current update. 
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4.2. Inversion Methods 

4.2.1 Regularized, Gauss-Newton Update  

 In the first inversion approach, we use a modified version of the Gauss-Newton 

(GN) inversion algorithm presented by Pidlisecky et al. [2007].  This approach is 

representative of the current state of the science for inverting time-lapse ERI data.  

The image collected at each time-step is treated as an independent “snapshot” of the 

subsurface.  Information from the previous time-step is incorporated through a 

regularization term as the reference model. 

In the original formulation, the algorithm uses GN updates to minimize the 

cost functional  
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2
+
β
2
Wm(m−mref )

2
         (1) 

The first term in (1) minimizes the weighted misfit between data predicted using the 

current conductivity model, m, and the observed data, dobs, where Wd is the data 

weighting.  This term is known as the data misfit and is used as a convergence 

criterion for the inversion.  The second term is a weighted Tikhonov-style 

regularization term that incorporates prior knowledge about the solution through the 

reference model, mref [Tikhonov and Arsenin, 1977], where β is the weighting 

coefficient and Wm the regularization term.  A preconditioned gradient solver is used 

at each iteration to solve for a model update, Δm, that moves mref toward the solution 

m* that minimizes (1).   

 We incorporate information derived from the inversion of data from previous 

time-steps through the regularization term in (1).  The regularization term penalizes 

large differences between the current model estimate and the reference model, taken 

here to be the inverted conductivity structure from the previous time-step.  Inclusion 

of the regularization term incorporates our knowledge that the sampling interval is 

short relative to the time-scale at which the water moves through the subsurface.  This 

means there are only small variations between adjacent time-steps, so we expect the 
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conductivity structure at the current time-step to be close to the conductivity structure 

at the preceding time-step. 

 A modified version of the implementation by Pidlisecky et al. [2007] employs 

two-grids in the model update.  At each iteration, a “fine” grid of 318 by 124 cells is 

used to calculate the Jacobian, the sensitivity of measurements to changes in model 

parameters, and predicted data.  A “coarse” grid of 147 by 51 cells is then used to 

estimate model parameters.  Using a fine grid improves the approximation of both the 

data and the Jacobian, especially near source locations.  Inverting on a coarse grid 

limits the number of model parameters and is more representative of the information 

content in the data.  This combination of coarse and fine grids increases the stability of 

the inversion process and improves the accuracy of model updates.   

4.2.2 Extended Kalman Filter 

 Kalman [1960] first proposed a prediction-filter method for evaluating time-

series data of random variables that incorporates knowledge acquired from all 

previous time-steps to estimate parameters at the current time-step.  This method is 

based on iterative updates to the expression describing the evolution of the measured 

physical system and the measurement process.  The EKF is a modified version of the 

original Kalman filter that is adapted to predict and filter nonlinear processes.   

 Within the geosciences, the EKF has been applied to time-lapse seismic data 

[Bayless, 1970; Eppstein, 1998; and Quan and Harris, 2008], as well as in ocean 

sciences [Fukumori, 1994; Verron, 1999], and in soil sciences for predicting 

hydrologic parameters [Eppstein and Dougherty, 1996; Parada, 2004; Ines and 

Mohanty, 2008; Reichle, 2008; Vrugt, 2008; and Camporese, 2009].  However, much 

of the methodology for the application of EKF to electrical resistivity data has been 

developed within the medical literature for electrical impedance tomography (EIT).  

The medical EIT measurement is very similar to ERI measurements, except that EIT 

uses a high-frequency signal, incorporating real and imaginary components of the 

conductivity, whereas ERI applies a DC signal and only accounts for real components 

of the conductivity. 
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 Vaukhonen et al. [1998] first proposed the use of extended Kalman filters for 

processing time-series electrical impedance data to address temporal smearing, which 

can result from rapid variations in the conductivity structure with respect to the time 

required to collect measurements for a single image.  The theory has been expanded to 

incorporate spatial smoothing and known internal structure, which is often required for 

EIT and ERI because they are ill-posed inverse problems [Kaipio, 1999; Kim et al., 

2001; Kim et al., 2002; and Trigo, 2002].   

 An EKF approach to inversion of time-lapse ERI data has only recently been 

proposed [Lehikoinen et al., 2009].  The authors of that study demonstrate that the 

EKF is a feasible method when applied to the inversion of synthetic cross-borehole 

data.  Using the EKF approach, the authors apply a stochastic representation of 

Richard’s equation to simulate changes to the water saturation distribution.  They then 

apply a petrophysical transform to create a synthetic data set of the changing 

conductivity structure with time and invert the data with a general EKF methodology.  

We present here a very similar approach to inversion of ERI data using the EKF.  Our 

work, however, addresses significant issues not encountered in the previous study as 

our application involves 1) acquisition using a surface-based array of electrodes and 2) 

field data.  A surface-based acquisition geometry results in decreased measurement 

sensitivity to the imaged region relative to cross-borehole data.  Working with actual 

field data, rather than synthetic data, involves the additional complexity of 

uncharacterized measurement noise, as well as greater heterogeneity in the imaged 

field than is often used in synthetic examples.  

 We present a derivation of the EKF below, which closely follows the 

derivation presented by Kim et al. [2002] with some modifications adopted from 

Lehikoinen et al. [2009].  We consider a system of two stochastic processes describing 

the evolution of the physical system (the state equation) and the measurement process 

(the observation equation).  These are represented by (2) and (3), respectively. 

              

€ 

mk+1 = Fkmk +ω k                              (2) 

              

€ 

Uk = Vk (e
mk ) +υk,                          (3) 
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where mk is a vector of model elements representing the log conductivity structure at 

time index k, where mk is equal to log(σk).  Fk is the system evolution matrix 

describing how the conductivity structure changes physically with time; and ωk is the 

system noise.  In (3), Uk represents the predicted potential measurements acquired 

from using the measurement process described by Vk, which is a function of the 

conductivity structure represented by 

€ 

emk , with measurement noise, υk. The matrix V 

contains information on the location of source and potential electrodes as well as the 

physics of current flow.  We consider that in both the state and observation systems 

the noise (ω or υ) is Gaussian with 0-mean and covariance matrix:  

              

€ 

Γk
i = E ikik

T[ ] ≈ si
2I.                                            (4) 

Here, si is the standard deviation of the noise, and i is either ω or υ. 

Linearization of (3) about the latest estimate of the state or model structure, mk, 

transforms (3) into: 

   

€ 

Uk =Vk e
mk k−1( ) +J

k
mk k−1( ) mk −mk−1( ) +H.O.T+υ k .       (5) 

where H.O.T. represents higher order terms, which are small in comparison to the first 

order term.  In the above notation the subscript k|k-1 represents an estimate of the 

parameter at time-step k based on the parameter estimate at k-1.  This notation for 

predicted parameters is adopted throughout the derivation.  In (5), Jk is the Jacobian 

matrix calculated in terms of the log conductivity.  We then define a pseudo-

measurement to separate out terms dependent on mk.  The pseudo-measurement has 

the form 

           

€ 

yk ≡Uk −Vk e
mk k−1( ) +J

k
mk k−1( )mk−1 +υ k,                            (6) 

where 

€ 

υ k  is the modified error vector incorporating υk and higher order terms from 

the linearization about the current estimate of log conductivity.  The modified error 

covariance matrix can be written 

                

€ 

Γ k
υ = E υ kυ k

T[ ] ≈ sυ 
2I .                 (7) 

The cost functional to be minimized in estimating the conductivity model is expressed:  
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€ 

min 1
2

mk −mk−1 C
k k−1
−1 + yk − Jk mk k−1( )mk

Γ k
−1

+α 2 R(mk −m*)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

,   (8) 

where R is a spatial regularization matrix, and m* is a reference model.  Here we apply 

a standard smoothness regularization on the conductivity model.  We note an 

important distinction between (8) and (1) in that an EKF approach does not have an 

explicit data misfit minimization term.  Unlike the GN-approach, which uses the misfit 

between predicted and observed data as a stopping criterion, there is no such condition 

on a Kalman filter update.  This increases the complexity to comparing how well the 

two methods fit the data.  Combining the last two terms of the cost functional, we can 

build augmented measurement vectors and matrices  

     

€ 

y k =
yk

αRm*

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ , Hk =

Jk

αR
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ; Γk = block Γ k

υ ,I( )    (9) 

reducing the cost functional (8) to 

 

€ 

min 1
2

mk −mk−1 Ck|k−1
−1 + y k −Hkmk Γ k

−1{ }             (10) 

 The update prediction-filter iterations can then be expressed as: 

Prediction: 

              

€ 

Ck+1 k = FkCkFk
T +Γk

ω

mk+1 k = Fkmk

                     (11) 

Filter: 

                  

€ 

Gk = Ck k−1Hk HkCk k−1Hk
T +Γk[ ]

−1

Ck = I −GkHk[ ]Ck k−1

mk k = mk k−1 +Gk yk −Hkmk k−1[ ]
         (12) 

The prediction equations in (11) estimate the conductivity structure and model error 

covariance based on data acquired up to the k-1 time-step.  The equations in (12) then 

filter the predictions based on new observations.  In this application, where the 

sampling interval is short relative to the time-scale of the imaged process, we can 

approximate the state evolution matrix as a simple linear process.  Our linear 

assumption is consistent with applications from impedance tomography in which there 

is assumed to be little evolution in the state model between time-steps [Vaukhonen et 
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al., 1998; and Kim et al., 2002].   An important distinction in our application is that we 

consider an EKF approach to inversion of surface-ERI data.  Although the acquisition 

geometry does not change the form of the prediction-filter equations above, it has 

important implications for measurement resolution of our data relative to cross-

borehole applications.  Furthermore, we apply the method to field data, whereas 

previous studies have considered only synthetic infiltration data. 
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4.3 Synthetic Example 

4.3.1 Description of Synthetic Data Set 

 Because the EKF has not previously been applied to surface ERI data, we first 

compare the two time-lapse inversion approaches for a synthetic, scaled model of the 

HSRP.  The goal of the synthetic example is to validate the assumption that both 

inversion methods produce similar estimates for time-lapse ERI data and that we are 

justified comparing the performance of the different approaches on field data.  We 

also use the synthetic examples to verify that the EKF remains a feasible approach in 

light of reduced measurement resolution (when compared with borehole or medical 

tomography), a result of the acquisition geometry. 

The model space for simulating infiltration is 8 m across by 5 m deep, and is a 

scaled and simplified model of the field experiment.  The model space is divided into 

two horizontal layers.  The transport properties in each layer are assigned to be 

consistent with values in the hydrostratigraphic model of the pond developed in 

Chapter 2.  The first layer in this scaled model is 0.1 m thick, corresponding to the 0.5-

m layer of fines-rich sand observed at the pond.  The saturated permeability is defined 

to be 5e-9 m2 with a residual saturation of 0.2 and 35% porosity.  The second layer is 

7.9 m thick and represents the coarse sand of the unconfined aquifer.  The saturated 

permeability of this layer is 5e-8 m2; the porosity is 40%, and the residual water 

content is 0.05.  We incorporate a thin, fines-rich sediment layer to simulate the flow 

behavior based on the current understanding of structure and flow parameters.  

Although the low permeability of the first layer does slow infiltration, we do not 

observe the same infiltration rate behavior observed at the pond.  This suggests we do 

not capture the heterogeneity and boundary flow conditions at the pond in the 

numerical simulation. 

 

Flow Model 
 Unsaturated flow in COMSOL is modeled using Richard’s equation in the 

form [Dogan and Hotz, 2005]: 
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€ 

C(hp) +
θ
φ
Ss

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
∂hp
∂t

−∇ ⋅
k(hp)ρwg

µ
∇ hp + z( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0                          (13) 

where is hp is the pressure head (m); C is the specific moisture capacity; θ is the 

moisture content; φ is the porosity, and Ss is the specific storage (m-1).  k(hp) is the 

pressure-head dependent relative permeability; ρw is the density of water  

(1000 kgm-3); g is the gravitational constant (9.8 ms-2); and µ is the fluid viscosity 

(0.01 Pa-s).  Using a standard van Genuchten approach to estimate the water retention 

or relationship between water content and pressure head, the water content can be 

expressed as [Van Genuchten and Nielsen, 1985]: 

      

€ 

θ hp( ) = θ r +
θ s −θ r

1+ αhp
n⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥ 
1− 1
n

             (14) 

where θs is the saturated liquid fraction, θr the residual water content, α and n are 

empirical parameters set here to .01 and 1.5, respectively. 

 We solve Richard’s equation for variably saturated flow using COMSOL 

Multiphysics, applying the Richard’s equation solver from the Earth Sciences Module 

with a hydraulic head interpretation.  In determining the numerical solution to the 

water saturation with time, we use a finite element mesh with 5816 elements and 3069 

nodes.  No flow boundary conditions are set on the edges of the model space, which 

are sufficiently far from the area of infiltration to introduce minimal boundary effects.  

From 2 to 6 m along the top boundary, which represents the base of the pond, we 

apply a constant head boundary of 0.5 m, a scaled average of the pond depth during 

diversion.  Internal boundaries between layers are set to continuity of flux boundary 

conditions.  We simulate flow behavior over 50 hours and output the water saturation 

distribution every hour. 

 

Electrical Conductivity Model 

 Saturation values from the COMSOL model are exported to MATLAB on a 

regular grid of 85 by 25 cells.  The exported data include regular (x,y)-grid locations 

and saturation values for each of the 51 time-steps.  Using an Archie’s Law 

approximation for the conductivity of the sand layers of the form [Archie, 1940]: 
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€ 

σ =σwφ
mθ n ,                   (15) 

we convert saturation to values of electrical conductivity.  In (15) σw is the bulk water 

conductivity (0.5 Sm-1); m is the cementation exponent (set equal to 1.5); and n is the 

saturation index (set equal to 2).  The estimated conductivity structures at a number of 

times during the simulation are included as Figure 4.1 for reference. 

 Potential measurement data from the conductivity structure are simulated using 

the electrical resistivity forward model developed by Pidlisecky and Knight [2008].  

To simulate the data we assume 125 Wenner arrays with source-potential offsets 

ranging from 1 to 5 electrodes.  Measurements sweep across a line of 40 electrodes 

from 2 to 6 m at the top boundary of the model space.  Synthetic data are generated for 

each conductivity structure created from the output hydrologic model parameters from 

the 51 time-steps and 1.5% Gaussian noise is added. We note that, with the acquisition 

geometry used, the change in observed data between images after 30 hours is less than 

the measurement noise.  We, therefore, do not expect that inversion of these data will 

result in meaningful updates to the estimated conductivity structure. 
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Figure 4.1.  Time-lapse conductivity models created based on the numerical solution to Richard’s   
equation for effective saturation during an infiltration experiment.  Conversion to conductivity is 
achieved through an Archie’s Law relationship.  A: 1 hour; B: 2 hours; C: 5 hours; D: 10 hours; 
E: 15 hours; F: 20 hours; G: 25 hours; H: 30 hours. 
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4.3.2 Regularized Gauss-Newton Inversion Results 

 We first invert the synthetic data using the regularized Gauss-Newton (GN) 

algorithm.   In this example data are weighted by the inverse of the standard deviation 

of the noise component times the inverse of observed data value plus a small value to 

penalize extremely small data values.  Regularization terms are weighted by a 

smallness factor, ws = 1e-6, and x- and z- smoothness weights both equal 0.01.  The 

initial model regularization weighting term, β, is set equal to 1e-2.  This value of β is 

used throughout the inversion unless the decrease in the objective function for a model 

update is less than 10%, in which case it is decreased by one-third.  Data are inverted 

to a data misfit tolerance of 1e-1 with a maximum of 8 GN updates. The initial 

reference model is a simple layered model with 25 layers and log conductivity values 

from -3.6 to -4.6 spaced logarithmically from the top to the base of the model.  The 

conductivity values are selected in this manner to incorporate prior knowledge.  At the 

first time-step the model space is only partially saturated, reflected in the values 

chosen, and the imaged region is more likely to be saturated near the surface than at 

the base of the region, reflected in the spatial distribution of values.  After the first 

time-step the inverted conductivity model from the previous time-step is used as the 

reference model at the current time-step.  At the initial iteration of each time-step, if 

the misfit between the predicted data and the observed data is less than the data misfit 

tolerance, the conductivity model is not updated, and the process proceeds directly to 

the next time-step.  This reduces the amount of noise introduced into the inverted 

conductivity model through the inversion process. 

 Results from the inversion of synthetic data using this process are shown in 

Figure 4.2 for the 6 times corresponding to the synthetic data shown in Figure 4.1.  

This plot clearly shows that after 5 hours the inverted results do a very poor job of 

capturing information about the magnitude and distribution of conductivities in the 

imaged region.  Despite the use of regularization and a high misfit tolerance to help 

smooth the inversion results, a large amount of noise is introduced into the parameter 

estimates.  This is clear from the plots and can also be seen in the progress of the 

inversion at each time-step.  After the first time-step, all inversions fail to converge to 
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a solution below the misfit tolerance by the final permitted iteration and the line-

search algorithm frequently fails to find an update capable of reducing the misfit 

within the first few iterations of the inversion at each time-step.   
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Figure 4.2. Time-lapse conductivity models inverted using regularized GN and a reference 
conductivity model equal to the estimated conductivity structure at the previous time-step.  A: 1 
hour; B: 2 hours; C: 5 hours; D: 10 hours; E: 15 hours; F: 20 hours; G: 25 hours; H: 30 hours. 
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 We address this issue of failure to converge to a solution by re-inverting all 

data from the imaging experiment with the reference model reset to the initial model 

when the inversion fails to converge.  If an inversion fails to converge for a given 

time-step, the data from that time-step are re-inverted with the initial reference model.  

In this case, the inversion “restart” is applied at hours 3, 5, 6, 9, and 12, while the 

model updates are skipped at hours 13, 14, 16-18, and 20-28 and 30-51 because the 

misfit between predicted and observed data at the first iteration is below the specified 

tolerance. After hour 12 the observed data change more slowly, evidenced by the 

number of time-steps in which the initial data prediction error is less than the misfit 

tolerance, and regularizing on the model from the previous time-step becomes more 

stable.  These results suggest that this approach to temporal regularization of the 

inversion works best in situations in which the model does not change rapidly with 

time.  Therefore, this approach will work well in situations where the process being 

monitored is very slow relative to the frequency with which images are acquired.  

When the process evolves on a time-scale similar to the data imaging, this approach is 

less stable.   

 The inverted conductivity models estimated using the modification above for 

the same time-steps plotted previously are shown in Figure 4.3.  At early time-steps, 

panes A-E, these models capture much more of the structure seen in the “true” 

conductivity distributions.  In fact, the first time-step nearly replicates the conductivity 

structure used to generate the data.  The models also increase the size of the region of 

higher conductivity at approximately the same rate at which water infiltrates in the 

simulation.  However, at later times the true size of the higher conductivity region is 

not fully recovered.  Because of the acquisition geometry and the shape of the high 

conductivity region, electrodes are entirely within the high conductivity region at later 

time-steps, making it difficult to identify the boundary between the higher and lower 

conductivity regions.  Consequently, the inversion attempts to account for increased 

conductivity from an enlarged region of higher conductivity by simply increasing 

conductivity values near electrodes.  This causes the “noisy” results observed in panes 

F-H.  Pane G is a replica of pane F because the misfit tolerance between predicted and 
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observed data is less than the specified tolerance for all images between those times.  

Hence, no new information about the system is obtained for those iterations.  Despite 

the noisiness of estimated models at later time-steps, the inversion results do a much 

better job of capturing the conductivity structure throughout the imaging experiment.  

Nonetheless, each time the reference model is reset to the initial model, all information 

about the image region acquired up to that time-step is lost. 
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Figure 4.3. Time-lapse conductivity models inverted using regularized GN with 1.5% Gaussian 
noise added to the simulated data.  The reference conductivity model is equal to the estimated 
conductivity structure at the previous time-step, but is reset to the initial reference model if the 
inversion fails to converge.  A: 1 hour; B: 2 hours; C: 5 hours; D: 10 hours; E: 15 hours; F: 20 
hours; G: 25 hours; H: 30 hours. 
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4.3.3 EKF Inversion Results 

 We estimate the conductivity structure at each time-step using the EKF 

prediction-filter recursions described above.  We assume a model covariance of 1e0I; 

observation covariance of 3e-2I; and initial prediction error covariance matrix of the 

form I.  This choice for the form of the model error covariance matrix has little impact 

on the model estimates after the first few iterations [Vauhkonen et al., 1998].  We 

assume a standard smoothing operator for R, with weighting coefficient equal to √2.  

Because time-steps are too small to allow distinguishable changes in evolution of the 

saturated region between time-steps, we approximate F as the identity matrix.  This 

form of the state update incorporates our knowledge that the conductivity structure at 

any time-step should be close to the structure at the previous time-step, avoiding the 

computational expense of simulating the full solution of Richard’s equation at each 

time-step and the assumption of several unknown values of hydrologic parameters.  

We use the same two-grid application described in the previous approach.  A fine grid 

of 320 by 100 cells is used to calculate the predicted data and Jacobian, while a coarse 

grid of 80 by 25 cells is used to update model parameters. 

   In Figure 4.4, panes A-H, we plot the results of the EKF estimated models at 

the same times as the true conductivity models of Figure 4.1.  As is evident from 

panes A-C of Figure 4.5, when filtering begins, it takes a few iterations for the 

estimated conductivity structure and magnitudes to become consistent with the true 

conductivity structure.  By hour 10, pane D, however, both the shape and magnitudes 

of the estimated conductivity structure are similar to the true structure.  The model 

estimates from the EKF continue to track the evolution of the saturated region quite 

accurately through hour 20 of the simulation, panes E-F.  Past this time, the estimated 

conductivity models have what appears to be a reflection of the saturation plume at the 

base of the model region below 4.0 m depth, which eventually merges into the 

conductivity structure at the surface. By hour 30, pane H, the shape of the estimated 

structure relative has almost no resemblance to the true conductivity structure. 

 The delay in model response at early times has been noted in other applications 

of the EKF to electrical imaging; it is known as the filter lag.  This lag is a function of 
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the variance of the data error; as the variance increases, the estimated model changes 

more slowly [Vaukhonen et al., 1998].   Kalman smoothers, which are applied 

recursively to each time-step once the entire time-series of data has been processed, 

have been developed to reduce this lag effect [Kaipio et al., 1998].  However, the 

application of these smoothing algorithms is beyond the scope of this work.  At later 

times, panes F to H, we attribute the introduction of erroneous structure to the relative 

insensitivity of data to changes in the conductivity structure, a result of the acquisition 

geometry.  Examining the relative norm of differences in data between time-steps 

shows that after 20 hours the change in data is less than the specified data variance.  

Therefore, beyond this iteration the model is largely fitting noise, which is augmented 

with each additional iteration.  To examine the impact of repeatedly fitting data below 

the specified variance, we limit the EKF update to operate only at time-steps where the 

norm of the difference in data from the previous time-step regularized by the data 

norm of the previous time-step is greater than the variance of the observation error.  

We plot the results of implementation of the EKF with limited updates in Figure 4.5.  

The amount of erroneous structure in these models at all times is significantly less 

than when the full time series of data is considered.  The results of the synthetic 

example clearly show that when monitoring systems that do not change on the time-

scale of the sampling interval or when measurement resolution cannot distinguish 

changes between time-steps, attention should be paid to variations in the data 

measurements relative to the variance of the modeled measurement error.   
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Figure 4.4.  Time-lapse conductivity models inverted using EKF with 1.5% Gaussian noise added 
to the simulated data.  A: 1 hour; B: 2 hours; C: 5 hours; D: 10 hours; E: 15 hours; F: 20 hours; 
G: 25 hours; H: 30 hours. 
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Figure 4.5. Time-lapse conductivity models inverted using EKF with 1.5% Gaussian noise added 
to the simulated data and model updates occurring only when the relative difference in observed 
data between time-steps is greater than the data variance.  A: 2 hours; B: 4 hours; C: 6 hours; D: 
10 hours; E: 16 hours; F: 20 hours; G: 26 hours; H: 30 hours. 
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4.4 Field Experiment 

4.4.1 Acquisition of Field Data 

 Prior to the diversion period in 2008-2009, we implanted electrodes along two 

20-m lines at a depth of 0.25 m below the base of the pond, which we refer to as line 1 

and line 2; and along a third 15-m line also at a depth of 0.25 m.  Lines 1 and 2 

consisted of forty electrodes each with a regular separation of 0.5 m; line 3 had 30 

electrodes, also with regular 0.5-m electrode spacing.  A fourth surface line was 

created by joining lines 1 and 2; only every other electrode of these lines were used, 

resulting in 40-electrode line with meter electrode spacing.  At either end of each of 

the first three lines, electrical resistivity probes were installed to provide detailed 1D 

measures of the electrical conductivity profile through time.  The 1D probes had 25 

electrodes with 0.1 m spacing between electrodes, except for a 0.5 m gap after the top 

4 electrodes, which were left above ground to monitor bulk fluid conductivity in the 

pond.  The remaining electrodes monitored to a depth of 2 m below ground surface.  

In addition to the bulk fluid conductivity, we also acquired the water depth throughout 

the diversion period.  We use the water depth and fluid conductivity values to 

constrain the inversion of surface and probe electrical resistivity data.  A schematic of 

the field lay-out is included as Figure 4.6 for reference.  

  The acquisition of a single image of the subsurface conductivity structure for 

lines 1 and 2 used 154 Wenner arrays with source-potential electrode pair offsets 

ranging from 0.5 m to 2.5 m.  The same acquisition arrays were used for line 4 with 

source-potential pair offsets ranging from 1.0 to 5.0 m. Acquisition of a single image 

of the subsurface conductivity structure for line 3 used 108 Wenner arrays.  Again 

source-potential electrode offsets ranged from 0.5 to 2.5 m.  Measurements were 

collected across the lengths of the lines in all cases.  For all four lines, collected 

images are available at 1.5-hour intervals for 3 months during the diversion period.  

For each 1.5 hour-interval, we have one set of data acquired from each of the surface 

lines, as well as 5 sets of data for each probe, collected between the acquisition of data 

along each surface line. A number of power surges causing incomplete or lost data 
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means that our time-lapse imaging experiment consists of 1936 complete data sets 

over approximately 18 weeks for each of the four lines.   

 A rain event at 13.6 days after monitoring began results in observable 

infiltration of water in images from all lines and probes, but did not cause 

accumulation of significant amounts of water in the base of the pond.  Water diversion 

began approximately 48 days after the start of the monitoring experiment.  Once the 

pumps were turned on there was a significant, a highly conductive water column was 

present throughout the remainder of the imaging experiment.  Because electrodes were 

buried shallowly, this water column impacted the measured resistance values, and we 

must account for the presence of water when calculating the predicted data at each 

iteration for both inversion algorithms.  For this study, we examine inversion results 

for the imaging experiment conducted on line 2. We also include the time-lapse 

inverted conductivity structure along probe 2, located at one end of line 2, as a means 

of validating inversion results.  We expect to seem similar results in the inversion of 

both surface and probe data.  Unfortunately, probe 1, located on the other end of line 2 

and near the pond influx, was miswired and the data could not be inverted to estimate 

the conductivity profile at that probe. 
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Figure 4.6.  Schematic of field layout for acquisition of time-lapse ERI data.   
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4.4.2 Regularized Gauss-Newton Inversion Results 

 We first invert the field data using the modified version of the Gauss-Newton 

algorithm.  In this implementation, the coarse grid is 147 by 51 cells with variable grid 

spacing from 0.25 m to 4 m in both the x- and z-directions, which incorporates 

padding at either lateral end and the base of the model space to minimize boundary 

effects.  The fine grid is 318 by 124 cells, with variable spacing of 0.1 m to 4 m.  The 

data from each time-step of the field imaging experiment are inverted to a misfit 

tolerance of 4.5%.  The reference model, after the initial time-step, is again the 

estimated conductivity structure from the previous time-step.  The reference model for 

the initial time-step is a simple, layered conductivity model.  Unlike in the synthetic 

example, when inverting the field data we must augment the reference model at each 

time-step to account for the conductive water in the pond when forward modeling the 

potential electric field.   

 To calculate the predicted data at each time-step, we begin by using records of 

the water level in the pond, recorded every 15 minutes during the diversion period, to 

calculate the average water depth during a time-step.  The water depth determines the 

thickness of a conductive layer representing the water column.  The conductivity of 

the layer is set to the bulk conductivity measured at probe 2 during acquisition of an 

image.  The reference conductivity model at each time-step is the concatenation of the 

water column and the subsurface conductivity model from the previous time-step.  The 

augmented reference model and shifted electrode positions are used to calculate 

predicted data for each iteration in the inversion.  Once the predicted data have been 

estimated, cells representing the water in the model are made inactive.  Hence, we 

only update the estimated conductivity structure in the subsurface.   

 At the first iteration of each time-step, if the misfit between the predicted data 

and observed data is less than the prescribed misfit tolerance, the inversion process is 

skipped.  The conductivity structure remains equal to the portion of the reference 

model in the subsurface.  This reduces the amount of spurious noise and structure 

introduced into the estimated conductivity structure by reducing the likelihood that the 
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inversion is fitting noise in the data.  If the misfit between predicted and observed data 

is greater than the misfit tolerance, data are inverted according to the criteria above. 

 A number of inverted models from different time-steps are included as Figure 

4.7.  The results are presented as relative differences with respect to the initial image 

to better show changes in the estimated structure. Probe 1 is located at 10 m offset in 

the x-direction, and represents the deepest part of the pond.  Probe 2 is located at the  

-10 m offset.  The inverted conductivity models clearly show wetting from a rain event 

at 13.6 days, (A), followed by drying back to initial subsurface conditions prior to the 

diversion of water to the pond, shown in (B).  After diversion begins, shown in (C), 

the inverted models again show what appear to be alternating periods of wetting and 

drying in the deeper sediments, (D-F) even though the hydraulic head in the pond 

remains relatively constant until monitoring ends.  However, examining the bulk fluid 

conductivity as a function of time, shown in Figure 4.8, clearly indicates the increase 

in subsurface conductivity at late times is a result of the increased bulk water 

conductivity.  At late time during the imaging experiment, the temperature in the pond 

water increases with the ambient temperature.  As temperature is positively correlated 

with conductivity, the bulk fluid conductivity increases.  Hence, though the sediments 

do not fully saturate, as the conductivity in the deeper sediments is always less than 

that in the top half meter, water continuously infiltrates the subsurface.  These 

inversion results indicate a complex infiltration process that cannot be explained by a 

simple model of clogging in the fines-rich layer as initially assumed.   

 Although the amount of spurious noise and structure introduced into the model 

is limited by only processing data with variation above the misfit tolerance, the 

inversion results still become noisy after a large number of time-steps using this 

method.  Resetting the reference model to the initial reference model after ~200 

inversions and proceeding with the method as described above does help to limit this 

effect.  However, comparing the results of the inversion from the surface data to the 

time-lapse conductivity profile for probe 2, computed by A. Pidlisecky, shows that, as 

the inversion continues, some structure is still added into the estimated conductivity 

structure.  The conductivity profile at probe 2 relative to the initial conductivity 
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profile, as a function of time, is included in Figure 4.9.  Times coinciding with the 

time-steps shown in Figure 4.7 are labeled on the plot.  At early times the conductivity 

structure in the 2D model in the region of probe 2 agrees well with the recorded 

conductivity profile, showing the same wetting and drying trends.  At late times, 

however, captured in (F), the 2D relative conductivity map shows increasing 

conductivity near probe 2 that is not evident in the 1D profile, suggesting the 2D 

section shows more structure than may actually exist.  This additional structure is 

initially interpreted as an artifact of the inversion.  It may be possible to suppress these 

artifacts by restarting the inversion after fewer iterations.   

 The observed behavior of the time-lapse inverted conductivity models 

highlights some of the challenges of using this method.  First, the weighting of the 

reference model relative to the data misfit must be set such that there is an appropriate 

balance of informing the inversion through previous information and allowing 

variations in data to drive the inversion process.  Determining the correct weights to 

use can be difficult in a field setting where the true subsurface conductivity structure is 

unknown.  The second challenge is limiting the introduction of artifacts into the model 

estimates from the inversion process.  Even using a high misfit tolerance and 

smoothing the inversion through regularization, it is not straightforward to identify 

when the inversion has become “too noisy” and when the need to reset the reference 

conductivity model arises.  Finally, in resetting the reference conductivity model back 

to the initial reference model all information gained about the subsurface conductivity 

structure is lost to the inversion.  Resetting the reference conductivity model reduces 

noise and improves convergence of the algorithm, but is contrary to the concept of 

informed imaging. 
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Figure 4.7. Six time-lapse relative difference conductivity structures with respect to the initial 
conductivity model inverted using GN-algorithm.  A: 13.6 days  (rain event); B: 22.8 days; C: 48.4 
days (diversion begins); D: 50.6 days; E: 75.2 days; F: 112.6 days. 
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Figure 4.8.  Bulk fluid conductivity in S/m as a function of time after monitoring begins.  Times 
corresponding to the time-steps of inverted 2D conductivity models are labeled. 
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Figure 4.9.  Time-lapse relative difference conductivity profile with respect to the initial 
conductivity profile at probe 2.  Times corresponding to the time-steps of inverted 2D 
conductivity models are labeled. 
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4.4.3 EKF Results 

 We invert the same time-lapse field data using the Extended Kalman filter.  As 

before, the model covariance matrix has the form βI, where β takes a value of 2 in this 

case, and the matrix is again time-invariant.  We also use the same expression for the 

initial prediction error covariance matrix.  However, we do not assume the observation 

error covariance of γI is static, but update the value of γ at every time-step based on 

the acquired data.  The initial estimate of γ is equal to 1% of the difference between 

the maximum and minimum observed resistance values.  This is the same 

determination of γ applied by Lehikoinen et al. [2009] for a time-invariant estimate of 

the observation error covariance.  At each time-step, γ is updated based on a weighted 

combination of the value from the previous time-step and the difference in data 

observed at the current time-step.  Using a time-dependent update, γ ranges from 

approximately 0.1 to 0.4 throughout the imaging experiment, and tends to be higher at 

early time-steps.  The value tends to stabilize at ~0.3 as the number of time-steps 

increases.  The same smoothing operator R used in the synthetic example is applied 

here with a weighting of √2.  Because the frequency of data acquisition is still 

relatively high relative to the rate at which the physical system evolves, we again 

approximate F as the identity matrix.  We again use two grids when calculating the 

model update.  The fine grid is 320 by 120 cells with equal x- and z-dimensions equal 

to 0.125 m, and the coarse grid is 80 by 30 cells with 0.5 m x- and z-discretization. 

 Acquiring reasonable results for the predicted data requires that we account for 

the presence of the water column above the electrodes using the same process 

described in the previous section for the GN-algorithm.  While the conductive water 

layer is incorporated into the calculation of the predicted data and the Jacobian, the 

model update is only applied to conductivity values in the subsurface; it does not 

update parameter estimates within the water. 

 We also incorporate a conditional model update based on the relative 

difference in observed data between time-steps to reduce the likelihood of updating 

the conductivity model to fit data noise.  In cases where there is less than a 1% change 
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in observed data from the last model update to the current time-step, no model update 

is performed.  However, we still incorporate information obtained at each time-step 

into updating the estimate of the observation error. 

 EKF inversion results for the same six time-steps plotted for the GN-algorithm 

conductivity model estimates are included in Figure 4.10, (A-F).  As expected from 

the synthetic results, the inverted conductivity models using the EKF are very similar 

to those obtained using the GN-algorithm.  In (A), the rain event creates a region of 

higher conductivity around 7 m offset in the x-direction, near the deepest part of the 

pond where rainwater is most likely to pool.  However, the EKF inversion shows a 

more pronounced region of higher conductivity at roughly -5 m offset, as well.  This 

region is only suggested in the corresponding GN-inverted image.  Both inversion 

approaches show similar drying patterns in (B); the high conductivity region 

associated with infiltrated water quickly disappears.  In (C) and (D), similar wetting 

behavior is observed when the pumps are turned on and the pond fills.  However, the 

EKF model does not shown the wetting immediately, a result of the lag time noted for 

this method that was also seen in the synthetic example. Furthermore, EKF models 

once again show a greater increase in conductivity at negative offsets than are 

observed in GN-results.  The EKF conductivity models show the same drying 

behavior in (E), represented by a decrease in the relative conductivity contrast, 

followed by increased conductivity in (F), which corresponds to a higher conductivity 

contrast.  Interestingly, the increased fluid conductivity is not evident in the 1D 

profile, though it clearly appears in the estimated 2D conductivity sections using both 

inversion approaches.  
 Comparison of the inverted models at each time-step reveals that models 

estimated with EKF are coarser than those from GN-updates, a result of coarser 

gridding required to maintain stability of the model update.  One disadvantage to an 

EKF approach is that the update can become very unstable as the number of model 

elements increases.  Studies within the medical literature have increased model 

resolution by creating regions of conductivity to decrease the number of elements 

updated [Trigo et al., 2004].  However, this requires assumptions about the shapes and 
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locations of structures within the imaged region, which are largely unknown in earth 

imaging.  Although, the EKF results show slightly poorer resolution, they do have the 

advantage of being more consistent with the principles of informed imaging and better 

suited to automatic processing.  Because the model update is recursive and based on 

both the system evolution and errors in the observation process, the estimated 

conductivity structure at each time-step is dependent on information acquired at all 

previous time-steps.  Unlike in the GN-algorithm, in which all prior information is lost 

each time we reset the reference model, the EKF approach does not need to be 

restarted and all prior information is integral to the model update.   

 An EKF approach is also flexible in terms of incorporating a conductive water 

column into the data prediction step of the algorithm.  An alternative approach for 

applying the EKF to conductivity data given known model structure is given in Kim et 

al. [2002].  Their approach incorporates structure into the full EKF update by defining 

regions of assigned conductivity values within the model space that are not updated at 

each time-step, but remain part of the model space.  Though their approach was not 

applied here, further studies into comparisons of estimates obtained with both 

approaches for incorporating the presence of a highly conductive water layer is an 

extension of this work as it applies to applications of EKF to field data. 

 Furthermore, the EKF approach has distinct advantages in estimating model 

uncertainty.  The estimate of the predicted model error covariance matrix is updated at 

each time-step, and shows the evolution of model uncertainty associated with each 

element in the model space.  Looking at the diagonal elements of this matrix for the 

model estimated at 112.6 days, shown in Figure 4.11, gives an immediate 

approximation of the uncertainty associated with the estimated conductivity values of 

model elements, where high model error variances are associated with greater 

uncertainty.  While the model error covariance matrix is dependent on our 

assumptions about model and observation errors, it is also driven by the error in 

predicted and observed data at each time-step.  Hence, by tracking the variances of 

model elements through time, we can obtain a measure of model uncertainty as an 

integral part of the estimation process.   
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Figure 4.10. Six time-lapse relative difference conductivity structures with respect to the initial 
conductivity model inverted using an EKF algorithm.  A: 13.6 days  (rain event); B: 22.8 days; C: 
48.4 days (diversion begins); D: 50.6 days; E: 75.2 days; F: 112.6 days. 
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Figure 4.11. Model error variances associated with elements for the estimated conductivity 
structure at 112.6 days, shown in (F) of Figure 4.11.   
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4.5 Summary and Conclusions 

 We present two approaches for inversion of surface ERI monitoring data 

collected during infiltration events at a recharge pond in northern California.  The first 

approach represents the current state of the science for inversion of time-lapse ERI 

data: each time-step is treated as an independent image and prior information is 

incorporated through regularization as a reference model.  The second approach uses 

an extended Kalman filter, which concurrently models evolution of the monitored 

physical system and the observation process.  Hence, an imaging experiment can be 

treated as a single time-series signal.  Using a synthetic example, we validate that an 

EKF approach is feasible method for inverting surface ERI monitoring data.  We then 

apply both approaches to a field imaging experiment and demonstrate that similar 

results can be obtained with both methods.  We also introduce update criteria for the 

EKF.  This constrained implementation improves estimates for physical systems that 

evolve slowly with respect to the sampling interval or for experiments with lower data 

sensitivity, as is encountered with surface ERI measurements, that do not reflect small 

changes to the system.  Our results demonstrate that EKF is a valid method for 

inverting surface ERI data collected in the field and that it provides advantages over 

current approaches.  The most significant advantage from an informed imaging 

framework is that EKF integrates prior information from all previous time-steps into 

the model update.  Furthermore, the EKF provides an estimate of model uncertainty at 

each time-step as an integral part of the inversion process. 

 Having demonstrated the feasibility of applying the EKF to surface ERI field 

data, we anticipate many opportunities for a new paradigm in ERI monitoring using 

this approach to data inversion.  Because it is designed for time-series data with an 

evolving physical system, the EKF does not require current assumptions about 

systems remaining static during data acquisition.  Consequently, monitoring can move 

to a continuous process in which the arrays used to acquire data can change at each 

time-step.  We can, therefore, remove strict limitations on the number of 

measurements made during each time-step in an imaging experiment.  Instead, we can 

monitor the system continuously, adjusting the number of arrays used at each time-
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step to reflect the rate at which the physical system changes.  The option of dividing 

an imaging experiment into time-steps of varying length improves our ability to 

automate the imaging process, diversifying the types of monitoring experiments in 

which we can use ERI to study subsurface processes. 

 Implementation of an EKF inversion of time-lapse ERI data provides several 

advantages over current approaches through estimates of the uncertainty at each time-

step and the incorporation of evolution of the physical system into the estimation 

process.  The method also presents several opportunities in creating a new paradigm 

for monitoring experiments using ERI methods.  Further research is required to 

develop automated, continuous imaging methods that can be processed in an informed 

imaging framework using an EKF approach to incorporate all prior information into 

the inversion of ERI data. 
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CHAPTER 5. THE IMPACT OF GEOPHYSICAL 
MEASUREMENT SUPPORT IN QUANTIFYING THE 
CORRELATION STRUCTURE OF ANISOTROPIC 
SYSTEMS 
 

5.1 Introduction 

 Fundamental to the concept of informed imaging is the integration of data 

collected with a number of methods from different disciplines that have a range of 

measurement scales.  Combining hydrologic, geologic and geophysical data is critical 

to building a comprehensive a priori model of the subsurface to inform and guide the 

experimental design process.  Furthermore, incorporating prior knowledge into data-

processing leads to more meaningful and useful interpretations.  The concept of data 

integration is by no means original and has already been widely used within near-

surface geophysics to regularize inversions [Hyndman et al., 1994; Kowalsky et al., 

2005], calibrate models [Singha and Gorelick, 2006], and improve interpretations 

[Day-Lewis, et al., 2005]. 

 An example of a data integration problem from near-surface hydrology is the 

description of the spatial and temporal variations in soil water content to develop 

models of hydrologic processes.  An accurate, spatially- and temporally-extensive 

characterization of this property and dependent processes has a large impact on the 

value of models used to describe surface-subsurface water interactions.  Because it 

governs the flux of water across the land surface, soil moisture has a significant role in 

modeling weather, developing agricultural management practices, and describing the 

ecosystems and biodiversity in a region.  Consequently, a recent area of focus in 

vadose zone hydrology research is developing methods and measurements to describe 

spatial and temporal variations in soil moisture at the field and catchment scales 

[Vereecken et al., 1998].  This has led to an increase in the types of data collected to 

measure or approximate the soil water content [Robinson et al., 2008].   
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 In addition to the traditional types of soil moisture measurements which result 

in point measurements, such as TDR or capacitance probes, non-invasive methods 

such as ground-penetrating radar [Eppstein and Dougherty, 1998b; Huisman et al., 

2001], electrical resistivity imaging [Michot et al., 2003; Robinson et al., 2008], and 

electromagnetic induction [Sheets and Hendricks, 1995; Corwin and Lesch, 2005] are 

being used to provide spatially continuous estimates of soil water content in transverse 

or depth planes.  Furthermore, remote sensing and wireless sensing networks are being 

used to provide soil water information at the catchment scale with high temporal 

resolution [see e.g. Cardell-Oliver et al., 2005; Choi and Jacobs, 2007; Njoku and 

Entekhabi, 1996].  However, as Vereecken et al. [2008] describe, the measurements 

described above occur at a number of scales, and integrating the information collected 

at different spatial resolutions to describe the spatial variability of soil moisture across 

a field or catchment requires translating data into a common framework. 

 Several studies have sought to describe the spatial and temporal structure of 

soil water content [Grayson et al., 1997; Rodriguez-Iturbe et al., 1995; Western and 

Grayson, 1998].  However, there is a complex relation between measurement scale 

and the resulting estimated correlation structure of a property.  This complex 

relationship has been widely documented for conventional hydrologic measurements. 

[e.g. Cushman, 1986; Gelhar, 1993; Beckie, 1996; Corwin et al., 2006; Blöschl and 

Sivapalan, 1995].  Gelhar [1986] developed analytical expressions for the covariance 

of a variable averaged over a given depth for a field that is isotropic in the orthogonal 

plane.  Western et al. [1999] expanded on these expressions by decomposing the 

measurement scale into three components, termed the scale triplet.  The components 

of the scale triplet are: spacing, the linear separation of measurements; support, the 

area or volume over which a measurement is averaged; and extent, the total areal or 

volumetric coverage of measurements. Western et al. [1999] used the notion of the 

scale triplet to derive analytical expressions for the relationship between increasing 

measurement support and the apparent correlation length.  The derivation assumes that 

increasing measurement support can be treated as a simple linear filter (i.e. averaging 

several measurements over a square area) and solves for the variance within the 
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support by the method of Rodriguez-Iturbe and Mejia [1974], which assumes a 

stationary, isotropic process.  Skøien and Blöschl [2006a,b] used the analytical 

relationships to investigate bias in the mean, variance, and integral length, a measure 

of the correlation length, of samples and applied the results to adjust monitoring 

networks to be consistent with the scale of properties of interest. 

 Similar approaches have been used when attempting to integrate geophysical 

and hydrologic data to understand the structure of soil water content [Daily et al., 

1992; Rea and Knight, 1998].  However, as noted by Knight et al., [2004] decreasing 

the resolution of ground penetrating radar data in the vertical direction impacts 

estimates of apparent correlation length in the horizontal direction.  This impact is 

independent of the horizontal range and the size of the Fresnel zone, indicating the 

estimated correlation structure in the horizontal direction depends on the vertical 

measurement resolution.  Because measurement resolution is inversely proportional to 

measurement support, the results of this study imply that the introduction of 

anisotropy into the measurement scale, in the form of directionally-varying 

measurement support dimensions, or into the parameter field, in the form of 

anisotropic distributions of a property like water content, may lead to bias in the 

apparent correlation length that is not accounted for in existing analytical descriptions. 

 The focus of this study is to investigate numerically how the relationship 

between measurement support and the apparent correlation length deviates from 

analytical predictions when the assumptions of a stationary, isotropic process and 

square support are violated.  We initially verify our model with equidimensional 

increases in measurement support on an isotropic model.  We then consider sampling 

scenarios often encountered when using remote sensing or geophysical methods to 

acquire data over a 2D region of Earth’s surface or a 2D cross-section of the 

subsurface.  To do this we first violate the assumption of equidimensional 

measurement support when sampling a synthetic, isotropic parameter field, allowing 

the orthogonal dimensions defining support of the measurement to increase 

independently and be different in the two directions.  We then consider an anisotropic 

parameter field (defined by a maximum and a minimum correlation length, λx and λy), 
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calculating the error in the apparent correlation length in both the x- and y-directions 

when measurement support increases by block-averaging. Finally, we examine non-

equidimensional increases in measurement support in sampling an anisotropic 

parameter field.  The support dimensions in the x- and y-directions are referred to as 

Sx and Sy, respectively.  In this final scenario, we need to account for the independent 

affects of changes in Sx and Sy on the apparent correlation length in both the x- and y-

directions.  The results demonstrate that errors in the apparent correlation length 

change with increasing complexity in the measurement support and sampled 

parameter field. 
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5.2 Geostatistical Analysis 

 We adopt a geostatistical framework for estimating the correlation structure of 

a synthetic parameter field.  It is assumed the hydrologic system of interest is a 

random field that is spatially correlated over some defined distance.  Using the GSLIB 

software package [Deutsch and Journel, 1998], it is possible to calculate one-

dimensional experimental semivariograms.  The semivariogram is a measure of how 

similar the parameter field is at increasing spatial separations.  The one-dimensional 

semivariogram can be described as [Journel and Huijbregts, 1978]: 
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In (1), h is the lag, or the vector of separation between the points at which the 

parameter field, z, is evaluated.  N is the number of data pairs separated by h over 

which summation occurs.  For a data set with a given correlation structure, γ increases 

with h at small offsets and asymptotically approaches the sill as the lag becomes large.  

The sill is the value at which γ, the calculated variance, is equal to the variance of the 

samples, and the range is defined to be the value of h at which the sill is reached.  In 

this study directional semivariograms are calculated, meaning h is specified in either 

the horizontal or the vertical direction.  Following Journel and Huijbregts [1978], the 

lag is limited to one-half the extent of the data set, ensuring a sufficient number of data 

pairs are used to calculate a reliable γ-value. 

 Analytical models are fit to the experimental semivariograms, and the model 

coefficients are used to describe the correlation structure of the system. The 

exponential semivariogram is the model most commonly used to fit experimental 

semivariograms in stochastic hydrology because this model is consistent with a first-

order Markov process, a simple assumption about the variability of a random field 

[Webster and Oliver, 2001].  The exponential model is expressed as follows: 
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where C is the sill, and a  is the effective range.  Because the exponential model 

approaches the sill asymptotically, the effective range is taken as the lag, h, at which γ 

reaches 95% of the sill.  The correlation length, λ, is equal to one-third the effective 

range and is the average separation over which parameter values may be considered 

spatially correlated.  The expression in (2) describes a one-dimensional variogram 

model.  Hence, in a two-dimensional parameter field, it is possible to calculate 

directional variograms by solving (2) in terms of 

€ 

γ x h( ) and

€ 

γ y h( ), where the lag is 

specified in the x- or y-direction, which are related to λx and λy, the correlation lengths 

in the x- and y-directions, respectively.   
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5.3 Numerical Models 

 Seven numerical models are analyzed to determine the effect of increasing the 

measurement support dimension in the x- and y-directions on estimates of λx and λy 

from an exponential semivariogram.  The models include 3 isotropic and 4 anisotropic 

synthetic parameter fields.  In all anisotropic models, λx is in the direction of 

maximum correlation, and λy in the direction of minimum correlation.  Each model is 

defined on a 100 m x 100 m grid with initial cell dimensions dx = dy = 0.1 m, 

resulting in 1000 cells in each direction.  A summary of the key parameters from each 

of the 7 models is provided as Table1, and examples of an isotropic parameter field 

and two anisotropic parameter fields showing increasing anisotropy are included as 

Figure 5.1 for reference. 

 

 
Table 5.1 Defined correlation length and initial estimates of the correlation length for the seven 
synthetic parameter fields analyzed. 
 

 For each modeled correlation structure 25 realizations of the parameter field 

are generated.  In generating the 25 realizations of each model, the same assumption 

used in Skøien and Blöschl [2006a] are applied: 1) fields are stationary, or the 

correlation length is independent of location; 2) the univariate distribution of the field 

is normal with defined mean and variance; and 3) an exponential variogram 

adequately represents the spatial variation.  Furthermore, it is assumed the spatial 

correlation structure is cyclic in nature, or that the underlying geologic process is 

periodic, and there are at least three equally-spaced measurements.  This final 
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assumption follows from the idea of sampling at least at the Nyquist frequency used in 

signal processing literature and permits the use of twice the lag distance as a starting 

value of the range in calculating the exponential semivariogram model. 

 We then simulate the measurement process for a number of support sizes, both 

square and non-equidimensional, to construct experimental semivariograms in the x- 

and y-directions.  We consider the measurement process as a filter that produces an 

average of parameter values over the measurement support [Cushman, 1986; Beckie, 

1996].  Starting with the initial set of realizations for each model, our measurement 

simply involves retrieving the parameter value in a single cell.  For the initial case Sx 

= Sy = dx = dy = 0.1 m.  For block-averaging, we treat our measurement process as a 

very simple filter and increase the support by averaging values of the initial parameter 

field in both the x- and y-directions.  This averaging creates blocks of  22 cells, 32 

cells, etc., up to 152 cells.  For non-equidimensional supports we first increase the 

support in the x-direction by averaging values only in the x-direction, creating 

averaged-cells out of 2 cells, 3 cells, etc., up to 40 cells.  The parameter value in each 

block or averaged-cell is the average of  the values in all the included cells.  Averaging 

of the initial parameter field is then repeated in the same manner in the y-direction.  A 

schematic of the averaging process for block-averaging and non-equidimensional 

supports is included as Figure 5.2.   

 The non-equidimensional measurement support is varied from 0.1m x 0.1m to 

4.0m x 0.1m (or 0.1m x 4.0m) in 0.1m increments along the averaging direction.  As 

cells are averaged, the measurement location is shifted to the center of the averaged 

cell block.  This has the additional effect of incrementally increasing the spacing of the 

measurement from 0.1m to 1.5m for block averaging or 0.1m to 4.0m in the direction 

of averaging for non-equidimensional increases in measurement support.  When the 

increase in measurement support is non-equidimensional, the spacing does not change 

in the direction perpendicular to averaging.  We allow the support and spacing to 

increase concurrently because previous studies have shown that allowing samples to 

overlap (i.e. increasing the support without increasing the spacing as described above) 
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introduces exceptionally large errors into the apparent correlation length [Skøien and 

Blöschl, 2006a].   

 For each realization of a given model, experimental semivariograms are 

calculated in the x- and y- directions at all measurement supports as a function of the 

lag, h.  This results in 30 semivariograms for each realization under block-averaging 

(15 variograms in the x-direction and 15 variograms in the y-direction) and 80 

semivariograms for each realization with non-equidimensional supports.  An 

exponential semivariogram model is then fit to each of the experimental variograms.  

The model is calculated numerically using the lsqnonlin function in MATLAB to 

estimate the value of the sill, C, and the range, a , in (2); and the apparent correlation 

length is calculated from the range.  The apparent correlation lengths in the x- and y-

directions calculated for the initial parameter fields using this method are included in 

the last two columns of Table 5.1.  The lsqnonlin optimization function uses an 

interior reflective Newton method to determine the parameter values that minimize the 

misfit between the model and the experimental data points assuming bounds on the 

possible parameter values are given [Coleman and Li, 1994].  The determined 

correlation lengths for each support are averaged over the 25 realizations.  Thus, we 

obtain representative estimates of the apparent correlation length in the x- and y-

direction for each increase in the x-dimension of support as well as each increase in 

the y-dimension. 
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Figure 5.1.  Examples of initial parameter fields simulated for three model conditions.  Model 1 is 
an isotropic model, while Models 4 and 6 are anisotropic models showing increased anisotropy. 



 131 

 
 

Figure 5.2.  Schematic of the numerical averaging experiment where n is the number of averaged 
cells.  Only non-equidimensional increases in the x-direction are shown.  White blocks indicate 
cell values not included in the variogram calculation for the estimated correlation length for a 
given averaging length. 



 132 

5.4 Results and Discussion 

 The geostatistical analyses of the 25 realizations for the 7 initial models (Sx = 

Sy = 0.1m) yield apparent correlation lengths that are less than the “true” correlation 

lengths used in generating the parameter fields in all cases.  These initial estimates are 

included in Table 1 as λxapp i and λyapp i.  The underestimation of the correlation length 

of the initial model is also observed in a study by Skøien and Blöschl [2006b] when 

estimating the correlation length as a function of support for a large number of 

samples.  We use the values of apparent correlation length estimated for the initial 

model to normalize the apparent correlation lengths with increasing measurement 

support.  Normalizing the apparent correlation lengths in this manner and plotting as a 

function of the total support, defined as S = (SxSy)1/2, normalized by the initial 

apparent correlation length is consistent with the definitions use by Western and 

Blöschl [1999], allowing us to compare our results to their analytical model.  We refer 

to the increase in the apparent correlation lengths with increasing measurement 

support as the error response curve. 

 In Figure 5.3 we plot the results of block-averaging for the isotropic fields, 

Model 1 (λx=  λy = 1m), Model 2 (λx=  λy = 4m) and Model 3 (λx=  λy = 7m).  Error 

response curves for the apparent correlation lengths calculated from both the x- and y-

direction variograms are shown, and they track well with each other and the analytical 

curve.  The initial ratio of apparent correlation length to true correlation length is 

always lower for the numerical results than predicted, a result of normalizing by the 

initial value, which makes this value always equal to 1.  At all but the initial support 

the numerical results fall very close to the predicted error for all models and supports, 

verifying that the numerical model is consistent with the analytical model. 
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Figure 5.3.  Effect of block averaging of measurement support for isotropic parameter fields on 
the apparent correlation length from 1D x- and y-direction variograms. 
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Figure 5.4. Apparent correlation length from variograms calculated in the x- and y-directions for 
x-directional averaging of measurement support in isotropic parameter fields. 
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 In Figure 5.4 we compare the analytical result to those obtained with non-

equidimensional increases in measurement support for isotropic parameter fields.  

Again, results from variograms calculated in both the x- and y-directions are shown, 

though we only show results for increasing support dimension in the x-direction.  

Increasing support dimension in the y-direction produced similar results.  The errors in 

apparent correlation lengths demonstrate that when the support increases only along 

one dimension, the slope of the error response curve depends on the direction in which 

the variogram is calculated.  The error response curves for variograms calculated in 

the y-direction are concave up while the curve for those calculated in the x-direction 

are nearly linear. Moreover, this increase in the error is greater when the variogram is 

calculated in the y-direction for all cases.  As the values in the x-direction are 

averaged over a greater number of cells, the measurement becomes so biased in that 

direction there is little information about variation in the y-direction.  Even for 

isotropic parameter fields the differences are noticeable between the x- and y-

directions.  Furthermore, the slope of the error response curve decreases as the true 

correlation length increases, evidenced by the greater amount of error in apparent 

correlation length for Model 1 than for Models 2 and 3.   

 We also consider the alternate situation: the increases in measurement support 

are equidimensional, but the parameter fields are anisotropic.  These results are shown 

in Figure 5.5 and include Models 4 through 7.  In this case the shape of the error 

response curves is different for the variograms in the x- and y-directions, though both 

deviate greatly from the analytical prediction.  Model 7, the closest to an isotropic 

field, shows results that are much closer to the analytical model than the other 

anisotropic models, but still has similar trends to those observed for all anisotropic 

models.  The shape of the error-response curves for apparent correlation lengths 

calculated from both the x- and y-direction variograms for Model 7 are concave up, 

but the slope of the curve is steeper when apparent correlation length is calculated in 

the y-direction than when calculated in the x-direction.  Furthermore, both curves are 

less concave than predicted by the analytical model.  In contrast with the results for 

Model 7, the slope of the error response curve for apparent correlation lengths 
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calculated in the x-direction for Models 4 through 6 decreases with increasing support; 

it is concave down rather than concave up. This flattening of the error response curve 

for the x-direction is more pronounced for Model 6 than for Models 4 or 5, and the 

magnitude of error is also smaller for Model 6.  These results indicate that the error in 

the estimated correlation length for anisotropic fields is sensitive to the degree of 

anisotropy in the parameter field. This is also evidenced by the similarity of Model 7 

to the analytical response, and the greater deviation from the analytical curve of 

Models 4 through 6, which are increasingly anisotropic.  By contrast, the error 

response curves for apparent correlation lengths in the y-direction for these same 

models show slightly increasing slopes and a greater total magnitude in error.  

Furthermore, the error response curves for estimates in the y-direction of Models 4 

through 6, which have the same underlying correlation length in the y-direction, fall 

nearly on top of one another.  These observations indicate the increase of error in the 

apparent correlation length is also sensitive to the underlying correlation length in the 

direction of increasing support dimension.  As the underlying correlation length 

increases, the error in the apparent correlation length grows at a slower rate with 

increasing support. 

 The final scenario considered is of anisotropic parameter fields with non-

equidimensional changes in measurement support.  The results for this scenario are 

given in Figure 5.6, panes A-B, plotting the error response curves for all anisotropic 

models, as well as the error response curves of Model 3 for comparison to the 

response in an isotropic parameter field. 

 When both increases in measurement support and calculation of the apparent 

correlation length are in the x-direction, shown in Figure 5.6(A), the shape of the error 

response curves is similar to the shape for the isotropic model.  However, the increase 

in the error is less for Model 6 than the isotropic model, whereas it is greater Models 

4, 5, and 7.  Furthermore, the results for Models 4 and 7 track very closely, suggesting 

the slopes are inversely related to the correlation length in the direction of increasing 

support dimension.  This is because, as the support increases, shorter layers are 

averaged into single units more rapidly than layers with longer correlation lengths.   
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Similar patterns are observed in Figure 5.6(D), which shows the results for increasing 

the measurement support dimension and calculation of the apparent correlation length 

in the y-direction.  However, the error in the apparent correlation length is much 

greater relative to the underlying correlation length in this case, further supporting the 

interpretation of an inverse relationship between the error in the apparent correlation 

length and the correlation length in the direction of increasing measurement support. 

 For increasing measurement support in the x-direction, the direction of 

maximum correlation, and calculation of the apparent correlation length in the y-

direction, shown in Figure 5.6(B), the slope is flatter than when both increases in 

measurement support and calculation of the variogram occur in the x-direction. The 

greater error in the latter case is attributed to changing the underlying physical state in 

the direction in which the variogram is calculated through the averaging that occurs in 

the measurement process.  When the support dimension increases in a direction that is 

perpendicular to the direction of variogram calculation, the underlying physical state 

being measured is better preserved, and the error in the apparent correlation length is 

smaller at each support, though still greater than for block-averaging.  The shape of 

the error-response curve is similar for all models, including the isotropic Model 3.  

However, the total magnitude of the relative error is smallest for Model 6 and 

increases for Models 5 and 4, respectively, which have decreasing anisotropy.  

Furthermore, Models 4 and 7 have nearly identical error response curves despite 

having different true correlation lengths in the y-direction.  These results suggest the 

relative error is highly dependent on the correlation length in the direction of 

increasing measurement support.  Moreover, the relative error decreases as the 

correlation length in the direction of increasing measurement support increases 

relative to the correlation length in the direction in which we calculate the apparent 

correlation length. 

 The above interpretation is supported when measurement support increases in 

the y-direction and the apparent correlation length is calculated in the x-direction.  

However, in this case the shape of the error response curves is very different than for 

the isotropic model.  The curves for Models 4 through 7 initially have very steep 
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slopes, but show a significant decrease in slope as the support becomes large relative 

to the underlying correlation length in the direction of averaging.  This is attributed to 

merging of layers as the support increases in the y-direction. There is a diminishing 

effect on the estimated correlation length as the support continues to increase because 

averaging is perpendicular in direction to the calculation of the apparent correlation 

length.  This limits the impact of the measurement process on the underlying property 

structure being approximated.  Because the correlation length in the x-direction is so 

much greater than in the y-direction, the limited effect with increasing support causes 

the slope to plateau.  This flattening of the error response curve occurs first for Model 

6, which has the greatest anisotropy, while there are is only a slight flattening for 

Model 7, the least anisotropic model.  Also, in contrast to the previous scenario, 

Model 7 has a smaller total magnitude of error than the other anisotropic models, and 

the response curve for Models 4 and 7 are very different even though both models 

have the same underlying correlation length in the direction in which the apparent 

correlation length is calculated.  This further supports the interpretation that the 

relative error depends on the ratio of the underlying correlation length in the direction 

of increasing support dimension to the underlying correlation length in the direction of 

calculation of the apparent correlation length.  As the ratio decreases, the amount of 

error in the apparent correlation length increases.  This plot also clearly shows a 

decrease in the slope of the error response curve with increasing support, a 

phenomenon not seen in the isotropic models under any averaging scheme, but 

apparent in block-averaging increases in measurement support when sampling 

anisotropic fields. 
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Figure 5.5. Apparent correlation length from variograms calculated in the x- and y-directions for 
block averaging of measurement support in anisotropic parameter fields. 
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Figure 5.6. Estimated correlation lengths for directional averaging of measurement support in 
anisotropic parameter fields.  Results are plotted as a function of the normalized measurement 
support.  Circles denote variogram calculation in the x-direction; triangles denote variogram 
calculation the y-direction.  The support dimension in panes A and B increase in the x-direction, 
while the support dimension in panes C and D increase in the y-direction. 
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5.5 Conclusions 

 Combining measurements from different methods that have a range of 

measurement scales to quantify the correlation structure of hydrologic properties is a 

challenge in developing surface or subsurface models to study Earth processes.  While 

a number of studies have examined the complex relationship between measurement 

scale and the apparent correlation to develop analytical models, we have demonstrated 

these results are only valid for an isotropic parameter field where increasing 

measurement support can be treated by block averaging.  However, most earth 

processes are anisotropic and several remote sensing techniques used to characterize 

relevant properties have non-equidimensional measurement supports 

   When anisotropy is introduced into the parameter field of interest or when 

measurement support changes with direction, the error in the apparent correlation 

length becomes sensitive to the degree of anisotropy in the sampled property as well 

as the correlation length in the direction of increasing measurement support.  When 

the increasing measurement support dimension is in the same direction as calculated 

apparent correlation length the errors are consistently higher than when the two 

processes are perpendicular to one another or when the measurement support is 

equidimensional.  We attribute this to the continuous alteration of the field in the 

direction in which we calculate the apparent correlation length by the measurement 

process.  When the two processes are perpendicular, the amount of error in the 

apparent correlation length at a given measurement support increases as the ratio of 

the correlation length in the direction of increasing measurement support to the 

correlation length in the direction of calculated apparent correlation length decreases.  

Hence, as the parameter field becomes more anisotropic the impact on the error in 

apparent correlation length becomes more extreme, and there is relatively less error for 

increasing support dimension in the direction of maximum correlation than in the 

direction of minimum correlation.  Furthermore, the true correlation length in the 

direction of increasing support dimension is inversely related to the rate at which the 

apparent correlation increases with support, and there is a diminishing effect on the 
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error in the apparent correlation length at large supports relative to the underlying 

correlation length. 

 The results of this study indicate that current analytical expressions for relating 

an increase in measurement support to the apparent correlation length are incapable of 

predicting the behavior of more complicated, anisotropic systems.  Thus, when 

integrating measurements collected with different techniques over a range of scales, 

especially when considering anisotropic property fields such as exist at the field or 

catchment scales, it is important to consider the impact of the true correlation length 

on the rate at which error the apparent correlation length increases with support.   

Further studies are required to develop quantitative relationships between error in the 

apparent correlation length and measurement support for anisotropic systems and non-

equidimensional measurement supports.  These relationships are necessary to quantify 

uncertainty in estimates of the correlation structure from remote sensing or 

geophysical images so the may be more applicable to hydrologic models of near-

surface processes.  Knowledge of the measurement support and any a priori 

information on the surface or subsurface correlation should be accounted for in the 

design of geophysical surveys, the interpretation of data, and in integration of 

parameter estimates to hydrogeologic models.   
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CHAPTER 6.  CONCLUSIONS 
 
 
 Understanding the spatial distribution of hydrologic properties that govern 

flow and transport behavior in the vadose zone is critical to developing effective 

groundwater management strategies.  Obtaining the spatial distribution of properties 

with traditional measurements can be challenging as they often provide very accurate 

measurements but sparse spatial coverage.  Because it is sensitive to water content in 

the vadose zone, electrical resistivity imaging (ERI) is a geophysical method that is 

quite useful for creating spatially exhaustive maps of the subsurface properties.  ERI 

provides a continuous map of the electrical conductivity structure, which can be 

related to the subsurface distribution of hydrologic properties.  However, to produce 

more detailed maps of variations in conductivity structure that better inform 

hydrologic models requires that we refine methods for monitoring subsurface 

hydrologic processes with ERI. 

 The goal of this dissertation is to set forth a framework for informed imaging: 

the incorporation of all existing information about an experiment into the acquisition, 

inversion and interpretation of ERI data, to provide better quality maps of 

conductivity.  This is achieved through two proposed methodologies: the first is an 

algorithm for informed experimental design, and the second implements an 

application-specific inversion algorithm based on the extended Kalman filter (EKF).  

The proposed informed experimental design algorithm selects acquisition arrays for 

ERI experiments that produce greater data sensitivity to an imaged region than can be 

achieved using standard arrays. I also demonstrate the effective implementation of an 

application of the EKF for inverting ERI data.  The EKF has not previously been 

applied to processing field data, though it has been shown to be feasible for synthetic 

and laboratory data.  As a precursor to the application of informed experimental 

design, I demonstrate the development of an a priori hydrostratigraphic model 

integrating geologic, hydrologic, and geophysical data using advanced visualization 

software. Furthermore, one of the complexities of combining different types of data 
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with a range of measurement scales into a single hydrologic model, errors in the 

estimation of the correlation structure, is examined for anisotropic systems and 

measurements with non-equidimensional support, as are often encountered with 

geophysical or remote sensing measurements. 

 The primary contributions of this dissertation are as follows: 

 

• Creation of an a priori model of the hydrostratigraphic structure of the Harkins 

Slough Recharge Pond in an advanced visualization environment.  The model 

combines geologic, hydrologic, and geophysical data into a systematic 

framework for describing properties of interest for modeling flow behavior.  

Simulated flow behavior based on the hydrostratigraphic model reveals gaps in 

understanding and highlights regions of interest for ERI monitoring. 

 

• Development and application of a methodology for informed experimental 

design.  The methodology is consistent with the concept of informed imaging 

in that it uses the created a priori model to guide the selection of acquisition 

arrays with greater data sensitivity than can be achieved using standard arrays.  

The proposed experimental design process also has the flexibility to 

incorporate advances in data acquisition systems, such as multichannel 

instruments. 

 

• Acquisition of unique ERI data that monitors infiltration beneath a recharge 

pond with high temporal resolution.  The combination of 1D and 2D ERI 

imaging experiments with short sampling intervals over several months 

produces a data set that images infiltration processes with more detail than is 

usually achieved in the field.  This data set provides a unique opportunity for 

advancing the way in which ERI is incorporated into hydrologic monitoring. 

 

• Implementation of an EKF algorithm for inverting time-lapse ERI field data.  

This is the first time the EKF has been successfully applied to ERI data outside 
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of synthetic examples, providing a new approach to ERI monitoring.  Rather 

than regarding each time-step as an independent image, the EKF models both 

the measurement process and the evolution of the monitored physical system to 

integrate all information acquired from previous time-steps into the current 

model update. 

 

• Identification of relationships between measurement support and apparent 

correlation length in anisotropic systems and for non-equidimensional 

measurements that are not explained by existing analytical models.  Analysis 

of the impact of anisotropy and non-equidimensional measurement on errors in 

the apparent correlation length are important when combining remote-sensing 

or geophysical data with conventional hydrologic measurements into a single 

model of they hydrologic properties that control flow and transport behavior. 

 

 The goal of informed imaging is to provide a systematic framework for 

improving the quality of acquired ERI data and the analysis of that data.  The 

application of informed imaging to field experiments opens many areas of research to 

exploration.  As noted in Chapter 4, only the Wenner data from one surface line was 

inverted using EKF.  However, EKF is capable of incorporating all other data sets into 

the estimation of the conductivity structure.  Unlike most applied time-lapse inversion 

algorithms that treat each data set as a “snapshot,” the EKF is ideal for time-series 

signals because it considers both the observation process and an evolving physical 

system.  Further research into merging data sets that use different acquisition arrays 

into a single time-series signal for continuous monitoring could greatly improve 

estimates of the conductivity structure through time.  For example, if time-lapse data 

were to be collected with different acquisition arrays designed to image different depth 

regions throughout time, they could be consolidated into a single data set using an 

EKF inversion scheme.  This is particularly relevant to future work as we move 

toward better integration of geophysical and hydrological data. 
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 Building on the concept of continuous monitoring, there is an opportunity to 

expand the informed experimental design methodology to remove temporal constraints 

that arise from the “snapshot” approach to acquisition of images.  The method can be 

expanded to accommodate a continuous imaging framework while still identifying an 

imaging experiment with greater data sensitivity to the imaged region.  Furthermore, 

there is an opportunity to adapt the presented method to real-time experimental design, 

in which acquisition arrays are continuously updated as information about the 

subsurface structure is obtained.  In terms of increasing efficiency of informed 

experimental design, the proposed design process still relies on a source pair, but the 

algorithm could be expanded to allow for multiple source and sink electrodes capable 

of generating “focused” currents.  The question of how to identify the most 

informative combinations of source electrodes, and the relative magnitudes of the 

current sources and sinks, remains an open avenue of research. 

 Beyond further development of the proposed methods, I see two unique 

opportunities for expanding the use of ERI in monitoring vadose-zone processes.  The 

first is identifying the value of time-lapse ERI data to structural and flow models of 

the subsurface.  Chapter 2 identifies regions of interest for monitoring to improve 

understanding of the infiltration behavior at the Harkins Slough Recharge Pond.  How 

best to incorporate the acquired monitoring data into the hydrostratigraphic model or 

flow simulation remains unresolved.  Likewise, how to evaluate the contribution of the 

data to generating improved simulations of flow, ones that better reproduce observed 

behavior, requires further investigation.  The second opportunity is similar to the first 

but relates to the data acquired at the pond.  While it was shown that the unique data 

set collected at the recharge pond gives a detailed reflection of infiltration processes, it 

also creates an opportunity for expanding the inversion process to approximate 

hydrologic properties directly from acquired geophysical data without the use of 

petrophysical relationships.  For example, given that electrical conductivity is highly 

related to water saturation in the vadose zone, it may be possible to estimate the 

hydraulic conductivity field in the subsurface directly from the rate and direction of 

changes in the electrical conductivity structure.  The estimation of hydraulic 
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conductivity or other hydrologic parameters directly from changes in geophysical 

properties could greatly enhance characterization of the spatial distribution of these 

parameters, improving models of processes dependent on these properties. 

 This dissertation makes several contributions to the advancement of electrical 

resistivity imaging for monitoring vadose zone processes.  In essence, this work 

formalizes the concept of informed imaging, providing a framework for incorporating 

all available information into the acquisition and processing of data that better 

measure the processes or properties of interest.  I have developed an experimental 

design method that selects acquisition arrays producing high data sensitivity to an 

imaged region.  I have also presented an approach for inverting time-lapse electrical 

resistivity data that incorporates all prior information about the evolving physical 

system and measurement error into the estimated conductivity structure at each time-

step.  Finally, my work has addressed some of the challenges of integrating different 

sources of data into a single hydrogeophysical model, improving simulations of 

subsurface processes and interpretations that guide decisions on the management of 

groundwater resources. 
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APPENDIX A. 
Note on Appendix A: 

Schlumberger’s PETREL and ECLIPSE software packages are designed for 

creating structural models and flow simulations using seismic and supplementary 

well-log data.  The primary application is simulation of 3-phase (oil-gas-water) flow in 

oil and gas reservoirs at depth.  The following appendix contains notes on 

modifications to standard PETREL/ECLIPSE functions and processes that can be used 

to model 2-phase (gas-water) flow in the near surface.  The purpose of this appendix is 

primarily to address importing and processing unsupported types of data that are often 

encountered in near-surface monitoring projects in the PETREL environment.  It also 

describes modifications to standard inputs for modeling flow using ECLIPSE that 

allows for the simulation of two-phase (gas-water) flow at low pressures and 

saturations.  The following is not intended to replace PETREL or ECLIPSE user-

guides and tutorials, but as a supplemental guide when using the software for near-

surface modeling applications.  Furthermore, the descriptions in this appendix assume 

some familiarity with the options and processes used to create models using PETREL 

and ECLIPSE. 

This appendix is organized according the workflow for building a PETREL 

structural model to use in an ECLIPSE flow simulation.   

Section A1. includes descriptions of the most common data file formats used 

in PETREL; the pre-processing required to convert data to a PETREL-compatible 

format; and the workflow for importing different data formats into PETREL.   

 Section A2. addresses the creation of a structural model from diverse data sets.   

 Section A3. describes the process for exporting PETREL data to an ECLIPSE-

readable data file, and the various sections of the ECLIPSE run file required to create 

a flow simulation.  The most commonly used keywords for near-surface simulations 

associated with each section are described, but a full list can be found in the ECLIPSE 

user manual.   
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A1. Data 

A1.1 PETREL Data Formats 

PETREL accepts data in a number of formats, which can be found under “File 

⇒ Import ⇒ File Selection Type.”  Highlighting a given file type will bring up a short 

description and example file format.  For shallow water applications the most common 

file types are Simple Well Logs (ASCII), for logs and/or cores; SEG-Y Seismic Data, 

for 2d seismic sections with headers in UKOAA format; and Image, for processed 

GPR/ERI cross-sections or other unsupported processed data types that can be 

converted to depth-section images. 

Simple Well Log takes an ASCII file in the standard GSLIB format, including 

file name, number of columns, column headers, and data in tab-delimited columns.  

Columns include the (x,y,z)-coordinates of each data point and the corresponding 

values.  This format accepts values as general numbers, in scientific notation, or a 

combination of both.   

 
An example of the format is: 
filename 
5 
X 
Y 
Z 
DATA1 
DATA2 
X1  Y1 Z1 DATA11 DATA21 
X2 Y2 Z2 DATA12 DATA22 
. 
. 
. 

 

No end file indicator is needed to import files in this format.  No duplicate 

point locations are allowed, and z-values must be monotonically increasing or 

decreasing.  When importing these data as an on-shore well, z-values must be saved as 

meters below mean sea level (i.e. as negative values if above sea level).  Section I.c.1 

contains more information on the process of importing data. 
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2D Seismic Line accepts seismic sections with header information in a standard 

UKOAA format.  Section I.b includes details on converting headers to this format.  

UKOAA headers include the line number, shot number, and the (X,Y)-coordinates of 

each common depth point (cdp) trace.  Data can be imported as either time or depth 

traces for each cdp location.  If imported as a depth section, the z-value of the top or 

base of the section can be changed using the calculator function after the section is 

imported into PETREL. 

The last common file type for near-surface applications is the Image file.  This 

is the most straightforward method for importing processed data sets that are not 

supported by PETREL (e.g. ground-penetrating radar (GPR) or electrical resistivity 

imaging (ERI) processed sections).  Data plots saved as .jpg or .bmp files can be 

loaded into PETREL as image files.  After importing, the coordinate locations of the 

four corners of the image are input into “Image Properties.”  This works best if the 

images follow a predominantly straight line, and the section has the same top and 

bottom depths throughout.  To change the location of the image a Surface Imaging 

Module license is required.  Any reflections or features in the images must be digitized 

into a PETREL surface to be used as a structural or flow horizon. 
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A1.2 Pre-processing Data 

A1.2.1 Coordinate Transforms 

Coordinate transform is required if different coordinate systems are used in 

locating acquired data.  The process below creates a transform for two coordinate 

systems in the same units.  The first step is to develop a rotation, translation, and error 

calculation for moving between coordinate matrix M, given as a [3xn] matrix of 

(x,y,z)-locations in local coordinates, and D, the corresponding matrix in standard 

coordinates (those used for locating all data in the PETREL model). M and D must be 

co-located measurements simply given in different coordinate systems.  Coordinates 

given solely in the local coordinate frame can then be translated to standard 

coordinates based on the derived relationship. 

Before applying the script to derive the rotation matrix and translation vector, 

M must have the same units as the standard coordinate system.   In the pseudo-code 

below the make_coordinate_transform_matrices script determines the rotation matrix, 

R, the translation vector, T, and associated error, e, for converting the (x,y,z) 

coordinates of the local system to the same position in standard coordinates.  The 

following sample code gives the process for converting an [n x 3] array, coord, with 

the local (x,y,z) locations, respectively, to standard coordinates, where n is the number 

of points in the local coordinate system: 

 
[R,T,e] = make_coordinate_transform_matrices(D,M); 
for i=1:length(coord)  
 coord_standard(i,:) = (R*[coord(i,1) coord(i,2) coord(i,3)]’)’+T’; 
end; 

A1.2.2 Finding Elevations of (X,Y)-Surveyed Points 

Before calculating the elevations, (x,y)-locations must be converted into the 

standard coordinates (those used for importing data into PETREL).  Section A1.2.1 

contains details on coordinate transforms.  A topographic model (topo.dat), converted 

to standard coordinates, must also be available and interpolated onto a regular grid.  

Applying a MATLAB interpolation function to estimate the z-values associated with 
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the (x,y) coordinates based on the (x0,y0,z0) values of the topographic model will then 

give an estimate of the z-coordinate at new locations. 

This process should only be applied to points that fall on the interior of the 

topographic model where there are a sufficient number of surveyed points to estimate 

elevations reliably.  On the model edges values are only poorly estimated and should 

not be used for interpolation until the topographic model is expanded. 

A sample code for this calculation is given below.  In the code xmax, xmin, 

ymax, and ymin refer to the minimum and maximum x and y coordinate values in the 

topographic model.  xtopo, ytopo, ztopo are the regularly-gridded coordinates in the 

topographic model; xgiven, ygiven are the coordinates given without z-values.  Zest is 

the estimated z-coordinate: 

 
[Xgrid,Ygrid] = . . .  
meshgrid(linspace(xmin,xmax,numpts),linspace(ymin,ymax,numpts)); 
Zgrid = griddata(xtopo,ytopo,ztopo,Xgrid,Ygrid,’cubic’); 
Zest = interp2(Xgrid,Ygrid,Zgrid,xgiven,ygiven); 

A1.2.3 Reading Dates/Times from ASCII Files into MATLAB 

When time stamps are associated with temporal data in ASCII files, they must 

be read into MATLAB as character strings and converted to a date variable.  A simple 

approach is to convert time stamps to serial date numbers, which expresses the time as 

the number of days since 01 Jan 0000 0:00:00.  Subtracting a later reference date from 

all date numbers will change the reference date for a particular data set.  (e.g. 

Subtracting the serial date number for 01 Jan 2000 0:00:00 will change all values to 

days since that reference date.)  To convert to serial date numbers time stamps must 

include a year, month, day, hour, min, and second.   

A sample code is included below.  The if/else statement may be omitted if 

dates have a consistent number of characters throughout the whole file: 
fid = open('ASCII_file','r'); 
  
% Skip multiple header lines by using this command for each one in 
the % file 
for i=1:n 
    temp=fgetl(fid); 
end 
  
%Read tab-delimited columns as strings (%s) or numbers (%f) 



 154 

data = textscan(fid,'%s.. %f...'); 
fields = {'date','time'}; 
temp = cell2struct(data(:,n),fields,numfields); 
          %n = the number columns with string values 
date = temp.date; time = temp.time; 
  
% If strings are different lengths use if/else statements. 
for i=1:numdates 
    if (date(:,end)==' ') 
        mo(i) = str2num(date(:,mo_cols));  
        day(i) = str2num(date(:,day_cols)); 
        yr(i) = str2num(date(:,col:end-1));% if date = ‘m/dd/yy’ 
    else 
        mo(i) = str2num(date(:,mo_cols)); 
        day(i) = str2num(date(:,day_cols)); 
        yr(i) = str2num(date(:,col:end));  % if date = ‘mm/dd/yy’ 
    end 
 
    hr(i) = time(:,1:2); 
    mn(i) = time(:,4:5); 
    sec(i)= time(:,7:8);  % for time = hh:mm:ss     
end 
  
datestamp = datenum(yr, mo, day, hr, mn, sec); 

A1.2.4 Averaging Transient date from hourly/subhourly to daily values 

Often times it will be necessary to convert time-series data sets to a common 

sampling interval.  Once the time stamp for each data point has been converted to a 

MATLAB serial date number (Date/time converted to days since 01 Jan 0000 0:00:00 

or some other reference as previously described) the sample code below can average 

hourly or sub-hourly measurements to daily values.  With slight modifications 

monthly and yearly averages can be obtained through a similar process. 
tmin = floor(min(timeseries)); tmax = floor(max(timeseries)); 
k=1; 
 
for i=tmin:tmax 
    sum = zeros(1:num_datacolumns));  
    n = 0; 
    for j=1:length(timeseries) 
        if (floor(timeseries(j)==i) 
       sum = sum + data(j,:);  
            n = n+1; 
        end 
    end 
    daily_ave(k,1)=i; daily_ave(k,2:length(data)+1) = sum/n;  
    k = k+1; 
end 
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A1.2.5 Converting coordinates in SEG-Y Headers 

If the coordinates associated with processed seismic headers are not in the 

same coordinate system used to import data into PETREL, the coordinates and header 

data must be transformed to a standard UKOAA format reflecting coordinate 

information consistent with the PETREL coordinate system.  

This is accomplished by first creating a header file with the line number, shot 

point number, x-coordinate and y-coordinate (in standard coordinate system values) in 

the following format: 

 

Line name (left adjusted): Columns 1-16 

Shot point number (justified): Columns 17-24 

X-coordinate (justified): Columns 45-52 

Y-coordinate (justified): Columns 53-60 

 

 

In the UKOAA format, X- and Y-coordinates cannot exceed 8 characters.  However, 

values with too few significant figures will appear to overlap and cause distortions in 

the image when data are loaded into PETREL.  The header file should be saved into 

the same directory as the existing seg-y data with a “.prn” extension.  

The headers can then be transformed by launching the SEG-Y Utility function 

in PETREL.  Within the utility, the created UKOAA header file should be loaded into 

the UKOAA selection tab and the original data should be included as the seg-y file to 

be imported.  It is important to include the line numbers where indicated.  The default 

UKOAA format options can be used, but the trace identifier should be changed to cdp, 

shotpoint, or trace number as appropriate.  The output is saved to a new directory and 

includes a new *.sgy file with the same name as the original file and a report file.  The 

*.sgy file in the created directory contains the new header information and is the one 

that should be imported into PETREL. 
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A1.2.6 Reading Electrical Resistivity data from MPT-ERT output files 

Collection of ERI data at a site using a Multi-Phase Technology ERT (MPT-

ERT) instrument requires data processing using software from the Environmental 

Geophysics Group at Stanford prior to input into PETREL.  Scripts have been 

developed by the group to process these data in MATLAB.  As a first step, MPT-

output data must be converted into a MATLAB-compatible format.  The script 

datareader.m (included below) can be used to extract data from and MPT-ERT output 

file (*.out) into MATLAB.  This code only works for complete data files, so data files 

that stop prior to the end of a run should be eliminated before reading the values into 

MATLAB, as they will cause an error.  These data can be added individually later.

  

Once data have been read into MATLAB, measurements sent to error files 

(*.err) can be replaced with NaNs using the script datafill.m (also included below).  

The (x,y,z) locations of each source, sink, positive receiver and negative receiver 

electrode are recorded for each measurement in the output of datafill.m.  If data values 

are available they are recorded with the corresponding coordinates, otherwise columns 

are filled with NaN. 

 
datareader.m 
% Script for reading data from MPTERT .out files. 
% Create and load a matrix of all folders and files to be read from 
MPT 
% output.  These are 'folder' and 'file', below. 
  
% Read data from files (Sample, R, Rsd, Charge, IP, IPsd, Amps 
for i = 1:size(folder,1)  
    for j=1:size(file,1) 
         
        % make variable with directory and file name 
        infile = sprintf('/Users/vanessa/Documents/Research/Pajaro 
   Valley/FieldData0809/Output/%s/out_file_%s_%s.out', 
    folder(i,:),folder(i,:), file(j,:)); 
         
        %open file 
        fid = fopen(infile,'r'); 
         
        %move through 17 lines of mpt output file header 
        for k=1:17; temp=fgetl(fid);end 
         
        %read in data (this is only sample #, R, Rsd, Charge, IP, 
 % IPsd,and Amps; elec locations are saved to another .mat file) 
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        data = textscan(fid, '%f %*f %*f %*f %*f %*f %*f %*f %*f %f 
  %f %f %f %f %f %*f %*f %*f'); 
         
        % make cell matrix into number matrix 
        outdata = cell2mat(data); 
         
        %write to .mat file 
        outfile = sprintf('/Users/vanessa/Documents/Research/Pajaro 
   Valley/FieldData0809/ERTMAT/%s_%s.mat',   
   folder(i,:),file(j,:)); 
        save(outfile,'outdata'); 
         
        fclose(fid); 
    end 
end 
 
 
datafill.m 
% Script to output electrode locations and data for all ERT data 
files 
% collected.  
 
% Columns of MPT-ERT output files: 
% TX+(x,y,z) TX-(x,y,z) RX+(x,y,z) RX-(x,y,z) Res Res_sd Chgbility IP  
% IPsd Current 
% TX/RX are in utm modified transformed coordinates (total of 12 col) 
% Res =V/I 
% Res_sd = sd of res values 
% Chgbility = chargeability 
% IP 
% IPsd = sd of IP meas 
% Current = driving current in Amps 
  
% load mat file with elec index, locations, and file names 
load matgen090603.mat 
  
% make vector of file labels in terms of minutes  
    mo = str2num(files(:,1:2)); day = str2num(files(:,3:4));  
 yr = str2num(files(:,5:6)); 
    hr = str2num(files(:,8:9)); mn = str2num(files(:,10:11)); 
 s = zeros(1937,1); 
    mns = datenum(yr,mo,day,hr,mn,s); mns = (mns - min(mns))*24*60; 
    mns = num2str(mns); 
    clear mo day yr hr mn s; 
  
% define data matrix that will be output with elec locations 
data = zeros(4656,18); 
data(:,1:12) = [elecloc(elecind(:,2),2:4) elecloc(elecind(:,3),2:4) 
elecloc(elecind(:,4),2:4) elecloc(elecind(:,5),2:4)]; 
  
  
for k = 1:size(files,1); 
     
    %load data from ERTMAT dir 
    infile = sprintf('/Users/vanessa/Documents/Research/Pajaro 
Valley/FieldData0809/ERTMAT/%s',files(k,:)); 
    load(infile); 
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    % clear data from last run 
    data(:,13:end) = zeros(4656,6); 
     
    % fill in data matrix 
    for i = 1:4656 
        a = find(outdata(:,1) == i); 
        if isempty(a) 
            data(i,13:end) = NaN(1,6); 
        else 
            data(i,13:end) = outdata(a,2:end); 
        end 
    end 
     
    % make out file to dir ERT0809 and save new data 
    outfile = sprintf('/Users/vanessa/Documents/Research/Pajaro 
Valley/FieldData0809/ERT0809/%s',mns(k,:)); 
    save(outfile,'data'); 
     
    % clear outdata variable for next run 
    clear outdata; 
end 

 

A1.3 Importing Data into PETREL 

A1.3.1 Simple Well Logs 

When first importing log data, Simple Well Logs (ASCII) is the most 

straightforward option.  Log data are imported by selecting the file to import and the 

Simple Well Logs data type.  In the dialogue box, icons can be used to set the number 

of columns to be imported.  For the first file, the “Generate new” log type should be 

used, and a variable name and template must be defined for each data series.  When 

importing subsequent wells or logs with the same data types, the tabs under “Global 

Well Logs” will select the log type associated with each column.  In all cases, if z-

values are given in meters below mean sea level (msl), the “Onshore” option under the 

“Geometry” tab must be highlighted. 

To add data series to existing wells either the Simple Well Logs or Well Logs 

file type may be used.  If using Simple Well Log, the process follows that described 

above.  If using the Well Logs data type the z-axis should be given in meters above 

msl instead of meters below msl. 
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A1.3.2 SEG-Y with Preset Parameters 

The SEG-Y with Preset Parameters import selection type is only required if 

header files are altered to the UKOAA standard format. If the original header files 

contain the correct coordinate data and no other alterations are required, the original 

data file may be loaded into PETREL using the more generic SEG-Y Seismic Data 

option.  

The SEG-Y with Preset Parameters allows the user to import processed seg-y 

seismic data with altered header files that include the (x,y)-location of traces in the 

standard coordinate system.  To import data under this file type, the *.sgy file in the 

directory created by the SEG-Y Utility as described in the section A1.2.5 above must 

be used.   The coordinate scaling value should be changed to “1”.  All other options 

may be left at the default values.  In the second window, it is possible to alter the name 

of the seismic line and to change between time and depth on the z-axis.   

Once a seismic section has been loaded into PETREL, the depth of the section 

can be shifted by right-clicking the seismic variable under the “Inputs” tab to the left 

of the visualization window.  Under the “Geometry” tab the shift function moves the 

section up or down a given number of seconds or meters.  To apply changes to the 

data, it is necessary to click the “Shift” button before exiting the menu.  To use this 

approach, the absolute elevation of the top of the seismic section must be known prior 

to importing the data. 

A1.3.3 Images 

For data types, such as GPR or ERI, that result in processed images from data 

that are not currently supported by PETREL, the simplest solution is to import the data 

as images (either *.jpg or *.bmp files).  The default options for importing this type of 

file are sufficient.  Once the image variable appears in the “Inputs” window, the 

(x,y,z)-locations of the four corners of the image are added by right-clicking on the 

image icon and selecting the “Property” tab.  The data cannot be added to the 

visualization window until the coordinates have been added.  This process works best 

for data that were collected in a (predominantly) straight line and for which the depth 

of the image section is well constrained.  If this is not the case, the location of features 
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identified in the images may be distorted.  Adding the coordinate locations to image 

corners requires the Surface Imaging Module license, which is not current part of the 

Stanford PETREL package but is available from Schlumberger. 

A1.3.4 Using Settings/Calculator/Spreadsheet 

Even after being imported into PETREL, a data series may be manipulated in a 

number of ways.  Most modifications required can be achieved using the “Settings,” 

“Calculator,” or “Spreadsheet” options available on the right-click menu of any item 

on the “Inputs” tab.  If an individual item is selected, only the properties of the data 

series associated with that item will change.  To change properties for all data series of 

a particular type the corresponding options under the “Global” heading should be 

selected. 

The “Settings” option can be used to change the geometry (e.g. the z-locations) 

and the color bar properties associated with a data series.  This tab also contains 

several options for altering how the data series is labeled and how it appears in the 

visualization window.  The “Calculator” tab is useful for performing conversion 

within PETREL.  For example, the calculator can change permeability values from 

m/day to Darcy’s by applying the appropriate transform.  Although PETREL does 

keep a history of calculator operations, it does not associate units with a particular data 

series, so any conversions should be well-documented.  “Spreadsheet” contains all 

locations and property values associated with a given well location.  The individual 

entries can be changed manually within the spreadsheet.  If possible, however, this 

option should be avoided as PETREL has no option to track changes made within the 

spreadsheet. 

A1.3.5 Using Global Well Logs and Templates 

All well data is associated with a log type template when it is imported into 

PETREL.  The default option is “generic well log.”  When possible, it is convenient to 

associate a type of data with the corresponding PETREL data template.  Right-clicking 

on the data name under the “Global Well Logs” heading and selecting the “Templates” 

option can change the template for any data type.  The properties of the color bar 
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corresponding to each data series can be changed in a similar fashion by selecting the 

“Color bars” option.   

Right clicking the “Global Well Logs” heading, and selecting the “Symbols” 

option can also change the appearance of wells in the visualization window.  This will 

change the size of the wellhead labels in addition the appearance of the well sections. 

A1.3.6 Digitizing Surfaces 

It is possible to extract features from data input as images by digitizing 

surfaces along horizons appearing within the image.  Surface can be digitized by 

selecting “Make/Edit Polygon” under the “Utilities” tab; choosing “Make/Edit Points 

⇒ Add New Points;” and clicking along the horizon of interest.  It should be verified 

that all points fall on the plane of the image. This procedure generates a new set of 

points for each image and each horizon.  When combining horizons from a number of 

images, selecting the first set of points created, right clicking, and choosing “Points ⇒ 

Settings ⇒ Operations ⇒ Append Points” will set the horizon to be augmented.  

Highlighting another set of points created in the “Inputs” tab, and clicking the “Run” 

button will add those points to the first series.  This process can be repeated for all 

remaining sets of points.  The merged set of digitized points is then converted to a 

surface using the process described below in section A2.1.2. 
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A2. Generating Structural Models in PETREL 

A2.1 Defining Model Boundaries 

The following section describes the process for defining the (x,y,z)-extents of a 

PETREL model space and cells. 

A2.1.1 Defining Polygons 

The lateral extents of a Petrel model space are defining by a bounding polygon.  

Polygons are created using the tool in “Processes ⇒ Utilities ⇒ Make/Edit Polygon.” 

Double-clicking the last option brings up a dialogue box for defining the (x,y,z) 

boundaries of a rectangle or some other set polygon.  Alternatively, clicking at various 

points within the visualization window will create a polygon with nodes at selected 

points.  For each model, two polygons with the same (x,y) boundary coordinates must 

be created at the upper and lower extent of the model space.  This is achieved by 1) 

repeating the process above with 2 different z-values or 2) copying, pasting, and 

renaming the polygon in the “Inputs” tab and then adjusting the depth of the polygon.  

The depth is adjusted by right-clicking the copied polygon and selecting “Settings ⇒ 

Geometry” to change the value of z through variable “A.”  

 

A2.1.2 Creating Surfaces 

Polygons are converted to surfaces using “Processes ⇒ Utilities ⇒ Make/Edit 

Surface.”  Before opening this function, a polygon on the Inputs tab should be 

highlighted.  Clicking the arrow icon will set the highlighted polygon as the main 

input.  The same polygon can be inserted for the surface boundary unless it does not 

cover the full (x,y)-extent of the desired surface.  Selecting the “Get Selected Limits” 

option will prompt PETREL to automatically fill the remaining settings for creating a 

surface.  This process should be used to create a surface at the top and bottom of the 

model space to define the upper and lower vertical extents, based on the polygons used 

to create the lateral boundaries of the model space.  It should be verified that the 

resulting limits match the (x,y)-extent of the model space.  Again, when creating 
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multiple surfaces, the process above can be repeated for each surface or the surface 

can be copied, renamed, and shifted using the same process described for the polygon.   

A2.2 Making Grids 

A2.2.1 Make a Simple Grid 

A simple grid is created using the function under “Processes ⇒ Utilities ⇒ 

Make Simple Grid.”  Highlighting a surface with the correct (x,y)-extents on the 

“Inputs” tab and using the arrow icon will set the selected surface as the model 

boundary. Using the “Get Limits from Selected” option will automatically fill required 

fields for creating a grid. 

The number of nodes specified in the x- and y-directions determines cell 

spacing.  There is always one more node than cell in a grid.  Hence, the number of 

nodes should be set to one more than the value of the X- or Y-length divided by the 

desired dx or dy cell increment.  A good starting value is roughly 50 cells (51 nodes) 

in both the x- and y-directions unless the model space is particularly large or greater 

detail is required over the entire grid space.  If only a small area requires higher 

resolution it is better to use a local grid refinement in the region of high-resolution.  

Local grids are discussed in section A2.2.3.  

In addition to selecting the boundary, the options should also be set to 

“Skeleton only” and surfaces or values should be selected for the “Top Limit” and 

“Base Limit.”  If a topography surface is available, it can be used to define the upper 

boundary of the model space.  If no topography is available a flat surface can be used 

for both the top limit and the bottom limits.  

A2.2.2 Defining Horizons and Layers 

Created grids appear under the “Models” tab.  The process to this point only 

defines the cell spacing in the (x,y) plane.  Before creating the dz cell spacing 

PETREL requires the creation of horizons.  Horizons also appear under the “Models” 

tab and correspond to surfaces in the Inputs tab.  Horizons guide the layering process 

and provide the boundaries for defining regions within the model; horizons divide the 
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model space into zones with the number of layers defined for each zone.  When 

running ECLIPSE, mass balance is achieved by measuring flow from one zone to 

another across horizons.  If there are no distinct regions in the model it is possible to 

define the entire model space as a single zone with equally spaced layers. 

Z-cell spacings are created by opening “Processes ⇒ Structural Modeling ⇒ 

Make Horizons,” and using the “N”-icon to create the desired number of horizons.  

Highlighting and loading surfaces from the Inputs tab using the arrow icons will create 

horizons that correspond to those surfaces.  The number of layers in the zone should 

be set such that they give the desired interval spacing for each zone, where the total 

thickness of the zone divided by the number of layers is the z-cell spacing.  Ideally, 

the z-spacing should be equal to the resolution of the input lithology data, although the 

z-spacing can be defined on a coarser of finer scale.  After running this utility the 

entire (x,y,z)-grid should be available under the Models tab and can be seen in the 

visualization window. 

A2.2.3 Local Grid Refinement 

If a portion of the model requires higher resolution, the grid in that area can be 

refined to smaller cell sizes using “Processes ⇒ Structural Model ⇒ Make Local 

Grid.”  When the grid is refined within a subregion of the model space PETREL and 

ECLIPSE divides the model into a local (refined) and global (original) grid.  Although 

these grids are connected all structural (PETREL) and flow (ECLIPSE) properties 

must be defined for both the local and global grids. 

Under the function opened above, selecting “Create New” and loading a 

polygon defines the boundaries of the local grid.  It may be necessary to create a 

polygon with the boundaries of the local grid using the process described above for 

creating the global grid.  Selecting the new number of (x,y,z)-nodes will create a 

subgrid with finer discretization; the apply changes option must be applied for local 

grid refinement to appear. 
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A2.2.4 Creating Regions within a Model 

If trying to calculate mass balance using PETREL or ECLIPSE, the model 

must be divided into two or more regions as fluxes are determined across the 

boundaries between regions.  Creating two regions in a model with only one zone is 

accomplished by creating a PETREL property with value 1 in every grid cell under the 

“Models” tab.  Using “Process ⇒ Property Modeling ⇒ Geometric” the template for 

the new property can be set to “Region” and a value of 1 will be assigned everywhere 

in the grid for that property.  Bringing up the “Settings” option by right-clicking on the 

new property and selecting the “Filter” tab will make it possible to select a subspace of 

the model that will be converted to a second region.  Choosing the “Index filter” 

option and filtering on the variable K (the z-index), the minimum and maximum z-

indices of the second region can be specified.  After applying changes, right clicking 

on the new property again and using the calculator to set the region value equal to 2 

will change the value of the property within the filtered volume. The first region is 

associated with the value 1, and the second region is associated with the value 2. 

The process described above is only required if defining regions within a 

model consisting of only one zone.  If a model has been segmented into different 

zones by defining more than one horizon, the above process is not required.  The 

additional horizons in the model interior automatically create multiple zones. 

A2.3 Populating a Grid with Properties 

A2.3.1 Using Property Modeling 

Data variables to be transferred from well logs to the model space must first be 

upscaled to the grid spacing.  Under “Processes ⇒ Property Modeling ⇒ Scale up 

Well Logs,” selecting “Create New Property,” the property to be scaled, and all the 

wells containing the selected data series will upscale data logs in all wells.  The 

settings for upscaling are automatically linked to the layers and grid highlighted in the 

Models tab. 

Once all the needed properties have been upscaled, the model space is 

populated by opening “ Processes ⇒ Property Modeling ⇒ Petrophysical Modeling,” 
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and selecting “Use Common Settings” and “Overwrite.”  Highlighting the desired 

upscaled variable and unlocking the properties using the icon in the lower left corner 

will open the interpolation scheme options.  Unless detailed variogram information is 

available a simple scheme with the default orientation and correlation length is 

recommended.  However, if geostatistical information is available it should be used to 

provide a better estimation of the spatial variability of properties.  If more than one 

zone has been defined, all zones should be highlighted under the “Zone Filter” on the 

Models tab before applying the interpolation.  Once this modeling process has been 

applied all structural variables required to run an ECLIPSE model have been defined 

over the entire model space and values can be exported to run a flow simulation. 

A2.3.2 Defining Properties using Neural Networks 

Neural networks can be used to predict a data set in wells where certain logs 

are missing based on correlations between data sets in other wells.  For example, the 

electrical resistivity log in a well with only lithology data can be estimated from the 

correlation of lithology and resistivity in wells with both sets of data.  Ideally at least 

three types of logs should be used to create a neural network, and two of those logs 

should be available in the well for which the third data set is estimated.  The wells 

used to create the neural network are called training wells or training logs, and one-

half to two-thirds of the data points in these wells are used to create the neural network 

while the remaining one-half to one-third of the points are used to test the neural 

network.   

Before running the Neural Network Tool, it may be beneficial to detrend the 

data sets used to train the model.  This can be achieved in PETREL by selected a data 

series within a training well and opening “View Log Editor.”  Subtracting a heavily 

smoothed version of the data set from the original series will give an approximation of 

the differenced property.  It should be noted this is an optional step that may improve 

results but is not necessary if there are no obvious trends in the data. 

To begin, the “Well Manager” function should be opened under “Import ⇒ 

Wells.”  Selecting “Show ⇒ Logs,” the training wells and logs to be used should be 

copied into a new folder with an obvious label.  The Neural Network tool will only 
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work on this folder and its contents so all training information must be included.  

When creating the neural network it should be kept in mind that like many other 

property tools in PETREL, the Neural Network tool is designed in the Input tab and 

applied under the Models tab.   

Creating a neural network for the selected wells and logs uses “Train 

Estimation Model” function under the “Utilities” tab. Wells copied into the neural 

network folder and the training logs should be loaded, and the “Estimation” option 

should be selected instead of the default “Classification” option.  The log to be 

estimated should be highlighted as the model.  This log must be available for all 

training wells but will be the missing log in the wells for which the neural network is 

created.  In the Settings environment, the output log and the training parameters can be 

set to default parameters unless more information about the how the model should be 

trained is available.  During this step the user should consider that overtraining the 

model and using correlated logs should be avoided as they will yield sub-optimal 

results when applied at locations distant from the training well or wells.  The created 

neural network can be viewed by going to “Windows ⇒ Well Selector ⇒ Well Logs 

⇒ Created Neural Net.” 

The neural network is applied to an existing grid by opening “Property 

Modeling ⇒ Geometric ⇒ Zone/Increments,” and selecting the created neural 

network object in the Inputs tab.  Using the option “Make General Zone,” and a giving 

a new name for the object will avoid overwriting the neural network.  In “Processes ⇒ 

Property Modeling ⇒ Upscale Well Log,” choosing create new property, selecting the 

property to be estimated and the wells for which it should be estimated creates an 

upscaled property based on correlations in the neural network.  Opening the 

“Petrophysical Modeling” function and selecting the zone created from the trained 

neural network will populate the property over the model space.  After applying this 

function, the estimated data are integrated with the existing data from which the neural 

network was created. 
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A2.4 Incorporating Time-Dependent Data 

It is possible to incorporate time-dependent information into PETREL as 

observed data.  These data can be used as direct inputs into ECLIPSE as production 

information, boundary conditions, or as time-series observation data against which 

ECLIPSE outputs can be evaluated. 

A2.4.1 Production Data 

If water is being produced from recovery wells, and there is a time-lapse 

record of production history, these data can be included within PETREL as a sink to 

the fluid-flow system.   

Before importing the time-series data, the completion data for each producing 

well must be defined in terms of the well radius, borehole radius, and screened 

interval.  This allows the software to convert production, in terms of flow rate, to 

pressure gradient information.  Well completion data are included by selecting ‘Global 

Completions ⇒ Import on Selection,’ and importing a *.ev file containing the units, 

well name, completion date, “perforation”, top and bottom perforation elevations, and 

well diameter.  Alternatively, this can be done by opening a well-selection window, 

highlighting the desired well under the “Inputs” tab and selecting “Processes ⇒ Well 

Completion Design ⇒ Add/Edit Casing.”  The date under this option should be set to 

the start of the simulation or before.  Then, under the “Add/Edit Perforation” tab, the 

well casing diameter and perforation zone should be set.  Finally, the well-hole 

diameter can be set under “Completions ⇒ Settings.” 

Once the well completion has been defined, the production data are included 

by simply selecting “Inputs ⇒ Wells ⇒ Global Observed Data ⇒ Import on 

Selection” and selecting a *.vol file associated with each well.  The *.vol file should 

include a date and time stamp, as well as the production rate in the appropriate units.  

The software assumes the production rate is constant at the given value until the next 

time-step and flow rate included in the *.vol file.  Hence, if a well stops producing, a 

line should be included in the *.vol with the time production stops and a flow rate of 0. 
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A2.4.2 Hydraulic Head Observations 

Observations of the hydraulic head at given locations are imported in the same 

way as production data.  PETREL does not differentiate between these types of data.  

Hence, when exporting time-dependent data from PETREL to ECLIPSE, it is 

important to be aware of which observed data sets are included within the 

development strategy.  Observed hydraulic head data should not be included in the 

ECLIPSE run.  However, once associated with the PETREL model, the observed 

hydraulic head values can be used to history-match the data set after the flow 

simulation has run.  Piezometric maps of the hydraulic head can also be created by 

importing the hydraulic head values observed at a number of wells at a given time as 

points with attributes and then creating a surface using the same process described for 

creating a topographic surface. 

A2.4.3 Boundary Conditions 

Boundary conditions on the edges of the model space can be created using 

time-varying flux or hydraulic head information using a similar process to that defined 

above for creating aquifers.  However, for allowing flow across the vertical edges of 

the model, the aquifer should be defined to include only the outer edges of cells along 

the boundary, and the aquifer connection should be set to ‘top-down.’  The time-

varying hydraulic head or flux data are included by defining the type of aquifer as 

either constant head or constant flux and changing the values at regular intervals 

throughout the simulation. 
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A3. Flow Simulations in ECLIPSE 

ECLIPSE is a multi-phase flow simulator integrated with the PETREL 

software package.  It was originally developed for modeling three-phase flow (oil-

water-gas) in reservoirs at depth, but can also be use for near-surface, two-phase (gas-

water) systems.  ECLIPSE uses structural and property models developed in PETREL 

to solve a mass balance equation based on Darcy’s Law.  The solution is calculated in 

terms of pressure and takes minimum inputs of: the porosity and permeability 

structure in the model space, pressure-saturation curves of the local sediments, fluid 

properties for each phase, the initial pressure conditions, and grid structure of the 

model. 

ECLIPSE accepts inputs through various keywords under different headings in 

a single run file with a “.DATA” extension.  All properties can be included directly in 

the run file with the associated keyword or as an independent *.inc file called by the 

run file.  There are a few basic keywords that appear in almost all run files, but 

numerous optional keywords exist that can simulate almost any hydrologic condition.  

The ECLIPSE help file contains a glossary of all keywords, the associated inputs, and 

the various functionalities achieved by using different combinations of inputs.  The 

run file is split into a number of sections that describe spatial and temporal conditions 

of the simulation.  Keywords are associated with these various sections. 

A3.1 Exporting Data to ECLIPSE using the PETREL Interface 

Before running a fluid model from PETREL, it is useful to import files 

containing standard fluid properties that are associated with several keywords. Often 

for near-surface applications, site-specific values for these properties are unavailable 

and these standard values suffice.  However, if site-specific values are available they 

should always be used over the default values. Fluid property files are imported by 

selecting “Import ⇒ ECLIPSE Fluid Model” from the PETREL File menu and 

choosing a model type.  For variably saturated flow simulations “Black Oil Model 1” 

is a good choice; it contains all liquid properties need for the water and gas phases.  
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Importing this file creates a new property object on the Inputs tab named “Fluids.”  

This property holds the information about the physical properties of the fluids. 

For each type of fluid (i.e. water and air) in the model an aquifer must be 

created.  This is achieved by creating a polygon covering the area of the aquifer using 

the “Make/Edit Polygon” function under “Utilities” and the “Make New/Deactivate 

Old” button to highlight the region of the aquifer in the visualization window.  

Clicking the “Close Selected Polygon” button creates the polygon and all points 

interior to the polygon are part of the aquifer.  The polygon is made into an aquifer by 

opening “Simulation ⇒ Make Aquifer,” and choosing “Create New” with constant 

pressure and loading the created polygon into the Region of Interest slot.  Highlighting 

the property tab, the pressure can be set to 1 bar at the elevation of the pond head.  Salt 

concentration is left at 0 unless the salinity of the water is known, and the imported 

fluid model is included under this tab.  Repeating the process will create a second 

aquifer for the gas phase.  However, the gas aquifer should cover the entire surface of 

the model and the pressure should be set equal to 1 bar on the ground surface. 

The next step is to create a “Development Strategy” by editing the end date 

and selecting the reporting frequency and property values to be exported.  The time 

variable should also be set to the date when the flow simulation begins.  A simulation 

case is defined by loading grid properties, including the structural and hydrologic 

parameters (porosity and permeability), and the created aquifers.  In the simulation 

case, functions for the saturation curve, initial conditions, and rock compaction must 

also be loaded.  It should be verified under the “Strategies” tab that the required 

properties are loaded under the “Development Strategy Folder.” 

Once all the tabs have been filled with the necessary properties and input files 

exporting the simulation case creates the ECLIPSE files required to run a simulation.  

The simulation folder created by PETREL contains the run file and an INCLUDE file 

with all the keywords required for each section.   

A3.2 Creating an ECLIPSE Driver File Outside PETREL 

A simulation case can also be defined outside the PETREL environment, 

though it may still be convenient to export some property and grid information from 
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the PETREL workspace for large or complex model geometries.  A simulation case 

can be generated through a *.DATA file with the appropriate keywords within each 

section.  The description below for creating such an ECLIPSE run file contains only 

basic keywords for generating a simple model including an aquifer, pumping wells, 

and simple boundary conditions.  Keywords for creating more complex flow 

simulations can be found in the ECLIPSE help file.  

Included below are the sections of the ECLIPSE run file and a list of the most 

basic required keywords. Each ECLIPSE keyword takes a number of arguments that 

give values to the different properties associated with the keyword.  Descriptions of 

the arguments, as well as the order in which arguments appear after the keyword, are 

included in the definition of each keyword in the ECLIPSE help file.  A value must be 

provided for each argument of the keyword in order for ECLIPSE to compile 

correctly.  To use the ECLIPSE default values for an argument enter “1*” in the 

argument position.  Some general notes and observations for keywords and arguments 

are also included for each section. 

A3.2.1 Section of the ECLIPSE Driver File 

RUNSPEC 

This section initializes run information for the simulation.  Once the units for 

input variables have been set it is important to verify that all input values are 

consistent with the specified units.  This can be checked under ‘Units’ in the ECLIPSE 

help file.  It should be noted that “MDarcy” are in fact milliDarcy. 

 

TITLE: gives a name to the run for all outputs. 

START: gives the time at the start of the run. 

METRIC: defines metric units for all input values. 

WATER: includes water as a fluid in the simulation. 

GAS: includes gas as a fluid in the simulation. 

DIMENS: gives the maximum dimensions of the global grid.  ECLIPSE allots 

 memory based on the dimension of the grid. 
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LGR: local grid refinement.  Contains information on the local grid if one has been 

 created. 

UNIFOUT: puts all output files into one header file instead of individual output files 

 for each time-step. 

AQUDIMS: maximum aquifer dimensions; should be set equal to the maximum 

 number of model cells connected to the aquifer.  The number of dimensions 

 should be equal to the number of cells in the x-direction multiplied by the 

 number of cells in the y-direction if there is a gas aquifer over the entire model 

 space, as is required if the top of the model space is the ground surface. 

EQUILDIMS: equilibration regions allows for a slope in the water table.  This value is 

 equal to 1 if the region is flat. 

TABDIMENS: defines all the tables in a data set.  Each table is independent based on 

 the region to which it is applied.  For most applications this is equal to the 

 default inputs.  However, if using regions the fifth argument on the input 

 should be set equal to the number of regions in the model. 

NOMONITOR: turns off run-time monitoring in the summary files. 

NORSSPEC: prevents ECLIPSE from create a new summary file each time it restarts. 

NOINSPEC: prevents ECLIPSE from creating an initial index file. 

MSGFILE: controls generation of a message file depending on the argument.  This file 

 is not required, and often not useful, and can be turned of with an argument of 

 “0/.” 

 
GRID 

This section contains information on the grid structure.  It is typically easiest to 

export this information from PETREL by creating a simulation case as defined in the 

previous section and copying this information into the run file or by exporting the grid 

directly from PETREL by right-clicking the desired model and exporting as a general 

ECLIPSE file in ASCII format. 

 

GRIDFILE: contains the number of gridfile. 

INIT: causes ECLIPSE to output the initial files with the results. 
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INCLUDE 

GRID.inc: tells ECLIPSE to include the file grid.INC, which contains the grid  

 exported from PETREL.  The “INCLUDE” command is needed to associate 

 any *.inc file with the run file.  The grid.inc file can be created by selecting to 

 export the entire grid under the ‘Models’ tab in PETREL.  If created this way, 

 the file will contain both grid information and the property values associated 

 with each grid cell. 

 
EDIT 

No keywords are generally required for this section. 

 
PROPS 

This section defines matrix properties of the model region.  It should be noted 

that the simulation is very sensitive to the saturation functions included in this section.  

If possible, site-specific saturation-permeability curves should be used.  Otherwise, 

these curves can be treated as tuning parameters.  Furthermore, if the model contains 

sand and clay regions, it may be worthwhile to define two model regions based on the 

clay-content and to define different saturation curves for each section. 

 

SGWFN: gas-water saturation functions give the air-water saturation curves.  If no 

 other data are available this can be set to 0 or 1 at the boundaries for no 

 saturation or complete saturation, respectively. 

HYDRHEAD: converts pressure into hydraulic heads given a reference elevation and 

 density.  This is useful if trying to calibrate outputs to actual data. 

PVTW: gives water properties such as volume fraction, viscosity and compressibility. 

PVDG: gives the above properties for the gas phase. 

DENSITY: provides ECLIPSE with the densities of the different fluid phases at 20°

 C and standard pressure.  The density of water here should be equivalent to 

 that used in the hydraulic head reference. 
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ROCK: values of pressure-compressibility of the rock matrix.  The storage estimation 

 and conversion from storage to porosity and compressibility are derived from 

 this keyword. 

FILLEPS: takes no arguments but puts saturation endpoints into the output associated 

 with the INIT file. 

 
REGIONS  

This section defines subregions of the model space if they exist. 

 

INCLUDE 

FIPNUM.inc: includes file FIPNUM.inc, which associates each model cell with the 

region in which it resides.  If there are no regions this keyword is not required.  

If regions are created the FIPNUM.inc file is created from a PETREL property 

related to the creation of regions. 

 
SOLUTION 

The solution section includes information on the initial and boundary 

conditions for solving the multiphase flow equations.   

Whenever possible, it is significantly easier to define a flat water table when 

initializing the model.  An equilibrium steady-state hydraulic head structure can be 

achieved by running the simulation with just the boundary conditions for some time 

before the actual model run begins.  Furthermore, the depth units in ECLIPSE are 

opposite of those used in PETREL.  If, for example, the water table exists above the 

zero datum, the elevation argument of the EQUIL keyword should be a negative value. 

If the geometries of the aquifers are at all complex, it is much more reliable to 

generate the AQUACON keywords through PETREL and then to copy the connection 

arguments into ECLIPSE.  When doing this, the default value for the last argument is 

defaulted to ‘YES’ in PETREL and will need to be changed to ‘NO’ within the driver 

file.  This avoids the possibility of creating sources of water within the subsurface. 

 

EQUIL: gives the initial (flat) water table.   
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AQUCHWAT: connects the aquifer to the subsurface and includes water properties.   

Reviewing this keyword before running is highly recommended. This only 

gives connection for the water aquifers; another keyword will be required for 

air if modeling the unsaturated zone.  If there is local grid refinement under the 

aquifer, ECLIPSE classifies these as different, but connected aquifers.  If a 

local grid refinement exists more than one aquifer must be defined using this 

keyword. 

AQUCHGAS: has the same behavior as AQUCHWAT, but gives values associated 

 with the gas or air component in the unsaturated zone.  This keyword is also 

 critical for connecting surface aquifers to the subsurface.  If the top of the 

 model is the ground surface, the gas aquifer should be defined to cover the 

 entire model surface. 

AQUACON: defines the cell interfaces at which global aquifers connect to the rest of 

 the model.  Whereas ACUCHWAT and AQUCHGAS are classified by the 

 phase of the aquifer, AQUACON is classified by whether the aquifer is global 

 or local. 

AQUACONL:  behaves as AQUACON but applies to aquifers connected to the local  

(refined) grid area.  If no grid refinement is used this keyword is not required. 

 
SUMMARY  

This section requests desired outputs from the simulation.  It is worthwhile to 

preview the possible outputs within the description of this section in the ECLIPSE 

help file.  It should be noted, however, that not all outputs are available under all 

licenses and that requesting an unavailable output will cause the simulation to fail. 

 

RUNSUM: requests a summary of the run results. 

SEPARATE: produces separate files for each requested output. 

RPTONLY: requests output only at specified times. 

AAQR: requests all data that was specified to be checked. 

BWSAT: gives saturation through time at a grid cell. 

RWIP: requests output of the regional water in place. 
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SCHEDULE  

The SCHEDULE section includes all time-dependent conditions of the flow 

simulation. 

 

LGRLOCK: solves the local grid implicitly with the global grid.  This keyword 

 requires the names of the local grids and is only necessary if the model space 

 has been refined in some subregion. 

RPTRST: restarts the file output control to give the requested output at each specified 

 time. 

DATES: requests output at the date given as an argument.  If followed by 

 AQUCHWAT or some other property definition keyword it changes the 

 existing conditions at  the date specified in the argument. 

A3.2.2 Sample ECLIPSE Driver File 

 
------------------------------------------------------------------------------- 
RUNSPEC 
------------------------------------------------------------------------------- 
 
TITLE 
SAMPLEFILE 
 
START 
  1 JAN 2006 / 
 
METRIC 
 
WATER 
GAS 
 
DIMENS 
  41 42 55 / 
 
WELLDIMS 
  7 17 2 7 / 
 
NOMONITOR 
 
UNIFOUT 
 
TABDIMS 
  2 1 22 20 1* 20 20 5* 1 / 
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AQUDIMS 
  1* 1* 1* 1* 29 1320 5 14 / 
 
EQLDIMS 
  1 / 
------------------------------------------------------------------------------- 
GRID 
------------------------------------------------------------------------------- 
INIT 
 
GRIDFILE 
2 / 
 
NOECHO 
 
INCLUDE 
griddefinition.inc/ 
 
ECHO 
------------------------------------------------------------------------------- 
EDIT 
------------------------------------------------------------------------------- 
------------------------------------------------------------------------------- 
PROPS 
------------------------------------------------------------------------------- 
PVTW 
             1            1    4.59E-005        1.005            0 / 
 
PVDG 
             1       1.0001       0.0185 
             2            1       0.0185 / 
 
DENSITY 
           800        998.2        1.204 / 
 
SGFN 
--!!! Program generated keyword. Remove this comment to prevent PETREL editing or removing this 
keyword. 
 
             0            0            0 
        0.0075     0.009087            0 
          0.04     0.058375            0 
          0.12      0.20027            0 
          0.24      0.40827            0 
          0.36      0.58986            0 
          0.44      0.73862            0 
          0.52      0.85601            0 
           0.6      0.91959            0 
          0.64      0.97458            0 
          0.99            1            0 
  / 
 
SWFN 
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--!!! Program generated keyword. Remove this comment to prevent PETREL editing or removing this 
keyword. 
 
          0.01            0            1 
          0.36    1.86E-008          0.8 
           0.4       1E-007       0.4978 
          0.48    2.96E-005       0.1661 
          0.56     0.000349       0.0727 
          0.64        0.002       0.0372 
          0.76     0.015982       0.0159 
          0.88     0.072595       0.0059 
          0.96      0.23402        0.002 
        0.9925      0.48519       0.0006 
             1            1            0 
  / 
 
HYDRHEAD 
-- Reference data for output of hydraulic heads 
     0 998.2 / 
 
ROCK 
            1         0.01 / 
 
FILLEPS 
 
------------------------------------------------------------------------------- 
REGIONS 
------------------------------------------------------------------------------- 
------------------------------------------------------------------------------- 
SOLUTION 
------------------------------------------------------------------------------- 
 
AQUALIST 
--!!! Program generated keyword. Remove this comment to prevent PETREL editing or removing this 
keyword. 
 
  BC_HI 
  4 / 
  BC_LOW 
  5 / 
  ATM 
  2 / 
  POND 
  1  / 
 
AQUCHWAT 
  4 -0 PRESSURE 2.9 2000000000 1 0.0 1* 1* NO/ 
  5 -0 PRESSURE 2.3 2000000000 1 0.0 1* 1* NO/ 
  / 
 
 
AQUCHGAS 
  2 -0 1 2000000000 1 / 
  / 
 



 180 

AQUFLUX 
  1 0.0 0.0 / 
/ 
 
 
AQUANCON 
--        Aquifer name,             LGR name,                      Time,  Bin index,  Bin value,  Aquifer 
identification number 
--                pond,              ,        Initial properties,          0,          0,                             1 
--                 atm,               ,        Initial properties,          0,          1,                             2 
--               BC_hi,                 ,        Initial properties,          0,        2.9,                             4 
--              BC_low,                 ,        Initial properties,          0,        2.3,                             5 
--        End of table 
 
  1 20 22 23 25 1 1 K- 1* 1* NO / 
  1 23 24 25 25 1 1 K- 1* 1* NO / 
  1 23 23 24 24 1 1 K- 1* 1* NO / 
  1 19 19 20 23 1 1 K- 1* 1* NO / 
  1 20 21 22 22 1 1 K- 1* 1* NO / 
  2 25 25 9 42 1 1 K- 1* 1* NO / 
  2 18 18 1 35 1 1 K- 1* 1* NO / 
  4 10 10 8 8 1 55 I- 1* 1* NO / 
  4 11 11 7 7 1 55 I- 1* 1* NO / 
  4 12 12 6 6 1 55 I- 1* 1* NO / 
  4 13 13 5 5 1 55 I- 1* 1* NO / 
  4 15 15 4 4 1 55 I- 1* 1* NO / 
  4 16 16 3 3 1 55 I- 1* 1* NO / 
  4 17 17 2 2 1 55 I- 1* 1* NO / 
  4 18 18 1 1 1 55 I- 1* 1* NO / 
  4 18 18 1 1 1 55 I+ 1* 1* NO / 
  5 25 25 42 42 1 55 I- 1* 1* NO / 
  5 24 24 41 41 1 55 I- 1* 1* NO / 
  5 23 23 40 40 1 55 I- 1* 1* NO / 
  5 22 22 39 39 1 55 I- 1* 1* NO / 
  5 21 21 38 38 1 55 I- 1* 1* NO / 
  5 20 20 37 37 1 55 I- 1* 1* NO / 
  5 19 19 36 36 1 55 I- 1* 1* NO / 
  5 18 18 34 35 1 55 I- 1* 1* NO / 
  5 17 17 33 33 1 55 I- 1* 1* NO / 
  5 16 16 32 32 1 55 I- 1* 1* NO / 
  5 15 15 31 31 1 55 I- 1* 1* NO / 
  5 25 25 42 42 1 55 I+ 1* 1* NO / 
  / 
 
EQUIL 
            0      2.6       -16         0        1*        0   0   0   0 / 
 
RPTRST 
  BASIC=3 FLOWS / 
 
RPTSOL 
  RESTART=2 FIP / 
 
------------------------------------------------------------------------------- 
SUMMARY 
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------------------------------------------------------------------------------- 
RUNSUM 
SEPARATE 
 
-- Request results only at report time no results for each time-step 
 
RPTONLY 
 
AAQR 
/ 
 
AAQT 
/ 
 
------------------------------------------------------------------------------- 
SCHEDULE 
------------------------------------------------------------------------------- 
AQUCHWAT 
  4 -0 PRESSURE 2.9 2000000000 1 0.0 / 
  5 -0 PRESSURE 2.3 2000000000 1 0.0 / 
  / 
 
DATES 
  1 JAN 2008 / 
  / 
 
WELSPECS 
--'WELL5' is the simulation well name used to describe flow from 'well5' 
-- 
  WELL5 'GROUP 1' 10 21 1* WATER / 
  / 
 
COMPDAT 
  WELL5 10 21 31 31 OPEN 1* 0.2094 0.45720 11.15 0.00 1* Z 3.96 / 
  WELL5 10 21 32 32 OPEN 1* 0.0247 0.45720 1.32 0.00 1* Z 3.96 / 
  WELL5 10 21 33 33 OPEN 1* 0.0181 0.45720 0.96 0.00 1* Z 3.96 / 
  WELL5 10 21 34 34 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 35 35 OPEN 1* 0.1933 0.45720 10.29 0.00 1* Z 3.96 / 
  WELL5 10 21 36 36 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 37 37 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 38 38 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 39 39 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 40 40 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 41 41 OPEN 1* 0.0193 0.45720 1.03 0.00 1* Z 3.96 / 
  WELL5 10 21 42 42 OPEN 1* 0.1055 0.45720 5.62 0.00 1* Z 3.96 / 
  / 
 
WCONHIST 
WELL5 OPEN WRAT 1* 0.88 / 
  / 
 
AQUFLUX 
  1 0.6209 0.0 / 
  / 
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AQUCHWAT 
  4 -0 PRESSURE 2.9 2000000000 1 0.0 / 
  5 -0 PRESSURE 2.3 2000000000 1 0.0 / 
  / 
 
 
DATES 
 15 JAN 2008 / 
  / 
 
WCONHIST 
WELL5 OPEN WRAT 1* 9.38 / 
/ 
 
AQUFLUX 
  1 0.6279 0.0 / 
  / 
 
DATES 
  29 JAN 2008 / 
  / 
 
WCONHIST 
WELL5 OPEN WRAT 1* 3.72 / 
  / 
 
AQUFLUX 
  1 0.7949 0.0 / 
  / 
 
DATES 
  12 FEB 2008 / 
  / 
 
WCONHIST 
   WELL5 OPEN WRAT 1* 12.17 / 
 / 
 
AQUFLUX 
  1 0.5155 0.0 / 
  / 
 
DATES 
  11 MAR 2008 / 
  / 
 
WCONHIST 
  WELL5 OPEN WRAT 1* 49.90 / 
/ 
 
AQUFLUX 
  1 0.1365 0.0 / 
  / 
 
AQUCHWAT 
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  4 -0 PRESSURE 2.95 2000000000 1 0.0 / 
  5 -0 PRESSURE 2.5 2000000000 1 0.0 / 
  / 
 
 
DATES 
  25 MAR 2008 / 
  / 
 
WCONHIST 
  WELL5 OPEN WRAT 1* 62.27 / 
  / 
 
AQUFLUX 
  1 0.1365 0.0 / 
  / 
 
DATES 
  8 APR 2008 / 
  / 
 
WCONHIST 
  WELL5 OPEN WRAT 1* 92.31 / 
  / 
 
AQUFLUX 
  1 0.1365 0.0 / 
  / 
 
DATES 
  3 JUN 2008 / 
  / 
 
WCONHIST 
  WELL5 OPEN WRAT 1* 100.97 / 
  / 
 
AQUFLUX 
  1 0.1365 0.0 / 
  / 
 
DATES 
  17 JUN 2008 / 
  / 
 
WCONHIST 
  WELL5 OPEN WRAT 1* 102.56 / 
  / 
 
AQUFLUX 
  1 0.0 0.0 / 
  / 
 
DATES 
  23 SEP 2008 / 
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  / 
 
WCONHIST 
  WELL5 SHUT WRAT 1* 0.00 / 
  / 
 
AQUCHWAT 
  4 -0 PRESSURE 3 2000000000 1 0.0 / 
  5 -0 PRESSURE 2.4 2000000000 1 0.0 / 
  / 
 
DATES 
  31 DEC 2008 / 
  / 
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Appendix B. 
 
 Electrode positions for the II arrays selected using informed experimental 
design. X-coordinates for positive and negative source and potential electrodes are 
included in the columns below. Z-coordinatess of all electrodes are at 0 m depth. 
 
Source  Potential 
x+ x-  x+ x- 
-4.25 -0.75  -4 -1 
-4.25 -0.75  -4 -0.5 
-4.25 -0.75  -3.75 -1 
-4.25 -0.75  -4 -1.25 
-4.25 -0.75  -4 -0.25 
2.25 4.5  2.5 4.25 
2.25 4.5  2.5 4.75 
2.25 4.5  2.5 4 
2.25 4.5  2.75 4.25 
2.25 4.5  2.5 5 

-4.25 -2.25  -4 -2.5 
-4.25 -2.25  -4 -2 
-4.25 -2.25  -3.75 -2.5 
-4.25 -2.25  -4 -2.75 
-4.25 -2.25  -4 -1.75 
-1.25 2.75  -1 2.5 
-1.25 2.75  -1 3 
-1.25 2.75  -1 2.25 
-1.25 2.75  -0.75 2.5 
-1.25 2.75  -1 3.25 
-4.5 -1  -4.25 -1.25 
-4.5 -1  -4.25 -0.75 
-4.5 -1  -4 -1.25 
-4.5 -1  -4.25 -1.5 
-4.5 -1  -4.25 -0.5 

2 4.25  2.25 4 
2 4.25  2.25 4.5 
2 4.25  2.25 3.75 
2 4.25  2.5 4 
2 4.25  2.25 4.75 

-4 -2  -3.75 -2.25 
-4 -2  -3.75 -1.75 
-4 -2  -3.5 -2.25 
-4 -2  -3.75 -2.5 
-4 -2  -3.75 -1.5 
-1 3  -0.75 2.75 
-1 3  -0.75 3.25 
-1 3  -0.75 2.5 
-1 3  -0.5 2.75 
-1 3  -0.75 3.5 

-3.75 -1.75  -3.5 -2 
-3.75 -1.75  -3.5 -1.5 
-3.75 -1.75  -3.25 -2 
-3.75 -1.75  -3.5 -2.25 
-3.75 -1.75  -3.5 -1.25 
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-0.75 3.25  -0.5 3 
-0.75 3.25  -0.5 3.5 
-0.75 3.25  -0.5 2.75 
-0.75 3.25  -0.25 3 
-0.75 3.25  -0.5 3.75 

-4 -3  -3.75 -2.75 
-4 -3  -3.75 -2.5 
-4 -3  -3.5 -2.75 
-4 -3  -3.75 -2.25 
-4 -3  -3.5 -2.5 

-1.5 3.25  -1.25 3 
-1.5 3.25  -1.25 3.5 
-1.5 3.25  -1.25 2.75 
-1.5 3.25  -1 3 
-1.5 3.25  -1.25 3.75 

-3.75 5  -3.5 4.75 
-3.75 5  -3.5 4.5 
-3.75 5  -3.25 4.75 
-3.75 5  -3.25 4.5 
-3.75 5  -3.5 4.25 

1.5 3  1.75 2.75 
1.5 3  1.75 3.25 
1.5 3  1.75 2.5 
1.5 3  2 2.75 
1.5 3  1.75 3.5 

-4.5 -3.5  -4.25 -3.25 
-4.5 -3.5  -4.25 -3 
-4.5 -3.5  -4 -3.25 
-4.5 -3.5  -4.25 -2.75 
-4.5 -3.5  -4 -3 

-2 2.75  -1.75 2.5 
-2 2.75  -1.75 3 
-2 2.75  -1.75 2.25 
-2 2.75  -1.5 2.5 
-2 2.75  -1.75 3.25 

-3.5 4.75  -3.25 4.5 
-3.5 4.75  -3.25 5 
-3.5 4.75  -3.25 4.25 
-3.5 4.75  -3 4.5 
-3.5 4.75  -3 5 

-0.75 0  -0.5 0.25 
-0.75 0  -0.5 0.5 
-0.75 0  -0.5 0.75 
-0.75 0  -0.25 0.5 
-0.75 0  -0.5 1 
-3.75 1  -3.5 0.75 
-3.75 1  -3.5 1.25 
-3.75 1  -3.25 0.75 
-3.75 1  -3.5 0.5 
-3.75 1  -3.5 1.5 

2.5 3.5  2.75 3.75 
2.5 3.5  2.75 4 
2.5 3.5  3 3.75 
2.5 3.5  2.75 4.25 
2.5 3.5  3 4 
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