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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research
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Summarizing Last Lecture



Myerson’s Theorem. When valuations are independently 
distributed, for any BIC, NNT and IR mechanism (and any BNE 
of a non-truthful mechanism), the payment contribution of 
each player is their expected virtual value

𝐸 ො𝑝𝑖 𝑣𝑖 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Corollary. When valuations are independently distributed, for 
any Bayes-Nash equilibrium of any non-truthful mechanism, 
the payment contribution of each player is their expected 
virtual value

𝐸 ො𝑝𝑖 𝑣 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Myerson’s Optimal Auction. Assuming that virtual value 
functions are monotone non-decreasing, the mechanism that 
maximizes virtual welfare, achieves the largest possible 
revenue among all possible mechanisms and Bayes-Nash

𝑥 𝑣 = argmax𝑥∈𝑋 ෍

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖 ,  𝑝𝑖 𝑣 = 𝑣𝑖𝑥𝑖 𝑣 − න
0

𝑣𝑖

𝑥𝑖 𝑧, 𝑣−𝑖 𝑑𝑧

Rev = 𝐸 max
𝑥∈𝑋

෍

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖



Optimal auction is 
1) cumbersome, 2) hard to understand, 3) hard to 
explain, 4) does not always allocate to the highest 
value player, 5) discriminates a lot, 6) is many 
times counter-intuitive, 7) can seem unfair!



Second-Price with Player-Specific Reserves

• What if we simply run a second price auction but have different 
reserves for each bidder

• Each bidder 𝑖 has a reserve price 𝑟𝑖

• Reject all bidders with bid below the reserve
• Among all bidders with value 𝑣𝑖 ≥ 𝑟𝑖, allocate to highest bidder
• Charge winner max of their reserve and the next highest surviving bid

Theorem. There exist personalized reserve prices such that the above 
auction achieves at least ½ of the optimal auction revenue!



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the 
above auction achieves at least ½ of the optimal auction revenue!

• Choose 𝜃 such that:

Pr max
𝑖

𝜙𝑖
+ 𝑣𝑖 ≥ 𝜃 = 1/2

• Then set personalized reserve prices implied by:
𝜙𝑖

+ 𝑣𝑖 ≥ 𝜃 ⇔ 𝑣𝑖 ≥ 𝑟𝑖



All these designs required knowledge 
of distributions of values 𝐹𝑖!



What can we do if we only have 
data from 𝐹𝑖?



Learning Auctions from Samples



Learning from Samples

• We are given a set 𝑆 of 𝑚 samples of value profiles 
𝑆 = 𝑣𝑗 = 𝑣1

𝑗
, … , 𝑣𝑛

𝑗

𝑗=1

𝑚

• Each sample is drawn i.i.d. from the distribution of values
𝑣𝑖

𝑗
∼ 𝐹𝑖 ,  𝑣𝑗 ∼ 𝑭 ≝ 𝐹1 × ⋯ × 𝐹𝑛

• Samples can be collected from historical runs of truthful auction
• Bids of each bidder in each of the 𝑚 historical runs of the auction



Desiderata

• Without knowledge of distributions 𝐹𝑖, we want to produce a 
mechanism 𝑀𝑆, that achieves good revenue on these distributions

• For some 𝜖 𝑚 → 0 as the number of samples grows:

Rev 𝑀𝑆 ≝ 𝐸𝑣∼𝐹 ෍

𝑖

𝑝𝑖
𝑀𝑆 𝑣 ≥ OPT 𝑭 − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 Rev 𝑀𝑆 ≥ OPT 𝑭 − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  Rev 𝑀𝑆 ≥ OPT 𝑭 − 𝜖𝛿 𝑚



Easy Start: Pricing from Samples



Pricing from Samples

• Suppose we have only one bidder with 𝑣 ∼ 𝐹, for simplicity in [0, 1]

• Optimal mechanism is to post the monopoly reserve price
• The optimal price 𝑟 is the one that maximizes

Rev 𝑟 = 𝐸𝑣∼𝐹 𝑟 ⋅ 1 𝑣 ≥ 𝑟 = 𝑟 Pr 𝑣 ≥ 𝑟 = 𝑟 1 − 𝐹 𝑟

    which is the monopoly reserve price 𝜂 that solves:

𝜂 −
1 − 𝐹 𝜂

𝑓 𝜂
= 0

• Choosing 𝜂 requires knowledge of the CDF 𝐹 and the pdf 𝑓
• Can we optimize 𝑟 if we have 𝑚 samples of 𝑣?



The Obvious Algorithm

• We want to choose 𝑟 that maximizes
max

𝑟∈[0,1]
Rev 𝑟 ≝ 𝐸𝑣∼𝐹 𝑟 ⋅ 1 𝑣 ≥ 𝑟 , (population objective)

• With 𝑚 samples 𝑆, we can optimize average revenue on samples!

max
𝑟∈ 0,1

 Rev𝑆 𝑟 ≝
1

𝑚
෍

𝑗=1

𝑚

𝑟 ⋅ 1 𝑣𝑗 ≥ 𝑟 , (empirical objective)

• This approach is called Empirical Reward Maximization (ERM)
• Intuition. Since each value is drawn from distribution 𝐹 the empirical 

average over i.i.d. draws from 𝐹, by law of large numbers, should be 
very close to expected value

Same as Empirical Risk Minimization (ERM) in 
Machine Learning (loss vs reward)



A Potential Problem with ERM

• The Law of Large Numbers applies if we wanted to evaluate the 
revenue of a fixed reserve price, we had in mind using the samples

• If we optimize over a very large set of reserve prices, then by 
random chance, it could be that we find a reserve price that has a 
large revenue on the samples, but small on the distribution

• This behavior is called overfitting to the samples
• We need to argue that overfitting cannot arise when we optimize 

over the reserve price!



Basic Elements of Statistical 
Learning Theory



Uniform Convergence

• Uniform Convergence. Suppose that we show that, w.p. 1 − 𝛿

∀𝑟 ∈ 0,1 : Rev𝑆 𝑟 − Rev 𝑟 ≤ 𝜖𝛿 𝑚

• Alert. Note that this is different than: ∀𝑟 ∈ 0,1 , w.p. 1 − 𝛿

Rev𝑆 𝑟 − Rev 𝑟 ≤ 𝜖𝛿 𝑚

• The first asks that with probability 1 − 𝛿, the empirical revenue of all 
reserve prices is close to their population revenue

• The second asks that for a given reserve price, with probability 1 − 𝛿 its 
empirical revenue is close to its population

• The second claims nothing about the probability of the joint event that 
this is satisfied for all prices simultaneously



Uniform Converges Suffices for No-Overfitting

• Uniform Convergence. Suppose that we show that, w.p. 1 − 𝛿

∀𝑟 ∈ 0,1 : Rev𝑆 𝑟 − Rev 𝑟 ≤ 𝜖𝛿 𝑚

• Empirical Risk Maximization reserve:

𝑟𝑆 = argmax
𝑟∈ 0,1

 Rev𝑆 𝑟

Theorem. If uniform convergence holds then, w.p. 1 − 𝛿

Rev 𝑟𝑆 ≥ Rev 𝜂 − 2𝜖𝛿 𝑚 = OPT 𝐹 − 2𝜖𝛿 𝑚



Uniform Converges Suffices for No-Overfitting

Theorem. If uniform convergence holds then, w.p. 1 − 𝛿

Rev 𝑟𝑆 ≥ Rev 𝜂 − 2𝜖𝛿 𝑚 = OPT 𝐹 − 2𝜖𝛿 𝑚

• By uniform convergence, with probability 1 − 𝛿:
Rev rS ≥ Rev𝑆 𝑟𝑆 − 𝜖𝛿 𝑚

• Since, 𝑟𝑆 optimizes the empirical objective
Rev𝑆 𝑟𝑆 ≥ Rev𝑆 𝜂

• By uniform convergence:
Rev𝑆 𝜂 ≥ Rev 𝜂 − 𝜖𝛿 𝑚

• Putting it all together: 
Rev 𝑟𝑠 ≥ Rev 𝜂 − 2𝜖𝛿 𝑚

This is the no-overfitting property:
It cannot be that we found a reserve 
price that has large empirical revenue 
but very small population revenue

The monopoly reserve is a feasible 
reserve price but was not chosen by 
ERM. So, it must have had smaller 
empirical average revenue.



LLN vs Uniform Convergence

• Cannot be argued solely using Law of Large Numbers: if we have i.i.d. 𝑋𝑗  with mean 𝐸 𝑋

1

𝑚
෍

𝑗=1

𝑚

𝑋𝑗 − 𝐸 𝑋 → 0

• For reserve price 𝑟 that is chosen before looking at the samples, define 𝑋𝑗(𝑟) = 𝑟 ⋅  1 𝑣𝑗 ≥ 𝑟

Rev𝑆 𝑟 − Rev 𝑟 =
1

𝑚
෍

𝑗

𝑟 ⋅ 1 𝑣𝑗 ≥ 𝑟 − 𝐸 𝑟 ⋅ 1 𝑣 ≥ 𝑟 → 0

• Problem. The reserve price 𝑟𝑆 was chosen by looking at all the samples in 𝑆
• If I tell you 𝑟𝑆 you learn something about the samples 
• Conditional on 𝑟𝑆 the samples are no-longer i.i.d.

• Uniform convergence, essentially means “what I learn about 𝑆 from 𝑟𝑆 is not that much…” 

Crucial Argument: with probability 1 − 𝛿: Rev rS ≥ Rev𝑆 𝑟𝑆 − 𝜖𝛿 𝑚



Concentration Inequalities and Uniform Convergence

• Concentration inequalities give us a stronger version of LLN

• Chernoff-Hoeffding Bound. If we have i.i.d. 𝑋𝑗 ∈ 0,1  with mean 𝐸 𝑋 , w.p. 1 − 𝛿:

1

𝑚
෍

𝑗=1

𝑚

𝑋𝑗 − 𝐸 𝑋 ≤ 𝜖𝛿 𝑚 ≝
log 2/𝛿

2𝑚

• Crucial. The bound grows only logarithmically with 1/𝛿



Union Bound

• Suppose we had only 𝐾 possible reserve prices 1

𝐾
,

2

𝐾
,

3

𝐾
… , 1

• For each reserve price 𝑟 on the grid, for any probability 𝛿′, by Chernoff bound

Pr Bad Event 𝑟 = Pr
1

𝑚
෍

𝑗=1

𝑚

𝑋𝑗 𝑟 − 𝐸 𝑋 𝑟 > 𝜖𝛿′ 𝑚 ≤ 𝛿′

• Union Bound. The probability of the union of events is at most the sum of the probabilities

Pr ∪𝑟=1
𝐾 Bad Event 𝑟 ≤ ෍

𝑟=1

𝐾

Pr Bad Event 𝑟 ≤ 𝐾 ⋅ 𝛿′

• Apply Chernoff bound with 𝛿′ = 𝛿/𝐾

Pr ∪𝑟=1
𝐾 Bad Event 𝑟 ≤ 𝛿

• Probability(exists reserve price whose empirical revenue is far from its population) at most 𝛿



Uniform Convergence via Union Bound

Theorem. Suppose we had 𝐾 possible reserve prices GridK ≝
1

𝐾
,

2

𝐾
,

3

𝐾
… , 1

Then with probability at least 1 − 𝛿

∀𝑟 ∈ GridK: Rev𝑆 𝑟 − Rev 𝑟 ≤ 𝜖𝛿/𝐾 𝑚 ≝
log 2𝐾/𝛿

2𝑚

Problem. The optimal reserve 𝜂 can potentially not be among these 𝐾 reserves
Intuition. For a sufficiently large 𝐾, for any reserve price, we can find a reserve 
price on this discretized grid that achieves almost as good revenue
We don’t lose much by optimizing over the grid!



Discretization

• For a reserve price 𝑟, pick largest reserve price below 𝑟 on the grid
• Denote this discretization of 𝑟 as 𝑟𝐾

• By doing so, you allocate to any value you used to allocate before
• For any such value you receive revenue at least 𝑟 − 1/𝐾

• Overall, you lose revenue at most 1/𝐾
Rev 𝑟𝐾 ≥ Rev 𝑟 − 1/𝐾



Discretized ERM

• Let’s modify ERM to optimize only over the grid
𝑟𝑆 = max

𝑟∈Grid𝐾

Rev𝑆 𝑟

• We can apply the uniform convergence over the grid
Rev 𝑟𝑆 ≥ Rev𝑆 𝑟𝑆 − 𝜖𝛿/𝐾 𝑚

• Since, 𝑟𝑆 optimizes the empirical objective over the grid
Rev𝑆 𝑟𝑆 ≥ Rev𝑆 𝜂𝐾

• By uniform convergence over the grid:
Rev𝑆 𝜂𝐾 ≥ Rev 𝜂𝐾 − 𝜖𝛿/𝐾 𝑚

• By the discretization error argument: 
Rev 𝜂𝐾 ≥ Rev 𝜂 − 1/𝐾

The discretized monopoly reserve is a 
feasible reserve in the grid but was 
not chosen by ERM. 

We cannot overfit, when optimizing 
over the grid of reserves



Theorem. The revenue of the reserve price output by 
discretized ERM over the K-grid satisfies, with probability 1 − 𝛿

Rev 𝑟𝑆 ≥ OPT 𝐹 − 2
log 2𝐾/𝛿

2𝑚
−

1

𝐾
Choosing 𝐾 = 1/𝑚

Rev 𝑟𝑆 ≥ OPT 𝐹 − 3
log 2𝑚/𝛿

2𝑚

Desideratum satisfied!
𝜖𝛿 𝑚 → 0 as 𝑚 grows



The Limits of Discretization

• Do we really need to optimize over the discrete grid?
• What if we insist on optimizing over 0,1 . Can we still overfit?

• Now that we have infinite possible reserves, we cannot apply the 
union bound argument (𝐾 = ∞)! 

• How do we argue about optima over continuous, infinite 
cardinality spaces?



Sneak Peek

• Would have been ideal if we only have to argue about behavior of 
our optimization space, on the given set of samples

• As opposed to the unknown distribution of values

• What if we can find  a small set of reserves and argue that for all 
reserves there is an approximately equivalent one in the small set, 
in terms of revenue on the samples

• Maybe then it suffices to invoke the union bound over the smaller 
space, even though we optimize over the bigger space



Statistical Learning Theory



General Framework

• Given samples 𝑆 = 𝑣1, … , 𝑣𝑚  that are i.i.d. from distribution 𝐹
• Given a hypothesis/function space 𝐻
• Given a reward function 𝑟 𝑣; ℎ

• Goal is to maximize the expected reward over distribution 𝐹
𝑅 ℎ = 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ



Desiderata

• Without knowledge of distribution 𝐹, we want to produce a 
hypothesis ℎ𝑆, that achieves good reward on this distribution

• For some 𝜖 𝑚 → 0 as the number of samples grows:

𝑅 ℎ𝑆 ≝ 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖𝛿 𝑚



Desiderata (Mechanism Design from Samples)

• Without knowledge of distribution 𝐹, we want to produce a 
hypothesis ℎ𝑆, that achieves good reward on this distribution

• For some 𝜖 𝑚 → 0 as the number of samples grows:

𝑅 ℎ𝑆 ≝ 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖𝛿 𝑚

Distribution of 
value profiles 𝐹

Revenue

෍

𝑖

𝑝𝑖 𝑣



The Obvious Algorithm

• We want to choose 𝑟 that maximizes

max
ℎ∈𝐻

𝑅(ℎ) ≝ 𝐸𝑣∼𝐹 𝑟(𝑣; ℎ) , (population objective)

• With 𝑚 samples, we can optimize average reward on samples!

max
ℎ∈𝐻

 𝑅𝑆 ℎ ≝
1

𝑚
෍

𝑗=1

𝑚

𝑟 𝑣𝑗; ℎ , (empirical objective)

• This approach is called Empirical Reward Maximization (ERM)
• Intuition. Since each value is drawn from distribution 𝐹 the empirical 

average over i.i.d. draws from 𝐹, by law of large numbers, should be 
very close to expected value



Standard Classification Example

• Suppose samples 𝑣 = 𝑥, 𝑦  where 𝑥 ∼ 𝑈 −1,1  and 𝑦 ∈ −1, 1

• We want to choose a “labeling” function ℎ 𝑥 ∈ −1,1

• That achieves good accuracy 
𝑟 𝑣; ℎ = 1 ℎ 𝑥 = 𝑦

𝑥
𝑦

𝑥
ℎ(𝑥)

𝑦

… …

… …

……

0

0



ERM Gone Bad

• Suppose we choose the following ℎ𝑆: label all samples correctly 
and predict +1 for any value that is not on the samples

• The empirical average reward of this ℎ𝑆 is 1. The largest possible!
• The expected reward of this ℎ𝑆 is ½
• The discrepancy between the empirical reward of the ERM 

solution and its population reward never vanishes! Overifitting!

𝑥
ℎ(𝑥)

𝑦
0



ERM Over Threshold Functions

• Suppose we restrict to optimizing over threshold functions
• Label every 𝑥 ≥ 𝜃 with +1 and every 𝑥 < 𝜃 with −1

𝐻 = 𝑥 → 1 𝑥 ≥ 𝜃 − 1 𝑥 < 𝜃 : 𝜃 ∈ Θ

• Optimizing over such 𝜃 we will never be able to overfit 
• How do we argue this?
• Discretization argument fails! 
• No matter how we discretize, there exists a distribution of 𝑥 that will 

have a very large discretization error

𝑥
ℎ(𝑥)

𝑦

𝜃

0



Sufficient Hypothesis Subspace on Samples

• Suppose we restrict to optimizing over threshold functions
• Label every 𝑥 ≥ 𝜃 with +1 and every 𝑥 < 𝜃 with −1

𝐻 = 𝑥 → 1 𝑥 ≥ 𝜃 − 1 𝑥 < 𝜃 : 𝜃 ∈ Θ

• Given the 𝑚 samples, then on the samples there are at most 𝑚 + 1 
equivalent hypothesis: choose the threshold on the sample (or 𝜃 = 1)

• Every other hypothesis produces the exact same labeling of the 
samples and achieves the same empirical reward

• Is there an argument that only takes union bound over this set?

𝑥
ℎ(𝑥)

𝑦

𝜃

0



Back to the General Framework
• We will try to argue the expected performance

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Expected Sample Average Representativeness: suppose that
Rep = 𝐸𝑆 sup

ℎ∈𝐻
𝑅𝑆 ℎ − 𝑅(ℎ) ≤ 𝜖 𝑚

• Then we can prove expected error of 𝜖 𝑚

𝐸𝑆 𝑅 ℎ𝑆 = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅 ℎ𝑆 ≥ 𝐸 𝑅𝑆 ℎ𝑆 − 𝜖 𝑚

• Since ℎ𝑆 optimizes 𝑅𝑆 ℎ  and ℎ∗ = argmaxℎ∈𝐻𝑅 ℎ  is feasible
𝐸 𝑅𝑆 ℎ𝑆 ≥ 𝐸 𝑅𝑆 ℎ∗ = 𝑅 ℎ∗

ℎ∗ does not depend on the samples

𝐸 𝑅𝑆 ℎ∗ ≝
1

𝑚
෍

𝑗

𝐸 ℎ 𝑣𝑗; ℎ∗ = 𝐸 ℎ 𝑣; ℎ∗ = 𝑅 ℎ∗

How good is the sample average in terms of 
representing the population expectation, 

in the worst case over 𝐻



If we can bound representativeness
Rep = 𝐸𝑆 sup

ℎ
𝑅𝑆 ℎ − 𝑅(ℎ) ≤ 𝜖 𝑚

Then we can bound expected performance
𝐸 𝑅 ℎ𝑆 ≥ 𝐸 𝑅 ℎ∗ − 𝜖 𝑚
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