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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research
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Sum: Auction Applications

• Traditionally, selling of luxury goods, art
• Digital auction markets for goods (eBay)
• Energy markets
• Digital ad markets (sponsored search, display ads, amazon ads)
• Spectrum auctions
• Government procurement auctions
• Web3.0 transaction protocols



Sum: First Price

• First Price is arguably the simplest auction rule
• It can be hard to strategize in such an auction
• The auction can lead to inefficient allocations

• Though approximately efficient
• Still used in practice in many settings (e.g. online advertising, 

government procurement)
• Primarily because it has very transparent rules



Sum: Second Price

• Second Price is arguably the simplest truthful auction rule
• It is very easy to strategize in such an auction (be truthful)
• Auction always leads to efficient allocations (highest value wins)
• Auction can be run very quickly (computationally efficient)

• Still not always the auction used in many places
• Primarily because it has not very transparent rules
• Susceptible to collusion and manipulations by the auctioneer



Sponsored Search Auctions



Sponsored Search Auctions

• Now we have many items to sell
• Slots on a web impressions

• Higher slots get more clicks!
• Each slot has some probability of click

𝑎1 > 𝑎2 > ⋯ > 𝑎𝑚

• Bidders have a value-per-click 𝑣𝑖

𝑎1

𝑎2

𝑎3

𝑎4



𝑎1

𝑎2

𝑎3

𝑎4

Generalized First Price (GFP) Auction

• Bidders submit a bid-per-click 𝑏𝑖

• Slots allocated in decreasing order 
of bids

• Bidder 𝑖 is allocated slot 𝑗𝑖 𝑏

• Bidder pays their bid when clicked

𝑢𝑖 𝑏; 𝑣𝑖 = 𝑎𝑗𝑖 𝑏 ⋅ 𝑣𝑖 − 𝑏𝑖

𝑏 1

𝑏 2

𝑏 3

𝑏 4

≥
≥

≥



𝑎1

𝑎2

𝑎3

𝑎4

Generalized First Price (GFP) Auction

𝑏 1

𝑏 2

𝑏 3

𝑏 4

≥
≥

≥

• The first auction that was used by 
Overture in late 90s

• Lead to weird bidding patterns

Credits: https://www.benedelman.org/publications/cycling-060703.pdf  

https://www.benedelman.org/publications/cycling-060703.pdf


𝑎1

𝑎2

𝑎3

𝑎4

Generalized Second Price (GSP) Auction

• Bidders submit a bid-per-click 𝑏𝑖

• Slots allocated in decreasing order 
of bids

• Bidder 𝑖 is allocated slot 𝑗𝑖 𝑏

• Bidder pays the next highest bid 
when clicked

𝑢𝑖 𝑏; 𝑣𝑖 = 𝑎𝑗𝑖 𝑏 ⋅ 𝑣𝑖 − 𝑏 𝑗𝑖 𝑏 +1

𝑏 1

𝑏 2

𝑏 3

𝑏 4

≥
≥

≥
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Generalized Second Price (GSP) Auction
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• The auction of choice in current 
sponsored search systems

• Even though still not truthful

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

𝑢1 = 1 ⋅ 7 − 6 = 1

𝑢1
′ = .5 ⋅ 7 − 2 = 2.5



How would you turn GSP 
truthful?



Right intuition, why Second-Price is truthful

• Second price is truthful not because we charge next highest bid
• Second price is truthful not because we charge smallest bid to 

maintain the same allocation

• Second price is truthful because we charged the winner their 
“externalities to the rest of society”



The Deep Reason why SP is Truthful
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≥
≥

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder exists, rest of 
players achieve reported welfare of 0



The Deep Reason why SP is Truthful
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𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder does not exist, 
rest of players achieve reported 
welfare of 6



The Deep Reason why SP is Truthful

1

76

2

≥

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder does not exist, 
rest of players achieve reported 
welfare of 6

The net total gain to the rest of the 
bidders, from bidder 1 vanishing is 6



Right intuition, why Second-Price is truthful

• Second price is truthful because we charged the winner their 
“externalities to the rest of society”

• When highest bidder exists, rest of players achieve reported welfare 0
• When highest bidder vanishes, rest of players achieve reported welfare

𝑏 2 = second highest bid

• The net total gain to the rest of the bidders, from bidder 1 vanishing is
𝑏 2 = second highest bid

• That’s what we should charge the winner!
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Let’s repeat this exercise with two slots
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≥
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𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder exists, rest of 
players achieve reported welfare of …?
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Let’s repeat this exercise with two slots

7

6
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≥
≥

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder exists, rest of 
players achieve reported welfare of …?

• When highest bidder vanishes, rest of 
players achieve reported welfare of …?
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Let’s repeat this exercise with two slots

7

6

2

≥
≥

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder exists, rest of 
players achieve reported welfare of …?

• When highest bidder vanishes, rest of 
players achieve reported welfare of …?

The net total gain to the rest of the bidders, 
from bidder 1 vanishing is 4
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What about the second highest bidder?

7

6

2

≥
≥

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When second highest bidder exists, 
rest of players achieve reported 
welfare of 7

• When second highest bidder 
vanishes, rest of players achieve 
reported welfare of 7 + 1

I should charge a total price of 1 
(equivalently a price-per-click of 2)
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Bidders now don’ t have incentive to deviate

7

6

2

≥
≥

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

𝑢1 = 1 ⋅ 7 − 4 = 3

𝑢1
′ = .5 ⋅ 7 − 2 = 2.5

𝑢2 = .5 ⋅ 6 − 2 = 2

• Unlike GSP, highest bidder doesn’t 
prefer reducing the bid to get the 
second slot 



How much utility do bidders receive?

𝐄𝐱𝐭𝐞𝐫𝐧𝐚𝐥𝐢𝐭𝐲 = RWelfare of Others without me − RWelfare of Others with me

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 = Value of my Allocation − Payment

If we set payment = externality
Value of my Allocation − RWelfare of Others without me + RWelfare of Others with me

When I’m truthful:
Value of my Allocation + RWelfare of Others with me = Total RWeflare with me

When I’m truthful my utility is as simple as:
𝐔𝐭𝐢𝐥𝐢𝐭𝐲 = Total RWeflare with me − Total RWelfare without me

Reported Welfare
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Can we ever charge bidders more than value?

• If we set payment = externality, and bidder is truthful

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 = Total RWeflare with me − Total RWelfare without me

• If the auction always chooses the outcome that maximizes the 
reported welfare, then

Total RWeflare with me ≥ Total RWelfare without me



Why is the mechanism truthful?

• If we set payment = externality, and bidder is truthful

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 = Total RWeflare with me − Total RWelfare without me

• My bid does not affect the Total RWelfare without me!
• RWelfare only depends on the chosen allocation, not payments
• Trying to choose a bid 𝑏𝑖  that leads to allocation 𝑥 that maximizes

Total RWeflare with me x

• If I’m truthful the auctioneer chooses the allocation that maximizes 
this quantity and hence that maximizes my utility.



Intuition: Why is the mechanism truthful?

• If we set payment = externality, and bidder is truthful

𝐔𝐭𝐢𝐥𝐢𝐭𝐲 = Total RWeflare with me − Total RWelfare without me

• My bid does not affect the Total RWelfare without me!
• RWelfare only depends on the chosen allocation, not payments

• If I’m truthful the auctioneer chooses the allocation that maximizes 
exactly this quantity and hence that maximizes my utility.



The Vickrey-Clarke-Groves (VCG) 
Mechanism



General Auction (Mechanism Design) Setting

• Auctioneer (Designer) wants to choose among set of outcomes 𝑂
• Each bidder 𝑖 has some value for each outcome 𝑣𝑖 𝑜 ∈ 𝑅

• The value function 𝑣𝑖  is called the type of player 𝑖
• Designer elicits types/bids from players 𝑏 = 𝑏1, … , 𝑏𝑛

• Designer chooses allocation that maximizes the reported welfare

𝑥 𝑏 = argmax
𝑜∈𝑂

𝑅𝑊 𝑜; 𝑏 ≔ ෍

𝑖=1

𝑛

𝑏𝑖 𝑜

Total Reported 
Welfare
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Let’s repeat this exercise with two slots
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𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

• When highest bidder exists, rest of 
players achieve reported welfare of …?



General Auction (Mechanism Design) Setting

• Designer chooses allocation that maximizes the reported welfare

𝑥 𝑏 = argmax
𝑜∈𝑂

𝑅𝑊 𝑜; 𝑏 ≔ ෍

𝑖=1

𝑛

𝑏𝑖 𝑜

• Charges to each player their externalities as payment

𝑝𝑖 𝑏 = max
𝑜∈𝑂

෍

𝑗≠𝑖

𝑏𝑗 𝑜 − ෍

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏 ≥ 0

RWelfare of others 
without me

RWelfare of others 
with me

Why?



How much utility do bidders receive?

• The utility of bidder 𝑖 for reporting 𝑏𝑖  when others report 𝑏−𝑖

𝑈𝑖 𝑏 = 𝑣𝑖 𝑥 𝑏 − 𝑝(𝑏)

• If payment=externality

𝑈𝑖 𝑏 = 𝑣𝑖 𝑥 𝑏 − max
𝑜∈𝑂

෍

𝑗≠𝑖

𝑏𝑗 𝑜 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏

RWelfare of others 
without me

RWelfare of others 
with me

My value

My value My payment



What is the optimal bid? 

• If payment=externality

𝑈𝑖 𝑏 = 𝑣𝑖 𝑥 𝑏 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏 − max
𝑜∈𝑂

෍

𝑗≠𝑖

𝑏𝑗 𝑜

• I want to choose a bid 𝑏𝑖  that optimizes my utility

max
𝑏𝑖

𝑣𝑖 𝑥 𝑏 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏 − max
𝑜∈𝑂

෍

𝑗≠𝑖

𝑏𝑗 𝑜  

RWelfare of others 
without me

RWelfare of others 
with me

My value

Does not depend on my bid



What is the optimal bid? 

• I want to choose a bid 𝑏𝑖  that optimizes my utility

max
𝑏𝑖

𝑣𝑖 𝑥 𝑏 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏  

• This only depends on the chosen allocation 𝑥 𝑏

• Want to choose a bid that leads to an allocation 𝑥 that maximizes

𝑣𝑖 𝑥 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥

RWelfare of others 
with me

My value



What is the optimal bid? 

• Want to choose a bid that leads to an allocation 𝑥 that maximizes

𝑣𝑖 𝑥 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥

• Designer chooses allocation that maximizes reported welfare

𝑏𝑖 𝑥 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥

• If I’m truthful then auctioneer chooses the allocation that I want

RWelfare of others with meMy value

My bid RWelfare of others with me



What is the optimal bid? My true value

• Want to choose a bid that leads to an allocation 𝑥 that maximizes

𝑣𝑖 𝑥 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥

• Designer chooses allocation that maximizes reported welfare

𝑏𝑖 𝑥 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥

• If I’m truthful then auctioneer chooses the allocation that I want

RWelfare of others with meMy value

My bid RWelfare of others with me



What is my utility under truthful reporting 

• If payment=externality

𝑈𝑖 𝑏 = 𝑣𝑖 𝑥 𝑏 + ෍

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏 − max
𝑜∈𝑂

෍

𝑗≠𝑖

𝑏𝑗 𝑜

• Since auctioneer optimizes reported welfare:

𝑈𝑖 𝑏 = max
𝑜∈𝑂

𝑣𝑖 𝑜 + ෍

𝑗≠𝑖

𝑏𝑗 𝑜 − max
𝑜∈𝑂

෍

𝑗≠𝑖

𝑏𝑗 𝑜 ≥ 0

RWelfare of others 
without me

Total RWelfare with me

Why?

Total RWelfare with me RWelfare of others 
without me



Credits: https://rethinkmedia.org/blog/facebook-instagram-advertising-what-you-need-know-get-started 

https://rethinkmedia.org/blog/facebook-instagram-advertising-what-you-need-know-get-started


Learning in Non-Truthful Auctions



Non-Truthful Auctions

• Despite the universality of VCG, non-truthful auctions are 
frequently used

• More transparent and credible* rules

• The mechanism used in government procurement and display ads 

*Credible Auctions: A Trilemma (stanford.edu)

https://web.stanford.edu/~mohamwad/Credible.pdf


Learning how to bid in auctions

• Given the complexity of digital auction markets
• Given the hardness of strategizing in non-truthful auctions
• Many of these auctions are repeated!

• It makes sense to study learning over time, to decide how to bid

• How do we learn over time when we repeatedly participate in an 
auction? Can we compete with the best fixed bid in hindsight?



No-Regret Learning in Auctions

At each period 𝑡 ∈ 1, … , 𝑇

• An auction among 𝑛 bidders takes place (GFP, GSP, FP)
• Each bidder 𝑖 submits bid 𝑏𝑖  from discrete set of 𝑁 bids 𝜖, 2𝜖 … , 1

• Each bidder learns their allocation and payment 

𝑥𝑖
𝑡 , 𝑝𝑖

𝑡 = 𝑥𝑖 𝑏𝑡 , 𝑝𝑖 𝑏𝑡

• e.g. in a first price auction, learn whether I won
• e.g. in a second price auction, learn whether I won and when I win, 

I learn the next highest bid. 



No-Regret Learning

• Want to choose my bids 𝑏𝑖
𝑡, based on algorithm that guarantees

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑏𝑡 ≥ max
𝑏𝑖∈ 𝑁

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑏𝑖 , 𝑏𝑡 − 𝜖 𝑇

• for some 𝜖 𝑇 → 0









No-Regret Learning with Limited Feedback

• Want to choose my bids 𝑏𝑖
𝑡, based on algorithm that guarantees

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑏𝑡 ≥ max
𝑏𝑖∈ 𝑁

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑏𝑖 , 𝑏𝑡 − 𝜖 𝑇

• Seems like a standard 𝑁 action no-regret problem

• What’s the catch! I don’t receive after each period the utility for all my 
actions. Only the utility for action I took!

• Limited Feedback. I cannot calculate how much I would have gotten 
with any other bid (e.g. in an FP, solely knowing whether I won or not). 



No-Regret Learning with Bandit Feedback

At each period 𝑡
• Adversary chooses a loss vector ℓ𝑡 ∈ 0, 1 𝑁

• I choose an action 𝑖𝑡  (not knowing ℓ𝑡)

• I observe loss of my chosen action ℓ𝑡
𝑖𝑡

• I want to guarantee small expected regret with any fixed action:

max
𝑖∈𝑁

𝐸
1

𝑇
෍

𝑡=1

𝑇

ℓ𝑡
𝑖𝑡 − ℓ𝑡

𝑖 ≤ 𝜖 𝑇



Constructing Un-biased Estimates of Vector

• There is a hidden loss vector ℓ𝑡 = ℓ𝑡
1, … , ℓ𝑡

𝑁  (potential outcomes)

• At each period I choose action (treatment) 𝑗 with probability 𝑝𝑡
𝑗

• I learn the loss ℓ𝑡
𝑗  with probability 𝑝𝑡

𝑗

• Remember: no-regret algorithms work well, even if we have unbiased 
proxies of the true losses (e.g. Monte Carlo CFR)

Question. Can I construct a random variable that guarantees that in 
expectation over the choice of actions?

𝐸 ෨ℓ𝑡 = ℓ𝑡 ⇔ ∀𝑗:  𝐸 ෨ℓ𝑡
𝑗

= ℓ𝑡
𝑗



Constructing Un-biased Estimates of Vector

Question. Can I construct a random variable that guarantees that in 
expectation over the choice of actions?

𝐸 ෨ℓ𝑡 = ℓ𝑡 ⇔ ∀𝑗:  𝐸 ෨ℓ𝑡
𝑗

= ℓ𝑡
𝑗

• Random variable can always depend on identity of chosen action 𝑗𝑡. 
When I choose 𝑗 random variable can also depend on ℓ𝑡

𝑗

෨ℓ𝑡
𝑗

= 1 𝑗𝑡 = 𝑗 𝑓𝑗 ℓ𝑡
𝑗

+ 1 𝑗𝑡 ≠ 𝑗 𝑔𝑗 𝑗𝑡

• Let’s make 𝑔𝑗 zero, and 𝑓𝑗  linear in ℓ𝑡
𝑗

෨ℓ𝑡
𝑗

= 1 𝑗𝑡 = 𝑗 𝑎𝑗ℓ𝑡
𝑗

⇒ 𝐸 ෨ℓ𝑡
𝑗

= 𝑝𝑡
𝑗
𝑎𝑗ℓ𝑡

𝑗
= ℓ𝑡

𝑗
⇒ 𝑎𝑗 =

1

𝑝𝑡
𝑗



Inverse Propensity Estimates

At each period 𝑡
• Consider the random variables

෨ℓ𝑡
𝑗

=
1 𝑗𝑡 = 𝑗

𝑝𝑡
𝑗

ℓ𝑡
𝑗

• The vector ෨ℓ𝑡 can always be calculated 0, … , 0,
ℓ𝑡

𝑗𝑡

𝑝𝑡
𝑗𝑡

, 0, … , 0

• The vector ෨ℓ𝑡  is an unbiased proxy of the true loss vector:

𝐸 ෨ℓ𝑡 = ℓ𝑡



The EXP Algorithm with Bandit Feedback

Initialize pt to the uniform distribution

For t in 1..T

    Draw action jt based on distribution pt

    Observe loss of chosen action lt[jt]

    Construct un-biased proxy loss vector

 ltproxy[j] = 1(jt=j) * lt[jt] / pt[jt]

    Update probabilities based on EXP update

 pt = pt * exp(-eta * ltproxy)

 pt = pt / sum(pt)



Recap: Regret of FTRL

𝑥𝑡 = argmin
𝑥∈𝑋

෍

𝜏<𝑡

⟨𝑥, ℓ𝜏⟩ +
1

𝜂
ℛ(𝑥)

Theorem. Assuming the utility function at each period 
𝑓𝑡 𝑥 = ⟨𝑥, ℓ𝑡⟩

is 𝐿-Lipschitz with respect to some norm ⋅  and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max
𝑥∈𝑋

ℛ 𝑥 − min
𝑥∈𝑋

ℛ 𝑥

Average stability 
induced by regularizer

Average loss distortion 
caused by regularizer

(FTRL)

Historical performance 
of always choosing 

strategy 𝑥

1-strongly convex 
function of 𝑥 that 

stabilizes the maximizer



Problem! The loss vector ෨ℓ𝑡 is not in [0,1]. 

It can take huge values, as probability of an action goes to 0!

Intuition: if probability goes to 0, then this action is chosen very 
infrequently. The loss vector very rarely takes this large value, 
i.e., the variance of the loss should be small.



Variance of Loss Vector

• Variance is

𝐸 ෨ℓ𝑡
𝑗

2
− 𝐸 ෨ℓ𝑡

𝑗 2
= 𝐸 ෨ℓ𝑡

𝑗
2

− 𝐸 ℓ𝑡
𝑗 2

• Second term is in 0, 1 . We will focus on first term (call it “variance”)

𝐸 ෨ℓ𝑡
𝑗

2
= 𝑝𝑡

𝑗 ℓ𝑡
𝑗

𝑝𝑡
𝑗

2

=
ℓ𝑡

𝑗
2

𝑝𝑡
𝑗

• And we collect this “variance” term only when end up choosing 𝑗

Average "Variance" = ෍

𝑗

𝑝𝑡
𝑗

⋅ 𝐸 ෨ℓ𝑡
𝑗

2
= ෍

𝑗

ℓ𝑡
𝑗

2
≤ 𝑁



Recap: Regret of FTRL

𝑥𝑡 = argmin
𝑥∈𝑋

෍

𝜏<𝑡

⟨𝑥, ℓ𝜏⟩ +
1

𝜂
ℛ(𝑥)

Theorem. Assuming the utility function at each period 
𝑓𝑡 𝑥 = ⟨𝑥, ℓ𝑡⟩

is 𝐿-Lipschitz with respect to some norm ⋅  and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝑳 +
1

𝜂𝑇
max
𝑥∈𝑋

ℛ 𝑥 − min
𝑥∈𝑋

ℛ 𝑥

Average stability 
induced by regularizer

Average loss distortion 
caused by regularizer

(FTRL)

Historical performance 
of always choosing 

strategy 𝑥

1-strongly convex 
function of 𝑥 that 

stabilizes the maximizer

Can we replace 𝐿 with 
the Average “Variance”?



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ

෍

𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on 
history, have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, 
then regret of EXP is bounded as:

Regret − EXP 𝑇 ≤
𝜂

𝑇
෍

𝑡

𝐸 ෍

𝑗

𝑝𝑡
𝑗 ෨ℓ𝑡

𝑗
2

+
log(𝑁)

𝜂𝑇

(EXP)
Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

See Lemma 20 and Theorem 2.22 and Corollary 4.2 of mal-018.dvi (huji.ac.il)

https://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf


Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ

෍

𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on history, 
have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, then regret 
of EXP is bounded as:

Regret − EXP 𝑇 ≤
𝜂

𝑇
෍

𝑡

𝐸 ෍

𝑗

𝑝𝑡
𝑗

𝐸 ෨ℓ𝑡
𝑗

2
+

log(𝑁)

𝜂𝑇

(EXP)
Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

Expected Average 
“Variance”?

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ

෍

𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on 
history, have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, 
then regret of EXP is bounded as:

Regret − EXP 𝑇 ≤
𝜂

𝑇
෍

𝑡

𝑁 +
log(𝑁)

𝜂𝑇

(EXP)

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

For the inverse 
propensity proxies

Negative
Entropy

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ

෍

𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on 
history, have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, 
then regret of EXP is bounded as:

Regret − EXP 𝑇 ≤ 𝜂𝑁 +
log(𝑁)

𝜂𝑇

(EXP) Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

For the inverse 
propensity proxies

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ

෍

𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on history, 
have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, then regret 
of EXP is bounded as:

Regret − EXP 𝑇 ≤ 𝜂𝑁 +
log 𝑁

𝜂𝑇
⇒ Regret − EXP 𝑇 ≲

𝑁 log 𝑁

𝑇

(EXP) ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

For 𝜂 ∼
log 𝑁

𝑁𝑇

See Lemma 20 and Theorem 2.22 and Corollary 4.2 of mal-018.dvi (huji.ac.il)

https://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf


Back to Bandit Learning in 
Auctions



Bandit Learning in Auctions

• Want to choose my bids 𝑏𝑖
𝑡, based on algorithm that guarantees

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑏𝑡 ≥ max
𝑏𝑖∈ 𝑁

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑏𝑖 , 𝑏𝑡 − 𝜖 𝑇

• We can apply EXP3 algorithm for each bidder
• We now have utilities, but EXP3 expects non-negative losses

Maximizing utility = Minimizing (negative utility)

• However, to ensure losses are non-negative, add a large enough offset
loss =  H −  utility

• If for instance we know that utility ≤ 𝐻, we can choose this 𝐻 above



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ

෍

𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on history, 
have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, then regret 
of EXP is bounded as:

Regret − EXP 𝑇 ≤ 𝜂𝑁 +
log 𝑁

𝜂𝑇
⇒ Regret − EXP 𝑇 ≲

𝑁 log 𝑁

𝑇

(EXP) ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

For 𝜂 ∼
log 𝑁

𝑁𝑇

See Lemma 20 and Theorem 2.22 and Corollary 4.2 of mal-018.dvi (huji.ac.il)

https://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf
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