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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research
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Econometrics in Games 
and Auctions



Econometrics in Games and Auctions

• We are given data from actions of players in a game (and 
potentially auxiliary contextual information about the game)

• Multiple instances were players played the same type of game

• We don’t know the exact utilities of the players in the game

• We want to use the data to learn the parameters of the utilities of 
the players in the game or the distribution of these parameters



Why useful?

Scientific: economically meaningful quantities

Perform counter-factual analysis: what would happen if we 
change the game?

Performance measures: welfare, revenue

Testing game-theoretic models: if theory on estimated 
quantities predicts different behavior, then in trouble



If I know the equilibrium bid distribution 𝐺, then 
whenever I see a bid 𝑏𝑖, I can reverse engineer and 
uniquely determine the value that led to such a bid

𝑣𝑖 = 𝑏𝑖 +
1

𝑛 − 1
𝑔 𝑏𝑖

𝐺 𝑏𝑖

observed 
equilibrium bid

More competition ⇒ less “value reduction”

unobserved 
value Reverse hazard ratio 

of distribution of bids
“Probability that opponent 
bid is immediately below 

𝑏𝑖  given that it is below 𝑏𝑖”



Side Note (Asymmetric Bidders): If I know the 
equilibrium bid distributions 𝐺𝑖, then whenever I see a 
bid 𝑏𝑖, I can reverse engineer and uniquely determine the 
value 𝑣𝑖  that led to such a bid

𝑣𝑖 = 𝑏𝑖 +
1

σ𝑘≠𝑖
𝑔𝑘 𝑏𝑖

𝐺𝑘 𝑏𝑖

observed 
equilibrium 

bid More competition ⇒ less “value reduction”

unobserved 
value

Reverse hazard ratio 
of distribution of bids 

of 𝑘-th opponent
“Probability that opponent 
bid is immediately below 

𝑏𝑖  given that it is below 𝑏𝑖”



Estimating CDFs from Truthful Samples
Given truthful bids 𝑣1, … , 𝑣𝑚 of players in instances of 
Second Price Auction the CDF of the distribution can be 
approximated by the empirical CDF to an error of ≈ 1

𝑛

𝐹 𝑧 ≝ Pr 𝑣 < 𝑧 ≈
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 𝑣𝑖𝑗 < 𝑧 ≝ ෠𝐹 𝑧



Estimating CDFs and PDFs of Bids from FPA Bid Samples
Given bids 𝑏1, … , 𝑏𝑚 of players in instances of First Price 
Auction the CDF and PDF of the bid distribution can be 
approximated by empirical CDF and a Kernel Density Estimate

𝐺 𝑧 ≝ Pr 𝑏 < 𝑧 ≈
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 𝑏𝑖𝑗 < 𝑧 ≝ ෠𝐺 𝑧

𝑔 𝑧 = 𝜕𝑧𝐺 𝑧 , ො𝑔 𝑧 =
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1

ℎ𝑛
𝐾

𝑏𝑖𝑗 − 𝑧

ℎ𝑛

Fraction of samples that ≈lie within ℎ 
from 𝑧, divided by region length



Estimating CDFs and PDFs of Values from FPA Bid Samples
Given bids 𝑏1, … , 𝑏𝑚 of players in instances of First Price Auction the 
CDF and PDF of the value distribution can be approximated using the 
plug-in approach, by approximately “inverting the bid” and using the 
“recovered value as a truthful sample”

ො𝑣𝑖𝑗 = 𝑏𝑖𝑗 +
෠𝐺 𝑏𝑖𝑗

𝑛 − 1  ො𝑔 𝑏𝑖𝑗

෠𝐹 𝑧 ≝
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1 ො𝑣𝑖𝑗 < 𝑧 , መ𝑓 𝑧 =
1

𝑛 ⋅ 𝑚
෍

𝑖,𝑗

1

ℎ𝑛
𝐾

ො𝑣𝑖𝑗 − 𝑧

ℎ𝑛



Formal Guarantees

• Suppose pdf 𝑓 has 𝑅 uniformly bounded continuous derivatives

• If we observed values then error rate of 𝑛𝑚

log 𝑛𝑚

−
𝑅

2𝑅+1
 

[Stone’82]

• Now that only bids are observed, [GPV’00] show that best 

achievable is: 𝑛𝑚

log 𝑛𝑚

−
𝑅

2𝑅+3

• The density f depends on the derivative of g



Why useful?

Scientific: economically meaningful quantities

Perform counter-factual analysis: what would happen if we 
change the game?

Performance measures: welfare, revenue

Testing game-theoretic models: if theory on estimated 
quantities predicts different behavior, then in trouble



What if all we want is to compare 
between auctions A and B in 
terms of revenue?



What I could potentially do is: 
For each auction flip a coin; 
If heads, then run auction A else run auction B

After many auctions compare average 
revenue from A auctions, vs., average revenue 
from B auctions 



Is this correct?



We will see that it can be problematic and 
needs thought of how to analyze such 
data or structure such A/B tests!



Experimentation
(aka A/B Testing)



The Basics of A/B Testing
Randomization, Causality, Statistical Inference



The Mechanics



A/B Testing

user base



A/B Testing

user base sample



A/B Testing

user base sample

flip a coin for each user



A/B Testing

user base sample

split into groups based on coin



A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing
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A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A Brief History of Experimentation

John Baptista Van 
Helmont proposes 
a randomized 
experiment for the 
effect of 
bloodletting

Credit: Ron Kohavi, History of Controlled Experiments

1662 1828

Louis conducts a 
non-randomized 
controlled 
experiment 
showing strong 
evidence against 
bloodletting

Fisher publishes 
Statistical 
Methods for 
Research 
Workers

1925

Fisher publishes 
The Design of 
Experiments

19351923

Neyman publishes “On the 
Application of Probability 
Theory to Agricultural 
Experiments”

Michigan Supreme 
Court authorizes 
RCTs as part of 
medical practice

1947

First published 
medical RCT in 
Great Britain

1962

FDA to prohibit the 
marketing of any new 
drug in the absence of 
“substantial evidence.”

1969

FDA: “…partially 
controlled studies 
are not 
acceptable 
evidence to 
support claims of 
effectiveness”

2000-

10s of thousands of 
RCTs run annually by 
companies like Airbnb, 
Amazon, Booking.com 
eBay, Facebook, 
Google, LinkedIn, Lyft, 
Microsoft, Netflix, 
Twitter, Uber, Yahoo! 
and Yandex

Abhijit Banerjee, Esther 
Duflo, and
Michael Kremer, popularize 
the use of RCTs in 
economics (esp. for policy 
problems related to 
poverty).

https://1drv.ms/b/s!AuRxCGEOCRKGldwfb-_609w0kG6LRA?e=81Nd39


RCTs are the gold standard for 
measuring the “causal effect” of a 
“treatment” on an “outcome”



Causality



Causal Effect
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Causal Effect

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Causal Effect

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Randomization implies
𝑌|𝐴 ∼ 𝑌 A

𝑌|𝐵 ∼ 𝑌 B



Aggregate differences between groups
E 𝑌 𝐴 − E[Y|𝐵]

Equal aggregate causal effects
𝐸 𝑌 A − 𝑌 B



Historical Data

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Historical Data

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Historical Data
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Historical Data
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Historical Data
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Statistics



Statistics
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Statistics

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Statistics

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Statistics

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Statistics

Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Interference!
The Big Challenge of A/B Testing in 

Markets and Platforms



Interference

• Social Network interference
• Equilibrium effects
• Stateful systems and time effects



𝑣1 ∼ 𝐹1

𝑣2 ∼ 𝐹2

A

B
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Image source: https://googleadsstrategy.com/google-adwords-search-network-vs-display-network/



Two-Sided Matching Markets



Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Image source: https://blog.hootsuite.com/social-media-ab-testing/



Image source: https://www.uber.com/us/en/drive/driver-app/how-surge-works/



Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing in Auctions



A/B Testing over Position Auction 
Formats



Context A/B Testing for Position Auctions

• We want to optimize over the space of position auctions

• We are allowed to play with the click probabilities of slots
• By reducing or increasing the space allocated to each slot
• Changing the probability that the slot appears on the impression
• Randomizing which slot the k-th highest bidder gets



High-Level Idea

• We will see that we can run a single randomized auction

• Using data that contain 𝑚 samples of bids from that single 
randomized auction, we can estimate the revenue for every other 
auction in the design space at an estimation rate of 1

𝑚

• Hence, we can choose the best auction in the space, with only a 
few rounds of experimentation!

• To do that we will need to use optimal auction theory!



Formal Setting

• We have 𝑁 bidders and 𝑁 slots (wlog) with CTRs 𝑎1 ≥ ⋯ ≥ 𝑎𝑁 ≥ 𝑎𝑁+1 = 0

• Bidders are charged their bid-per-click (GFP)
• k-th highest bidder assigned with some distribution to one of the slots
• Slot distributions are solely determined by bid rank
• k-th highest bidder gets an implicit expected CTR of 𝑥𝑘

𝑥𝑘 = 𝑝𝑘1𝑎1 + ⋯ + 𝑝𝑘𝑁𝑎𝑁

• These expected CTRs are monotone decreasing, 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝑁

• No bidder is over-assigned σ𝑗 𝑝𝑘𝑗 ≤ 1

• No slot is over-assigned σ𝑘 𝑝𝑘𝑗 ≤ 1



Feasibility Characterization

• They must be feasible: for each prefix, 𝑥1, … , 𝑥𝑘  I cannot allocate a 
total probability more than the cumulative top 𝑘 highest slots

෍
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𝑖=1

𝑘

𝑎𝑖
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𝑥2

𝑥3



Feasibility Characterization

• They must be feasible: for each prefix, 𝑥1, … , 𝑥𝑘  I cannot allocate a 
total probability more than the cumulative top 𝑘 highest slots
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Feasibility Characterization

• They must be feasible: for each prefix, 𝑥1, … , 𝑥𝑘  I cannot allocate a 
total probability more than the cumulative top 𝑘 highest slots

෍
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𝑖=1

𝑘
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𝑥1
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𝑥3

90%
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100%Total percentage for bidder 
2 is more than 100%



Equivalently: Position Auction with Flexible CTRs

• We have 𝑁 bidders and 𝑁 slots
• Bidders are charged their bid-per-click (GFP)
• Slots are assigned in decreasing order of bidders
• k-th slot has CTR 𝑥𝑘. CTR of 𝑘-th slot is part of the design space
• Can choose the CTRs in any manner that satisfies ∀𝑘 ≤ 𝑁:

෍

𝑗=1

𝑘

𝑥𝑗 ≤ ෍

𝑗=1

𝑘

𝑎𝑗

   for some set of predefined quantities 𝑎1 ≥ ⋯ ≥ 𝑎𝑁 ≥ 𝑎𝑁+1 = 0



Equivalently: Distribution over 𝑘-Unit Auctions

• In a 𝑘-unit auction we are selling 𝑘-units of the same good
• The top-k bidders win a unit and pay their bid

Theorem. Position auction with 𝑥1 ≥ ⋯ ≥ 𝑥𝑁 ≥ 𝑥𝑁+1 = 0, equivalent to 
distribution over 𝑘-unit auctions. k-th unit auction chosen w.p.

𝑤𝑘 = 𝑥𝑘 − 𝑥𝑘+1, 𝑘 ≥ 1,  and,  𝑤0 = 1 − 𝑥1

Proof. If you are the j-th bidder in position auction, you win w.p. 𝑥𝑗

If you are the j-th bidder in random k-unit auction, you win if 𝑘 ≥ 𝑗

Pr 𝑘 ≥ 𝑗 = ෍

𝑘≥𝑗

𝑤𝑗 = ෍

𝑘≥𝑗

𝑥𝑘 − 𝑥𝑘+1 = 𝑥𝑗
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• The top-k bidders win a unit and pay their bid

Theorem. Position auction with 𝑥1 ≥ ⋯ ≥ 𝑥𝑁 ≥ 𝑥𝑁+1 = 0, equivalent to 
distribution over 𝑘-unit auctions. k-th unit auction chosen w.p.

𝑤𝑘 = 𝑥𝑘 − 𝑥𝑘+1, 𝑘 ≥ 1,  and,  𝑤0 = 1 − 𝑥1

Proof. If you are the j-th bidder in position auction, you win w.p. 𝑥𝑗

If you are the j-th bidder in random k-unit auction, you win if 𝑘 ≥ 𝑗
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Equivalently: Distribution over 𝑘-Unit Auctions

• In a 𝑘-unit auction we are selling 𝑘-units of the same good
• The top-k bidders win a unit and pay their bid

• We run k-unit auction with probability 𝑤𝑘

• When bidders are symmetric, every such auction has a symmetric 
monotone equilibrium (in fact it has a unique equilibrium that is 
symmetric and monotone)



Revenue of Randomized 𝑘-unit Auction

• By Myerson, revenue of any auction is expected virtual welfare

Rev = ෍

𝑖

𝐸 𝜙𝑖 𝑣𝑖 ⋅ 𝑥𝑖 𝑣𝑖 = ෍

𝑖

෍

𝑘

𝑤𝑘𝐸 𝜙𝑖 𝑣𝑖 ⋅ 𝑥𝑖,𝑘 𝑣𝑖

• Allocation function is solely determined by rank
𝑥𝑖,𝑘 𝑣 = Pr ≤ k − 1 bidders above you

= ෍

𝑡=1

𝑘−1
𝑛 − 1

𝑡
1 − 𝐹 𝑣

𝑡
 𝐹 𝑣 𝑛−1−𝑡

• Expected allocation only depends on quantile 𝑞 𝑣 = 𝐹 𝑣



Revenue of Randomized 𝑘-unit Auction

• By Myerson, revenue of any auction is expected virtual welfare

Rev = ෍

𝑖

𝐸 𝜙𝑖 𝑣𝑖 ⋅ 𝑥𝑖 𝑣𝑖 = ෍

𝑖

෍

𝑘

𝑤𝑘𝐸 𝜙𝑖 𝑣𝑖 ⋅ 𝑥𝑖,𝑘 𝑣𝑖

• Allocation function is solely determined by rank
𝑥𝑖,𝑘 𝑣 = Pr ≤ k − 1 bidders above you

= ෍

𝑡=1

𝑘−1
𝑛 − 1

𝑡
1 − 𝐹 𝑣

𝑡
 𝐹 𝑣 𝑛−1−𝑡

• Expected allocation only depends on quantile 𝑞 𝑣 = 𝐹 𝑣

• Convenient to re-express everything in quantiles instead of values



Revenue of Randomized 𝑘-unit Auction
• By Myerson, revenue of any auction is expected virtual welfare

Rev = ෍

𝑖

𝐸 𝜙𝑖 𝑞𝑖 ⋅ 𝑥𝑖 𝑞𝑖 = ෍

𝑖

෍

𝑘

𝑤𝑘𝐸 𝜙𝑖 𝑞𝑖 ⋅ 𝑥𝑖,𝑘 𝑞𝑖

• Allocation function is solely determined by rank

𝑥𝑖,𝑘 𝑞 = ෍

𝑡=1

𝑘−1
𝑛 − 1

𝑡
1 − 𝑞 𝑡 𝑞𝑛−1−𝑡

• Quantiles 𝑞 are uniformly distributed in 0,1 :

𝑣 𝑞 = 𝐹−1 𝑞 , Pr 𝑄 ≤ 𝑞 = Pr 𝑣 ≤ 𝑣 𝑞 = 𝐹 𝑣 𝑞 = 𝑞

• Virtual values simplify, since by derivative of inverse 𝑣′ 𝑞 = 𝐹−1 𝑞
′

= 1/𝑓 𝑣 𝑞

𝜙𝑖 𝑞 = 𝑣 𝑞 −
1 − 𝐹 𝑣 𝑞

𝑓 𝑣 𝑞
= 𝑣 𝑞 − 1 − 𝑞 ⋅ 𝑣′ 𝑞 = − 𝑣 𝑞 ⋅ 1 − 𝑞

′



Suffices to Analyze Estimation of Revenue of 𝑘-th unit Auction

• The revenue is the weighted sum of terms (using also symmetry)

𝑅𝑘 = 𝐸 𝜙 𝑞 ⋅ 𝑥𝑘 𝑞

• The function 𝑥𝑘 𝑞  is known in closed form
• The function 𝜙 𝑞  is negative derivative of the revenue function

𝜙 𝑞 = −𝑅′ 𝑞 , 𝑅 𝑞 = 𝑣 𝑞 ⋅ 1 − 𝑞

• Integration-by-Parts yields

𝐸 𝜙 𝑞 ⋅ 𝑥𝑘 𝑞 = − න
0

1

𝑅′ 𝑞 ⋅ 𝑥𝑘 𝑞 𝑑𝑞 = න
0

1

𝑅 𝑞 ⋅ 𝑥𝑘
′ 𝑞 𝑑𝑞 = 𝐸 𝑅 𝑞 ⋅ 𝑥𝑘

′ 𝑞

• It suffices that we estimate terms

𝑅𝑘 ≔ 𝐸 𝑣 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞



For any randomized k-unit first-price auction 
among symmetric bidders, we have that:

Rev = 𝑛 ෍

𝑘≤𝑁

𝑤𝑘 𝐸 𝑣 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞



Estimating 𝑅𝑘 = 𝐸 𝑣 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞

• The value function 𝑣 𝑞 = 𝐹−1 𝑞  relates to distribution of values
• Only observed from data distribution of bids with CDF 𝐺 and pdf 𝑔
• Define the bid function 𝑏 𝑞 = 𝐺−1 𝑞 : what is my bid if I’m at the 

bottom 𝑞-th percentile of the distribution of values, equivalently, if 
I’m at the 𝑞-th percentile of the distribution of bids

• Want to relate value of quantile 𝑞 to bid of quantile 𝑞

• Similar to bid inversion question in last lecture



Estimating 𝑅𝑘 = 𝐸 𝑣 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞

• At symmetric equilibrium
𝑏 𝑞 = argmax𝑧 𝑣 𝑞 − 𝑧 ⋅ 𝑥 𝑏−1 𝑧

• The first order condition (using derivative of inverse):

𝑣 𝑞 − 𝑏 𝑞 ⋅ 𝑥′ 𝑞
1

𝑏′ 𝑞
− 𝑥 𝑞 = 0

• We can write a similar bid inversion formula

𝑣 𝑞 = 𝑏 𝑞 +
𝑏′ 𝑞 𝑥 𝑞

𝑥′ 𝑞

• Reminder: The functions 𝑥(𝑞) and 𝑥′ 𝑞  are known in closed form 



Estimating 𝑅𝑘 = 𝐸 𝑣 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞

• We can write a similar bid inversion formula

𝑣 𝑞 = 𝑏 𝑞 +
𝑏′ 𝑞 𝑥 𝑞

𝑥′ 𝑞

• Need to estimate b q  and b′ q  from data 

• Reminder: 𝑏 𝑞 = 𝐺−1(𝑞),     𝑏′ 𝑞 =
1

𝑔 𝐺−1 𝑞

• Estimating 𝑏 𝑞  and 𝑏′ 𝑞  is the same as estimating 𝐺, 𝑔

• Main message. The quantity 𝑅𝑘  for any 𝑘 depends only on 𝑏 𝑞  and not 
on 𝑏′ 𝑞  because it is an integral over 𝑞! Leads to much faster rates. 



Estimating 𝑅𝑘 = 𝐸 𝑣 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞

• We can write

𝑅𝑘 = 𝐸 𝑏 𝑞 ⋅ 1 − 𝑞 ⋅ 𝑥𝑘
′ 𝑞 + 𝐸

𝑏′ 𝑞 𝑥 𝑞

𝑥′ 𝑞
⋅ 1 − 𝑞 ⋅ 𝑥𝑘

′ 𝑞

• First part only depends on 𝑏 𝑞 . Analogous to estimating a CDF
• Second part seemingly problematic. But integration-by-parts

𝐸
𝑏′ 𝑞 𝑥 𝑞

𝑥′ 𝑞
⋅ 1 − 𝑞 ⋅ 𝑥𝑘

′ 𝑞 = −𝐸 𝑏 𝑞
𝑥 𝑞 1 − 𝑞 ⋅ 𝑥𝑘

′ 𝑞

𝑥′ 𝑞

′

• This only depends on 𝑏 𝑞  and known quantities



For any randomized k-unit first-price auction among 
symmetric bidders, we have that:

Rev = 𝑛 ෍

𝑘≤𝑁

𝑤𝑘 𝐸 𝑏 𝑞 ⋅ 𝑓 𝑞

for a function 𝑓 𝑞  known in closed form



We can estimate Rev by estimating the CDF of bids 
using the empirical CDF ෠𝐺. Then use  ෠𝑏 = ෠𝐺−1 and 

෢Rev  = 𝑛 ෍

𝑘≤𝑁

𝑤𝑘  න
0

1

෠𝑏 𝑞 ⋅ 𝑓 𝑞 𝑑𝑞

for a function 𝑓 𝑞  known in closed form

Assuming 𝑓 𝑞  is bounded (e.g. holds if original auction 
chooses each k with positive probability), then

෢Rev − Rev ≾ 1/ 𝑚



Conclusion

• Run a single randomized auction as our experimentation strategy

• Using data that contain 𝑚 samples of bids from that single 
randomized auction, we can estimate the revenue for every other 
auction in the design space at an estimation rate of 1

𝑚

• Hence, we can choose the best auction in the space, with only a 
few rounds of experimentation!

• To do that we used optimal auction theory!



A/B Testing across Many 
Keywords with Budgets



Budgets!

• So far we did not place any budget constraints on bidders
• In practice, budget constraints are very important
• Bidders participate in many auctions and have a budget limit
• Can only spend at most 𝐵𝑖  in total across all the auctions

• This couples the bidding strategy across auctions
• Makes learning (e.g. no-regret learning hard)
• In its full generality a stochastic dynamic program



Simplified Budgets: Pacing Equilibria
• In practice, people use the following simplification
• We have 𝑛 bidders and a continuum of items 
• Items have type 𝜃 which follows some distribution with measure 𝑠
• 𝑣𝑖 𝜃  is bidder 𝑖’s value for an item of type 𝜃

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

https://arxiv.org/pdf/2402.07322


Simplified Budgets: Pacing Equilibria

The multipliers 𝛽 = 𝛽1, … , 𝛽𝑛  and price function 𝑝 𝜃  are a pacing 
equilibrium if there exists and allocation function 𝑥 𝜃  such that
• First-price payment: 𝑝 𝜃 = max

𝑖
𝛽𝑖𝑣𝑖 𝜃

• Highest-bidder wins: 𝑥𝑖 𝜃 ≥ 0 ⇒ 𝛽𝑖𝑣𝑖 𝜃 = max
𝑘

𝛽𝑘𝑣𝑘 𝜃

• Budgets are respected 

න
𝜃

𝑥𝑖 𝜃 𝑝 𝜃 𝑠 𝜃 𝑑𝜃 ≤ 𝐵𝑖

• No-overselling: σ𝑖 𝑥𝑖 𝜃 ≤ 1

• Full-allocation of competitive items: 𝑝 𝜃 > 0 ⇒ σ𝑖 𝑥𝑖 𝜃 = 1

• No un-necessary pacing: ׬𝜃
𝑥𝑖 𝜃 𝑝 𝜃 𝑠 𝜃 𝑑𝜃 < 𝐵𝑖 ⇒ 𝛽𝑖 = 1



Characterization of Pacing Equilibria

Multipliers in pacing equilibrium are characterized as solutions to a 
convex optimization problem (related to market equilibrium)

𝛽∗ = argmin
𝛽∈ 0,1 𝑛

𝐸 max
𝑖

𝛽𝑖𝑣𝑖 𝜃 − ෍

𝑖

𝐵𝑖 log 𝛽𝑖



Clustered Experiment Designs and Debiasing

1. For each sub-market want pacing multipliers 
as if the bad items don’t exist

2. With such multipliers, can estimate idealized 
revenue for each sub-market, as if isolated

3. Characterization of multipliers as minimizers 
of market equilibrium program ⇒ closed form 
first-order bias that bad items introduce

4. Subtract bias and measure revenue of A and 
B clusters using debiased multipliers

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

https://arxiv.org/pdf/2402.07322


A/B Testing in Two-Sided 
Matching Markets



Two-Sided Randomized Designs
Experimental Design in Two-Sided Platforms: An Analysis of Bias | Management Science (informs.org)

https://pubsonline.informs.org/doi/full/10.1287/mnsc.2021.4247
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