
MS&E 233
Game Theory, Data Science and AI

Lecture 15
Vasilis Syrgkanis

Assistant Professor
Management Science and Engineering

(by courtesy) Computer Science and Electrical Engineering
Institute for Computational and Mathematical Engineering



Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research
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Recap of Last Lecture

• Given i.i.d. samples of value profiles 𝑣1, … , 𝑣𝑚 from unknown 𝐹1 × ⋯ × 𝐹𝑛

• We can learn personalized reserve prices 𝑟 = 𝑟1, … , 𝑟𝑛 , such that:

Rev SPA − r ≥ max
r

 Rev SPA − r − 4
2𝑛 log 2𝑚

𝑚

• We can learn virtual value functions ෠𝜙 = ෠𝜙1, … , ෠𝜙𝑛 , such that:

Rev ෠𝜙 ≳ Myerson −
𝑛 log 𝑚

𝑚

1/3



Where do we get these samples from?



Typically, from historical executions of a truthful 
mechanism

Example: if we had run second price auctions in the 
past, we can use the bids of the players, in each of these 
historical auctions, as samples from their values



What if our auction platform is based on a non-truthful 
auctions? 

Example: If we typically run a First Price Auction, now 
we have historical samples of bids in an FPA. These are 
not samples of values; bidders submit bids that are 
much lower than values in an FPA.



How do we go from bids to values?



Econometrics in Games 
and Auctions



Econometrics in Games and Auctions

• We are given data from actions of players in a game (and 
potentially auxiliary contextual information about the game)

• Multiple instances were players played the same type of game

• We don’t know the exact utilities of the players in the game

• We want to use the data to learn the parameters of the utilities of 
the players in the game or the distribution of these parameters



Example 1: Econometrics in Auctions

• Given bids of players in multiple instances of a First Price Auction

𝑏1, … , 𝑏𝑚, 𝑏𝑗 = 𝑏1𝑗 , … , 𝑏𝑛𝑗

• Each bidder 𝑖 has a value 𝑣𝑖𝑗 ∼ 𝐹𝑖, independently across auctions
• Each bidder has a utility

𝑢𝑖𝑗 = 𝑣𝑖𝑗 − 𝑏𝑖𝑗 ⋅ 1 wins auction 𝑗

• Find the distribution 𝐹𝑖  of values for each 𝑖



Example 2: Econometrics in Entry Games

• Two firms deciding whether to enter a market
• Example: airline firms deciding whether to enter a particular route
• Observe entry decisions 𝑦𝑖 ∈ 0, 1  for different markets with 

characteristics 𝑥
• Each firm has profits from entering

𝜋1 = 𝑥⊤𝛽1 + 𝑦2𝛿1 + 𝜖1
𝜋2 = 𝑥⊤𝛽2 + 𝑦1𝛿2 + 𝜖2

• Learn parameters 𝛽, 𝛿

effect of market 
characteristics

effect of 
competition

Private costs or payoff 
shocks 𝜖𝑖 ∼ 𝐹𝑖

known only by player 𝒊



Why useful?

Scientific: economically meaningful quantities

Perform counter-factual analysis: what would happen if we 
change the game?

Performance measures: welfare, revenue

Testing game-theoretic models: if theory on estimated 
quantities predicts different behavior, then in trouble



Credits: https://vsyrgkanis.com/rough_map.jpg 

https://vsyrgkanis.com/rough_map.jpg


Econometrics in First Price 
Auctions



Econometrics in First-Price Auctions

• Given bids of players in multiple instances of a First Price Auction

𝑏1, … , 𝑏𝑚, 𝑏𝑗 = 𝑏1𝑗 , … , 𝑏𝑛𝑗

• Each bidder 𝑖 has a value 𝑣𝑖𝑗 ∼ 𝐹𝑖, independently across auctions
• Each bidder has a utility

𝑢𝑖𝑗 = 𝑣𝑖𝑗 − 𝑏𝑖𝑗 ⋅ 1 wins auction 𝑗

• Find the distribution 𝐹𝑖  of values for each 𝑖



First Question: how are bids 
related to values?



Reminder: Bayes-Nash Equilibrium

• Each bidder’s value is drawn from some distribution
𝑣𝑖 ∼ 𝐹𝑖 , 𝑣 = 𝑣1, … , 𝑣𝑛 ∼ 𝐹 = 𝐹1 × ⋯ × 𝐹𝑛

• Bidders submit a bid as a function of their value
𝑠𝑖 𝑣𝑖 = Bid of player 𝑖 when their value is 𝑣𝑖

Bayes-Nash Equilibrium. A bidding strategy profile 𝑠 = 𝑠1, … , 𝑠𝑛  
is a Bayes-Nash equilibrium, if players cannot gain by deviating in 
expectation, assuming others follow their strategies 

𝐸𝑣∼𝐹 𝑢𝑖 𝑠 𝑣 ; 𝑣𝑖 ≥ 𝐸𝑣∼𝐹 𝑢𝑖 𝑏𝑖
′, 𝑠−𝑖 𝑣−𝑖 ; 𝑣𝑖



Behavioral Assumption: Bids are BNE

• Assume bids submitted according to a Bayes-Nash Equilibrium 
𝑠1, … , 𝑠𝑛

Data generating process:
• Independently for each bidder 𝑖 and auction 𝑗 draw value 𝑣𝑖𝑗 ∼ 𝐹𝑖

• Submit bid 𝑏𝑖𝑗 = 𝑠𝑖 𝑣𝑖𝑗

Gives rise to a bid distribution for each bidder 𝑏𝑖 ∼ 𝐺𝑖



The Identification Problem:
(the Reverse Engineering problem) 

If I had infinite data, equivalently, I know the 
distribution of bids 𝐺𝑖, does that uniquely 
determine the distribution of values 𝐹𝑖



The Identification Problem

• When calculating BNE, we knew the distribution of values 𝐹𝑖  and 
we wanted to calculated the bid 𝑏𝑖  as a function of the value 𝑣𝑖

• Now we know the distribution of bids 𝐺𝑖  and we want to calculate 
the value 𝑣𝑖  as a function of the bid 𝑏𝑖!

• For simplicity, we will restrict to the symmetric bidder setting!

• All bidder values 𝑣𝑖𝑗  drawn from the same distribution 𝐹
• Equilibrium is symmetric and monotone, i.e., 𝑏𝑖𝑗 = 𝑠 𝑣𝑖𝑗



Identification for Symmetric Bidders

• At equilibrium 𝑠 bidders don’t benefit from submitting another bid!

• Consider bidder 𝑖 with value 𝑣𝑖  submitting bid 𝑏
• They win if 𝑏 ≥ 𝑏𝑖′  for all 𝑖′ ≠ 𝑖

• By independence of private values and independence of bids

Pr 𝑏 ≥ 𝑏𝑖′ , ∀𝑖′ ≠ 𝑖 = ෑ

𝑖′≠𝑖

Pr 𝑏 ≥ 𝑏𝑖′ = 𝐺 𝑏 𝑛−1



Identification for Symmetric Bidders

• At equilibrium 𝑠 bidders don’t benefit from submitting another bid!
• Consider bidder 𝑖 with value 𝑣𝑖  submitting a bid 𝑏

𝑢𝑖 𝑏; 𝑣𝑖 = 𝑣𝑖 − 𝑏 ⋅ 𝐺 𝑏 𝑛−1

• Since this is not beneficial

𝑢𝑖 𝑏𝑖; 𝑣𝑖 = max
𝑏

𝑢𝑖 𝑏; 𝑣𝑖

• Equilibrium bid 𝑏𝑖 = 𝑠 𝑣𝑖  must satisfy the First Order Conditions

ቚ𝜕𝑏𝑢𝑖 𝑏; 𝑣𝑖
𝑧=𝑏𝑖

= 0



Identification for Symmetric Bidders

• True value must satisfy the FOC
𝑛 − 1 𝑣𝑖 − 𝑏𝑖 ⋅ 𝐺 𝑏𝑖

𝑛−2 𝑔 𝑏𝑖 − 𝐺 𝑏𝑖
𝑛−1 = 0

• We can write value as function of equilibrium bid

𝑣𝑖 = 𝑏𝑖 +
𝐺 𝑏𝑖

𝑛 − 1  𝑔 𝑏𝑖

observed 
equilibrium bid

A function of the observed 
equilibrium distribution of bids



If I know the equilibrium bid distribution 𝐺, then 
whenever I see a bid 𝑏𝑖, I can reverse engineer and 
uniquely determine the value that led to such a bid

𝑣𝑖 = 𝑏𝑖 +
𝐺 𝑏𝑖

𝑛 − 1  𝑔 𝑏𝑖

observed 
equilibrium bid

amount by which the bidder reduced 
their value to determine their bid

unobserved 
value



If I know the equilibrium bid distribution 𝐺, then 
whenever I see a bid 𝑏𝑖, I can reverse engineer and 
uniquely determine the value that led to such a bid

𝑣𝑖 = 𝑏𝑖 +
1

𝑛 − 1
𝑔 𝑏𝑖

𝐺 𝑏𝑖

observed 
equilibrium bid

More competition ⇒ less “value reduction”

unobserved 
value Reverse hazard ratio 

of distribution of bids
“Probability that opponent 
bid is immediately below 

𝑏𝑖  given that it is below 𝑏𝑖”



Side Note (Asymmetric Bidders): If I know the 
equilibrium bid distributions 𝐺𝑖, then whenever I see a 
bid 𝑏𝑖, I can reverse engineer and uniquely determine the 
value 𝑣𝑖  that led to such a bid

𝑣𝑖 = 𝑏𝑖 +
1

σ𝑘≠𝑖
𝑔𝑘 𝑏𝑖

𝐺𝑘 𝑏𝑖

observed 
equilibrium 

bid More competition ⇒ less “value reduction”

unobserved 
value

Reverse hazard ratio 
of distribution of bids 

of 𝑘-th opponent
“Probability that opponent 
bid is immediately below 

𝑏𝑖  given that it is below 𝑏𝑖”



CDF of values uniquely determined by distribution of bids

𝐹 𝑧 = Pr 𝑣𝑖 ≤ 𝑧 = Pr
𝑏𝑖∼𝐺

𝑏𝑖 +
𝐺 𝑏𝑖

𝑛 − 1  𝑔 𝑏𝑖
≤ 𝑧



The Estimation Problem:
(Reverse Engineering with Finite Samples) 

If I have finite samples of bids, construct 
estimates ෠𝐹𝑖  of the distributions of values 𝐹𝑖  
that converge to the true distribution as the 
number of samples grows



Warm-up: Estimation with Truthful Bidding

• Given truthful bids of players in instances of Second Price Auction
𝑣1, … , 𝑣𝑚, 𝑣𝑗 = 𝑣1𝑗 , … , 𝑣𝑛𝑗

• Assuming 𝑣𝑖𝑗 ∼ 𝐹, can approximate CDF by “empirical CDF”

𝐹 𝑧 ≝ Pr 𝑣 < 𝑧 = 𝐸 1 𝑣 < 𝑧 ≈
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 𝑣𝑖𝑗 < 𝑧 ≝ ෠𝐹 𝑧

• By concentration inequalities and “Rademacher complexity of threshold 

functions” ෠𝐹 is close to 𝐹, w.p. 1 − 𝛿: sup
𝑧

𝐹 𝑧 − ෠𝐹 𝑧 ≲
log 𝑚 +log 1/𝛿

𝑚

fraction of samples 
that lie below 𝑧

Probability that random 
draw from distribution 

lies below 𝑧

A slightly more refined variant of this is known as the DKW inequality



How do we “mimic” this approach, now 
that we only have samples from bids?



Plug-in Approach to Estimation

• Given bid vectors of players in multiple instances of a First Price Auction 𝑏1, … , 𝑏𝑚 

• We can write 𝑣𝑖𝑗  as a function of bid distribution 𝐺, 𝑔

𝑣𝑖𝑗 = 𝑏𝑖𝑗 +
𝐺 𝑏𝑖𝑗

𝑛 − 1 𝑔 𝑏𝑖𝑗

Plug-in paradigm. If we can construct estimates ෠𝐺, ො𝑔 of 𝐺, 𝑔, then we can plug them 
in the above formula, to get an “estimated value”

ො𝑣𝑖𝑗 = 𝑏𝑖𝑗 +
෠𝐺 𝑏𝑖𝑗

𝑛 − 1  ො𝑔 𝑏𝑖𝑗

We can pretend that ො𝑣𝑖𝑗  are i.i.d. samples from values 

෠𝐹 𝑧 ≝
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 ො𝑣𝑖𝑗 < 𝑧



Constructing Estimates of Bid Distribution

• Estimate of the CDF is easy: use empirical CDF

𝐺 𝑧 ≝ Pr 𝑏 < 𝑧 = 𝐸 1 𝑏 < 𝑧 ≈
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 𝑏𝑖𝑗 < 𝑧 ≝ ෠𝐺 𝑧

• The density of the distribution is harder to learn
• Standard approach. Kernel density estimation

𝑔 𝑧 = 𝜕𝑧𝐺 𝑧 ≈
𝐺 𝑧 + ℎ − 𝐺 𝑧 − ℎ

ℎ
≈

1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1

2ℎ
1 𝑏𝑖𝑗 − 𝑧 ≤ ℎ ≝ ො𝑔 𝑧

fraction of bids that 
lie below 𝑧

Probability that random 
draw of an equilibrium 

bid lies below 𝑧

Probability mass that the 
distribution assigns in an 

infinitesimal region around 𝑧
Fraction of samples that lie within ℎ 

from 𝑧, divided by region length



Constructing Estimates of Bid Distribution

• Estimate of the CDF is easy: use empirical CDF

𝐺 𝑧 ≝ Pr 𝑏 < 𝑧 = 𝐸 1 𝑏 < 𝑧 ≈
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 𝑏𝑖𝑗 < 𝑧 ≝ ෠𝐺 𝑧

• The density of the distribution is harder to learn
• Standard approach. Kernel density estimation

𝑔 𝑧 = 𝜕𝑧𝐺 𝑧 , ො𝑔 𝑧 =
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1

ℎ𝑛
𝐾

𝑏𝑖𝑗 − 𝑧

ℎ𝑛

fraction of bids that 
lie below 𝑧

Probability that random 
draw of an equilibrium 

bid lies below 𝑧

Probability mass that the 
distribution assigns in an 

infinitesimal region around 𝑧
For some smooth kernel function 𝐾 that enjoys “nice 

properties” (e.g. Gaussian Kernel, Epanechnikov Kernel) 



Formal Guarantees

• Suppose pdf 𝑓 has 𝑅 uniformly bounded continuous derivatives

• If we observed values then error rate of 𝑛𝑚

log 𝑛𝑚

−
𝑅

2𝑅+1
 

[Stone’82]

• Now that only bids are observed, [GPV’00] show that best 

achievable is: 𝑛𝑚

log 𝑛𝑚

−
𝑅

2𝑅+3

• The density f depends on the derivative of g



What if only winning bid is observed?

• For instance, in a Dutch auction (descending price auction)
• CDF of winning bid is simply:

𝐺𝑤 𝑏 = 𝐺 𝑏 𝑛 ⇒ 𝐺 𝑏 = 𝐺𝑤 𝑏
1
𝑛

• Hence, densities are related as:

𝑔 𝑏 =
1

𝑛
𝑔𝑤 𝑏 𝐺𝑤 𝑏

1
𝑛−1

• Thus, 𝐺 and 𝑔 are identified from 𝐺𝑤  and 𝑔𝑤 
• Can apply previous argument and identify 𝐹 and 𝑓



What if only winning bid is observed?

• Alternatively, we can identify value of winner as:

𝑣𝑤 = 𝑏𝑤 +
1

𝑛 − 1

𝐺 𝑏𝑤

𝑔 𝑏𝑤
= 𝑏𝑤 +

𝑛

𝑛 − 1

𝐺𝑤 𝑏𝑤

𝑔𝑤 𝑏𝑤

• Thus, we can identify distribution of highest value 𝐹𝑤  and 𝑓𝑤

• Use F 𝑣 = 𝐹𝑤 𝑣
1

𝑛 and 𝑓 𝑣 =
1

𝑁
𝑓𝑤 𝑣 𝐹𝑤 𝑣

1

𝑛
−1

 to identify 𝐹 and 𝑓

• This also gives an estimation strategy (similar to case when all bids observed)



Notable Literature

• [Athey-Haile’02] 
• Identification in more complex than independent private values setting. 
• Primarily second price and ascending auctions
• Mostly, winning price and bidder is observed
• Most results in IPV or Common Value model

• [Haile-Tamer’03]
• Incomplete data and partial identification
• Prime example: ascending auction with large bid increments
• Provides upper and lower bounds on the value distribution from necessary 

equilibrium conditions
• [Paarsch-Hong’06]

• Complete treatment of structural estimation in auctions and literature review
• Mostly presented in the IPV model



Main Take-Aways

• Closed form solutions of equilibrium bid functions in auctions 
• Allows for non-parametric identification of value distribution

• Easy two-stage estimation strategy (similar to discrete incomplete 
information games)

• Estimation and Identification robust to what information is 
observed (winning bid, winning price)

• Rates for estimating density of value distribution are very slow



Econometrics of Entry Games 
(Discrete Choice Games)



High level idea

• At equilibrium agents have beliefs about other players actions and 
best respond

• If econometrician observes the same information about 
opponents as the player does, then:
• Estimate these beliefs from the data in first stage
• Use best-response inequalities to these estimated beliefs in the second 

stage and infer parameters of utility



Example 2: Econometrics in Entry Games

• Two firms deciding whether to enter a market
• Example: airline firms deciding whether to enter a particular route
• Observe entry decisions 𝑦𝑖 ∈ 0, 1  for different markets with 

characteristics 𝑥
• Each firm has profits from entering

𝜋1 = 𝑥⊤𝛽1 + 𝑦2𝛿1 + 𝜖1
𝜋2 = 𝑥⊤𝛽2 + 𝑦1𝛿2 + 𝜖2

• Learn parameters 𝛽, 𝛿

effect of market 
characteristics

effect of 
competition

Private costs or payoff 
shocks 𝜖𝑖 ∼ 𝐹𝑖

known only by player 𝒊



Static Entry Game with Private Shocks

• BNE: Firms best-respond only in expectation
• Expected profits from entry:

Π1 = 𝑥 ⋅ 𝛽1 + Pr 𝑦2 = 1|𝑥 𝛿1 + 𝜖1
Π2 = 𝑥 ⋅ 𝛽2 + Pr[𝑦1 = 1|𝑥]  𝛿2 + 𝜖2

• Let 𝜎𝑖 𝑥 = Pr[𝑦𝑖 = 1|𝑥]

• Then:
𝜎1 𝑥 = Pr[𝑥 ⋅ 𝛽1 + 𝜎2 𝑥 𝛿1 + 𝜖1 > 0]
𝜎2 𝑥 = Pr[𝑥 ⋅ 𝛽2 + 𝜎1 𝑥 𝛿2 + 𝜖2 > 0]



Static Entry Game with Private Shocks

• If 𝜖𝑖  is distributed according to an extreme value distribution:
𝜎1 𝑥 ∝ exp[𝑥 ⋅ 𝛽1 + 𝜎2 𝑥 𝛿1]
𝜎2 𝑥 ∝ exp[𝑥 ⋅ 𝛽2 + 𝜎1 𝑥 𝛿2]

• Non-linear system of simultaneous equations
• Computing fixed point is hard and fixed-point might not be unique



Key Idea: Two Stage Estimation

Two-Stage Estimation Approach 
[Hotz-Miller’93, Bajari-Benkard-Levin’07, Pakes-Ostrovsky-Berry’07, 
Aguirregabiria-Mira’07, Bajari-Hong-Chernozhukov-Nekipelov’09]

1. Compute non-parametric estimate ො𝜎𝑖(𝑥) of function 𝜎𝑖 𝑥  from data

2. Run parametric regressions for each agent individually using that:

𝜎𝑖 𝑥 ∝ exp[𝑥 ⋅ 𝛽𝑖 + ො𝜎−𝑖 𝑥  𝛿𝑖]

3. The latter is a simple logistic regression for each player to estimate 𝛽𝑖 , 𝛿𝑖



Econometrics of Dynamics 
Discrete Choice Games



Steady-State Markovian Dynamic Games

• Steady state policy: time-independent mapping from states, shocks to actions
𝑉𝑖 𝑠; 𝜎, 𝜃 = 𝐸 σ𝑡=0

𝑇 𝛽𝑡𝜋𝑖 𝜎 𝑠𝑡 , 𝜖𝑡 , 𝑠𝑡 , 𝜖𝑖𝑡 𝑠0 = 𝑠; 𝜃 = 𝜈𝑖 𝜎 𝑠, 𝜖0 , 𝑠 + 𝜖𝑖0 𝜎(𝑠, 𝜖0)

• Markov-Perfect-Equilibrium: player chooses action 𝑎𝑖  if:
𝑣𝑖 𝑎𝑖 , 𝑠 + 𝜖𝑖 𝑎𝑖 ≥ 𝑣𝑖 𝑎𝑖

′, 𝑠 + 𝜖𝑖(𝑎𝑖
′)

𝑠𝑡 𝑠𝑡+1

𝑎1
t𝜖1𝑡

𝜖𝑛𝑡 𝑎n
t

… …

Each player 𝑖 picks an action 𝑎𝑖
𝑡 = 𝜎𝑖 𝑠𝑡 , 𝜖𝑖𝑡  

based on current state and on private shock 

State probabilistically transitions to next state, 
based on prior state and on action profile

𝜋1 𝑎𝑡, 𝑠𝑡 , 𝜖𝑖𝑡 = ෤𝜋1 𝑎𝑡, 𝑠𝑡 + 𝜖𝑖𝑡 𝑎𝑖

𝜋𝑛 𝑎𝑡, 𝑠𝑡 , 𝜖𝑛𝑡 = ෤𝜋𝑛 𝑎𝑡, 𝑠𝑡 + 𝜖𝑛𝑡 𝑎𝑛

“shockless” discounted expected equilibrium payoff. 

Each 
player 

receives 
payoff

Private shocks i.i.d., independent of state 
and private information to each player

1.

2.

4.

3.



Dynamic Games: First Stage

• Let 𝑃𝑖 𝑎𝑖 𝑠 : probability of playing action 𝑎𝑖  conditional on state 𝑠
• Suppose 𝜖𝑖  are extreme value and 𝑣𝑖 0, 𝑠 = 0, then

log 𝑃𝑖(𝑎𝑖|𝑠) − log 𝑃𝑖 0 𝑠 = 𝑣𝑖(𝑎𝑖 , 𝑠)

• Non-parametrically estimate ෡𝑃𝑖 𝑎𝑖 𝑠

• Invert and get estimate ො𝑣𝑖 𝑎𝑖 , 𝑠 = log ෠𝑃𝑖(𝑎𝑖|𝑠) − log ෠𝑃𝑖 0 𝑠

• We have a non-parametric first-stage estimate of the policy function:
ො𝜎𝑖 𝑠, 𝜖𝑖 = argmax

𝑎𝑖∈𝐴𝑖

ො𝑣𝑖(𝑎𝑖 , 𝑠) − 𝜖𝑖(𝑎𝑖)

• Combine with non-parametric estimate of state transition probabilities
• Compute a non-parametric estimate of discounted payoff for each policy, 

state, parameter tuple: ෠𝑉𝑖(𝜎, 𝑠; 𝜃), by forward simulation

[Bajari-Benkard-Levin’07]



Dynamic Games: First Stage

• If payoff is linear in parameters:
𝜋𝑖 𝑎, 𝑠, 𝜖𝑖; 𝜃 = Ψi 𝑎, 𝑠, 𝜖𝑖 ⋅ 𝜃

• Then:
𝑉𝑖 𝜎, 𝑠; 𝜃 = 𝑊𝑖 𝜎, 𝑠 ⋅ 𝜃

• Suffices to do only simulation for each (policy, state) pair and not 
for each parameter, to get first stage estimates ෡𝑊𝑖(𝜎, 𝑠)

[Bajari-Benkard-Levin’07]



Dynamic Games: Second Stage

• We know by equilibrium:
𝑔 𝑖, 𝑠, 𝜎𝑖

′; 𝜃 = 𝑉𝑖 𝜎, 𝑠; 𝜃 − 𝑉𝑖 𝜎𝑖
′, 𝜎−𝑖; 𝜃 ≥ 0

• Can use an extremum estimator: 
• Definite a probability distribution over (player, state, deviation) triplets
• Compute expected gain from [deviation]- under the latter distribution

𝑄 𝜃 = 𝐸[min{𝑔 𝑖, 𝑠, 𝜎𝑖
′; 𝜃 , 0}] 

• By Equilibrium 𝑄 𝜃0 = 0 = min
𝜃

𝑄 𝜃

• Do empirical analogue with estimate ො𝑔:
ො𝑔 𝑖, 𝑠, 𝜎𝑖

′; 𝜃 = ෠𝑉𝑖 ො𝜎, 𝑠; 𝜃 − ෠𝑉𝑖 𝜎𝑖
′, ො𝜎−𝑖; 𝜃

   coming from first stage estimates
• Two sources of error: 

• Error of ො𝜎 and ෠P 𝑠′ 𝑠, 𝑎 : 𝑛-consistent, asymptotically normal, for discrete actions/states
• Simulation error: can be made arbitrarily small by taking as many sample paths as you want

[Bajari-Benkard-Levin’07]



Recap of main idea

• At equilibrium agents have beliefs about other players actions and 
best respond

• If econometrician observes the same information about 
opponents as the player does then:
• Estimate these beliefs from the data in first stage
• Use best-response inequalities to these estimated beliefs in the second 

stage and infer parameters of utility



Econometrics for Learning Agents



Econometrics for Learning Agents

• Analyze repeated strategic interactions
• Finite horizon 𝑡 ∈ 1, … , 𝑇

• Players are learning over time
• Unlike stationary equilibrium, or stationary MPE, or static game

• Use no-regret notion of learning behavior:

∀𝑎𝑖
′:  ෍

𝑡

𝜋𝑖(𝑎𝑖
𝑡, 𝑎−𝑖

𝑡 ; 𝜃) ≥ ෍

𝑡

𝜋𝑖 𝑎𝑖
′, 𝑎−𝑖

𝑡 ; 𝜃 − 𝜖

[Nekipelov-Syrgkanis-Tardos’15]



High-level approach
If we assume 𝜖 regret 

For all 𝑎𝑖
′:  

1

𝑇
෍

𝑡

𝜋𝑖 𝒂𝒕; 𝜽 ≥
1

𝑇
෍

𝑡

𝜋𝑖 𝑎𝑖
′, 𝒂−𝒊

𝒕 ; 𝜽 − 𝜖

• Inequalities that unobserved 𝜽 must satisfy 
• Varying 𝝐 we get the rationalizable set 
    of parameters

Current average utility Average deviating utility 
from fixed action

Regret

𝜽

𝝐

𝜖′

𝜖

𝜖′′

rationalizable set

[Nekipelov-Syrgkanis-Tardos’15]



Application: Online Ad Auction setting

• Each player has value-per-click 𝑣𝑖

• Bidders ranked according to a scoring 
rule

• Number of clicks and cost depends on 
position

• Quasi-linear utility

𝜋𝑖 𝒃; 𝒗𝒊 = 𝒗𝒊 ⋅ 𝑥𝑖 𝒃 − 𝑝𝑖 𝒃

Expected click probability

Expected PaymentValue-Per-Click

[Nekipelov-Syrgkanis-Tardos’15]



Data description

• 9 frequent bid changing advertisers
• Each advertiser has bids on many 

keywords or variants: few hundreds 
• Studied auctions for a period of a 

week: Terabytes of auction data!
• Each keyword: from few hundreds to 

100k auctions! 0 1 2 3 4 5 6 7
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Data description

• Applied inference method to each (keyword,bid) pair of each 
advertiser
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Point prediction method

• Applied inference method to each (keyword,bid) pair of each 
advertiser
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Distribution of bid shading:
Average bid / Predicted Value
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Distribution of smallest rationalizable 
multiplicative regret
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Regret over time
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Primer on Econometric Theory



Econometric Theory

• Given a sequence of i.i.d. data points 𝑍1, … , 𝑍𝑛

• Each 𝑍𝑖  is the outcome of some structural model
𝑍𝑖 ∼ 𝐷 𝜃0 , with 𝜃0 ∈ Θ

• Parameter space Θ can be:
• Finite dimensional (e.g. 𝑅𝑑): parametric model
• Infinite dimensional (e.g. function): non-parametric model
• Mixture of finite and infinite: 

• If we are interested only in parametric part: Semi-parametric
• If we are interested in both: Semi-nonparametric



Main Goals

• Identification: If we knew “population distribution” 𝐷(𝜃0) then can 
we pin-point 𝜃0?

• Estimation: Devise an algorithm that outputs an estimate መ𝜃𝑛 of 𝜃0 
when having 𝑛 samples



Estimator Properties of Interest

• Finite Sample Properties of Estimators:
• Bias = 𝐸 ෠𝜃𝑛 − 𝜃0 = 0?
• Variance: Var( ෠𝜃𝑛) ?

• Mean-Squared-Error (MSE): 𝐸 ෠𝜃𝑛 − 𝜃0
2

= Variance + Bias2

• Large Sample Properties: 𝑛 → ∞
• Consistency: ෠𝜃𝑛 → 𝜃0?
• Asymptotic Normality: 𝑎𝑛

෠𝜃𝑛 − 𝜃0 → 𝑁(0, 𝑉) ?
• 𝑛-consistency: 𝑎𝑛 = 𝑛 ?
• Efficiency: is limit variance 𝑉 information theoretically optimal? (typically 

achieved by MLE estimator)



General Classes of Estimators

• Generalized Method of Moments (GMM): suppose in population 
𝐸[𝑚 𝑧, 𝜃 ] = 0. Then መ𝜃𝑛 is solution to:

1

𝑛
෍

𝑖

𝑚 𝑧𝑖 , መ𝜃𝑛 = 0

• Example. Linear regression: 𝑦 = 𝑧 ⋅ 𝜃 + 𝜖. Then: 𝐸 𝑧 𝑦 − 𝑧 ⋅ 𝜃 = 0 
• Empirical analogue:

1

𝑛
෍

𝑖

𝑧𝑖 ⋅ 𝑧𝑖
𝑇 መ𝜃𝑛 =

1

𝑛
෍

𝑖

𝑧𝑖 ⋅ 𝑦𝑖 ⇔ መ𝜃𝑛 = 𝑍 ⋅ 𝑍𝑇 −1
𝑍 ⋅ 𝑦

Where 𝑍 = [𝑧1  … 𝑧𝑛] (matrix with columns 𝑧𝑖  vectors, i.e. (OLS estimate)



General Classes of Estimators

• Extremum Estimator: Suppose we know that 𝜃0 = argmin𝜃∈Θ 𝑄0(𝜃)
መ𝜃𝑛 = argmin𝜃∈Θ 𝑄𝑛(𝜃)

• Examples
• MLE: 𝑄𝑛 𝜃 = −

1

𝑛
σ𝑖=1

𝑛 ln 𝑓(𝑧𝑖; 𝜃)

• Overidentified GMM Estimator: suppose in population 𝐸[𝑚 𝑧, 𝜃 ] = 0. Then: 
𝜃0 = argmin𝜃 𝐸 𝑚 𝑧, 𝜃 𝑊 = 𝐸 𝑚 𝑧, 𝜃 𝑇𝑊 𝐸 𝑚 𝑧, 𝜃 , for some W positive 
definite

𝑄𝑛 𝜃 =
1

𝑛
෍

𝑖

𝑚 𝑧𝑖 , 𝜃

𝑇

𝑊
1

𝑛
෍

𝑖

𝑚 𝑧𝑖 , 𝜃



Consistency of Extremum Estimators

• If 𝑄𝑛 𝜃 =
1

𝑛
σ𝑖 𝑔 𝑧𝑖 , 𝜃  and 𝑄0 𝜃 = 𝐸 𝑔 𝑧, 𝜃 , then (2.,3.) will be 

satisfied if 
• 𝑔 𝑧, 𝜃  is continuous 
• 𝑔 𝑧, 𝜃 ≤ 𝑑(𝑧) with 𝐸 𝑑 𝑧 ≤ ∞

• Typically referred to as “regularity conditions”

Consistency Theorem. If there is a function 𝑄0 𝜃  s.t.:
1. 𝑄0 𝜃  is uniquely maximized at 𝜃0

2. 𝑄0 𝜃  is continuous
3. 𝑄𝑛 𝜃  converges uniformly in probability to 𝑄0 𝜃 , i.e. sup

𝜃
𝑄𝑛 𝜃 − 𝑄0 𝜃 →𝑝 0

Then መ𝜃 →𝑝 𝜃0



Asymptotic Normality

• Under “regularity conditions” asymptotic normality of extremum estimators follows 
by ULLN,  CLT, Slutzky thm and consistency

• Roughly: consider case 𝑄𝑛 𝜃 =
1

𝑛
σ𝑖 𝑔 𝑧𝑖 , 𝜃

• Take first order condition
1

𝑛
෍

𝑖

𝛻𝜃𝑔(𝑧𝑖 , ෠𝜃) = 0

• Linearize around 𝜃0 by mean value theorem
1

𝑛
෍

𝑖

𝛻𝜃𝑔 𝑧𝑖 , 𝜃0 +
1

𝑛
෍

𝑖

𝛻𝜃𝜃𝑔 𝑧𝑖 , ҧ𝜃 ෠𝜃 − 𝜃0 = 0

• Re-arrange:

𝑛 ෠𝜃 − 𝜃0 =
1

𝑛
෍

𝑖

𝛻𝜃𝜃𝑔 𝑧𝑖 , ҧ𝜃

−1

⋅
1

𝑛
෍

𝑖

𝛻𝜃𝑔 𝑧𝑖 , 𝜃0

→𝑝 𝐸 𝛻𝜃𝜃𝑔 𝑧, 𝜃0 →𝑑 𝑁 0, 𝑉𝑎𝑟 𝛻𝜃𝑔 𝑧, 𝜃0

→𝑑 𝑁 0, 𝑈

In practice, typically variance is 
computed via Bootstrap 

[Efron’79]:
Re-sample from your samples 

with replacement and compute 
empirical variance



Modern Econometric Theory for 
Entry Games



Simple case: finite discrete states

• If there are 𝑑 states, then 𝜎𝑖  are 𝑑-dimensional parameter vectors
• Easy 𝑛-consistent first-stage estimators ො𝜎 = ො𝜎1, ො𝜎2  of 𝜎 = (𝜎1, 𝜎2), i.e.:

𝑛 ො𝜎𝑖 − 𝜎 → 𝑁(0, 𝑉)

• Suppose for second stage we do generalized method of moment estimator:
• Let ෠𝜃 = መ𝛽1, መ𝛽2, መ𝛿1, መ𝛿2  and 𝜃0 = 𝛽1, 𝛽2, 𝛿2, 𝛿2

• Let 𝑦𝑡 = 𝑦1𝑡 , 𝑦2𝑡  and Γ 𝑥, 𝜎, 𝜃 = Γ1 𝑥, 𝜎, 𝜃 , Γ2 𝑥, 𝜎, 𝜃  with Γ𝑖 𝑥, 𝜎, 𝜃 =
𝑒𝑥⋅𝛽𝑖+𝜎−𝑖𝛿

1+𝑒𝑥⋅𝛽𝑖+𝜎−𝑖𝛿

• Then second stage estimator ෠𝜃 is  the solution to:
1

𝑛
෍

𝑡=1

𝑛

𝐴 𝑥𝑡 ⋅ 𝑦𝑡 − Γ 𝑥𝑡 , ො𝜎, ෠𝜃 = 0

• Does first stage error affect second stage variance and how?
• This is a general question about two stage estimators



How to approach: easy case

• Standard linearization for asymptotic normality: linearize moment equation around 𝜃0, leading to 
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ 𝑋𝑡 −
1

𝑛
෍

𝑡

𝛻𝜃𝑚 𝑍𝑡, ҧ𝜃, ෠ℎ 𝑋𝑡 𝜃 − 𝜃0 = 0

     For some point ҧ𝜃 in the line between 𝜃 and 𝜃0 (by MVT). 

• Now re-arrange:

𝑛 𝜃 − 𝜃0 =
1

𝑛
෍

𝑡

𝛻𝜃𝑚 𝑍𝑡, ҧ𝜃, ෠ℎ 𝑋𝑡

−1

1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ 𝑋𝑡

Converges to 𝐸 𝛻𝜃𝑚 𝑍, 𝜃0, ℎ0 𝑋  

assuming that መ𝜃, ෠ℎ are consistent by 
Uniform Law of Large Numbers

Suffices to show that 
this term is 

asymptotically normal



How to approach: easy case

• Suppose that nuisance parameter was finite dimensional, i.e. 𝑚 𝑍𝑡, 𝜃0, ℎ0 = 0 and ℎ0 ∈ 𝑅𝑘

• Then we need to argue that: 1

𝑛
σ𝑡 𝑚 𝑍𝑡, 𝜃0, ෠ℎ → 𝑁 0, Σ  

• Linearize the term around the nuisance parameter:
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ =
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ℎ0 +
1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡, 𝜃0, തℎ ෠ℎ − ℎ0

This term is a sum of i.i.d. 
quantities divided by 
sqrt(n). So by CLT it is 
asymptotically normal

This can be re-written as: 

1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡, 𝜃0, തℎ ⋅ 𝑛 ෠ℎ − ℎ0

Converges to a 
constant by ULLN

Converges to 
independent Ν 0, V !



Hard Case: Continuous State Space 𝑥 ∈ 𝑅𝑑

• Then there is no 𝑛-consistent first stage non-parametric 
estimator ො𝜎(⋅) for function 𝜎 ⋅ = 𝐸[𝑦|𝑥]

• Remarkably: still 𝑛-consistency for second stage estimate መ𝜃!!
• Intuition:

• We can add a bias correction term to our moment, that will make the 
impact of the first stage error on the second stage estimate be of 
“second-order”

• This property is called (Neyman) “orthogonality of the moment”

[Bajari-Hong-Kranier-Nekipelov’12]



How to approach: hard case

• Standard linearization for asymptotic normality: linearize moment equation around 𝜃0, leading to 
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ 𝑋𝑡 −
1

𝑛
෍

𝑡

𝛻𝜃𝑚 𝑍𝑡, ҧ𝜃, ෠ℎ 𝑋𝑡 𝜃 − 𝜃0 = 0

     For some point ҧ𝜃 in the line between 𝜃 and 𝜃0 (by MVT). 

• Now re-arrange:

𝑛 𝜃 − 𝜃0 =
1

𝑛
෍

𝑡

𝛻𝜃𝑚 𝑍𝑡, ҧ𝜃, ෠ℎ 𝑋𝑡

−1

1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ 𝑋𝑡

Converges to 𝐸 𝛻𝜃𝑚 𝑍, 𝜃0, ℎ0 𝑋  

assuming that መ𝜃, ෠ℎ are consistent by 
Uniform Law of Large Numbers

Suffices to show that 
this term is 

asymptotically normal



How to approach: hard case

• Suppose that nuisance parameter was finite dimensional, i.e. 𝑚 𝑍𝑡, 𝜃0, ℎ0 = 0 and ℎ0 ∈ 𝑅𝑘

• Then we need to argue that: 1

𝑛
σ𝑡 𝑚 𝑍𝑡, 𝜃0, ෠ℎ → 𝑁 0, Σ  

• Linearize the term around the nuisance parameter:
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ =
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ℎ0 +
1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡, 𝜃0, തℎ ෠ℎ − ℎ0

This term is a sum of i.i.d. 
quantities divided by 
sqrt(n). So by CLT it is 
asymptotically normal

This can be re-written as: 

1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡, 𝜃0, തℎ ⋅ 𝑛 ෠ℎ − ℎ0

Converges to a 
constant by ULLN

Converges to 
independent Ν 0, V  if 
෠ℎ was 𝑛-consistent!

How do we make 
this term vanish 

when ෠ℎ is not 𝑛-
consistent?



The hard case

• Let’s take a second order Taylor expansion of the crucial quantity around ℎ0

1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ෠ℎ 𝑋𝑡

=
1

𝑛
෍

𝑡

𝑚 𝑍𝑡, 𝜃0, ℎ0 𝑋𝑡 +
1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡, 𝜃0, ℎ0 𝑋𝑡
෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡

+
1

2 𝑛
෍

𝑡

𝛻ℎℎ 𝑚 𝑍𝑡, 𝜃0, തℎ 𝑋𝑡
෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡

2

Assuming Hessian of moment is uniformly bounded and assuming that: 
1

𝑛
෍

𝑡

෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡

2
→P 0

Then this term vanishes. Essentially this is a condition that 

𝑛 ⋅ 𝑀𝑆𝐸 ෠ℎ → 0

Or that square root mean squared error converges at a rate faster than 𝑛−
1

4

We are still left with 
this first order term



Dealing with the first order term

Question. Under which conditions does the first order term vanish?

𝐴 =
1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡, 𝜃0, ℎ0 𝑋𝑡
෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡

• Notational convenience: since 𝛻ℎ𝑚 𝑍𝑡, 𝜃0, ℎ0 𝑋𝑡  contains true parameters, denote it with 𝛻ℎ𝑚0 𝑍𝑡

• Reminder on notation. 𝑋𝑡 is a subset of 𝑍𝑡

Observation. If both the variance and the mean of this quantity go to zero then it is 𝑜𝑃 1

• Let’s look at the mean conditional on auxiliary dataset:

𝐸𝑍 𝐴 =
1

𝑛
෍

𝑡

𝐸𝑍𝑡
𝛻ℎ𝑚0 𝑍𝑡 ⋅ ෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡 = 𝑛 𝐸𝑍 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋

Orthogonality condition. For any estimator ෠ℎ that could arise from the first stage, my moments satisfy:
𝐸𝑍 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋



Dealing with the first order term
Question. Under which conditions does the first order term vanish?

𝐴 =
1

𝑛
෍

𝑡

𝛻ℎ𝑚 𝑍𝑡 , 𝜃0, ℎ0 𝑋𝑡
෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡

Orthogonality condition. For any estimator ෠ℎ that could arise from the first stage, my moments satisfy:
𝐸𝑍 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋

Main Lemma. If the moments satisfy the orthogonality condition then 𝐴 →𝑃 0

Proof. We will show that both mean and variance of 𝐴 go to 0 conditional on auxiliary dataset

• Bias is easy:
𝐸𝑍 𝐴 = 𝑛 𝐸𝑍 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋 = 0

• Variance slightly more involved. Main intuition: cross terms are zero

𝑉𝑎𝑟𝑍 𝐴 = E A2 =
1

n
෍

𝑡,𝑡′

E 𝛻ℎ𝑚0 𝑍𝑡
෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡 ⋅ 𝛻ℎ𝑚0 𝑍𝑡′ ෠ℎ 𝑋𝑡′ − ℎ0 𝑋𝑡′

=
1

𝑛
෍

𝑡≠𝑡′

E 𝛻ℎ𝑚0 𝑍𝑡
෠ℎ 𝑋𝑡 − ℎ0 𝑋𝑡 ⋅ 𝐸 𝛻ℎ𝑚0 𝑍𝑡′ ෠ℎ 𝑋𝑡′ − ℎ0 𝑋𝑡′ +

1

𝑛
෍

𝑡

𝐸 𝛻ℎ𝑚0 𝑍𝑡′ ෠ℎ 𝑋𝑡′ − ℎ0 𝑋𝑡′

2

Both are zero, by orthogonality = 𝐸𝑍 𝛻ℎ𝑚0 𝑍
2 ෠ℎ 𝑋 − ℎ0 𝑋

2
→ 0 

by consistency of ෠ℎ



When is orthogonality satisfied?

Conditional moment models. Suppose we have conditional moment equations of the form:
𝐸 𝑚 𝑍, 𝜃0, 𝑔 𝑋 𝑋 = 0

Importantly. Conditional on the variables that go into the nuisance function, my expected moment is still zero. 

Example. Partially linear model of treatment effects from the first slide.

Conditional orthogonality. Suppose that my moments satisfy:
𝐸𝑍 𝛻ℎ𝑚 𝑍, 𝜃0, ℎ0 𝑋  𝑋]  = 0

Lemma. Conditional orthogonality implies orthogonality

• By law of iterated expectations

𝐸𝑍 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋 = 𝐸𝑍 𝐸 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋 𝑋 = 𝐸𝑍 𝐸 𝛻ℎ𝑚0 𝑍 𝑋 ⋅ ෠ℎ 𝑋 − ℎ 𝑋

0



Orthogonal Moment for Games

Conditional moment models. Suppose we have conditional moment equations of the form:
𝐸 𝑚 𝑍, 𝜃0, 𝑔 𝑋 𝑋 = 0

Importantly. Conditional on the variables that go into the nuisance function, my expected moment is still zero. 

Example. Partially linear model of treatment effects from the first slide.

Conditional orthogonality. Suppose that my moments satisfy:
𝐸𝑍 𝛻ℎ𝑚 𝑍, 𝜃0, ℎ0 𝑋  𝑋]  = 0

Lemma. Conditional orthogonality implies orthogonality

• By law of iterated expectations

𝐸𝑍 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋 = 𝐸𝑍 𝐸 𝛻ℎ𝑚0 𝑍 ⋅ ෠ℎ 𝑋 − ℎ 𝑋 𝑋 = 𝐸𝑍 𝐸 𝛻ℎ𝑚0 𝑍 𝑋 ⋅ ෠ℎ 𝑋 − ℎ 𝑋

0



Creating orthogonal moments more generally

Moment formulation for Games.
𝐸 Γ 𝜃 ⋅ 𝑋 + 𝛿𝜎 𝑋  − 𝑦 𝑋 = 0

𝐸 𝑦−𝑖  − 𝜎 𝑋 𝑋] = 0

The moment of the logistic regression is the gradient of the logistic loss with respect to the params

𝐸 𝑚 𝑦, 𝑋, 𝜎 𝑋 ; 𝜃, 𝛿 = 𝐸 Γ 𝜃 ⋅ 𝑋 + 𝛿𝜎 𝑋  − 𝑦 ⋅
𝑋

𝜎(𝑋)
= 0

Is not orthogonal:

𝐸 ∇𝜎𝑚 𝑦, 𝑋, 𝜎0 𝑋 ; 𝜃0, 𝛿0 𝑋 = 𝛿𝐸 Γ′ 𝜃 ⋅ 𝑋 + 𝛿𝜎 𝑋 X ⋅
𝑋

𝜎(𝑋)

We can orthogonalize by subtracting a mean zero quantity that removes the first order effect

𝐸 Γ 𝜃 ⋅ 𝑋 + 𝛿𝜎 𝑋  − 𝑦 ⋅
𝑋

𝜎 𝑋
+ ℎ 𝑋 𝑦−𝑖 − 𝜎 𝑋 ⋅

𝑋

𝜎 𝑋
= 0

≔ ℎ(𝑋): Non-zero
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