
MS&E 233
Game Theory, Data Science and AI

Vasilis Syrgkanis
Assistant Professor

Management Science and Engineering
(by courtesy) Computer Science and Electrical Engineering
Institute for Computational and Mathematical Engineering

Traditional engineered
systems

Image credits: chat.openai.com

Engineered systems
of the present

Image credits: chat.openai.com

Platforms that enable the interaction
of many self-interested agents

Image credits: chat.openai.com

Game Theory
The study of mathematical models of the
interaction of self-interested strategic and
rational individuals

What has changed

• Real-world strategic games have become inherently complex
• Very hard for participants to strategize and fully optimize
• Many of these games take place in the digital world where

automated game playing is feasible
• Large datasets that document these strategic interactions
• Advent of modern ML and AI techniques and large-scale compute

• Many opportunities and challenges at the intersection of game
theory, data science and AI

Game Theory and AI

• Design of automated self-interested agents that can optimize in
complex competitive environments
• Solve complex recreational games (e.g. poker, alphaGo, multi-agent RL)
• Strategize in complex opaque real-world games (e.g. ad auctions)

• Desiderata of an AI system framed as solutions to an equilibration
process, as opposed to solutions to an optimization process
• Many modern approaches in ML and AI can be framed as finding the

solution to a complex game (e.g. boosting, generative adversarial
networks, fair ML, causal ML)

Game Theory and Data Science

• How do we optimize the design of games, platforms and
mechanisms for the interaction of self-interested individuals in a
data driven manner?

• How do we analyze data that stem from the interaction of self-
interested individuals in a competitive environment?

• How do we design and analyze experiments to measure different
design choices in platforms and markets?

Course Learning Objectives

• Learn the fundamentals of game theory
• Learn how game theory can be applied in many real-world settings

(e.g. ad auctions, complex games)
• Learn the fundamentals of tools from data science and ML that

are useful in game theoretic contexts (online learning theory,
statistical learning theory, econometrics)

• Learn how these topics can be combined to
• provide computational solutions to the design of agents that perform well

in competitive environments
• optimize and analyze markets, mechanisms and platforms from data

• Be able to implement and code up these solutions in Python

Course Logistics
• Grading: 100% Homework. 7-8 HW assignments (weekly). Mostly coding in python,

with some mathematical derivations.
• HW policy: You can collaborate in pairs, but each write their own solutions,

mentioning collaborator.
• Course webpage: https://stanford-msande233.github.io/spring24
• Course Discussions: https://edstem.org/us/courses/57750/discussion/
• Homework Submission: https://www.gradescope.com/courses/760253
• Compute: HW will be released as Colab notebooks (recommended environment)
• Gen AI: Can use auto-completion support within Colab. You cannot use other tools.

Course Team Office Hours
• Vasilis Syrgkanis, Instructor, OF: Fri: 11-12 (Huang 252)
• Keertana Chidambaram, CA, MS&E PhD student, OF: Tue 12:45-2:45
• Gordon Martinez-Piedra, CA, EE MS student, OF: Mon 12:45-2:45

https://stanford-msande233.github.io/spring24
https://edstem.org/us/courses/57750/discussion/
https://www.gradescope.com/courses/760253

Pre-requisites

• There are no formal pre-requisites for the class
• The course will assume

• Undergraduate level knowledge of probability, statistics, linear algebra,
calculus (derivatives, integrals, partial derivatives)

• A basic background in convex and linear optimization (first-order
conditions, linear programming formalism); (it’s feasible to read along as
needed; see Boyd-Vandenberghe for convex, Bertsimas-Tsitsiklis for LP)

• Knowledge of basic Python programming; (we will offer however one
python tutorial session at the beginning of class)

• Familiarity with game theory concepts will be helpful but not
required or assumed

Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics and applications of extensive-form games (T+A)
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of

poker

• General games and equilibria (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to

correlated equilibria in general games

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions,

implement simple and optimal auctions, analyze
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately

optimal auctions from historical samples and in an
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from

bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme,

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research

1

2

3

4

5

6

7

Introduction to Game Theory

Elements of a Game

• A set of 𝑁 = 1, … , 𝑛 of 𝑛 players, indexed typically by 𝑖 ∈ 𝑁

• Each player has a space 𝑆𝑖 of available strategies (aka actions)

• Each player chooses a strategy 𝑠𝑖 ∈ 𝑆𝑖

• Given vector of strategies 𝑠 = 𝑠1, … , 𝑠𝑛 ∈ 𝑆1 × ⋯ × 𝑆𝑛 each
player receives utility 𝑢𝑖 𝑠 , based on a utility function 𝑢𝑖: 𝑆 → 𝑅
(or receives a loss ℓ𝑖 𝑠 , based on a loss function ℓ𝑖: 𝑆 → 𝑅)

Example 1: Routing
Games

• 𝑛 drivers; each 𝑖 wants to go from
point 𝑎𝑖 to point 𝑏𝑖 on a road network

• Strategy space of player 𝑖: set of paths
from 𝑎𝑖 → 𝑏𝑖

• When 𝑘𝑒 users use road 𝑒 it has
latency 𝑐𝑒 𝑘𝑒

• Loss of a player: total latency on
chosen path 𝑠𝑖

ℓ𝑖 𝑠 ≔ ෍

𝑒∈𝑠𝑖

𝑐𝑒 𝑘𝑒 𝑠

Image credits: chat.openai.com

Example 2: Sponsored Search Auctions

• 𝑛 bidders; each bidder 𝑖 has an ad to
display under the search for a keyword

• Strategy space of bidder 𝑖: a bid 𝑠𝑖 ∈ 𝑅

• Bidders allocated slots in decreasing
order of bids; 𝑗𝑖 𝑠 is slot allocated to 𝑖

• Each slot 𝑗 has a probability of click 𝑥𝑗

• When ad gets clicked, bidder pays bid 𝑠𝑖

• Utility of player is net expected gains
𝑢𝑖 𝑠 ≔ 𝑥𝑗𝑖 𝑠 ⋅ 𝑣𝑖 − 𝑠𝑖

Image credits: https://support.google.com/google-ads/answer/142918?hl=en

Example 3:
Recreational Games

• Simple two-player poker
• Each players strategy is an action plan

on what to do at each possible decision
point in the game

• Some decisions are also being taken by
“nature” randomly and only partly
announced to players

• Each leaf node is an end-result and
contains a utility for P1

• Utility of P1 is expected value of the
terminal node that will be reached

• Utility of P2 is negative of P1 (zero-sum)

Image credits: https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf

Finite Action Bi-Matrix Games

• Consider games with two players and finite actions
• Player one has 𝑚1 actions and player two has 𝑚2 actions
• We can represent the game via two 𝑚1 × 𝑚2 matrices 𝐴, 𝐵

Finite Action Bi-Matrix Games

• Consider games with two players and finite actions
• Player one has 𝑚1 actions and player two has 𝑚2 actions
• We can represent the game via two 𝑚1 × 𝑚2 matrices 𝐴, 𝐵

A: utility 𝑢1 𝑖, 𝑗 of row

𝑚1

𝑚2 𝑚2

Action 𝑖

Action 𝑗

𝐴[𝑖, 𝑗] 𝐵[𝑖, 𝑗]

Action 𝑗

B: utility 𝑢2 𝑖, 𝑗 of row

Finite Action Bi-Matrix Games

• Consider games with two players and finite actions
• Player one has 𝑚1 actions and player two has 𝑚2 actions
• We can represent the game via two 𝑚1 × 𝑚2 matrices 𝐴, 𝐵

A, B joint
representation

𝑚1 Action 𝑖

Action 𝑗

𝐴[𝑖, 𝑗]

𝐵[𝑖, 𝑗]

𝑚2

Prisoner’s Dilemma

How should players behave?

Dominant Strategies

Some notation
• Opponent’s actions 𝑠−𝑖 = 𝑠1, … , 𝑠𝑖−1, 𝑠𝑖+1, … , 𝑠𝑛

• Opponent’s action space: 𝑆−𝑖 = 𝑆1 × ⋯ × 𝑆𝑖−1 × 𝑆𝑖+1 × ⋯ × 𝑆𝑛

• Utility notation: 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 = 𝑢𝑖 𝑠1, … , 𝑠𝑖−1, 𝑠𝑖

′, 𝑠𝑖+1, … , 𝑠𝑛

• A dominant strategy 𝑠𝑖 is one such that no-matter what actions 𝑠−𝑖
other players choose, it is always weakly better for me to choose 𝑠𝑖
than any other strategy 𝑠𝑖

′

∀𝑠−𝑖 ∈ 𝑆−𝑖 , ∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≥ 𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖

Dominant Strategies

Some notation
• Opponent’s actions 𝑠−𝑖 = 𝑠1, … , 𝑠𝑖−1, 𝑠𝑖+1, … , 𝑠𝑛

• Opponent’s action space: 𝑆−𝑖 = 𝑆1 × ⋯ × 𝑆𝑖−1 × 𝑆𝑖+1 × ⋯ × 𝑆𝑛

• Utility notation: 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 = 𝑢𝑖 𝑠1, … , 𝑠𝑖−1, 𝑠𝑖

′, 𝑠𝑖+1, … , 𝑠𝑛

• A dominant strategy 𝑠𝑖 is one such that no-matter what actions 𝑠−𝑖
other players choose, it is always weakly better for me to choose 𝑠𝑖
than any other strategy 𝑠𝑖

′

∀𝑠−𝑖 ∈ 𝑆−𝑖 , ∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≥ 𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖

Prisoner’s Dilemma

How should players behave?

Professor’s Dilemma

How should players behave?

Pr
of

es
so

r
Students

Slack off

Prepare

Listen Sleep

100, 100 -10, 0

0, -10 0, 0

Pure Nash Equilibrium

• A strategy profile 𝑠 = 𝑠1, … , 𝑠𝑛 is a pure Nash equilibrium if no
player is better off, by choosing some other strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≥ 𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖

Professor’s Dilemma

How should players behave?

Pr
of

es
so

r
Students

Slack off

Prepare

Listen Sleep

100, 100 -10, 0

0, -10 0, 0

Rock-Paper-Scissors

How should players behave?

−1 10

0 −11

1 0−1

Mixed Nash Equilibrium

• A mixed strategy 𝜎𝑖 is a distribution over pure strategies
• At mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛 , player 𝑖 gets expected utility

𝑈𝑖 𝜎 = 𝐸𝑠1∼𝜎1,…,𝑠𝑛∼𝜎𝑛
𝑢𝑖 𝑠1, … , 𝑠𝑛

• Utility notation: 𝑈𝑖 𝑠𝑖
′, 𝜎−𝑖 = 𝐸𝑠−𝑖∼𝜎−𝑖

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

• A mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛 is a Nash equilibrium if no
player is better off in expectation, by choosing another strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑈𝑖 𝜎 ≥ 𝑈𝑖 𝑠𝑖

′, 𝜎−𝑖

Mixed Nash Equilibrium

• A mixed strategy 𝜎𝑖 is a distribution over pure strategies
• At mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛 , player 𝑖 gets expected utility

𝑈𝑖 𝜎 = 𝐸𝑠1∼𝜎1,…,𝑠𝑛∼𝜎𝑛
𝑢𝑖 𝑠1, … , 𝑠𝑛

• Utility notation: 𝑈𝑖 𝑠𝑖
′, 𝜎−𝑖 = 𝐸𝑠−𝑖∼𝜎−𝑖

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

• A mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛 is a Nash equilibrium if no
player is better off in expectation, by choosing another strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑈𝑖 𝜎 ≥ 𝑈𝑖 𝑠𝑖

′, 𝜎−𝑖

Existence of Nash
Equilibrium [Nash1950]

Every 𝑛 player finite action game has
at least one mixed Nash equilibrium

Computation of Mixed Nash Equilibrium

• Suppose we knew the supports (𝐶1, 𝐶2) of a mixed Nash
equilibrium (i.e. strategies that receive positive probability)

Computation of Mixed Nash Equilibrium

• Suppose we knew the supports (𝐶1, 𝐶2) of a mixed Nash
equilibrium (i.e. strategies that receive positive probability)

• All actions in 𝐶1 must yield the same expected utility for player one

∀𝑖 ∈ 𝐶1: ෍

𝑗∈𝐶2

𝐴 𝑖, 𝑗 𝑦𝑗 = 𝑉1, ෍

𝑗∈𝐶2

𝑦𝑗 = 1

Computation of Mixed Nash Equilibrium

• Suppose we knew the supports (𝐶1, 𝐶2) of a mixed Nash
equilibrium (i.e. strategies that receive positive probability)

• All actions in 𝐶1 must yield the same expected utility for player one

∀𝑖 ∈ 𝐶1: ෍

𝑗∈𝐶2

𝐴 𝑖, 𝑗 𝑦𝑗 = 𝑉1, ෍

𝑗∈𝐶2

𝑦𝑗 = 1

• All actions in 𝐶2 must yield the same expected utility for player two

∀𝑗 ∈ 𝐶2: ෍

𝑖∈𝐶1

𝑥𝑖 𝐵 𝑖, 𝑗 = 𝑉2, ෍

𝑖∈𝐶1

𝑥𝑖 = 1

Computation of Mixed Nash Equilibrium

• Suppose we knew the supports (𝐶1, 𝐶2) of a mixed Nash
equilibrium (i.e. strategies that receive positive probability)

• All actions in 𝐶1 must yield the same expected utility for player one

∀𝑖 ∈ 𝐶1: ෍

𝑗∈𝐶2

𝐴 𝑖, 𝑗 𝑦𝑗 = 𝑉1, ෍

𝑗∈𝐶2

𝑦𝑗 = 1

• All actions in 𝐶2 must yield the same expected utility for player two

∀𝑗 ∈ 𝐶2: ෍

𝑖∈𝐶1

𝑥𝑖 𝐵 𝑖, 𝑗 = 𝑉2, ෍

𝑖∈𝐶1

𝑥𝑖 = 1

• System of 𝐶1 + 𝐶2 linear equations with 𝐶1 + 𝐶2 unknowns

Computation of Mixed Nash Equilibrium

• Suppose we look for a full support NE
• Strategy 𝑦 of column player must be

such that all rows give the same utility
for row player

−𝑦2 + 𝑦3 = 𝑦1 − 𝑦3 = −𝑦1 + 𝑦2

• and must be a valid distribution
𝑦1 + 𝑦2 + 𝑦3 = 1

• Combining appropriately
𝑦1 + 𝑦2 = 2𝑦3 ⇒ 3𝑦3 = 1 ⇒ 𝑦3 = 1/3
𝑦2 + 𝑦3 = 2𝑦1 ⇒ 3𝑦1 = 1 ⇒ 𝑦1 = 1/3

𝑦2𝑦1 𝑦3

−1 10

0 −11

1 0−1

Intractability of Mixed Nash Equilibrium

• The assumption of knowing the supports was crucial
• For games with many actions, we cannot enumerate all possible

supports (combinatorial explosion)
• Turns out there is no easy way to side-step this

• Computing a mixed NE in two player games is “intractable”

• It is provable as hard as computing a “fixed point” (𝑓 𝑥 = 𝑥) of an
arbitrary function 𝑓, which is considered an intractable problem

Two Player Zero-Sum Games

• Player one (“min” player or “row” player)
• Player two (“max” player or “column” player)
• Player one has n possible actions
• Player two has m possible actions

• If player one chooses action 𝑖 and player two chooses action 𝑗
then player one incurs loss 𝐴 𝑖, 𝑗 and player two gains utility 𝐴 𝑖, 𝑗

Equilibrium via Min-Max Theorem

• Suppose that both players behave pessimistically
• Row (min) player thinks: “I’ll choose a strategy 𝑥 such that I’ll try to

minimize the worst-case loss that the other player can cause me”
ҧ𝑥 = argmin

𝑥
max

𝑦
𝑥′𝐴𝑦

• Column (max) player thinks: “I’ll choose a strategy 𝑦 such that I’ll
try to maximize the worst-case utility that the other player will
allow me to get”

ത𝑦 = argmax
𝑦

min
𝑥

𝑥′𝐴𝑦

Equilibrium via Min-Max Theorem

• Suppose both players behave pessimistically
ҧ𝑥 = argmin

𝑥
max

𝑦
𝑥′𝐴𝑦 , ത𝑦 = argmax

𝑦
min

𝑥
𝑥′𝐴𝑦

• Can ҧ𝑥, തy be equilibrium despite both players being pessimistic?

Equilibrium via Min-Max Theorem

• Suppose both players behave pessimistically
ҧ𝑥 = argmin

𝑥
max

𝑦
𝑥′𝐴𝑦 , ത𝑦 = argmax

𝑦
min

𝑥
𝑥′𝐴𝑦

• Can ҧ𝑥, തy be equilibrium despite both players being pessimistic?
• What if pessimistic value that each player achieves is the same?

min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦

Equilibrium via Min-Max Theorem

• Suppose both players behave pessimistically
ҧ𝑥 = argmin

𝑥
max

𝑦
𝑥′𝐴𝑦 , ത𝑦 = argmax

𝑦
min

𝑥
𝑥′𝐴𝑦

• Can ҧ𝑥, തy be equilibrium despite both players being pessimistic?
• What if pessimistic value that each player achieves is the same?

min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦

ҧ𝑥′𝐴 ത𝑦 ≤ max
𝑦

ҧ𝑥′𝐴𝑦 = min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦 = min
𝑥

𝑥′𝐴 ത𝑦

Pessimistic loss
if I choose ҧ𝑥

Best pessimistic loss
by definition of ҧ𝑥

Best pessimistic utility
that max player can
achieve

Pessimistic utility
that max player
achieves by using ത𝑦

Smallest loss that min
player can achieve if
max chooses ത𝑦

Loss of
min player
at ҧ𝑥, ത𝑦

Von-Neuman’s Min-Max Theorem [1928]

min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)

min
𝑧∈𝑅, 𝑥

𝑧

𝐴′𝑥 ≤ 𝟏𝑧
𝟏′𝑥 = 1

𝑥 ≥ 0

m𝑎𝑥
𝑣∈𝑅, 𝑦

𝑣

𝐴𝑦 ≥ 𝟏𝑣

𝟏′𝑦 = 1
𝑦 ≥ 0

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other

min
𝑧∈𝑅, 𝑥

𝑧

𝐴′𝑥 ≤ 𝟏𝑧
𝟏′𝑥 = 1

𝑥 ≥ 0

Min-Max Theorem via LP-duality

m𝑎𝑥
𝑣∈𝑅, 𝑦

𝑣

𝐴𝑦 ≥ 𝟏𝑣

𝟏′𝑦 = 1
𝑦 ≥ 0

No matter what action
opponent takes, loss is
at most 𝑧

Find 𝑥 with the smallest
such loss guarantee 𝑧

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other
• These can be transformed into the canonical form of two dual LPs

min
𝑧∈𝑅, 𝑥

𝑧

𝐴′𝑥 ≤ 𝟏𝑧
𝟏′𝑥 = 1

𝑥 ≥ 0

m𝑎𝑥
𝑣∈𝑅, 𝑦

𝑣

𝐴𝑦 ≥ 𝟏𝑣

𝟏′𝑦 = 1
𝑦 ≥ 0

min
𝑢≥0:𝐴𝑢≥𝑐

𝑏′𝑢 m𝑎𝑥
𝑤≥0:𝐴′𝑤≤𝑏

𝑐′𝑤

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other
• These can be transformed into the canonical form of two dual LPs
• By strong LP duality the two linear programs have the same value

=min
𝑧∈𝑅, 𝑥

𝑧

𝐴′𝑥 ≤ 𝟏𝑧
𝟏′𝑥 = 1

𝑥 ≥ 0

m𝑎𝑥
𝑣∈𝑅, 𝑦

𝑣

𝐴𝑦 ≥ 𝟏𝑣

𝟏′𝑦 = 1
𝑦 ≥ 0

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other
• These can be transformed into the canonical form of two dual LPs
• By strong LP duality the two linear programs have the same value

min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦

Appendix I
Transforming dual programs for zero-sum games into canonical forms

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other

min
z1,z2∈𝑅, x∈𝑅𝑛

𝑧1 − 𝑧2

𝐴′𝑥 ≤ 𝟏 𝑧1 − 𝑧2

𝟏′𝑥 = 1
𝑥, 𝑧1, 𝑧2 ≥ 0

m𝑎𝑥
𝑣1,𝑣2∈𝑅, 𝑦∈𝑅𝑚

𝑣1 − 𝑣2

𝐴𝑦 ≥ 𝟏 𝑣1 − 𝑣2

𝟏′𝑦 = 1
𝑦, 𝑣1, 𝑣2 ≥ 0

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other

min
z1,z2∈𝑅, x∈𝑅𝑛

0, … , 0, 1, −1 ′ 𝑥, 𝑧1, 𝑧2

−𝐴′𝑥 + 𝟏𝑧1 − 𝟏 𝑧2 ≥ 0

𝟏′𝑥 ≥ 1
−𝟏′𝑥 ≥ −1

𝑥, 𝑧1, 𝑧2 ≥ 0

m𝑎𝑥
𝑣1,𝑣2∈𝑅, 𝑦∈𝑅𝑚

0, … , 0, 1, −1 ′(𝑦, 𝑣1, 𝑣2)

−𝐴𝑦 + 𝟏𝑣1 − 𝟏𝑣2 ≤ 0

 𝟏′𝑦 ≤ 1

−𝟏′𝑦 ≤ −1
𝑦, 𝑣1, 𝑣2 ≥ 0

Min-Max Theorem via LP-duality

• Can think of best pessimistic loss/utility as Linear Programs (LPs)
• Turns out, one program is the dual of the other

min
z1,z2∈𝑅, x∈𝑅𝑛

0, … , 0, 1, −1 ′ 𝑥, 𝑧1, 𝑧2

−𝐴′ 𝟏 −𝟏
𝟏′

−𝟏′
0
0

0
0

⋅

𝑥
𝑧1

𝑧2

≥
0
1

−1

𝑥, 𝑧1, 𝑧2 ≥ 0

m𝑎𝑥
𝑣1,𝑣2∈𝑅, 𝑦∈𝑅𝑚

0, … , 0, 1, −1 ′(𝑦, 𝑣1, 𝑣2)

−𝐴 𝟏 −𝟏
𝟏′

−𝟏′
0
0

0
0

⋅

𝑦
𝑣1

𝑣2

≥
0
1

−1

𝑦, 𝑣1, 𝑣2 ≥ 0

	Slide 1: MS&E 233 Game Theory, Data Science and AI
	Slide 2: Traditional engineered systems
	Slide 3: Engineered systems of the present
	Slide 4: Platforms that enable the interaction of many self-interested agents
	Slide 5: Game Theory
	Slide 6: What has changed
	Slide 7: Game Theory and AI
	Slide 8: Game Theory and Data Science
	Slide 9: Course Learning Objectives
	Slide 10: Course Logistics
	Slide 11: Pre-requisites
	Slide 12
	Slide 13: Introduction to Game Theory
	Slide 14: Elements of a Game
	Slide 15: Example 1: Routing Games
	Slide 16: Example 2: Sponsored Search Auctions
	Slide 17: Example 3: Recreational Games
	Slide 18: Finite Action Bi-Matrix Games
	Slide 19: Finite Action Bi-Matrix Games
	Slide 20: Finite Action Bi-Matrix Games
	Slide 21: Prisoner’s Dilemma
	Slide 22: Dominant Strategies
	Slide 23: Dominant Strategies
	Slide 24: Prisoner’s Dilemma
	Slide 25: Professor’s Dilemma
	Slide 26: Pure Nash Equilibrium
	Slide 27: Professor’s Dilemma
	Slide 28: Rock-Paper-Scissors
	Slide 29: Mixed Nash Equilibrium
	Slide 30: Mixed Nash Equilibrium
	Slide 31: Existence of Nash Equilibrium [Nash1950]
	Slide 32: Computation of Mixed Nash Equilibrium
	Slide 33: Computation of Mixed Nash Equilibrium
	Slide 34: Computation of Mixed Nash Equilibrium
	Slide 35: Computation of Mixed Nash Equilibrium
	Slide 36: Computation of Mixed Nash Equilibrium
	Slide 37: Intractability of Mixed Nash Equilibrium
	Slide 38: Two Player Zero-Sum Games
	Slide 39: Equilibrium via Min-Max Theorem
	Slide 40: Equilibrium via Min-Max Theorem
	Slide 41: Equilibrium via Min-Max Theorem
	Slide 42: Equilibrium via Min-Max Theorem
	Slide 43: Von-Neuman’s Min-Max Theorem [1928]
	Slide 44: Min-Max Theorem via LP-duality
	Slide 45: Min-Max Theorem via LP-duality
	Slide 46: Min-Max Theorem via LP-duality
	Slide 47: Min-Max Theorem via LP-duality
	Slide 48: Min-Max Theorem via LP-duality
	Slide 49: Appendix I
	Slide 50: Min-Max Theorem via LP-duality
	Slide 51: Min-Max Theorem via LP-duality
	Slide 52: Min-Max Theorem via LP-duality

