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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research
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Summarizing Last Lecture



What if we want to maximize 
revenue?



How do we optimize over all 
possible mechanisms!



Single-Parameter Settings

• Each bidder has some value 𝑣𝑖  for being allocated
• Bidders submit a reported value 𝑏𝑖  (without loss of generality)
• Mechanism decides on an allocation 𝑥 ∈ 𝑋 ⊆ 0,1 𝑛

• Mechanism fixes a probabilistic allocation rule:
𝑥 𝑏 ∈ Δ 𝑋

• First question. Given an allocation rule, when can we find a 
payment rule 𝑝 so that the overall mechanism is truthful?

• If we can find such a payment, we will say that 𝑥 is implementable



Some Shorthand Notation

• Let’s fix bidder 𝑖 and what other bidders bid 𝑏−𝑖

• For simplicity of notation, we drop index 𝑖 and 𝑏−𝑖

• What properties does the function
𝑥 𝑣 ≡ 𝑥𝑖 𝑣, 𝑏−𝑖

  need to satisfy, so that 𝑥 is implementable?

• Can we find a truthful payment function
𝑝 𝑣 ≡ 𝑝 𝑣, 𝑏−𝑖



Any implementable allocation rule must 
be monotone!
“If not allocated with value 𝑣, I should not 
be allocated if I report a lower value!”



Under any truthful payment rule

𝑢 𝑣 = 𝑢 0 + න
0

𝑣

𝑥 𝑧  𝑑𝑧



Under any truthful payment rule that 
satisfies NNT and IR

𝑝 𝑣 = 𝑣 ⋅ 𝑥 𝑣 − න
0

𝑣

𝑥 𝑧  𝑑𝑧



For any dominant-strategy truthful, NNT and 
IR mechanism, given an allocation rule, utility 
and payment are uniquely determined!

𝑣

𝐴

𝑥 𝑣

𝑢 𝑣
𝑝 𝑣



Myerson’s Theorem. When valuations are independently 
distributed, for any dominant-strategy truthful, NNT and IR 
mechanism, the payment contribution of each player is their 
expected virtual value

𝐸 𝑝𝑖 𝑣 = 𝐸 𝑥𝑖 𝑣 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Myerson’s Optimal Auction. Assuming that virtual value 
functions are monotone non-decreasing, the optimal 
mechanism is the mechanism that maximizes virtual welfare

𝑥 𝑣 = argmax𝑥∈𝑋 

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖 ,  𝑝𝑖 𝑣 = 𝑣𝑖𝑥𝑖 𝑣 − න
0

𝑣𝑖

𝑥𝑖 𝑧, 𝑣−𝑖 𝑑𝑧

Rev = 𝐸 max
𝑥∈𝑋



𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖



Can non-truthful mechanisms 
generate higher revenue at some 
Bayes-Nash equilibrium?



Non-Truthful Mechanism

• Consider any potentially non-truthful mechanism 𝑀
• Bidder 𝑖 uses some strategy 𝑠𝑖 𝑣𝑖  to participate in the game
• This could even be a complicated action plan not just a number
• Strategies are Bayes-Nash equilibrium if for any other strategy 𝑠𝑖

′

𝐸 𝑢𝑖 𝑠 𝑣 ; 𝑣𝑖 ∣ 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑠𝑖
′ 𝑣𝑖 , 𝑠−𝑖 𝑣−𝑖 ; 𝑣𝑖 ∣ 𝑣𝑖

• Mechanism implies expected allocation and payment for bidder 𝑖

ො𝑥𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑥𝑖 𝑠 𝑣 , Ƹ𝑝𝑖 𝑣𝑖 = 𝐸𝑣−𝑖

𝑝𝑖 𝑠 𝑣

Expected utility given my value, in 
expectation over other values

Expected utility given my value, if I deviate, 
in expectation over other values

Expected allocation probability, given my 
value, in expectation over other values

Expected payment, given my value, in 
expectation over other values



Is there any mechanism M with some 
equilibrium 𝑠 such that

Rev ≔ 

𝑖

𝐸 Ƹ𝑝𝑖 𝑣𝑖 ≥ Myerson?



Revelation Principle

• Consider the following “wrapper” mechanism ෩𝑀

• The mechanism asks from bidders to each report their value
• Given value profile 𝑣, mechanism ෩𝑀 simulates mechanism 𝑀, with 

strategies 𝑠 𝑣 . Do bidders have incentive to not bid truthfully?
• Consider the deviation 𝑠𝑖

′ 𝑣𝑖 = 𝑠𝑖 𝑣𝑖
′ . By equilibrium properties

𝐸 𝑢𝑖 𝑠 𝑣 ; 𝑣𝑖 ∣ 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑠𝑖 𝑣𝑖
′ , 𝑠−𝑖 𝑣−𝑖 ; 𝑣𝑖 ∣ 𝑣𝑖

⇒ 𝐸 𝑢𝑖 𝑣; 𝑣𝑖 ∣ 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑣𝑖
′, 𝑣−𝑖; 𝑣𝑖 ∣ 𝑣𝑖

• Mechanism ෩𝑀 implies same expected allocation and payment

ො𝑥𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑥𝑖 𝑠 𝑣 = 𝐸𝑣−𝑖

𝑥𝑖 𝑠 𝑣  

Ƹ𝑝𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑝 𝑣 = 𝐸𝑣−𝑖

𝑝𝑖 𝑠 𝑣

𝐸 𝑢𝑖 𝑣𝑖
′, 𝑣−𝑖; 𝑣𝑖 ∣ 𝑣𝑖𝐸 𝑢𝑖 𝑣; 𝑣𝑖 ∣ 𝑣𝑖



Bayesian-Incentive Compatible Mechanism

• A direct mechanism elicits private values and comprises of an 
allocation function 𝑥 and a payment function 𝑝

• BIC. bidders have no incentive to deviate from truthful reporting

𝐸 𝑢𝑖 𝑣; 𝑣𝑖 ∣ 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑣𝑖
′, 𝑣−𝑖; 𝑣𝑖 ∣ 𝑣𝑖

𝐸 𝑣𝑖𝑥𝑖 𝑣 − 𝑝 𝑣 ∣ 𝑣𝑖 ≥ 𝐸 𝑣𝑖𝑥𝑖 𝑣𝑖
′, 𝑣−𝑖 − 𝑝𝑖 𝑣𝑖

′, 𝑣−𝑖 ∣ 𝑣𝑖

• Implies “interim” expected utility, allocation and payment for bidder 𝑖

ො𝑢𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑢𝑖 𝑣 , ො𝑥𝑖 𝑣𝑖 = 𝐸𝑣−𝑖

𝑥𝑖 𝑣 , Ƹ𝑝𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑝𝑖 𝑣

𝐸 𝑣𝑖𝑥𝑖 𝑣 − 𝑝 𝑣 ∣ 𝑣𝑖 ≥ 𝐸 𝑣𝑖𝑥𝑖 𝑣𝑖
′, 𝑣−𝑖 − 𝑝𝑖 𝑣𝑖

′, 𝑣−𝑖 ∣ 𝑣𝑖



The interim allocation and payment 
function that is implied by an equilibrium 
of a non-truthful auction can always be 
implemented by a direct BIC mechanism



Properties of BIC Mechanisms

• Equilibrium constraints are
∀𝑣𝑖 , 𝑣𝑖

′:  𝑣𝑖 ⋅ ො𝑥𝑖 𝑣𝑖 − Ƹ𝑝𝑖 𝑣𝑖 ≥ 𝑣𝑖 ⋅ ො𝑥𝑖 𝑣𝑖
′ − Ƹ𝑝𝑖 𝑣𝑖

′

• Exact same constraints we used in the properties of dominant 
strategy truthful mechanisms

• Only thing that changes: now use the interim allocation and 
payment functions and not the ex-post functions, for each 
opponent bid/value profile

• We can prove the same properties!

𝐸 𝑣𝑖𝑥𝑖 𝑣 − 𝑝 𝑣 ∣ 𝑣𝑖 ≥ 𝐸 𝑣𝑖𝑥𝑖 𝑣𝑖
′, 𝑣−𝑖 − 𝑝𝑖 𝑣𝑖

′, 𝑣−𝑖 ∣ 𝑣𝑖



For any BIC mechanism (and any BNE of a 
non-truthful mechanism) the interim 
allocation function ො𝑥𝑖 𝑣𝑖  is monotone 
non-decreasing in the player’s value



For any BIC mechanism (and any 
BNE of a non-truthful mechanism)

ො𝑢𝑖 𝑣𝑖 = ො𝑢𝑖 0 + න
0

𝑣𝑖

ො𝑥𝑖 𝑧  𝑑𝑧



For any BIC mechanism (and any 
BNE of a non-truthful mechanism) 
that satisfies NNT and BIR

Ƹ𝑝𝑖 𝑣 = 𝑣𝑖 ⋅ ො𝑥𝑖 𝑣𝑖 − න
0

𝑣𝑖

ො𝑥𝑖 𝑧  𝑑𝑧



For any BIC, NNT and BIR mechanism (and 
any BNE of a non-truthful mechanism), given 
the interim allocation rule, utility and payment 
are uniquely determined!

𝑣𝑖

𝐴

ො𝑥𝑖 𝑣𝑖

ො𝑢𝑖 𝑣𝑖
Ƹ𝑝𝑖 𝑣𝑖



Myerson’s Theorem. When valuations are independently 
distributed, for any BIC, NNT and IR mechanism (and any BNE 
of a non-truthful mechanism), the payment contribution of 
each player is their expected virtual value

𝐸 ො𝑝𝑖 𝑣𝑖 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Corollary. When valuations are independently distributed, for 
any Bayes-Nash equilibrium of any non-truthful mechanism, 
the payment contribution of each player is their expected 
virtual value

𝐸 ො𝑝𝑖 𝑣 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Myerson’s Optimal Auction. Assuming that virtual value 
functions are monotone non-decreasing, the mechanism that 
maximizes virtual welfare, achieves the largest possible 
revenue among all possible mechanisms and Bayes-Nash

𝑥 𝑣 = argmax𝑥∈𝑋 

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖 ,  𝑝𝑖 𝑣 = 𝑣𝑖𝑥𝑖 𝑣 − න
0

𝑣𝑖

𝑥𝑖 𝑧, 𝑣−𝑖 𝑑𝑧

Rev = 𝐸 max
𝑥∈𝑋



𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖



Side-Note: Best among BIC is DSIC

Even though we optimized over the bigger space of Bayes-Nash 
equilibria and Bayesian Incentive Compatible auctions, the optimal 
revenue is achievable by a dominant strategy truthful mechanism!



Side-Note: Revenue Equivalence

• For any equilibrium of any mechanism
𝐸 Ƹ𝑝𝑖 𝑣 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖

Corollary. If two mechanisms and two equilibria have the same interim 
allocation function ො𝑥𝑖 𝑣𝑖 , as a function of the bidder’s value, for each 
bidder, then they generate the same revenue

Example. Consider a Second-Price auction and a First-Price auction, 
when bidders have the same distribution and use a symmetric strategy. 
In both auctions the allocation is efficient, highest value bidder wins. 
ො𝑥𝑖 𝑣𝑖  is the same for both auctions ⇒ they generate the same revenue



Dissecting Myerson’s Optimal 
Auction



Identically Distributed Bidders

• Single-item setting, with all bidder values are from same distribution 𝑣𝑖 ∼ 𝐹

• Virtual value function is the same for all bidders

𝜙 𝑣 = 𝑣 −
1 − 𝐹 𝑣

𝑓 𝑣

• Assume that 𝜙 𝑣  is monotone non-decreasing (𝐹 is regular)
• Allocating to highest virtual value ≡ allocating to highest value
• Optimal auction. Allocate to highest value, as long as 𝜙 𝑣 1 ≥ 0

• Optimal auction. allocate to highest value, as long as 𝑣1 ≥ 𝑟∗

𝑟∗:  𝑟 −
1 − 𝐹 𝑟

𝑓 𝑟
= 0, (monopoly reserve price)



When bidders are independently and identically 
distributed according to a regular distribution, then the 
optimal single-item auction among all auctions is a 
Second-Price Auction with a Monopoly Reserve Price



Monopoly Reserve Price

• What if we had only one bidder (monopoly)
• Then optimal thing to do is post a reserve price 𝑟∗

• The revenue from that single bidder if we post a reserve 𝑟 is

𝐸 𝑟 1 𝑣 ≥ 𝑟 = 𝑟 1 − 𝐹 𝑟

• The optimal reserve price is given by the first order condition

𝑟∗: 1 − 𝐹 𝑟 − 𝑟 𝑓 𝑟 = 0 ⇒ 𝑟 −
1 − 𝐹 𝑟

𝑓 𝑟
= 0

• Same as reserve price that we should be using with many bidders



Non-Identically Distributed Bidders

• What if you know ahead of time that 
one bidder tends to have higher 
values than the other bidder?

• Shouldn’t you treat these bidders 
differently (price discrimination)? 

• Shouldn’t you try to extract more 
revenue from the bidder that tends to 
have a higher value?

1

𝑣1 ∼ 𝑈[0,1]

𝑣2 ∼ 𝑈 0,100









Non-Identically Distributed Bidders

• Suppose we have two bidders, 𝑣1 ∼ 𝑈 0,1 , 𝑣2 ∼ 𝑈 0,100

• Virtual value function for each bidder

𝜙1 𝑣 = 𝑣 −
1 − 𝐹1 𝑣

𝑓1 𝑣
= 2𝑣 − 1, 𝜙2 𝑣 = 𝑣 −

1 −
𝑣

100
1

100

= 2𝑣 − 100

• We should allocate to the bidder with the highest virtual value (if positive)!

argmax 0, 𝜙1 𝑣1 , 𝜙2 𝑣2 = argmax 0, 2𝑣1 − 1, 2𝑣2 − 100



Non-Identically Distributed Bidders

• Allocate to highest virtual value (if positive)!

argmax 0, 2𝑣1 − 1, 2𝑣2 − 100

𝑣1 ∼ 𝑈[0,1]

𝑣2 ∼ 𝑈 0,100

𝑣1 = 1

1

𝑣2 = 20

𝜙1 = 1

𝜙2 = −60



Non-Identically Distributed Bidders

• Allocate to highest virtual value (if positive)!

argmax 0, 2𝑣1 − 1, 2𝑣2 − 100

𝑣1 ∼ 𝑈[0,1]

𝑣2 ∼ 𝑈 0,100

𝑣1 = 1

1

𝑣2 = 20

𝜙1 = 1

𝜙2 = −60



Non-Identically Distributed Bidders

• Allocate to highest virtual value (if positive)!

argmax 0, 2𝑣1 − 1, 2𝑣2 − 100

𝑣1 ∼ 𝑈[0,1]

𝑣2 ∼ 𝑈 0,100

𝑣1 = 1

𝑣2 = 51

𝜙1 = 1

𝜙2 = 2

1



Non-Identically Distributed Bidders

• Allocate to highest virtual value (if positive)!

argmax 0, 2𝑣1 − 1, 2𝑣2 − 100

𝑣1 ∼ 𝑈[0,1]

𝑣2 ∼ 𝑈 0,100

𝑣1 = .49

1

𝑣2 = 49

𝜙1 = −.02

𝜙2 = −2



Non-Identically Distributed Bidders

• Allocate to highest virtual value (if positive)!

argmax 0, 2𝑣1 − 1, 2𝑣2 − 100

.5

𝑥1 𝑣1

𝑣2 − 49.5

1

𝑝1

Bidder 1 wins if: 2𝑣1 − 1 ≥ 2𝑣2 − 100 ⇒ 𝑣1 ≥ 𝑣2 −
99

2

𝑝1

50 𝑣1 + 49.5

1

𝑝1

𝑝2

𝑥2 𝑣2

1 100
𝑣1 𝑣2



Non-Identically Distributed Bidders

1

• Allocate to highest virtual value (if positive)!

argmax 0, 2𝑣1 − 1, 2𝑣2 − 100

Optimal auction rules
• If 𝑣1 > .5, 𝑣2 < 50, allocate to 1, charge .5
• If 𝑣1 < .5, 𝑣2 > 50, allocate to 2, charge 50

• If .5 ≤ 𝑣1 < 𝑣2 − 49.5, allocate to 2, charge 𝑣1 + 49.5

• If 50 ≤ 𝑣2 < 𝑣1 + 49.5, allocate to 1, charge 𝑣2 − 49.5
∼ 𝑈[0,1]

∼ 𝑈 0,100



At the optimal auction, we are giving a huge advantage to 
the weaker bidder! We roughly add 49.5$ to their bid! 

We expect more from stronger bidders and make it 
harder for them to win, to incentivize them to pay more.



Optimal auction is 
1) cumbersome, 2) hard to understand, 3) hard to 
explain, 4) does not always allocate to the highest 
value player, 5) discriminates a lot, 6) is many 
times counter-intuitive, 7) can seem unfair!



Are there simpler auctions that 
always achieve almost as good 
revenue?



Simple vs. Optimal Auctions



Second-Price with Player-Specific Reserves

• What if we simply run a second price auction but have different 
reserves for each bidder

• Each bidder 𝑖 has a reserve price 𝑟𝑖

• Reject all bidders with bid below the reserve
• Among all bidders with value 𝑣𝑖 ≥ 𝑟𝑖, allocate to highest bidder
• Charge winner max of their reserve and the next highest surviving bid

Theorem. There exist personalized reserve prices such that the above 
auction achieves at least ½ of the optimal auction revenue!



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the above auction 
achieves at least ½ of the optimal auction revenue!

• Revenue of the optimal auction is the maximum virtual welfare
OPT = 𝐸 max

𝑖
𝜙𝑖

+ 𝑣𝑖 , 𝜙𝑖
+ 𝑣𝑖 = max 0, 𝜙𝑖 𝑣𝑖

• Assume that reserve prices are at least the monopoly reserves
• Revenue of the second-price with player specific reserves (SP-r)

Rev = 𝐸 

𝑖

𝑥𝑖 𝑣 𝜙𝑖
+ 𝑣𝑖

• Can we guarantee that the auction collects a 𝜙𝑖
+ 𝑣𝑖  that, in expectation, is at least 

half of the maximum 𝜙𝑖
+ 𝑣𝑖 ?



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the 
above auction achieves at least ½ of the optimal auction revenue!

• Can we guarantee that the auction collects a 𝜙𝑖
+ 𝑣𝑖  that, in 

expectation, is at least half of the maximum 𝜙𝑖
+ 𝑣𝑖 ?

• Since the auction allocates to some player with 𝑣𝑖 ≥ 𝑟𝑖

• Since 𝜙𝑖
+ are monotone: to some player with 𝜙𝑖

+ 𝑣𝑖 > 𝜃𝑖

• We can think of 𝜙𝑖
+ 𝑣𝑖  as non-negative prizes Π𝑖



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the 
above auction achieves at least ½ of the optimal auction revenue!
• We can think of 𝜙𝑖

+ 𝑣𝑖  as non-negative prizes Π𝑖

• The optimal auction gets revenue that corresponds to the 
expected maximum prize 𝐸[max

𝑖
Π𝑖] 

• The SP-r auction gets revenue that corresponds to some price Π𝜏 
that satisfies that it is above some threshold 𝜃𝜏

• Is there a threshold rule for collecting prizes that guarantees at 
least half of the expected maximum prize?



Parenthesis: (Optimal Stopping Problems)

• There are 𝑛 stages
• In each stage 𝑖, we are offered a prize Π𝑖 ∼ 𝐺𝑖

• Distributions 𝐺𝑖  are known ahead of time
• Realized prize Π𝑖  only revealed at stage 𝑖
• At each stage, we can choose to accept Π𝑖  and end the game or 

discard the prize and continue opening prizes
Question. Is there a strategy to play the game that guarantees at 
least half of what an oracle who knows all the prizes ahead of time 
would achieve?



Parenthesis: (Optimal Stopping Problems)

Question. Is there a strategy to play the game that guarantees at 
least half of what an “prophet” who knows all the prizes ahead of 
time would achieve?

Theorem (Prophet Inequality). There exists a threshold strategy 
APX that accepts the first prize that passes a threshold 𝜃, such that:

𝐸 Π𝜏 ≥
1

2
𝐸 max

𝑖
Π𝑖

𝜏 is the random stopping time induced by the threshold policy.



Parenthesis: (Proof of Prophet Inequality)
• Let’s be generous with the optimal benchmark

𝐸 Π∗ = 𝐸 max
𝑖

Π𝑖 ≤ 𝐸 𝜃 + Π∗ − 𝜃 + ≤ 𝜃 + 

𝑖

𝐸 Π𝑖 − 𝜃 +

• APX gets 𝜃 if there exists some prize above, i.e., Π∗ ≥ 𝜃

• On top of that, we also collect some excess Π𝜏 − 𝜃 +

• Excess is 𝐴𝑖, when all rewards other than 𝑖 is ≤ 𝜃

Excess ≥ 

𝑖

𝐴𝑖 Pr ∀𝑗 ≠ 𝑖: Π𝑗 < 𝜃 ≥ 

𝑖

𝐴𝑖 Pr Π∗ < 𝜃

Overall: APX ≥ 𝜃 Pr Π∗ ≥ 𝜃 + Pr Π∗ < 𝜃 σ𝑖 𝐴𝑖

Choosing Pr Π∗ ≥ 𝜃 = 1/2: APX ≥
1

2
𝜃 + σ𝑖 𝐴𝑖 ≥

1

2
𝐸 Π∗

𝐴𝑖



Parenthesis: (Optimal Stopping Problems)

Question. Is there a strategy to play the game that guarantees at least 
half of what an “prophet” who knows all the prizes ahead of time would 
achieve?
Theorem (Prophet Inequality). There exists a threshold strategy APX that 
accepts the first prize that passes a threshold 𝜃, such that:

𝐸 Π𝜏 ≥
1

2
𝐸 max

𝑖
Π𝑖

𝜏 is the random stopping time induced by the threshold policy.

Policy. Simply choose 𝜃 such that Pr max
𝑖

Π𝑖 ≥ 𝜃 = 1/2



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the 
above auction achieves at least ½ of the optimal auction revenue!

• Choose 𝜃 such that:

Pr max
𝑖

𝜙𝑖
+ 𝑣𝑖 ≥ 𝜃 = 1/2

• Then set personalized reserve prices implied by:
𝜙𝑖

+ 𝑣𝑖 ≥ 𝜃 ⇔ 𝑣𝑖 ≥ 𝑟𝑖
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