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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Sum: Vickrey-Clarke-Groves (VCG)

A universal welfare maximizing auction/mechanism!
For any mechanism design setting, it guarantees that:
1. It is dominant strategy truthful
2. It always chooses the welfare maximizing outcome/allocation
3. All bidders have non-negative utility
4. All payments are non-negative

For special case of single-item auction = Second-Price Auction



What if we want to maximize 
revenue?



Let’s go back to basics: Single-Item Auction

• How much revenue does the second-price auction achieve?
Rev = 𝐸 𝑣 2 = 𝐸 min 𝑣1, 𝑣2 = 1/3

• Can we do better?
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Let’s go back to basics: Single-Item Auction

• What if we only had one bidder?
Rev = 𝐸 𝑣 2 = 0

• Can we do better?

𝑏1𝑣1 ∼ 𝑈 0,1
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What if we post a reserve price?



Let’s go back to basics: Single-Item Auction

• Auctioneer: “If you bid less than 𝑟, I will not accept 
your bid and not show any ad on the page! If you win 
you must pay 𝑟.” 
Rev r = 𝐸 r 1 v ≥ r = 𝑟 1 − 𝑟 ⇒ Rev 1/2 = 1/4

• Is the auction truthful?
• Is the auction efficient?

1
𝑏1𝑣1 ∼ 𝑈 0,1



Truthfulness of Mechanism

Suppose I bid my value. Would I want to deviate?

• Case 1. My value is below reserve price
• Only way to change anything is bid above
• But then I get negative utility as I pay more than value

𝑟

𝑣𝑖



Truthfulness of Mechanism

Suppose I bid my value. Would I want to deviate?

• Case 2. My value is above reserve price
• I get non-negative utility
• Only way to change anything is bid below
• But then I get zero utility as I lose

𝑣𝑖

𝑟









Let’s go back to basics: Single-Item Auction

• How much revenue does the second-price auction achieve?
Rev = 𝐸 𝑣 2 = 𝐸 min 𝑣1, 𝑣2 = 1/3

• Can we do better?
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Let’s go back to basics: Single-Item Auction

• Auctioneer: “If you bid less than 𝑟, I will not accept your bid! 
If you win you must pay max b2, 𝑟 .”

Rev(1/2) = 𝐸 max 𝑣 2 , 𝑟 1 𝑣 1 ≥ 𝑟 = 5/12

• Can we do better?

𝑏1

𝑏2

𝑣1 ∼ 𝑈 0,1

𝑣2 ∼ 𝑈 0,1
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How do we optimize over all 
possible mechanisms!



Single-Parameter Settings

• Each bidder has some value 𝑣𝑖  for being allocated
• Bidders submit a reported value 𝑏𝑖  (without loss of generality)
• Mechanism decides on an allocation 𝑥 ∈ 𝑋 ⊆ 0,1 𝑛

• Mechanism fixes a probabilistic allocation rule:
𝑥 𝑏 ∈ Δ 𝑋

• First question. Given an allocation rule, when can we find a 
payment rule 𝑝 so that the overall mechanism is truthful?

• If we can find such a payment, we will say that 𝑥 is implementable



Some Shorthand Notation

• Let’s fix bidder 𝑖 and what other bidders bid 𝑏−𝑖

• For simplicity of notation, we drop index 𝑖 and 𝑏−𝑖

• What properties does the function
𝑥 𝑣 ≡ 𝑥𝑖 𝑣, 𝑏−𝑖

  need to satisfy, so that 𝑥 is implementable?

• Can we find a truthful payment function
𝑝 𝑣 ≡ 𝑝 𝑣, 𝑏−𝑖



Is it possible to construct a 
mechanism that always allocates to 
the second highest value player and 
is dominant strategy truthful?









Suppose it is possible

• Suppose that we both bid truthfully

• Suppose that I am the highest value bidder

• No matter what the payment rule is, I can always reduce my bid to 
the second highest bid minus 𝜖

• By doing so, I am paying at most the second highest bid and I am 
winning deterministically



Implementable Rules are Monotone
𝑣 ⋅ 𝑥 𝑣 − 𝑝 𝑣 ≥ 𝑣 ⋅ 𝑥 𝑣′ − 𝑝 𝑣′

𝑣𝑣′

𝑝 𝑣′ − 𝑝(𝑣) ≥ 𝐴 

𝐴

𝑥 𝑣



Implementable Rules are Monotone
𝑣 ⋅ 𝑥 𝑣 − 𝑝 𝑣 ≥ 𝑣 ⋅ 𝑥 𝑣′ − 𝑝 𝑣′

𝑣′ ⋅ 𝑥 𝑣′ − 𝑝 𝑣′ ≥ 𝑣′ ⋅ 𝑥 𝑣 − 𝑝 𝑣

𝐴

𝑣𝑣′

𝑥𝑖 𝑧

𝐵

𝑝 𝑣′ − 𝑝(𝑣) ≥ 𝐴 𝑝 𝑣′ − 𝑝 𝑣 ≤ 𝐵

𝑣𝑣′



Implementable Rules are Monotone
𝐴 = 𝑣 𝑥 𝑣′ − 𝑥 𝑣 ≤ 𝑣′ 𝑥 𝑣′ − 𝑥 𝑣 = 𝐵

𝑣′ − 𝑣 𝑥 𝑣′ − 𝑥 𝑣 ≥ 0

𝐴

𝑥𝑖 𝑧

𝐵

𝑝 𝑣′ − 𝑝(𝑣) ≥ 𝐴 𝑝 𝑣′ − 𝑝 𝑣 ≤ 𝐵

𝑣𝑣′𝑣𝑣′

Non-decreasing function



Any implementable allocation rule must 
be monotone!
“If not allocated with value 𝑣, I should not 
be allocated if I report a lower value!”



Uniqueness of Payment Rule
• I should not want to deviate locally up or down infinitesimally

𝑢 𝑣 ≥ 𝑣 ⋅ 𝑥 𝑣 + 𝜖 − 𝑝 𝑣 + 𝜖 = 𝑢 𝑣 + 𝜖 − 𝜖 ⋅ 𝑥 𝑣 + 𝜖
𝑢 𝑣 ≥ 𝑣 ⋅ 𝑥 𝑣 − 𝜖 − 𝑝 𝑣 − 𝜖 = 𝑢 𝑣 − 𝜖 + 𝜖 ⋅ 𝑥 𝑣 − 𝜖

• Dividing over by 𝜖, restricts the rate of change of utility
𝑢 𝑣 + 𝜖 − 𝑢 𝑣

𝜖
≤ 𝑥 𝑣 + 𝜖

𝑢 𝑣 − 𝑢 𝑣 − 𝜖

𝜖
≥ 𝑥 𝑣 − 𝜖

• If 𝑢 was differentiable, then taking the limit of the above as 𝜖 → 0

𝑥 𝑣 ≤ 𝑢′ 𝑣 ≤ 𝑥 𝑣 ⇒ 𝑢′ 𝑣 = 𝑥 𝑣 ⇒ 𝑢 𝑣 − 𝑢 0 = න
0

𝑣

𝑥 𝑧 𝑑𝑧



Under any truthful payment rule

𝑢 𝑣 = 𝑢 0 + න
0

𝑣

𝑥 𝑧  𝑑𝑧



Discontinuity of Allocation Rule

• Even though allocation rule can be discontinuous, because it is 
monotone, it is Riemann integrable

න
0

𝑣

𝑥 𝑧  𝑑𝑧 = lim
𝜖→0

෍

𝑘

𝑥 𝑧 + 𝜖 ⋅ 𝜖 ≥ lim
𝜖→0

෍

𝑘

𝑢 𝑧 + 𝜖 − 𝑢 𝑧 = 𝑢 𝑣 − 𝑢 0

න
0

𝑣

𝑥 𝑧  𝑑𝑧 = lim
𝜖→0

෍

𝑘

𝑥 𝑧 − 𝜖 ⋅ 𝜖 ≤ lim
𝜖→0

෍

𝑘

𝑢(𝑧) − 𝑢(𝑧 − 𝜖) = 𝑢 𝑣 − 𝑢 0



Under any truthful payment rule

𝑢 𝑣 = 𝑢 0 + න
0

𝑣

𝑥 𝑧  𝑑𝑧



What does that imply about payments

• Since utility is value minus payment

𝑣 𝑥 𝑣 − 𝑝 𝑣 = −𝑝 0 + න
0

𝑣

𝑥 𝑧  𝑑𝑧

• Non-Negative-Transfers (NNT). We never have negative payments 
𝑝 0 ≥ 0

• Individually Rational (IR). We never give bidders negative utility 
𝑝 0 ≤ 0

• Thus, payment at 0 should be zero!



Under any truthful payment rule that 
satisfies NNT and IR

𝑝 𝑣 = 𝑣 ⋅ 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧  𝑑𝑧



Given an allocation rule, the 
payment is uniquely determined!



Visualizing Utility

• Under any truthful payment rule with IR and NNT

𝑣

𝐴

𝑥 𝑣

𝑢 𝑣

𝑝 𝑣 = 𝑣 ⋅ 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧  𝑑𝑧

𝑝 𝑣

𝑢 𝑣 = න
0

𝑣

𝑥 𝑧  𝑑𝑧



Visualizing Utility

• Under any truthful payment rule with IR and NNT

𝑣

𝐴

𝑥 𝑣

𝑢 𝑣

𝑝 𝑣 = 𝑣 ⋅ 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧  𝑑𝑧

𝑣′

𝑢 𝑣 = න
0

𝑣

𝑥 𝑧  𝑑𝑧



Visualizing Utility

• Under any truthful payment rule with IR and NNT

𝑣

𝐴

𝑥 𝑣

𝑢 𝑣

𝑝 𝑣 = 𝑣 ⋅ 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧  𝑑𝑧

𝑣′

𝑢 𝑣 = න
0

𝑣

𝑥 𝑧  𝑑𝑧



Visualizing Utility

• Under any truthful payment rule with IR and NNT

𝑣

𝐴

𝑥 𝑣

𝑢 𝑣

𝑝 𝑣 = 𝑣 ⋅ 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧  𝑑𝑧

𝑣′

𝑢 𝑣 = න
0

𝑣

𝑥 𝑧  𝑑𝑧



Back to Sponsored Search
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Applying this to Sponsored Search

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

𝑢1 = 1 ⋅ 7 − 4 = 3
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𝑣1 = 7
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1

0.5

Applying this to Sponsored Search

𝑣1 = 7

𝑣2 = 6

𝑣3 = 2

𝑢1 = 1 ⋅ 7 − 4 = 3

𝑢2 = .5 ⋅ 6 − 2 = 2

With an arbitrary number of slots, 
payment of bidder in slot 𝑗 is:

𝑝 𝑗 = ෍

ℓ=𝑗

𝑘

𝑎ℓ − 𝑎ℓ+1 ⋅ 𝑏 ℓ

where 𝑏 ℓ  is the bid of the player 
allocated in slot ℓ



Optimizing over allocation rules



Myerson’s Theorem

• Let 𝑥, 𝑝 be any DSIC mechanism
• Suppose each value 𝑣𝑖 ∼ 𝐹𝑖  independently and let 𝑣 = 𝑣1, … , 𝑣𝑛  

𝐸 𝑝𝑖 𝑣 = 𝐸 𝑥𝑖 𝑣 ⋅ 𝜙𝑖 𝑣𝑖

   where 𝜙𝑖(𝑣𝑖) is bidder 𝑖’s “virtual value”. 
• Letting 𝐹𝑖  the CDF and 𝑓𝑖     the density:

𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖

• Assuming 𝜙𝑖 𝑣𝑖  is monotone non-decreasing, then the optimal 
DSIC mechanism is the mechanism that allocates to the highest 
virtual value bidder (or none if highest virtual value is negative)



Back to Uniform Example

• If 𝑣𝑖 ∼ 𝑈 0,1  then 𝐹 𝑣 = 𝑣 and 𝑓 𝑣 = 1

• Virtual value simplifies to
𝜙𝑖 𝑣𝑖 = 𝑣𝑖 − 1 − 𝑣𝑖 = 2𝑣𝑖 − 1

• We should allocate to the highest virtual value player, as long as 
the highest virtual value is non-negative

𝑣𝑖 ≥ 1/2

• Since all virtual value functions are the same, allocating to the 
highest virtual value is the same as allocating to the highest value

• Simply: Second Price with a reserve price of 1/2!



Myerson’s Theorem

• Consider the revenue contribution of a single bidder 𝑖 and drop other 
bids and index from notation

𝐸 𝑝 𝑣 = 𝐸 𝑣 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧 𝑑𝑧 = 𝐸 𝑣 ො𝑥 𝑣 − න
0

𝑣

ො𝑥 𝑧 𝑑𝑧

• Allocation ො𝑥(𝑧) is the expected allocation over other bidder values
ො𝑥 𝑧 = 𝐸𝑣−𝑖

𝑥 𝑧, 𝑣−𝑖

• We can do an exchange of the integrals:

𝐸 න
0

𝑣

ො𝑥 𝑧 𝑑𝑧 = න
𝑣=0

∞

න
𝑧=0

𝑣

ො𝑥 𝑧 𝑑𝑧 𝑓 𝑣 𝑑𝑣 = න
𝑧=0

∞

ො𝑥 𝑧 න
𝑣=𝑧

∞

𝑓 𝑣 𝑑𝑣 𝑑𝑧

= න
𝑧=0

∞

ො𝑥 𝑧 1 − 𝐹 𝑧 𝑑𝑧 = 𝐸 ො𝑥 𝑣
1 − 𝐹 𝑣

𝑓 𝑣



Myerson’s Theorem (cont’d)

• Consider the revenue contribution of a single bidder 𝑖 and drop 
other bids and index from notation

𝐸 𝑝 𝑣 = 𝐸 ො𝑥 𝑣 𝑣 − ො𝑥 𝑣
1 − 𝐹 𝑣

𝑓 𝑣
= 𝐸 ො𝑥 𝑣  𝜙 𝑣

• Re-introducing the bidder index:
𝐸 𝑝𝑖 𝑣 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖 = 𝐸 𝑥𝑖 𝑣 ⋅ 𝜙𝑖 𝑣𝑖

• Summing across bidders we get:

෍

𝑖

𝐸 𝑝𝑖 𝑣 = ෍

𝑖

𝐸 𝑥𝑖 𝑣 ⋅ 𝜙𝑖 𝑣𝑖 = 𝐸 ෍

𝑖

𝑥 𝑣 ⋅ 𝜙𝑖 𝑣𝑖



Myerson’s Optimal Auction. The optimal mechanism is the 
mechanism that maximizes virtual welfare (and charges the 
corresponding payments that make this truthful)

𝑥 𝑣 = argmax𝑥∈𝑋 ෍

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖 ,  𝑝𝑖 𝑣 = 𝑣𝑖𝑥𝑖 𝑣 − න
0

𝑣𝑖

𝑥𝑖 𝑧, 𝑣−𝑖 𝑑𝑧

Rev = 𝐸 max
𝑥∈𝑋

෍

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖



Appendix: Deriving the Optimal Reserve

• Bidders are symmetric. Revenue is twice the revenue we collect from each bidder

Rev1(𝑟) = 𝐸 max 𝑣2, 𝑟 1 𝑣1 ≥ max 𝑣2, 𝑟

= 𝐸 𝑣2 ∣ 𝑣2 ∈ 𝑟, 𝑣1 Pr 𝑣2 ∈ 𝑟, 𝑣1 |𝑣1 ≥ 𝑟 Pr 𝑣1 ≥ 𝑟 + 𝑟 Pr 𝑣2 ≤ 𝑟 Pr 𝑣1 ≥ 𝑟

= න
𝑟

1 𝑣 + 𝑟

2
𝑣 − 𝑟 𝑑𝑣 + 𝑟2 1 − 𝑟

= න
𝑟

1 𝑣2 − 𝑟2

2
𝑑𝑣 + 𝑟2 1 − 𝑟

=
1 − r3

6
−

r2

2
1 − r + r2 1 − 𝑟

=
1 − r3

6
+

𝑟2 1 − 𝑟

2
=

1 − 𝑟3 + 3𝑟2 − 3𝑟3

6
=

1 + 3𝑟2 − 4𝑟3

6
• The first order condition

Rev1 𝑟
′

= 𝑟 1 − 2𝑟 = 0 ⇒ 𝑟 = 1/2
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