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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research

1

2

3

4

5

6

7



Statistical Learning Theory



General Framework

• Given samples 𝑆 = 𝑣1, … , 𝑣𝑚  that are i.i.d. from distribution 𝐹
• Given a hypothesis/function space 𝐻
• Given a reward function 𝑟 𝑣; ℎ

• Goal is to maximize the expected reward over distribution 𝐹
𝑅 ℎ = 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ



Desiderata

• Without knowledge of distribution 𝐹, we want to produce a 
hypothesis ℎ𝑆, that achieves good reward on this distribution

• For some 𝜖 𝑚 → 0 as the number of samples grows:

𝑅 ℎ𝑆 ≝ 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖𝛿 𝑚



Desiderata (Mechanism Design from Samples)

• Without knowledge of distribution 𝐹, we want to produce a 
hypothesis ℎ𝑆, that achieves good reward on this distribution

• For some 𝜖 𝑚 → 0 as the number of samples grows:

𝑅 ℎ𝑆 ≝ 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖𝛿 𝑚

Distribution of 
value profiles 𝐹

Revenue

෍

𝑖

𝑝𝑖 𝑣



The Obvious Algorithm

• We want to choose 𝑟 that maximizes

max
ℎ∈𝐻

𝑅(ℎ) ≝ 𝐸𝑣∼𝐹 𝑟(𝑣; ℎ) , (population objective)

• With 𝑚 samples, we can optimize average reward on samples!

max
ℎ∈𝐻

 𝑅𝑆 ℎ ≝
1

𝑚
෍

𝑗=1

𝑚

𝑟 𝑣𝑗; ℎ , (empirical objective)

• This approach is called Empirical Reward Maximization (ERM)
• Intuition. Since each value is drawn from distribution 𝐹 the empirical 

average over i.i.d. draws from 𝐹, by law of large numbers, should be 
very close to expected value



Bounding Error via Representativeness
• We will try to argue the expected performance

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Expected Sample Average Representativeness: suppose that
Rep = 𝐸𝑆 sup

ℎ∈𝐻
𝑅𝑆 ℎ − 𝑅(ℎ) ≤ 𝜖 𝑚

• Then we can prove expected error of 𝜖 𝑚

𝐸𝑆 𝑅 ℎ𝑆 = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅 ℎ𝑆 ≥ 𝐸 𝑅𝑆 ℎ𝑆 − 𝜖 𝑚

• Since ℎ𝑆 optimizes 𝑅𝑆 ℎ  and ℎ∗ = argmaxℎ∈𝐻𝑅 ℎ  is feasible
𝐸 𝑅𝑆 ℎ𝑆 ≥ 𝐸 𝑅𝑆 ℎ∗ = 𝑅 ℎ∗

ℎ∗ does not depend on the samples

𝐸 𝑅𝑆 ℎ∗ ≝
1

𝑚
෍

𝑗

𝐸 ℎ 𝑣𝑗; ℎ∗ = 𝐸 ℎ 𝑣; ℎ∗ = 𝑅 ℎ∗

How good is the sample average in terms of 
representing the population expectation, 

in the worst case over 𝐻



If we can bound representativeness
Rep = 𝐸𝑆 sup

ℎ
𝑅𝑆 ℎ − 𝑅(ℎ) ≤ 𝜖 𝑚

Then we can bound expected performance
𝐸 𝑅 ℎ𝑆 ≥ 𝐸 𝑅 ℎ∗ − 𝜖 𝑚



Bounding Error via Representativeness*
• We will try to argue the expected performance

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Expected Sample Average Representativeness: suppose that
Rep∗ = 𝐸𝑆 𝑅𝑆 ℎ𝑆 − 𝑅(ℎ𝑆) ≤ 𝜖 𝑚

• Then we can prove expected error of 𝜖 𝑚

𝐸𝑆 𝑅 ℎ𝑆 = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅 ℎ𝑆 ≥ 𝐸 𝑅𝑆 ℎ𝑆 − 𝜖 𝑚

• Since ℎ𝑆 optimizes 𝑅𝑆 ℎ  and ℎ∗ = argmaxℎ∈𝐻𝑅 ℎ  is feasible
𝐸 𝑅𝑆 ℎ𝑆 ≥ 𝐸 𝑅𝑆 ℎ∗ = 𝑅 ℎ∗

ℎ∗ does not depend on the samples

𝐸 𝑅𝑆 ℎ∗ ≝
1

𝑚
෍

𝑗

𝐸 ℎ 𝑣𝑗; ℎ∗ = 𝐸 ℎ 𝑣; ℎ∗ = 𝑅 ℎ∗

How good is the sample average in terms of 
representing the population expectation, 

of the ERM hypothesis
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based on train, how different is the training 
reward from the test reward
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reward from the test reward
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Important. If ℎ was not chosen based on 𝑆 but was some fixed 
ℎ ∈ 𝐻. Then this contribution is mean zero in expectation over the 
random split 𝜎𝑖, even when we condition on the sample values 𝑄
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… …

Draw 2𝑚 samples 𝑄

𝑣3
′𝑣2

′𝑣1
′ 𝑣𝑖

′ 𝑣𝑚
′

𝑧3

𝑧2

𝑧1

𝑧𝑖

𝑧𝑚

𝑆

…

Flip a coin 𝜎𝑖 ∈ −1, 1  to decide 
which goes into 𝑆 and which to 𝑆′

𝑧3
′

𝑧2
′

𝑧1
′

𝑧𝑖
′

𝑧𝑚
′

𝑆′

𝑄

𝜎𝑖 ⋅ 𝑟 𝑣𝑖 , ℎ𝑆 − 𝑟 𝑣𝑖
′, ℎ𝑆

…

…
…

…
…

train test

Equivalent Process

This is how much each pair of samples 
contributes to the discrepancy between 

train and test reward 

Since it is hard to argue about the “inner-workings” 
of ERM, let’s be pessimistic here and replace ℎ𝑆 

with an adversarial choice

Rep∗ = 𝐸𝑄,𝜎

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ𝑆 − 𝑟 𝑣𝑖
′; ℎ𝑆



P
o

p
u

la
ti

o
n

 o
f 

S
a
m

p
le

s

𝑣3

𝑣2

𝑣1

𝑣𝑖

𝑣𝑚

Po
pu

la
tio

n 
of

 S
am

pl
es

Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅𝐷 ℎ𝑆

𝑆

Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸𝑆′ 𝑅𝑆′ ℎ𝑆

Choose ℎ𝑆 ∈ 𝐻 to maximize 
average reward on 𝑆

Learner

Rep∗ = 𝐸𝑆,𝑆′ 𝑅𝑆 ℎ𝑆 − 𝑅𝑆′ ℎ𝑆

Population of Samples

𝑣3𝑣2𝑣1 𝑣𝑖 𝑣𝑚
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′

𝑣𝑖
′

𝑣𝑚
′

𝑆′

…
…

… …

Draw 2𝑚 samples 𝑄

𝑣3
′𝑣2

′𝑣1
′ 𝑣𝑖

′ 𝑣𝑚
′

𝑧3

𝑧2

𝑧1

𝑧𝑖

𝑧𝑚

𝑆

…

Flip a coin 𝜎𝑖 ∈ −1, 1  to decide 
which goes into 𝑆 and which to 𝑆′

𝑧3
′

𝑧2
′

𝑧1
′

𝑧𝑖
′

𝑧𝑚
′

𝑆′

𝑄

𝜎𝑖 ⋅ 𝑟 𝑣𝑖 , ℎ𝑆 − 𝑟 𝑣𝑖
′, ℎ𝑆

…

…
…

…
…

train test

Equivalent Process

This is how much each pair of samples 
contributes to the discrepancy between 

train and test reward 

Rep∗ ≤ 𝐸𝑄,𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ − 𝑟 𝑣𝑖
′; ℎ

For any 𝑄, 𝜎, choose ℎ ∈ 𝐻 to 
maximize the average discrepancy

Adversary



Symmetrization and Rademacher Complexity

• We can upper bound representativeness by

Rep∗ ≤ 𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗 𝑟 𝑣𝑗; ℎ − 𝑟 𝑣𝑗
′; ℎ

• We can upper bound by splitting the max into the two separate

Rep∗ ≤ 𝐸𝑆,𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗𝑟 𝑣𝑗; ℎ + 𝐸𝑆′,𝜎 max
ℎ∈𝐻

−
1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗𝑟 𝑣𝑗
′; ℎ

• But these two quantities are the same

Rep ≤ 2 𝐸𝑆,𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗𝑟 𝑣𝑗; ℎ
Rademacher Complexity of 

Hypothesis Space H



Empirical Rademacher Complexity

Empirical Rademacher Complexity of hypothesis space 𝐻 on samples 𝑆:

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ

Theorem. We have thus proven that: 

𝐸 𝑅 ℎ𝑆 ≥ 𝑅 ℎ∗ − 𝐸𝑆 Rad 𝑆, 𝐻



Bounding Empirical Rademacher Complexity

• We have now conditioned on the value of the samples 𝑆 = 𝑣1, … , 𝑣𝑚

• For a fixed ℎ, contribution of each sample 𝑣𝑖, in expectation over the 
random split 𝜎𝑖, is zero

𝐸𝜎

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ = 0

• We have reduced to arguing how large this “almost mean zero” quantity 
can be for a fixed set of samples 𝑣1, … , 𝑣𝑚

• Requires arguing properties of the hypothesis space 𝐻 on the samples 
𝑆 and not on the whole unknown support of the unknown distribution 𝐹



Simple Case
• Suppose that 𝐻 was finite, i.e. 𝐻 = ℎ1, … , ℎ𝐾  and reward bounded in 0,1

• By Hoeffding concentration inequality and the mean-zero property, for each ℎ𝑡, w.p. 1 − 𝛿

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ𝑡 ≤
log(2/𝛿)

2𝑚

• By the union bound, w.p. 1 − 𝛿

max𝑡=1
𝐾

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ𝑡 ≤
log(2𝐾/𝛿)

2𝑚

• This implies that the expected value of this quantity is of the same order

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ ≈
log(2𝐾)

2𝑚



Massart’s lemma. For any finite hypothesis space 𝐻:
 

Rad 𝑆, 𝐻 ≤ 2
2log 𝐻

𝑚



Beyond Simple Case

• Suppose we can find a finite subspace ෩𝐻𝑆 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆 that has the exact same behavior on the samples 𝑆

∀𝑣𝑖 ∈ 𝑆: 𝑟 𝑣𝑖; ℎ = 𝑟 𝑣𝑖; ෨ℎ

• Then Empirical Rademacher Complexity of 𝐻 is upper bounded by that of ෩𝐻𝑆

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ

≤ 2𝐸𝜎 max
ℎ∈ ෩𝐻𝑆

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ ≤ 2
2log ෩𝐻𝑆

𝑚



Beyond Simple Case

• Suppose we can find a finite subspace ෩𝐻𝑆 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆 that has the exact same behavior on the samples 𝑆

• Classification Example with Threshold Functions: Data 𝑣 = 𝑥, 𝑦 , with 𝑥 ∈
−1, 1  and 𝑦 ∈ {−1,1}. Label every 𝑥 ≥ 𝜃 with +1 and every 𝑥 < 𝜃 with −1. 

𝐻 = 𝑥 → 1 𝑥 ≥ 𝜃 − 1 𝑥 < 𝜃 : 𝜃 ∈ Θ

𝑥
ℎ(𝑥)

𝑦

𝜃



Beyond Simple Case

• Suppose we can find a finite subspace ෩𝐻𝑆 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆 that has the exact same behavior on the samples 𝑆

• Classification Example with Threshold Functions: Data 𝑣 = 𝑥, 𝑦 , with 𝑥 ∈
−1, 1  and 𝑦 ∈ {−1,1}. Label every 𝑥 ≥ 𝜃 with +1 and every 𝑥 < 𝜃 with −1

𝐻 = 𝑥 → 1 𝑥 ≥ 𝜃 − 1 𝑥 < 𝜃 : 𝜃 ∈ Θ

• We only look at the behavior on the samples
• Suffices to look at thresholds equal to a sample or 1

𝑥
ℎ(𝑥)

𝑦

𝜃 ෨𝜃

Rad 𝑆, 𝐻 ≤ 2
2log 𝑚 + 1

𝑚



Growth Rate of Function Space

• Suppose we can find a finite subspace ෩𝐻𝑆 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆 that has the exact same behavior on the samples 𝑆

∀𝑣𝑖 ∈ 𝑆: 𝑟 𝑣𝑖; ℎ = 𝑟 𝑣𝑖; ෨ℎ

• Empirical Rademacher Complexity of 𝐻 is upper bounded by that of ෩𝐻𝑆

• Growth Rate 𝜏 𝑚, 𝐻 : the size of the smallest ෩𝐻𝑆 that satisfies the above 
property, in the worst case over sample dataset of size 𝑚

• Example. For threshold classifiers 𝜏 𝑚, 𝐻 = 𝑚 + 1

Theorem. For any hypothesis 𝐻

Rad 𝑆, 𝐻 ≤ 2
2log 𝜏 𝑚, 𝐻

𝑚

SideNote For classification, a seminal notion 
is the Vapnik-Chervonenkis (VC) dimension: 
size 𝑑 of largest dataset that the hypothesis 

can assign labels in all possible manners

Cannot be assigned by 
threshold classifiers ⇒ 𝑑 = 2

Sauer’s Lemma. If has VC-dim ≤ 𝑑 then 𝜏 𝑚, 𝐻 ≾ 2𝑑 ⇒ Rad 𝑆, 𝐻 ≾ 𝑑/𝑚



Discretization on Samples

• Suppose we can find a finite subspace ෩𝐻𝑆,𝜖 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆,𝜖  that has approximately the same behavior on the samples 𝑆

∀𝑣𝑖 ∈ 𝑆: 𝑟 𝑣𝑖; ℎ − 𝑟 𝑣𝑖; ෨ℎ ≤ 𝜖

• Empirical Rademacher Complexity of 𝐻 upper bounded approximately by ෩𝐻𝑆,𝜖

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ

≤ 2𝐸𝜎 max
ℎ∈ ෩𝐻𝑆,𝜖

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ + 2𝜖 ≤ 2
2log ෩𝐻𝑆,𝜖

𝑚
+ 2𝜖



Back to Mechanism Design from 
Samples



Example: Pricing from Samples

• Suppose we are given a set of samples 𝑆 of a bidder’s value
• We optimize over the space of posted prices
• For every price 𝑟 we want to find a price ෤𝑟 that achieves almost the 

same revenue as 𝑟 for every value in the samples
∀𝑣𝑖 ∈ 𝑆: 𝑟 ⋅ 1 𝑣𝑖 ≥ 𝑟 − ෤𝑟 ⋅ 1 𝑣𝑖 ≥ ෤𝑟 ≤ 𝜖

𝑣
𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

𝑟



Example: Pricing from Samples

• Suppose we are given a set of samples 𝑆 of a bidder’s value
• We optimize over the space of posted prices
• For every price 𝑟 we want to find a price ෤𝑟 that achieves almost the 

same revenue as 𝑟 for every value in the samples
∀𝑣𝑖 ∈ 𝑆: 𝑟 ⋅ 1 𝑣𝑖 ≥ 𝑟 − ෤𝑟 ⋅ 1 𝑣𝑖 ≥ ෤𝑟 ≤ 𝜖

• For every 𝑟, pick maximum of {largest multiple of 𝜖 below 𝑟, largest 
sampled value below 𝑟}. At most 𝑚 + 1/𝜖 prices. 

𝑣

𝜖
𝑣2 𝑣3 𝑣4 𝑣5 𝑣6 𝑣7 𝑣8

ǁ𝑟

𝑣1

2𝜖 3𝜖 4𝜖 5𝜖 6𝜖 7𝜖 8𝜖

𝑟ǁ𝑟 𝑟



Example: Pricing from Samples

• Suppose we are given a set of samples 𝑆 of a bidder’s value
• We optimize over the space of posted prices
• For every price 𝑟 we want to find a price ǁ𝑟 that achieves almost the 

same revenue as 𝑟 for every value in the samples
∀𝑣𝑖 ∈ 𝑆: 𝑟 ⋅ 1 𝑣𝑖 ≥ 𝑟 − ǁ𝑟 ⋅ 1 𝑣𝑖 ≥ ǁ𝑟 ≤ 𝜖

• For every 𝑟, pick maximum of {largest multiple of 𝜖 below 𝑟, largest 
sampled value below 𝑟}. At most 𝑚 + 1/𝜖 prices. 

Rad 𝑆, 𝐻 ≤ 2
2log 𝑚 +

1
𝜖

𝑚
+ 2𝜖 ≤ 4

2log 2𝑚

𝑚

𝜖 = 1/𝑚



Second Price with a Reserve

• Suppose we are given a set of samples 𝑆 of 𝑛 bidder value profiles
• Optimize over the space of Second-Price Auctions with a Reserve
• For every price 𝑟 we want to find a price ǁ𝑟 that achieves almost the 

same revenue as 𝑟 for every value in the samples
∀𝑣𝑖 = 𝑣𝑖1, … , 𝑣𝑖𝑛 ∈ 𝑆: rev 𝑣𝑖; 𝑟 − rev 𝑣𝑖; ǁ𝑟 ≤ 𝜖

• For every 𝑟, pick maximum of {largest multiple of 𝜖 below 𝑟, largest 
sampled value below 𝑟}. At most 𝑚 ⋅ 𝑛 + 1/𝜖 prices.

Rad 𝑆, 𝐻 ≤ 2
2log 𝑚 ⋅ 𝑛 + 1/𝜖

𝑚
+ 2𝜖 ≤ 4

2log 2𝑚 ⋅ 𝑛

𝑚

𝜖 = 1/𝑚



Second Price with Player-Specific Reserves

• Suppose we are given a set of samples 𝑆 of 𝑛 bidder value profiles
• Optimize over the space of Second-Price with Player-Specific Reserves
• For every price vector 𝑟 = (𝑟1, … , 𝑟𝑛) we want to find a vector ǁ𝑟 that 

achieves almost the same revenue as 𝑟 for every value in the samples
∀𝑣𝑖 = 𝑣𝑖1, … , 𝑣𝑖𝑛 ∈ 𝑆: rev 𝑣𝑖; 𝑟 − rev 𝑣𝑖; ǁ𝑟 ≤ 𝜖

• For every 𝑟𝑗, pick maximum of {largest multiple of 𝜖 below 𝑟, largest 
sampled value for bidder 𝑗 below 𝑟}. At most 𝑚 + 1/𝜖 𝑛 prices.

Rad 𝑆, 𝐻 ≤ 2
2𝑛log 𝑚 + 1/𝜖

𝑚
+ 2𝜖 ≤ 4

2𝑛log 2𝑚

𝑚

𝜖 = 1/𝑚



Competing with the Myerson Auction

• Want to optimize over virtual welfare maximizing mechanisms
• For each bidder 𝑖, we assign a monotone virtual value function 𝜙𝑖

• Allocate to the bidder with highest positive virtual value 𝜙𝑖 𝑣𝑖

• Charge dominant strategy truthful payments
𝑥𝑖 𝑣𝑖

𝑝1

𝑝𝑖 𝑣 = 𝜃

1
𝑣𝑖

Winning threshold:
𝜃 = 𝜙𝑖

−1 max
𝑗≠𝑖

𝜙𝑗 𝑣𝑗 , 𝜂𝑖

𝜃

1



Optimizing over Virtual Value Functions

• ERM optimizes over all monotone functions for each bidder
• This space is infinite and a bit harder to discretize
• We will see that monotonicity is important!

• We introduce a variant of Rademacher complexity analysis that 
will help us in the analysis of ERM over virtual welfare maximizers

𝑝1

1
𝑣𝑖

෠𝜙𝑖 𝑣𝑖

෠𝜙𝑖



Back to Statistical Learning 
Theory
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Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅𝐷 ℎ𝑆

𝑆

Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸𝑆′ 𝑅𝑆′ ℎ𝑆

Choose ℎ𝑆 ∈ 𝐻 to maximize 
average reward on 𝑆

Learner

Rep∗ = 𝐸𝑆,𝑆′ 𝑅𝑆 ℎ𝑆 − 𝑅𝑆′ ℎ𝑆

Population of Samples

𝑣3𝑣2𝑣1 𝑣𝑖 𝑣𝑚
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… …

Draw 2𝑚 samples 𝑄

𝑣3
′𝑣2

′𝑣1
′ 𝑣𝑖

′ 𝑣𝑚
′

𝑧3

𝑧2

𝑧1

𝑧𝑖

𝑧𝑚

𝑆

…

Flip a coin 𝜎𝑖 ∈ −1, 1  to decide 
which goes into 𝑆 and which to 𝑆′

𝑧3
′

𝑧2
′

𝑧1
′

𝑧𝑖
′

𝑧𝑚
′

𝑆′

𝑄

𝜎𝑖 ⋅ 𝑟 𝑣𝑖 , ℎ𝑆 − 𝑟 𝑣𝑖
′, ℎ𝑆

…

…
…

…
…

train test

Equivalent Process

This is how much each pair of samples 
contributes to the discrepancy between 

train and test reward 

Since it is hard to argue about the “inner-workings” of ERM, let’s 
be pessimistic here and replace ℎ𝑆 with an adversarial choice 

over all possible outputs of ERM on a half-sample of 𝑸

Rep∗ = 𝐸𝑄,𝜎

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ𝑆 − 𝑟 𝑣𝑖
′; ℎ𝑆
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Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅𝐷 ℎ𝑆

𝑆

Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸𝑆′ 𝑅𝑆′ ℎ𝑆

Choose ℎ𝑆 ∈ 𝐻 to maximize 
average reward on 𝑆

Learner

Rep∗ = 𝐸𝑆,𝑆′ 𝑅𝑆 ℎ𝑆 − 𝑅𝑆′ ℎ𝑆

Population of Samples
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𝑣3
′

𝑣2
′

𝑣1
′

𝑣𝑖
′

𝑣𝑚
′

𝑆′

…
…

… …

Draw 2𝑚 samples 𝑄

𝑣3
′𝑣2

′𝑣1
′ 𝑣𝑖

′ 𝑣𝑚
′

𝑧3

𝑧2

𝑧1

𝑧𝑖

𝑧𝑚

𝑆

…

Flip a coin 𝜎𝑖 ∈ −1, 1  to decide 
which goes into 𝑆 and which to 𝑆′

𝑧3
′

𝑧2
′

𝑧1
′

𝑧𝑖
′

𝑧𝑚
′

𝑆′

𝑄

𝜎𝑖 ⋅ 𝑟 𝑣𝑖 , ℎ𝑆 − 𝑟 𝑣𝑖
′, ℎ𝑆

…

…
…

…
…

train test

Equivalent Process

This is how much each pair of samples 
contributes to the discrepancy between 

train and test reward 

Rep∗ ≤ 𝐸𝑄,𝜎 max
ℎ∈𝐻𝑄

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ − 𝑟 𝑣𝑖
′; ℎ

For any 𝑄, 𝜎, choose ℎ that 
could be the output of ERM 
on some half-sample of 𝑄Benign Adversary



Refined Rademacher Complexity

• We can upper bound representativeness by

Rep∗ ≤ 𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻𝑆∪𝑆′

1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗 𝑟 𝑣𝑗; ℎ − 𝑟 𝑣𝑗
′; ℎ

• We can upper bound by splitting the max into the two separate

Rep∗ ≤ 𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻𝑆∪𝑆′

1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗𝑟 𝑣𝑗; ℎ + 𝐸𝑆, 𝑆′,𝜎 max
ℎ∈𝐻𝑆∪𝑆′

−
1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗𝑟 𝑣𝑗
′; ℎ

• But these two quantities are the same

Rep ≤ 2 𝐸𝑆,𝑆′,𝜎 max
ℎ∈𝐻𝑆∪𝑆′

1

𝑚
෍

𝑗=1

𝑚

𝜎𝑗𝑟 𝑣𝑗; ℎ



Empirical Rademacher Complexity

Empirical Rademacher Complexity of hypothesis space 𝐻 on samples 𝑆:

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚
෍

𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ

Theorem. We have thus proven that: 

𝐸 𝑅 ℎ𝑆 ≥ 𝑅 ℎ∗ − 𝐸𝑆,𝑆′ Rad 𝑆, 𝐻𝑆∪𝑆′

𝐻𝑆∪𝑆′ ≝ all possible outputs of ERM on some subset of 𝑆 ∪ 𝑆′ of size 𝑚



Back to Mechanism Design from 
Samples



Example: Pricing from Samples

• Suppose we are given a set of samples 𝑆 of a bidder’s value
• We optimize over the space of posted prices
• On any subset of size 𝑚 of a set of samples 𝑄 of size 2𝑚, ERM will 

return a reserve price that is equal to one of the 2𝑚 values!
𝐻𝑄 ⊆ 𝑟: 𝑟 = 𝑣𝑖  for some 𝑣𝑖 ∈ 𝑄

• By Masart’s Lemma

Rad 𝑆, 𝐻𝑆∪𝑆′ ≤ 2
2log 2𝑚

𝑚



Optimizing over Virtual Value Functions

• ERM optimizes over all monotone functions for each bidder
• For any monotone function, we receive strictly larger payment had 

we used step-function on the samples (threshold to win is higher)!

• 𝐻𝑄  contains only monotone step functions that change on one of 
the 2𝑚 samples for each bidder

𝑝1

1
𝑣𝑖

෠𝜙𝑖 𝑣𝑖

෠𝜙𝑖

𝑣4𝑖𝑣1𝑖 𝑣2𝑖 𝑣3𝑖

Samples of bidder 𝑖 values



Equivalent Representation

• These mechanisms can be thought as follows
• Construct a set of 𝑛 ⋅ 𝑚 ranked positions
• For each sampled value of a bidder, assign a rank, in a manner 

that it is monotone across the values of the bidder
• Assign the item to the bidder with the highest rank



How Many are these Mechanisms?

• By monotonicity, each assignment of values to ranks, can be 
described by:
“for each rank 𝑟, specify the smallest of the 2𝑚 sampled values 
for which the rank of the bidder goes above 𝑟”

• Roughly 𝑚𝑛⋅𝑚 such combinations

Rad 𝑆, 𝐻𝑆∪𝑆′ ≾
𝑛 ⋅ 𝑚 ⋅ log 𝑚 ⋅ 𝑛

𝑚
= 𝑛 ⋅ 𝑚 ⋅ log 𝑚 ⋅ 𝑛 → ∞



Coarsen Space of Mechanisms we Optimize

• Consider only virtual value functions that take values on an 𝜖-grid
𝜙𝑖 𝑣𝑖 ∈ −𝜖, 0, 𝜖, … , 1

• These step functions in 𝐻𝑄 can be described by
“for each value 𝑟 on the grid, specify the smallest of the 2𝑚 sampled 
values for which the rank of the bidder goes above 𝑟”

• These are ≈ 2𝑚
1

𝜖 combinations for each player

𝑝1

1

𝑣𝑖

෠𝜙𝑖 𝑣𝑖

෠𝜙𝑖

𝑣4𝑖𝑣1𝑖 𝑣2𝑖 𝑣3𝑖

−𝜖

𝜖
2𝜖
3𝜖
4𝜖
5𝜖
6𝜖
7𝜖
1



Coarsen Space of Mechanisms we Optimize

• Optimize over virtual value functions that takes values on the grid
• On any subset of size 𝑚 of a set of samples 𝑄 of size 2𝑚, ERM will 

return a monotone step function that takes these values and 
changes only on the 2𝑚 sampled points for each bidder

• These are ≈ 2𝑚
1

𝜖 functions for each bidder
• By Masart’s Lemma

Rad 𝑆, 𝐻𝑆∪𝑆′,𝜖 ≾ 2
2𝑛log 4𝑚

𝜖 ⋅ 𝑚



Approximation Error

• By optimizing over 𝜖-grid virtual values we don’t lose more than ≈ 𝜖

• Let ℎ∗ be optimal mechanism and ℎ𝜖  the mechanism where each player’s 
virtual value is rounded down to the closest multiple of 𝜖. Let 𝑖𝜖  the winner in ℎ𝜖

Rev ℎ𝜖 = 𝐸 𝜙𝑖𝜖
𝑣𝑖𝜖 +

≥ 𝐸 𝜙𝑖𝜖

𝜖 𝑣𝑖𝜖 +
= 𝐸 max

𝑖
𝜙𝑖

𝜖 𝑣𝑖 +

≥ 𝐸 max
𝑖

𝜙𝑖 𝑣𝑖 + − 𝜖 = Rev ℎ∗ − 𝜖

1

𝑣𝑖

𝜙𝑖 𝑣𝑖
෠𝜙𝑖

𝑣3𝑖𝑣1𝑖 𝑣2𝑖

−𝜖

𝜖
2𝜖
3𝜖
4𝜖
5𝜖
6𝜖
7𝜖
1

𝜙𝑖
𝜖 𝑣𝑖



Putting it all together

• If we output the mechanism ℎ𝑆 that optimizes the empirical 
revenue among all monotone virtual welfare maximizers, with 
virtual value functions taking values in an 𝜖-grid

𝐸𝑆 Rev ℎ𝜖 ≳ Rev ℎ∗ −
2 nlog 2𝑚

𝜖 ⋅ 𝑚
− 𝜖

• For 𝜖 =
2𝑛 log 2𝑚

𝑚

1

3

𝐸𝑆 Rev ℎ𝜖 ≳ Rev ℎ∗ − 2
2𝑛 log 2𝑚

𝑚

1
3



Zooming out

• Study initiated by [Cole, Roughgarden, 2014]
• Approaches either

• Discretize the value space and use revenue monotonicity arguments
• Discretize the virtual value space and use statistical learning theory arguments
• Try to learn the virtual value functions and the CDF functions and use bounds on 

learning CDFs (DKW inequality and more elaborate inequalities that better control 
errors in the extreme quantiles)

• Statistical learning theory approaches side-step the computational 
question
• Several papers on computionally efficient algorithms [Devanur et al, 2016], 

[Gonczarowski and Nisan 2017], [Roughgarden and Schrijvers 2016], [Guo et al, 19]



Multi-Item Auctions

• 𝑛 bidders and 𝑚 items and additive valuations
• A very active research area
• One well-explored direction: Sample complexity of simple mechanisms

• Characterize simple mechanisms with constant-factor approximate revenue [Chawla et al. 
(2007, 2010, 2015); Hart and Nisan (2012); Babaioff et al. (2014); Rubinstein and Weinberg 
(2015); Yao (2015); Cai et al. (2016); Chawla and Miller (2016); Cai and Zhao (2017)]

• Show that learning such simple mechanisms can be done with polynomial sample 
complexity [Morgenstern and Roughgarden (2016); Balcan et al. (2016, 2018); Cai and 
Daskalakis (2017); Syrgkanis (2017)]

• Optimal auctions do not have a simple characterization as virtual welfare 
maximizers

• One key property (revenue monotonicity) used in single-dimensional does not hold
• [Gonczarowski, Weinberg,’18] Prove a sample complexity result in this general 

setting with independent valuations, even without the need to use some 
characterization of how the optimal auction looks like
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