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Econometrics in Games and Auctions

* We are given data from actions of players in a game (and
potentially auxiliary contextual information about the game)

* Multiple instances were players played the same type of game
* We don’t know the exact utilities of the players in the game

* We want to use the data to learn the parameters of the utilities of
the players in the game or the distribution of these parameters



Why useful?

Scientific: economically meaningful quantities

Perform counter-factual analysis: what would happen if we
change the game?

Performance measures: welfare, revenue

Testing game-theoretic models: if theory on estimated
quantities predicts different behavior, then in trouble



If | know the equilibrium bid distribution G, then
whenever | see a bid b;, | can reverse engineer and
uniquely determine the value that led to such a bid

1
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Side Note (Asymmetric Bidders): If | know the
equilibrium bid distributions G;, then whenever / see a

bid b;, | can reverse engineer and uniquely determine the
value v; that led to such a bid

unobserved V: = b | 1 Reverse hazard ratio
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| _I:gk 2 : of k-th opponent
: k'_/"l:le (b) | “Probability that opponent
| :: g ' bid is immediately below
observed | = ————— / b; giventhatitis below b;”
equilibrium ‘= ---"

bid More competition = less “value reduction”



Estimating CDFs from Truthful Samples

Given truthful bids v, ..., v,,, of players in instances of

Second Price Auction the CDF of the distribution can be
1

approximated by the empirical CDF to an error of = N

1 .
F(z) ¥Prlv<z) = 2 1{vij < Z} ' F(z)
n.m " -
iJ



Estimating CDFs and PDFs of Bids from FPA Bid Samples
Given bids b4, ..., b,,, of players in instances of First Price
Auction the CDF and PDF of the bid distribution can be
approximated by empirical CDF and a Kernel Density Estimate

1 ~
G(z) EPr(b<z) = —z 1{bij < Z} L G(2)
n.m " "
L]

9(2) = 0,G(2), g(z)——z . ( )

Fraction of samples that =lie within h
from z, divided by region length




Estimating CDFs and PDFs of Values from FPA Bid Samples
Given bids by, ..., b,,, of players in instances of First Price Auction the

CDF and PDF of the value distribution can be approximated using the
plug-in approach, by approximately “inverting the bid” and using the
“recovered value as a truthful sample”

G (bij)
5. = b..
CARCA (n—1) g(b;j)

) 1 1 (D —
F(Z)d—ef—z:l{vu 7}, f@):mz:h—z{(vfh Z)
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Formal Guarantees

* Suppose pdf f has R uniformly bounded continuous derivatives
R

nm " 2R+1
* |f we observed values then error rate of ( ) [Stone’82]
log(nm)

* Now that only bids are obsRerved, [GPV’00] show that best

nm )_2R+3

achievable is: (
log(nm)

* The density f depends on the derivative of g



Why useful?

Scientific: economically meaningful quantities

Perform counter-factual analysis: what would happen if we
change the game?

Performance measures: welfare, revenue

Testing game-theoretic models: if theory on estimated
quantities predicts different behavior, then in trouble



What if all we want is to compare
between auctions A and B In
terms of revenue?



What | could potentially do is:
For each auction flip a coin;
If heads, then run auction A else run auction B

After many auctions compare average
revenue from A auctions, vs., average revenue
from B auctions



|s this correct?



We will see that it can be problematic and
needs thought of how to analyze such
data or structure such A/B tests!



Experimentation
(aka A/B Testing)



The Basics of A/B Testing

Randomization, Causality, Statistical Inference






A/B Testing

user base




A/B Testing

sample

user base




A/B Testing

user base sample

flip a coin for each user




A/B Testing

sample

user base

split into groups based on coin




A/B Testing

user base
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A/B Testing
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A/B Testing

Treatment
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A Brief History of Experimentation

Duflo, and
Michael Kremer, popularize
Neyman publishes “On the Michigan Supreme FDA to prohibit the the use of RCTs in
Application of Probability Court authorizes marketing of any new economics (esp. for policy
Theory to Agricultural RCTs as part of drug in the absence of problems related to
Experiments” medical practice “substantial evidence.” poverty).
1662 1828 1923 1925 1935 1947 1962 1969 2000-
John BaptistaVan Louis conducts a Fisher publishesFisher publishes  First published FDA: “...partially 10s of thousands of
Helmont proposes non-randomized Statistical The Design of medical RCT in controlled studies RCTs run annually by
arandomized controlled Methods for Experiments Great Britain are not companies like Airbnb,
experimentforthe experiment Research acceptable Amazon, Booking.com
effect of showing strong Workers evidenceto eBay, Facebook,
bloodletting evidence against support claims of Google, LinkedIn, Lyft,
bloodletting effectiveness” Microsoft, Netflix,
Twitter, Uber, Yahoo!
and Yandex

Credit: Ron Kohavi, History of Controlled Experiments



https://1drv.ms/b/s!AuRxCGEOCRKGldwfb-_609w0kG6LRA?e=81Nd39

RCTs are the gold standard for
measuring the “causal effect” of a
“treatment” on an “outcome”
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Randomization implies
Y|A ~ YW
Y|B ~ Y(®



Aggregate differences between groups
E|Y|A| — E[Y|B]

Equal aggregate causal effects
E[y(A) _ y(B)]
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Statistics o6 of peopls with probability 95%
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StatiStiCS % of people

Sampled A
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population sample

with probability 95%
(" )
Var(Y|4) Var(Y|B)
Ny + Ny
\_ J
sampling
effect error



Microsoft | Research Ourresearch . Programs & events ..  Blogs & podcasts .. About Sign up: Research Newsletter All Microsoft «  Search

Experimentation

Platform

Overview People Publications Videos Articles

Experimentation Platform (ExP) is a team of 60+ Data Scientists, Software Engineers and Program Managers. Our mission is to accelerate
innovation through trustworthy experimentation. Most major products such as Bing, Cortana, Edge, Exchange, Identity, MSN, Office
client, Office online, Photos, Skype, Speech, Store, Teams, Visual Studio Code, Windows, Xbox use our platform ExP to run trustworthy

Online Controlled Experiments — aka A/B tests.



Interference!
The Big Challenge of A/B Testing In
Markets and Platforms



Interference

* Social Network interference
* Equilibrium effects
e Stateful systems and time effects




Google digital advertising % | 4 iE a

Al Images News Videos Shopping i More Tools

About 6,620,000,000 results (0.44 seconds)

vy~ F

https://www.redditforbusiness.com

Advertise on Reddit

Reach over 100K communities — Connect with passionate communities that deliver results for
brands across all industries. Create impact & own top communities in your target category for 24
hours. Try Reddit ads.

!7 ~ F Google digital advertising x| 4 @ Q

Ah Microsoft Al Images News Videos Shopping i More Tools
A https://about.ads.microsoft.com » advertising > start-now 3

Microsoft Advertising® | Get a $500 Advertising Credit e e

We'll Help You Find Your Customers and Reach Searchers Across The Microsoft Network. Plus,
Receive a $500 Microsoft Advertising Credit When You Spend Just $250! Free Sign Up.
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GO\ >81€ wool socks n

VWed Shopping Images Videos Mags More = Search ool ¥
. Shopplmg Ads

ADoyt 15,700,000 results (0.27 seconds)

Wool Socks at Walmart @ cnsceed @
B eieaiadit s A Shop for wool socks on Google Sponsored @

4 3 Wk d mating for walmart com

Save On Wool Socks 31 Walmaet Froe Shipping Site 10 Store
Wool Socks Superstore - SocksAddict com
7] wew socksaddict comWWool-Socks ~

Y. rating for 8o dict coer Maerino Wool Ragg SemantWool Men's carhant men's all
ok it ey ) Soo. 12" Two-Pack,  New ClasicRIS S0..  temain wool Blend 3.
tFree SAH + Ship Same Day SmanWool, Darn Tough & More Wool $2295 $12.95 $10.50

Guaranteed lowest prices - 99% ship same day 180 day return policy LL Besn 5 Asdict Shen
Beangy Outdoor Series. Running Series, Kids Series, Daen Tough
Injinji Weol Sodka - Wigwam Woel Soda - Women's Wool S00a - Shep All Soda

Official Site: SmartWool® Ciothing & ks /
W SManwool comy ¥ SmantWoal * '
Extracedinarily comicriable SmartWooil® socks & afipare! Migh performance Merino C
x . Hue Cable Knit Diodes Men's ¥ Men's Oversthe-calf
:':%::ﬂa&mmmm. e i Merino Wool Blend . Merino Wool S:ks. Wool Rib Dress Soc.
$10.00 $11.00 $9.99
Bloomingdale's Target Lands’ End

Amazon.com: Mernino Wool Blend Soclls: Clothing
wwix smazon. comyGlidin )\

3 pamnanno wootens S€ATCh Network Ads

Merino Wool Blend Socks, perfect for wearing with hiking, hunting, sking,

o

Alpaca Therapeutic Socks
www alpacasofmontans conv ~
SmartWool Socks at Sierra Trading Post Warm. Soft. Alpacs Disbetic Socks
W et DY adIng POt COMIMArTwool-socks e 19440231 - Nonsestrictive promotes blood flow
Imgeoving upon nature’s finest insulator combing the Dest Merind wool and the iatest
dvanced wahnoliogy and SmarWool i dom It is the uitimate wool foe

Women's SmartWool Socks
vwww siematradingpost comySmarfiWool =
RE! Lightweight Merino Wool Hiking Crew Socks at REl.com 48 hAhkRd savertiser rating
wavwrei comV_reldightweightmennowoolhiting-crew-socks * REI * Great Selection of SmarfWool Socks
kAR Rating 2 - Roview Dy stiagbreaker - Mar 21, 2014 -512 40 Shop SmanWool Socks For Women Now

Image source: https://googleadsstrategy.com/google-adwords-search-network-vs-display-network/



Two-Sided Matching Markets

Buyers Sellers




Counterfactual world

Social Network Interference
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IKEA @
&= eikea

Big challenges call for big solutions. Tune in to
#0OHOP21 on 9 November to hear thinkers, doers and
leaders discuss the global response to climate change.
Watch the event, get inspired and discover how we can
take action [Jingka.com/one-home-one-p...
#AssembleABetterFuture #COP26

ONE HOME,

ONE PLANET

0:19 461 views

Source: @QIKEA

IKEA @&
&= Gikea

The moment is now. Climate action can't wait any
longer. Join global thinkers, doers & leaders at
#OHOP21 on 9 Nov — where they'll discuss the need
for urgent change & action to help create a better
future. Learn more: ingka.com/one-home-one-p...
#COP26 #AssembleABetterFuture

!ONEHOMEl

’0 NE PLANET,

0:19 490 views

Source: @QIKEA



Image source: https://www.uber.com/us/en/drive/driver-app/how-surge-works/



Approach: Clustering
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Approach: Structural Bias Correction

% of people % of people

A

YIA

Correct
Spill-Over

$ Bias

1, = 10$ (average spend) u, = 10$ (average spend
Use Network Information +
9% of peop[e AssumptiOnS on how Splll— 9% of people
A overs change outcome A
Y| B (e.g. additive homophily

effects, market equilibrium

behavior, Nash equilibrium
behavior)

ug = 20%$ (average spend) ug = 20% (average spend




A/B Testing in Auctions



A/B Testing over Position Auction
Formats



Context A/B Testing for Position Auctions

* We want to optimize over the space of position auctions

* We are allowed to play with the click probabilities of slots
* By reducing or increasing the space allocated to each slot
* Changing the probability that the slot appears on the impression
* Randomizing which slot the k-th highest bidder gets



High-Level Idea

* We will see that we can run a single randomized auction

* Using data that contain m samples of bids from that single
randomized auction, we can estimate the revenue for every other

. : : : 1
auction in the design space at an estimation rate Of\/_m

* Hence, we can choose the best auction in the space, with only a
few rounds of experimentation!

* To do that we will need to use optimal auction theory!



Formal Setting

* We have N bidders and N slots (wlog) withCTRsa; = - = ay = ayy+1 =0
Bidders are charged their bid-per-click (GFP)
k-th highest bidder assigned with some distribution to one of the slots

Slot distributions are solely determined by bid rank

k-th highest bidder gets an implicit expected CTR of xj,

Xk = Pr1Q1 t -+ Prnan
These expected CTRs are monotone decreasing, x; = x, = - = Xy

No bidder is over-assigned ). ; p;j < 1

No slot is over-assigned X, px; < 1



Feasibility Characterization

* They must be feasible: for each prefix, x4, ..., X | cannot allocate a

total probability more thankthe cumulative top k highest slots

k
in < a;

=1 =1




Feasibility Characterization

* They must be feasible: for each prefix, x4, ..., X | cannot allocate a
total probability more than the cumulative top k highest slots

k k
E Xi < a;
=1 =1

%01




Feasibility Characterization

* They must be feasible: for each prefix, x4, ..., X | cannot allocate a
total probability more than the cumulative top k highest slots

k k
E Xi < a;
=1 =1
‘ Total percentage for bidder a,
X2 2 is more than 100%




Equivalently: Position Auction with Flexible CTRs

* We have N bidders and N slots

* Bidders are charged their bid-per-click (GFP)

* Slots are assigned in decreasing order of bidders

* k-th slot has CTR x;,. CTR of k-th slot is part of the design space
 Can choose the CTRs in any manner that satisfies Vk < N:

k k
>0<3
j:]_ ]:1

for some set of predefined quantitiesa; = - = ay = ay41 =0



Equivalently: Distribution over k-Unit Auctions

* In a k-unit auction we are selling k-units of the same good
* The top-k bidders win a unit and pay their bid

Theorem. Position auction with x; = --- = xy = xy41 = 0, equivalent to
distribution over k-unit auctions. k-th unit auction chosen w.p.

Wi = X — Xk+1 k=1, and, wo=1-—x4

Proof. If you are the j-th bidder in position auction, you win w.p. x;
If you are the j-th bidder in random k-unit auction, youwinifk = j

Pr(k = j) =2Wj =2xk—xk+1 = Xj

k=) k=)



Equivalently: Distribution over k-Unit Auctions

* In a k-unit auction we are selling k-units of the same good
* The top-k bidders win a unit and pay their bid

Theorem. Position auction with x; = --- = xy = xy41 = 0, equivalent to
distribution over k-unit auctions. k-th unit auction chosen w.p.

Wi = X — Xk+1 k=1, and, wo=1-—x4

Proof. If you are the j-th bidder in position auction, you win w.p. x;
If you are the j-th bidder in random k-unit auction, youwinifk = j

Pr(k = j) =2Wj =2xk—xk+1 = Xj

k=) k=)



Equivalently: Distribution over k-Unit Auctions

* In a k-unit auction we are selling k-units of the same good
* The top-k bidders win a unit and pay their bid

* We run k-unit auction with probability w,,

* When bidders are symmetric, every such auction has a symmetric
monotone equilibrium (in fact it has a unique equilibrium that is
symmetric and monotone)



Revenue of Randomized k-unit Auction

* By Myerson, revenue of any auction is expected virtual welfare

Rev = EE b;(v;) - x;(v;)] zszE[Qb (v;) - xlk(vl)]

* Allocation functlon Is solely determlned by rank

x; x(v) = Pr(< k — 1 bidders above you)
k-1

S oo o

t=1
» Expected allocation only depends on quantile g(v) = F(v)



Revenue of Randomized k-unit Auction

* By Myerson, revenue of any auction is expected virtual welfare

REV—ZE b;(v;) - x;(v;)] ZZWRE ¢;(v;) - sz(vl)]

* Allocation functlon Is solely determlned by rank
x; x(v) = Pr(< k — 1 bidders above you)

k-1

= Z <n ; 1) (1-F@)) Fw)r 1t

t=1
* Expected allocation only depends on quantile g(v) = F(v)

* Convenient to re-express everything in quantiles instead of values



Revenue of Randomized k-unit Auction

* By Myerson, revenue of any auction is expected virtual welfare

Rev = zE b;(q;) - x;(q;)] = zszE[CP (q:) - xlk(ql)]

* Allocation function is solely determlned by rank

k-1

—1
xi (@) = z (n . ) (1—-qtq" 1t

t=1
* Quantiles g are uniformly distributed in [0,1]:

v(@) =Fq), Pr(Q<q)=Pr(v<sv(q)=F(w(qg)=q

* Virtual values simplify, since by derivative of inverse v'(q) = (F‘l(q)), = 1/f(v(q))

1-— F(v(q))

— —(1-q)-v'(q) =— 1-q)
@) v(@)— (1 —¢q)-v' (g =—-(v(g) - (1-q))

$i(q) = v(q) —



Suffices to Analyze Estimation of Revenue of k-th unit Auction

The revenue is the weighted sum of terms (using also symmetry)
Ry = E[¢(q) - xx ()]

The function x; (q) is known in closed form
The function ¢(q) is negative derivative of the revenue function

$(q@)=-R'(q), R@=v(q -1—-¢q)

Integration-by-Parts yields

E[6(q) - xe(q)] = — j

0

1 1

R'(q) - 2 (q)dq = j R(q) - x,()dq = E[R(q) - x(Q)]
0

e |t suffices that we estimate terms

Ry =E[v(q) - (1 —q) - x ()]



For any randomized k-unit first-price auction
among symmetric bidders, we have that:

Rev=n z Wi E[v(q) - (1—4q) - X;Q(CI)]

k<N



Estimating R, = E|v(q) - (1 —q) - x,.(q)]

* The value function v(q) = F~1(q) relates to distribution of values
* Only observed from data distribution of bids with CDF ¢ and pdf g

» Define the bid function b(q) = G~1(q): what is my bid if I’'m at the
bottom q-th percentile of the distribution of values, equivalently, if
I’m at the q-th percentile of the distribution of bids

* Want to relate value of quantile g to bid of quantile q

* Similar to bid inversion question in last lecture



Estimating R, = E|v(q) - (1 —q) - x,.(q)]

* At symmetric equilibrium
b(q) = argmax, (v(q) — z) - x(b™'(2))
* The first order condition (using derivative of inverse):

1
(v(@) — b(Q) - x' (@) OR x(q) =0

e \We can write a similar bid inversion formula

bl
v(q) = b(q) + i")(z <

* Reminder: The functions x(gq) and x'(q) are known in closed form




Estimating R, = E|v(q) - (1 —q) - x,.(q)]

e We can write a similar bid inversion formula

bl
(@) = ba) + s

* Need to estimate b(q) and b’(q) from data

° ' . — —1 ' — -
Reminder:b(q) = G~"(q), b'(q) 9(6=1(Q)

 Estimating b(q) and b'(q) is the same as estimating G, g

* Main message. The quantity R, for any k depends only on b(g) and not
on b'(q) because itis anintegral over g! Leads to much faster rates.



Estimating R, = E|v(q) - (1 —q) - x,.(q)]

e We can write

Ry =E|b(q)-(1—¢q) x, ()| +E

b'(q)x(q)

x'(q)

-(1-¢q) °xz’<(q)]

* First part only depends on b(q). Analogous to estimating a CDF
* Second part seemingly problematic. But integration-by-parts

E

b'(q)x(q)

x'(q)

-(1—q) -xz’{(q)] =—E

b(q) (

x(q)(1—q) - x;'c(q)>'_
x'(q)

* This only depends on b(g) and known quantities



For any randomized k-unit first-price auction among
symmetric bidders, we have that:

Rev = n z wi Elb(q) - f(q)]

k<N

for a function f(q) known in closed form



We can estimate Rev by estlmatlng the CDF of bids
using the empirical CDF G. Thenuse b = G~ 1 and

Rev =n y w j b(q) - f(q)dq

k<N

for a function f(q) known in closed form

Assuming f (q) is bounded (e.g. holds if original auction
chooses each k with positive probability), then

[Rev — Rev| S 1/ym



Conclusion

* Run a single randomized auction as our experimentation strategy

* Using data that contain m samples of bids from that single
randomized auction, we can estimate the revenue for every other

. : : : 1
auction in the design space at an estimation rate Of\/_m

* Hence, we can choose the best auction in the space, with only a
few rounds of experimentation!

* To do that we used optimal auction theory!



A/B Testing across Many
Keywords with Budgets



Budgets!

* So far we did not place any budget constraints on bidders

* |n practice, budget constraints are very important

* Bidders participate in many auctions and have a budget limit
* Canonly spend at most B; in total across all the auctions

* This couples the bidding strategy across auctions
* Makes learning (e.g. no-regret learning hard)
* In its full generality a stochastic dynamic program



Simplified Budgets: Pacing Equilibria

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

* |[n practice, people use the following simplification

* We have n bidders and a continuum of items
* ltems have type 6 which follows some distribution with measure s
* v;(0) is bidder i’s value for an item of type 6

buyers items
© o °
O ® o7 M |
@ ¢ ®
®



https://arxiv.org/pdf/2402.07322

Simplified Budgets: Pacing Equilibria

The multipliers 8 = (B4, ..., By) and price function p(0) are a pacing
equilibrium if there exists and allocation function x(8) such that

* First-price payment: p(6) = max ;v;(0)
* Highest-bidder wins: x;(8) = (; = Bivi(0) = mlfxﬁk”k(g)
* Budgets are respected
| x@p@)s56)d0 < B,
0

* No-overselling: ),; x;(6) < 1
* Full-allocation of competitive items: p(8) > 0= ), x;(8) =1
* No un-necessary pacing: fe x;(0)p(0)s(0)d6 < B; = B; =1



Characterization of Pacing Equilibria

Multipliers in pacing equilibrium are characterized as solutions to a
convex optimization problem (related to market equilibrium)

B, = argmlnE maxﬁlvl(H)] Z:B log(f;)
pe(0,1]™



Clustered Experiment Designs and Debiasing

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

1. For each sub-market want pacing multipliers  /buyers items:

as if the bad items don’t exist o o

. N

2. With such multipliers, can estimate idealized ¢ ‘ ;
revenue for each sub-market, as if isolated ey ’

3. Characterization of multipliers as minimizers | * * | ' o

of market equilibrium program = closed form
first-order bias that bad items introduce

. B

4. Subtract bias and measure revenue of A and o
B clusters using debiased multipliers N

x

Ch
°
°
°
-
o |
‘e
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.....é;"'
°
°
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https://arxiv.org/pdf/2402.07322

A/B Testing in Two-Sided
Matching Markets



Two-Sided Randomized Designs

Experimental Design in Two-Sided Platforms: An Analysis of Bias | Management Science (informs.org)

&
— Listings A
Control Treatment

Customers

e |0 Q
x OL‘Ix % Crilx 5

Control l

i Q10 Q11 ) ¢
X S Sxx x %

Treat.

x denotes bookings made


https://pubsonline.informs.org/doi/full/10.1287/mnsc.2021.4247
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