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Further Topics

e- A/B testing in markets (T+A)

) ) . Guest Lectures
Data Science for Auctions and Mechanisms



What if all we want is to compare
between auctions A and B In
terms of revenue?



What | could potentially do is:
For each auction flip a coin;
If heads, then run auction A else run auction B

After many auctions compare average
revenue from A auctions, vs., average revenue
from B auctions



RCTs are the gold standard for
measuring the “causal effect” of a
“treatment” on an “outcome”



Interference!
The Big Challenge of A/B Testing In
Markets and Platforms



Interference

* Social Network interference
* Equilibrium effects
e Stateful systems and time effects




Approach: Clustering
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Approach: Structural Bias Correction
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A/B Testing in Auctions



A/B Testing over Position Auction
Formats



We observe a bid distribution, described by the quantile

function b(q), from a randomized k-unit auction (which
chooses each k with positive probability)

For any other randomized k-unit (with probabilities wy,)
first-price auction among symmetric bidders, we have:

Rev =n 2 wy E[b(q) - f(q)]

k<N

for a function f(g) known in closed form



With access to bidding data from a single randomized k-unit
auction (which chooses each k with positive probability), we
can estimate Rev of any other k-unit auction.

Estimate CDF of bIdS using the empirical CDF G.
Thenuse b = G~1and

Rev =n ) w, j b(q) - f(q)dq

k<N

By convergence rates of empirical CDF, we can show:
|IRev — Rev| 3 1/y/m



A/B Testing across Many
Keywords with Budgets



Budgets!

* So far we did not place any budget constraints on bidders

* |n practice, budget constraints are very important

* Bidders participate in many auctions and have a budget limit
* Canonly spend at most B; in total across all the auctions

* This couples the bidding strategy across auctions
* Makes learning (e.g. no-regret learning hard)
* In its full generality a stochastic dynamic program



Simplified Budgets: Pacing Equilibria

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

* |[n practice, people use the following simplification

* We have n bidders and a continuum of items
* ltems have type 6 which follows some distribution with measure s
* v;(0) is bidder i’s value for an item of type 6

buyers items
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https://arxiv.org/pdf/2402.07322

Simplified Budgets: Pacing Equilibria

The multipliers 8 = (B4, ..., By) and price function p(0) are a pacing
equilibrium if there exists and allocation function x(8) such that

* First-price payment: p(6) = max ;v;(0)
* Highest-bidder wins: x;(8) = (; = Bivi(0) = mlfxﬁk”k(g)
* Budgets are respected
| x@p@)s56)d0 < B,
0

* No-overselling: ),; x;(6) < 1
* Full-allocation of competitive items: p(8) > 0= ), x;(8) =1
* No un-necessary pacing: fe x;(0)p(0)s(0)d6 < B; = B; =1



Characterization of Pacing Equilibria

Multipliers in pacing equilibrium are characterized as solutions to a
convex optimization problem (related to market equilibrium)

B, = argmlnE maxﬁlvl(H)] Z:B log(f;)
pe(0,1]™



Clustered Experiment Designs and Debiasing

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

1. For each sub-market want pacing multipliers  /buyers items:

as if the bad items don’t exist o o
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https://arxiv.org/pdf/2402.07322

A/B Testing in Two-Sided
Matching Markets



Two-Sided Randomized Designs

Experimental Design in Two-Sided Platforms: An Analysis of Bias | Management Science (informs.org)
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Colab Notebook:

https://colab.research.google.com/drive/198fDKTPcXZm15cPwORoeYVDRrLfLHI9b?usp=sharing
Slide Version:

spring24/assets/presentations/AB_Testing_TwoSided_slides.html at master - stanford-
msande233/spring24 (github.com)



https://pubsonline.informs.org/doi/full/10.1287/mnsc.2021.4247
https://colab.research.google.com/drive/198fDKTPcXZm15cPwORoeYvDRrLfLHl9b?usp=sharing
https://github.com/stanford-msande233/spring24/blob/master/assets/presentations/AB_Testing_TwoSided_slides.html
https://github.com/stanford-msande233/spring24/blob/master/assets/presentations/AB_Testing_TwoSided_slides.html

Recap:
What did we learn?



Course Learning Objectives

* Learn the fundamentals of game theory

* Learn how game theory can be applied in many real-world settings
(e.g. ad auctions, complex games)

* Learn the fundamentals of tools from data science and ML that
are useful in game theoretic contexts (online learning theory,
statistical learning theory, econometrics)

* Learn how these topics can be combined to

* provide computational solutions to the design of agents that perform well
in competitive environments

* optimize and analyze markets, mechanisms and platforms from data
* Be able to implement and code up these solutions in Python



Computational Game Theory for Complex Games

* Basics of game theory and zero-sum games (1) * Optimal auctions and mechanisms (T)
* Basics of online learning theory (T) e- Simple vs optimal mechanisms (T)
* Solving zero-sum games via online learning (T) * HW6:implement simple and optimal auctions,
a . . . analyze revenue empirically
* HWT1: implement simple algorithms to solve zero-sum
games
* Applications to ML and Al (T+A) * Basics of Statistical Learning Theory (T)

« HW2: implement boosting as solving a zero-sum game 6. Optimizing Mechanisms from Samples (T)

. : : HW?7: implement procedures to learn approximately
Basics of extensive-form games optimal auctions from historical samples

e- Solving extensive-form games via online learning (T)

. HV/ZS: implement agents to solve very simple variants of Further Topics
poker
* Econometrics in games and auctions (T+A)

* General games, equilibria and online learning (T) « A/Btesting in markets (T+A)
e° Online learning in general games (T+A) e

* HWA4: implement no-regret algorithms that converge to
correlated equilibria in general games

* HWS8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Data Science for Auctions and Mechanisms Guest Lectures

» Basics and applications of auction theory (T+A) ‘ gggg%né%@egsgﬁgn for LLMs, Renato Paes Leme,

a. Basic Auctions and Learning to bid in auctions (T) . Auto-biddinéin Sponsored Search Auctions, Kshipra

« HWS5: implement bandit algorithms to bid in ad Bhawalkar, Google Research
auctions
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Example 1: Routing
Games

n drivers; each i wants to go from
point a; to point b; on a road network

* Strategy space of player i: set of paths
froma; — b;

 When k, users use road e it has
latency ¢, (k,)

* Loss of a player: total latency on
chosen path s;

£5) = ) colke(s))

eEs;




Example 2: Sponsored Search Auctions

Google

|= |=

Google

n bidders; each bidder i has an ad to
display under the search for a keyword

Strategy space of bidderi: abids; € R

Bidders allocated slots in decreasing
order of bids; j;(s) is slot allocated to i

Each slot j has a probability of click x;
When ad gets clicked, bidder pays bid s;

Utility of player is net expected gains
u;(s) = xj,5) - (v; — 51)



Example 3:
Recreational Games

* Simple two-player poker

* Each players strategy is an action plan
on what to do at each possible decision
pointin the game

* Some decisions are also being taken by
“nature” randomly and only partly
announced to players

e Each leaf node is an end-result and
contains a utility for P1

» Utility of P1 is expected value of the
terminal node that will be reached

» Utility of P2 is negative of P1 (zero-sum)



Pure Nash Equilibrium

* A strategy profile s = (sq, ..., S,,) is a pure Nash equilibrium if no
player is better off, by choosing some other strategy Sl-’

VSL-’ S Si:ui(si,s_i) = ui(sl-', S—_j




Mixed Nash Equilibrium

* A mixed strategy o; is a distribution over pure strategies

» At mixed strategy profile 0 = (04, ..., 0,,), player i gets expected utility
Ui (O-) — E51~0'1,...,Sn~0'n [ui (511 "t Sn)]

e Utility notation: Ul-(sl-’, a_l-) = ES_iNJ_i[ui(Si'» S—i)]

* A mixed strategy profile 0 = (o4, ..., 05,) is a Nash equilibrium if no
player is better off in expectation, by choosing another strategy s;

VSl-’ (S Si: Ui(O') = Ui(Sl{’ O-—i)




Existence of Nash
Equilibrium [Nash1950]

Every n player finite action game has
at least one mixed Nash equilibrium

EQUILIBRIUM POINTS IN N-PERSON GAMES
By Jonﬁ F. NasH, Jr.*
PRINCETON UNIVERSITY

Communicated by S. Lefschetz, November 16, 1949

One may define a concept of an #-person game in which each player has
a finite set of pure strategies and in which a definite set of payments to the
n players corresponds to each n-tuple of pure strategies, one strategy
being taken for each player. For mixed strategies, which are probability
distributions over the pure strategies, the pay-off functions are the expecta-
tions of the players, thus becoming polylinear forms in the probab111t1es
with which the various players play their various pure strategies. =~

Any n-tuple of strategies, one for each player, may be regarded as a
point in the product space obtained by multiplying the n strategy spaces
of the players. One such n-tuple counters another if the strategy of each
player in the countering n-tuple yields the highest obtainable expectation
for its player against the n — 1 strategies of the other players -in the
countered n-tuple. A self-countering n-tuple is called an equilibrium point.

The correspondence of each n-tuple with its set of countering n-tuples
gives a one-to-many mapping of the product space into itself. From the
definition of countering we-see that the set of countering points of a point
is convex. By using the continuity of the pay-off functions we see that the
graph of the mapping is closed. The closedness is equivalent to saying:
if Py, Py, ...and Qy, @y, ..., Qn, ... are sequences of points in the product
space where Q, — Q, P, = P and Q, counters P, then Q counters P.

Since the graph is closed and since the-image of each point under the
mapping is convex, we infer from Kakutani’s theorem' that the mapping
has a fixed point (i.e., point contained in its image). Hence there is an
equilibrium point.

In the two-person zero-sum case the “main theorem”? and the existence
of an equilibrium point are equivalent. In this case any two equilibrium
pomts lead to the same expectatlons for the players, but this need not occur
in general



Intractability of Mixed Nash Equilibrium

* The assumption of knowing the supports was crucial

* For games with many actions, we cannot enumerate all possible
supports (combinatorial explosion)

* Turns out there is no easy way to side-step this
* Computing a mixed NE in two player games is “intractable”

* Itis provable as hard as computing a “fixed point” (f (x) = x) of an
arbitrary function f, which is considered an intractable problem



Two Player Zero-Sum Games

* Player one (“min” player or “row” player)
* Player two (“max” player or “column” player)
* Player one has n possible actions

* Player two has m possible actions

* If player one chooses action i and player two chooses action j
then player one incurs loss Ali, j] and player two gains utility A1, j]



Von-Neuman’s Min-Max Theorem [1928]

minmax x'Ay = maxmin x’'Ay

ON THE THEORY OF GAMES OF STRATEGY'

John von Neumann

[A translation by Mrs. Sonya Bargmann of

"Zur Theorie der Gesellschaftsspiele,"
Mathematische Annalen 100 (1928), pp.
295-320. ]

INTRODUCTION

1. The present paper is concerned with the followling question:

n players S], S, ceey Sn are playing a given game of

strategy, ®. How must one of the participants, Sm,
play in order to achieve a most advantageous result?

§3. PROOF OF THE THEOREM "Max Min = Min Max"



Are there dynamics that will lead
to a mixed Nash equilibrium?
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Example in Math

* Device a choice picking algorithm i,

* Goal. At end of the year, looking back,
not regret much either “always taking
Bay” or “always taking Dumbarton”

Regret(f1.r) =
Short-hand Average # of Average # of jams
notation for jams you you would have
encountered encountered had

sequence of

loss vectors

you always chosen ’ E =

(-
Image credits: chat.openai.com




A choice picking algorithm is called a no-regret learning
algorithm if the worst-case regret over any sequence of losses

R(T) = sup Regret(#;.7)

fl:T

vanishes to zero with the number of periods

R(T)-0



Short-hand for n-dimensional simplex

. A(n) =i{x ER™Mx; 20,2 x; = 1}
The n action case { |
At each period choose a distribution p; € A(n) over n actions Short-hand for
inner product
Observe a loss vector £, € [0,1]™ and incur loss {p;, £;) between two

vectors

1 1
(FTRL)  p, = minLe_y (p) +—R(p) = min » (p, €,) +~R(p)
P 1 P <t L

For the negative entropy regularizer, leads to the simple EXP algorithm

i L L Play each action with probability proportional
X |ps_q1 expl —n;_ o
Pt [pt 1 p( Me-1 J to the exponential of its historical performance

The negative entropy is 1-strongly convex and now takes values in [—log(n), 0]
4 )
log(n) 2log(n)
< - 0
nT T

log(n)
2T

R(T) <2n+

Forn =




Punchline

(= 1 1-str | vex
(Linearized FTRL)  p¢ = argmm[Lt_l(p)}F “RM®)|  fonction of pihat
p n stabilizes the minimizer

Linearized historical
performance of always
choosing vector p

Theorem. Assuming the linearized loss function at each period
£t (p) = (p, V4 (pr))

is L-Lipschitz with respect to some norm ||-|| and the regularizer is 1-
strongly convex with respect to the same norm then

1
-

Average stability Average loss distortion
induced by regularizer caused by regularizer

Regret — FTRL(T) <




Punchline: The Master Algorithms of our Times

_ 1
(Linearized FTRL) p; = argminL;_;(p) + ;R(p)
p

4 n N 4 : ~
Rp) = Z pilog(pi) R(P) =5 lIpll’
_ Dt X pe—qexp(—n €4_1) y \pt = pr—1 —NVL_1(Pr-1) y

Exponential weight updates algorithm! Online/Stochastic Gradient Descent Algorithm
(aka Hedge, Multiplicative Weight Updates, EXP, ....) (aka SGD)
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Main Takeaway: Equilibrium via No-Regret

Theorem. If two players play repeatedly a convex-concave zero-
sum game and each player uses any no-regret algorithm to pick
their vector (x;, y;), then the average vector of each player

T T
1 1
S ORI AE DX
t=1 t=1

are a 2e-approximate Nash equilibrium (where € is the regret at of
each algorithm after T periods). Hence,

(i,y) — equilibrium as T — oo



Minimax Theorem via No-Regret

Theorem. Existence of no-regret algorithms implies (as € — 0) that

ON THE THEORY

max min £(x,y) = minmax¥(x,y)

yE'y xeX xeX yE‘y = i

e e
Vg g f00) < pip gy L0

Thus

max min ¢(x,y) = min max £(x,y)




Can we do better in terms of rate?



(

Optimistic FTRL: Last Period Predictor

Optimism: predict that the
next period loss will be the
same as last period loss

) pt—argmlr{zm J [(p,ft-1>]+ %

FTRL
w. Predictors

<t

Historical performance
of always choosing p

R(p) = Zpl log(p;) (

N Dt X De— 1exp(n (2041 — L4

\
Negative
Entropy

2)) Y

Optimistic Exponential Weight Updates!

1-strongly convex
function of p that
stabilizes the minimizer



Optimistic EXP

Corollary. Optimistic EXP i |s 3n-stable and has regret

log(n)
ZM el

N
R(T) < ™

Average stability of the
loss vector



O pti m iStiC EXP Dyna m iCS Larger step size than if we were

playing against an adversary
T=1/3 ys. T~1/2
(e.g. if T = 1000, then 0.1 vs. 0.032)

log(nV‘m))l/3
T

Corollary. If all players use Optimistic EXP WithE? = (

2/3
then each player’s regret is at most[e =4 (log(zvm)) Jand the

average vectors (X, y) are an 2e-approximate equilibrium

Order of magnitude smaller regret
than playing against an adversary
T=2/3vs.T~1/?

(e.g.if T = 1000, then 0.01 vs. 0.032)



Do the dynamics actually
converge?

(i, y) — equilibrium VS. (x7, yr) — equilibrium

“average iterate convergence” “last-iterate convergence”
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A simple example

Consider the game defined by loss matrix
5 O)
A=
(0 1
EXP dynamics:
X X X¢—1 €xXp(—nAyi_1)

Yt X Yt-1 exp(nATxt_l)
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A simple example

Consider the game defined by loss matrix
5 0)
A=
(0 1
Optimistic EXP dynamics:
Xt X X¢—1q exp(—n(ZAyt_l - A)’t—z))

Yt X Yi—1 €Xp (n(ZATxH — ATxt—z))
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Applications of Learning in Zero-
Sum Games to ML and Al

Boosting, Distributional Robustness, Generative Learning, Learning from
Human Feedback, Causal ML, Fair ML



The boosting problem

Given “weak” classification oracle, can we
construct in a computationally efficient
manner a “strong” classifier that achieves
accuracy on D arbitrarily closeto 17?

Major open problem among the tiny ML community in late 80s-early 90s
Resolved by Robert Schapire and further developed by Freund-Schapire



Punchline: Solving Large Games with Oracles

Theorem. Suppose we have Best-Response oracle over J for the
max player for each distribution w over actions of the min player.
Repeat for T iterations the process:

(EXP) we < we_g exp(—n?j,_,)
(Best-Response) j: = BR(w;)

2 log(n)_

Thenw, = % I_iweand P. = Uniform({jq, ..., jr}) is a\/

: S : 21 . .
approximate equilibrium = P, is 2\/ OTg(n)—solutlon to max-min.



Punchline: AdaBoost Theorem

Theorem. Suppose we have a weak d-classification oracle WEAK. For
every hypothesis h, let £;, be vector of 0-1 accuracies on each sample.

2 log(n) <5

Repeat for T periods, such that J

(EXP) we < wy_q exp(—ntp,_, )
(Weak-oracle)  hy = WEAK(w;)

Then the following majority classifier classifies all samples correctly

-~

(T )

1 1

h., = Majority(hy, ..., hy) = 114 TZ he() > >
. =1 y




Distributional
Robusthess




Group Distributional Robustness; Group-DRO

[1611.02041] Does Distributionally Robust Supervised Learning Give Robust Classifiers? (arxiv. or;z
[1909.02060] Distributionally Robust Language Modeling (arxiv.org)

* We pre-define a set of groups G (race, gender, sensitive attributes)

* At train time, we know the group identity of each sample

 We want to learn a single model 8 (that does not use the group
attribute as input) that performs well on distribution of each group

Iglelg rglélg( E(x,y)vag ['B(y: h9 (X))]


https://arxiv.org/abs/1909.02060
https://arxiv.org/abs/1611.02041

Group DRO as a Zero-Sum Game

[1911.08731] Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

* The learner player chooses 6 € 0
* The adversary player chooses a distribution w; over G
* |If lossis convexin 8 and O is convex set, solve via no-regret

(OGD) 0y = 04_1 — 1 z Wiy E(xy)~p, [VH{ (3" hé’t—l(x))]
g

(EXP) qu o Wfq_l exp (E(x,y)~Dg [f (y, h9t—1(x))])

 Even when loss is not convex in 8, the above translates to a practical
training algorithm for neural network parameters

* Expectations are typically approximated by averages over small
batches of samples

Note: typically, last iterate and not average iterate is used despite theory...


https://arxiv.org/abs/1911.08731
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GANSs as a Zero-Sum Game

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

* Learn a neural sample generator (max player)

Z

Noise €

* Learn a discriminator (min player)

|0, 1] =[Fake, Real]

e Discriminator minimizes classification error/Generator maximizes

max min —E,_j [log(DW (Z))] + E. [108 (Dw(Ge (6)))]

) w
D,,(z) closeto1 D,,(z) closeto 0
when z is real when fake


https://arxiv.org/abs/1701.00160

GANSs as a Zero-Sum Game

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

* We are trying to find a generator that fools the discriminator

* Solve max-min problem by finding equilibrium of zero-sum game

max mMi}n 2(6,w) = —E,_p [log(DW(Z))] + E, llog (DW(GQ (E)))]

« Compute via no-regret dynamics (online gradient descent/ascent)
(OGD) Ht — Ht—l + T]VQ’B(HL—_]_, Wt—l)
(OGD) Wy = We_q — NV £(0r-1, We_1)

* Even though non-convex/non-concave!
* Last-iterate used, though theory says average ( )

[1711.00141] Training GANs with Optimism (arxiv.org)



https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1711.00141

Learning from
Human Feedback

Image credits: chat.openai.com



Learning from Human Feedback

We have space of policies I1 that given context x produce y = m(x)

Al Alighnment Goal. Want to find a policy that produces output y that is
typically more “aligned” with people’s preferences

Human Feedback. We elicit pair-wise preferences over outputs

* We show people pairs of outputs y; = m;(x) and y, = m,(x)

* We collect preference feedback, 1{y; > y,} — 1{y, < y;}

 Our cumulative data provide a (anti-symmetric) preference function P
P(m, ") € [—1,1], P(m, ") = —P(xt', )

i.e. fraction of people with m > ©’ minus fraction of people withw’ > 7



Social Choice Theory: Minimax Winner

[2401.04056] A Minimaximalist Approach to Reinforcement Learning from Human Feedback (arxiv.org)

* Choose a distribution p over options such that you prefer samples
from that distribution than samples from any other distribution
with probability at least 2

rrzlji,n Eppnp[P(T,m")] =0 a b ¢ d
a 0 +1
Lemma. The MW is the symmetric mixed b 0 -
Nash equilibrium of the zero-sum game
defined by the preference matrix C 0 +1


https://arxiv.org/abs/2401.04056

Computational Game Theory for Complex Games
 Optimal auctions and mechanisms (1)
e. Simple vs optimal mechanisms (T)

HWE6: implement simple and optimal auctions,
a analyze revenue empirically

* Basics of Statistical Learning Theory (T)
6- Optimizing Mechanisms from Samples (T)

. : : HW?7: implement procedures to learn approximately
Basics of extensive-form games optimal auctions from historical samples

e- Solving extensive-form games via online learning (T)

 HWS3: implement agents to solve very simple variants of Further Topics

poker
* Econometrics in games and auctions (T+A)

* General games, equilibria and online learning (T) « A/Btesting in markets (T+A)
e° Online learning in general games (T+A) a

* HWA4: implement no-regret algorithms that converge to
correlated equilibria in general games

* HWS8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Data Science for Auctions and Mechanisms Guest Lectures

» Basics and applications of auction theory (T+A) y gggg@n&é@eg?fﬁgn for LLMs, Renato Paes Leme,

e- Basic Auctions and Learning to bid in auctions (T) . Auto-biddin

, , , o éin Sponsored Search Auctions, Kshipra
* HW5S: implement bandit algorithms to bid in ad Bhawalkar, Google Research
auctions
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SClence Current Issue First release papers Archive About

HOME > SCIENCE > VOL.359,NO.6374 > SUPERHUMAN Al FOR HEADS-UP NO-LIMIT POKER: LIBRATUS BEATS TOP PROFESSIONALS

& RESEARCH ARTICLE 'F L irl g; %

Superhuman Al for heads-up no-limit poker: Libratus beats top
professionals

NOAM BROWN AND TUOMAS SANDHOLM Authors Info & Affiliations
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Game Representations
Convenient for Computing a
Nash Equilibrium



Recap: Sequence Form Representation

* The strategies of the player can berepresentedasx € X,y €Y
* X,: product of probabilities of all actions of P1 on the pathto a
* y,: product of probabilities of all actions of P2 on the path to a
X = {Vjejl: Z fazfpj}, Y = {VjEJZ: Z ya=yp]}
aed; AEA;
* The payoff to P1 under sequence sTtrategies XeEX,VyEYIS
X' Ay

« A, =if awas the last action of P1 and a’ the last action of P2 before

some leaf z, then payoff to P1 at z times product of chance
probabilities on path to z else zero



No-Regret Learning in Sequence Form

* We have successfully turned imperfect information extensive form
zero-sum games into a familiar object

max min X' Ay
XEX YE€EY

* X,Y are convex sets, i.e., sequence-form strategies

* We can invoke minimax theorem to prove existence of equilibria
* We can calculate equilibria via LP duality
* We can calculate equilibria via no-regret learning!
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Sum: Nash via FTRL with Dilated Entropy

Each player chooses X, y; based on FTRL with dilated entropy

* For x-playeru; = Ay, and Uy = U;_1 + u; and initialize Q = Uy,
* Traverse the tree bottom-up; for each infosetj € J;
x], exp(anj) Vi = softmax, (Q7), Op; < Up,; T Vv

=) J

* Define sequence-form strategies top-down: x; ;, = xp] X;4q

Similarly, for y player

Return average of sequence-form strategies as equilibrium



Interpreting utility vector

Ut q = Ay, = 2 Aa,a’yt,a’

a’EAPZ

A, o is zero if the combination of a, a’ does not lead to a leaf node

Chance chooses P2 plays
Urg = Z u(z) Pr| sequence on Pr| sequence
Leafs z. @ Was last P1 action path to z leading to a’

!

a’ was last P2 action

Interpretation. If | play with the intend to arrive at action a (i.e. X, = 1) and
then don’t make any other moves, what is the expected reward that | will
collect, in expectation over the choices of my opponent and nature



Counterfactual Regret
Minimization (CRM)



Local Node Utilities

Interpretation of u,. If | play with the intend to arrive at action a (i.e. X, = 1) and then
don’t make any other moves, what is the expected reward that | will collect, in
expectation over the choices of my opponent and nature

What if we now want to express: If | play with the intend to arrive at action a (i.e. X, =
1) and then continue playing based on some behavioral policy x, what is the expected
reward that | will collect, in expectation over the choices of my opponent and nature

* Let C, be all infosets of the player that are reachable as next infosets after playing a

f ' Continuation E[utility] from paths that
I | k | y p

ua (X) = ua T V ( ) I pass through infoset k, if | continue

“Instantaneous E[ut/l/ty] if keCy playing based on behavioral strategy x

this is the last action | play

e Continuation utility V7 (x) from paths that pass through infoset j recurswely defined:

___________________________

VIi(x) = z Xg Uy () —i{z XqUg §+ilz Xg z Vk(x)

a€Al \aEAJ ) \gEAj keC,

__________________________

“Instantaneous utility’, if “Continuation utility”, if |
this is the last move | make  continue playing based on x

_______

[ ——



Regret over Time

Same inequalities can be followed for the average regret over time

R = maxT2< ) — (R Ue)

LR = max%Z(xj,ﬁt(xt)) — <x,{,at(xt)>

xJ
t

Main CFR Theorem. Regret is upper bounded by local regrets

RSzLRJ

JEL,



Counterfactual Regret Minimization

* Device local regret algorithms for local regret
: 1 _ :
LR/ (x) = mé}sz@];ﬁt(xt)) — <xi,ﬁt(xt)>
X
t

* Standard n-action no-regret problem: reward vector at period t is
i/ (x;) and reward for choice x’ is (x], 2 (xt))

» At period t run bottom-up recursion to calculate @/ (x,) forj € J,

* Update probabilities xgﬂ using reward vectors i/ (x;) forj € J,



The Typical CRM Algorithm Implementation

CValue (ActionHistory h, AccOtherProb m_;, AccProb m)
Let I be infoset corresponding to h
If | is terminal node z return u(z)
If Player(/) = chance
Return Ygeq, Mg - CValue(ha, m_;ng, my)
If Player(/) =2
Return Xgeqa, Vo - CValue(ha, m_1y,4, 71)
If Player(/) =1
For a € A;: iy, += m_4 - CValue(ha, m_q, m1x,)
Set q(I) =my
Return Xgegs, Xq - CValue(ha,m_q, m1x4)

CValue (@, 1)



The Overall Equilibrium Algorithm with CRM

After each period t € {1, ..., T}:

* With last period behavior strategies x;, y; call CValue(9, 1, 1)
» Store ii; , and g, (I) for each action a and infoset I of P1

« Symmetrically, do so for player P2

 Update strategies at all information sets

Vj € Jiq: xt+1 « Update (ut) Vj € Jy: ytj+1 « Update (ﬁi)

g tht(l)xta \
VI € J.Va € A;: x =
! oa tht(l)

Zt Qt(l)}’ta

At the end:

L T p——

VI € I,Va € A;: y,

________________________________________

Approximate Equilibrium in Behavioral Strategies



Elements of Libratus Al

Libratus

Rules of the game

4

Abstraction

Subgame solver Self-improver
Equilibrium
finding

Belief distributions fand g l

New action abstraction for part of game

Credits: Superhuman Al for heads-up no-limit poker: Libratus beats top professionals (youtube.com)



https://www.youtube.com/watch?v=2dX0lwaQRX0

Computational Game Theory for Complex Games

* General games, equilibria and online learning (T)
e° Online learning in general games (T+A)

* HWA4: implement no-regret algorithms that converge to
correlated equilibria in general games

Data Science for Auctions and Mechanisms
 Basics and applications of auction theory (T+A)
e- Basic Auctions and Learning to bid in auctions (T)

« HWS5: implement bandit algorithms to bid in ad
auctions

 Optimal auctions and mechanisms (1)
a. Simple vs optimal mechanisms (T)

HWE6: implement simple and optimal auctions,
analyze revenue empirically

* Basics of Statistical Learning Theory (T)
6- Optimizing Mechanisms from Samples (T)

HW?7: implement procedures to learn approximately
optimal auctions from historical samples

Further Topics
* Econometrics in games and auctions (T+A)
a- A/B testing in markets (T+A)

* HWS8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Guest Lectures

« Mechanism Design for LLMs, Renato Paes Leme,
Google Research

. Auto—biddinéin Sponsored Search Auctions, Kshipra
Bhawalkar, Google Research
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sum

Many real-world games are not zero




Learning to Communicate with
Deep Multi-Agent Reinforcement Learning

OpenAl Five

Jakob N. Foerster' ' Yannis M. Assael'-t
jakob.foerster@cs.ox.ac.uk yannis.assael@cs.ox.ac.uk
Nando de Freitas'-?3 Shimon Whiteson'
nandodefreitas@google.com shimon.whiteson@cs.ox.ac.uk

'University of Oxford, United Kingdom
2Canadian Institute for Advanced Research, CIFAR NCAP Program
3Google DeepMind

nature

Explore content v About the journal ¥  Publish with us v

Our team of five neural networks, OpenAl Five, has started to defeat amateur human

nature > articles > article S e Tape oy

Article | Published: 30 October 2019

Grandmaster level in StarCraft Il using multi-agent
reinforcement learning

Recent Successes



Much harder to compute equilibria;

theory typically considers relaxed solution
concepts that are computationally easy
practice typically uses similar algorithms as in
Zzero-sum games as good heuristics



Correlated equilibrium, coarse correlated equilibrium

Look for other equilibrium concepts

Zero-sum games, potential games, auction games, strictly monotone games...

Analyze special classes of games

No learping dynamics will con‘y/ge toa
Nash Equilibrium In every game in a

reasonable time /in the worst-case!

/

Develop heuristics that typically converge fast in practice

Fictitious play, EXP, perturbed fictitious play, best-response dynamics, self-play...



In Search for Other Equilibrium
Concepts



Correlated Equilibrium

* Atrusted third party draws strategy profiles s = (s, ..., s,,) of the
game from some distribution D

* Communicates to each participant their part of the profile, i.e., the
recommended strategy s;

* The distribution D is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

Vsi,s{ €S;t Esoplu(s) |s;] = Egplu(si,s—y) | si]

For any recommendation s; Expected utility of choosing s; > Expected utility of deviating to si’
and possible deviation s; when recommended s; — when recommended s;



Correlated Equilibria are Tractable

» Define a variable (s) for every strategy profile s € §; X -+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution  is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

Vs, s; €5;: zn(s) Ai(s,s]) =0
S—i

A Linear Program with variables m(s)



Learning Dynamics and
Correlated Equilibria



Regret vs Correlated Equilibrium

Distributions that satisfy this are

* No- regret property, implies called Coarse Correlated Equilibria
f \I
Vs 2 (s (ui(s) —u;(s{, 5 ) > —¢&(T,8) >0
:\ S /l

o e e mm m  mm mmm mm e mmm mmm mm m mmm mmm M e Mmm Mmm M e Mmm Mmm M e Mmm Mmm M e Gmm Mmm M e Mmm Gmm M e Mmm mmm M e Mmm M e e mmm M e e G e e

* Correlated equilibrium requires conditioning on recommendation

Vs/,s;: 2 l(s) (ui(s) — ui(sl-',s_l- ) >0

S:Sj=S

At subset of periods I I I You don’t regret
when played s; switching to s;



No-Swap Regret!

* No-regret property requires

T

1

TZ u;(st) = maxTZul(sl,st ) — &(T, 8)
t=1

s/ €S;

* No-swap regret property requires

T T
1 1
V: ?; ui(st) > T; ui(d)(sit),sfi) — €(T, 0)



Theorem. If all players use no-swap regret
algorithms, then the empirical joint distribution
converges to a Correlated Equilibrium
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Sum: The Reduction Protocol

actions

zf = Pr(M chooses action j)
Update each A; with the
expected value vector z{ft

i Master Algorithm (M)

Ztlft /i

ble for controlling regret

.10ds when 1 was played

i .
Z t‘gt Alt

ble for controlling regret

chosen
algorithm

ods when i; was played

A;

Responsible for controlling regret

in periods when j; was played

Choose ¢; to achieve consistency on average!
Pr(M chooses action i) = Pr(M chooses algo i)

An

ble for controlling regret

.0ds when n was played




Sum: The reduction protocol

* At each period we choose each action with probability

Zg = Pr(M choose action j)

= ZEF(M choose algo Ai-&r(/li choose actlon]}
l

qi v
* We update each algorithm A; with loss vector

zgft = Pr(M choose action j) - (loss vector)

* The distribution over algorithms g, is chosen such that

Pr(M choose action j) = Pr(M choose algo 4;)



Recap: Choosing Distribution over Algos

Corollary. If we choose g; as stationary distribution of the Markov
Chain defined by transition probabilities Pr(i — j) = pt then

Pr(M choose action j) = Pr(M choose algo Aj)
Therefore

Swap Regret of Master = Total Fixed Action Regret of Algos — 0



Sum: The reduction protocol

* At each period calculate stationary distribution g; of the Markov
Chain defined by the transition probabilities Pr(i — j) = pff

* Choose each action with probability

Zg = Pr(M choose action j) = Pr(M choose algo j) = qg

* Update each algorithm A; with loss vector

Z,{ft = Pr(M choose action j) - (loss vector)



Overall Algorithm using EXP for each Algo

Initialize Pt with each row being the uniform distribution
For t in 1..T

# Calculate choice probability q of master based on

# choice probabilities Pt of algos

Calculate stationary distribution g of matrix Pt

Draw action based on distribution gq

Observe loss vector 1t

# update each algorithms choice probabilities
For i in 1..n
Calculate perceived loss plt[i] = gl[i] * 1t
Pt[i] = EXP-Update(Pt[1], plt[i])



Recap: Final Theorem

Theorem. If we choose gq; as stationary distribution of the Markov

Chain defined by transition probabilities Pr(i — j) = pij and each
algorithm updates their choice probabilities using the EXP rule then

2log(n) 0
\ T

Average Swap Regret of Master < 2n



Recent example
research in multi-
agent RL usin

Correlated

Equilibrium
Techniques

Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium
Meta-Solvers

Luke Marris ' > Paul Muller ' * Marc Lanctot' Karl Tuyls' Thore Graepel '

Abstract

Two-player, constant-sum games are well stud-
ied in the literature, but there has been limited
progress outside of this setting. We propose Joint
Policy-Space Response Oracles (JPSRO), an algo-
rithm for training agents in n-player, general-sum
extensive form games, which provably converges
to an equilibrium. We further suggest correlated
equilibria (CE) as promising meta-solvers, and
propose a novel solution concept Maximum Gini
Correlated Equilibrium (MGCE), a principled and
computationally efficient family of solutions for
solving the correlated equilibrium selection prob-
lem. We conduct several experiments using CE
meta-solvers for JPSRO and demonstrate conver-
gence on n-player, general-sum games.

1. Introduction

Recent success in tackling two-player, constant-sum games
(Silver et al., 2016; Vinyals et al., 2019) has outpaced
progress in n-player, general-sum games despite a lot of
interest (Jaderberg et al., 2019; OpenAl et al., 2019; Brown
& Sandholm, 2019; Lockhart et al., 2020; Gray et al., 2020;
Anthony et al., 2020). One reason is because Nash equi-
librium (NE) (Nash, 1951) is tractable and interchange-
able in the two-player, constant-sum setting but becomes
intractable (Daskalakis et al., 2009) and potentially non-
interchangeable' in n-player and general-sum settings. The
problem of selecting from multiple solutions is known as
the equilibrium selection problem (Goldberg et al., 2013;

'DeepMind *University College London *Université Gustave
Eiffel. Correspondence to: Luke Marris <marris @google.com>.

Proceedings of the 38" International Conference on Machine

Avis et al., 2010; Harsanyi & Selten, 1988).”

Outside of normal form (NF) games, this problem setting
arises in multi-agent training when dealing with empiri-
cal games (also called meta-games), where a game pay-
off tensor is populated with expected outcomes between
agents playing an extensive form (EF) game, for example
the StarCraft League (Vinyals et al., 2019) and Policy-Space
Response Oracles (PSRO) (Lanctot et al., 2017), a recent
variant of which reached state-of-the-art results in Stratego
Barrage (McAleer et al., 2020).

In this work we propose using correlated equilibrium (CE)
(Aumann, 1974) and coarse correlated equilibrium (CCE) as
a suitable target equilibrium space for n-player, general-sum
games®. The (C)CE solution concept has two main bene-
fits over NE; firstly, it provides a mechanism for players to
correlate their actions to arrive at mutually higher payoffs
and secondly, it is computationally tractable to compute
solutions for n-player, general-sum games (Daskalakis et al.,
2009). We provide a tractable approach to select from the
space of (C)CEs (MG), and a novel training framework that
converges to this solution (JPSRO). The result is a set of
tools for theoretically solving any complete information*
multi-agent problem. These tools are amenable to scaling
approaches; including utilizing reinforcement learning, func-
tion approximation, and online solution solvers, however
we leave this to future work.

In Section 2 we provide background on a) correlated equi-
librium (CE), an important generalization of NE, b) coarse
correlated equilibrium (CCE) (Moulin & Vial, 1978), a sim-
ilar solution concept, and ¢) PSRO, a powerful multi-agent
training algorithm. In Section 3 we propose novel solution
concepts called Maximum Gini (Coarse) Correlated Equilib-
rium (MG(C)CE) and in Section 4 we thoroughly explore its
properties including tractability, scalability, invariance, and

*The equilibrium selection problem is subtle and can have
various interpretations. We describe it fully in Section 4.1 based



Computational Game Theory for Complex Games
 Optimal auctions and mechanisms (1)
e. Simple vs optimal mechanisms (T)

HWE6: implement simple and optimal auctions,
a analyze revenue empirically

* Basics of Statistical Learning Theory (T)
6- Optimizing Mechanisms from Samples (T)

HW?7: implement procedures to learn approximately
optimal auctions from historical samples

Further Topics
* Econometrics in games and auctions (T+A)

a- A/B testing in markets (T+A)

e * HWS8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Data Science for Auctions and Mechanisms Guest Lectures

« Mechanism Design for LLMs, Renato Paes Leme,
Google Research

e° Basic Auctions and Learning to bid in auctions (T) . Auto-biddin

, , , o éin Sponsored Search Auctions, Kshipra
* HW5S: implement bandit algorithms to bid in ad Bhawalkar, Google Research
auctions

 Basics and applications of auction theory (T+A)
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% Sotheby’s Sells $7.3 Billion in Art,
Fueled by Moneyed Millennials

Auction house says millennials drove art market rebound by bidding
up everything from luxury goods to NFTs

Credits:


https://www.wsj.com/articles/sothebys-sells-7-3-billion-in-art-fueled-by-moneyed-millennials-11639581146

Sum: Auction Applications

* Traditionally, selling of luxury goods, art

* Digital auction markets for goods (eBay)

* Energy markets

* Digital ad markets (sponsored search, display ads, amazon ads)
* Spectrum auctions

* Government procurement auctions

* Web3.0 transaction protocols



Auction Basics
* n bidders are interested in acquiring an item

* Bidder i has value v; for the item
* Value is known only to them (private information)
* If bidder wins the item (x; = 1) they gain a value v;

* If at the end they are asked to pay a price p; they gain

u; (x;, 0i; Vi) = Vi - X; — Dy



Sum: First Price

* First Price is arguably the simplest auction rule
* |t can be hard to strategize in such an auction
* The auction can lead to inefficient allocations

* Though approximately efficient

* Still used in practice in many settings (e.g. online advertising,
government procurement)

* Primarily because it has very transparent rules



Sum: Second Price

* Second Price is arguably the simplest truthful auction rule

* [tis very easy to strategize in such an auction (be truthful)

* Auction always leads to efficient allocations (highest value wins)
* Auction can be run very quickly (computationally efficient)

* Still not always the auction used in many places
* Primarily because it has not very transparent rules
* Susceptible to collusion and manipulations by the auctioneer



Sponsored Search Auctions

Google

* Now we have many items to sell
* Slots on a web impressions

* Higher slots get more clicks!

* Each slot has some probability of click
a;>a, > > ay,

Bidders have a value-per-click v;

digital advertising pe § & C
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with our interface. CTV.




Generalized Second Price (GSP) Auction

* Bidders submit a bid-per-click b;

* Slots allocated in decreasing order
of bids

* Bidder i is allocated slot j;(b)

* Bidder pays the next highest bid
when clicked

u;(b; ) = a3, - (Vi = b(j,m)+1))

Google

b(1)
IV

b(2)
IV

b(3)

b (4)

digital advertising pe § & C
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Right intuition, why Second-Price is truthful

* Second price is truthful not because we charge next highest bid

* Second price is truthful not because we charge smallest bid to
maintain the same allocation

* Second price is truthful because we charged the winner their
“externalities to the rest of society”



The Vickrey-Clarke-Groves (VCG)
Mechanism



General Auction (Mechanism Design) Setting

* Auctioneer (Designer) wants to choose among set of outcomes 0O
* Each bidder i has some value for each outcome v;(0) € R

* The value function v; is called the type of player i

 Designer elicits types/bids from players b = (by, ..., by,)

* Designer chooses allocation that maximizes the reported welfare

n
x(b) = argmax RW (o0; b) = Z b;(0)
0€0 =

Total Reported
Welfare



General Auction (Mechanism Design) Setting

* Designer chooses allocation that maximizes the reported welfare

0€0

n
x(b) = argmax RW (o0; b) = 2 b;(0)
i=1
* Charges to each player their externalities as payment

p;(b) = rgleaOXZ bi(0) — 2 bj(x(b)) >0
JE! JEX
RWelfare of others RWelfare of others
without me with me

Why?
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Learning in Non-Truthful Auctions



Learning how to bid in auctions

* Given the complexity of digital auction markets
* Given the hardness of strategizing in non-truthful auctions

* Many of these auctions are repeated!

* |t makes sense to study learning over time, to decide how to bid

* How do we learn over time when we repeatedly participate in an
auction? Can we compete with the best fixed bid in hindsight?



No-Regret Learning with Limited Feedback

* Want to choose my bids b? based on algorithm that guarantees
T
Tz u;(bt) = max z u;(b;, bt) — €(T)
=1
* Seems like a standard N action no-regret problem

* What’s the catch! | don’t receive after each period the utility for all my
actions. Only the utility for action | took!

* Limited Feedback. | cannot calculate how much | would have gotten
with any other bid (e.g. in an FP, solely knowing whether | won or not).



No-Regret Learning with Bandit Feedback

At each period t

» Adversary chooses a loss vector £, € [0, 1]V
* | choose an action i; (not knowing ;)

: i
* | observe loss of my chosen action £/

* | want to guarantee small expected regret with any fixed action:

T
1 : .
rlnez;lvxE Tz fi.t — 1| < e(T)
t=1




The EXP Algorithm with Bandit Feedback

ITnitialize pt to the uniform distribution

For £t in 1..T
Draw action based on distribution pt

Observe loss of chosen action l1lt[jt]

Construct un-biased proxy loss vector
1(jt=3) * 1t[jt] / ptljt]

1tproxy[j]

Update probabilities based on EXP update
pt = pt * exp(-eta * ltproxy)
pt = pt / sum(pt)



Update: Regret of EXP

(EXP) Pt = arggm Z(p, {7) { R@)}(

Py X pp_q exp(—n £r_q)

Entropy

N t n
c5d 1ve> R(p) = zpi log(p;)
i=1

Theorem. Assuming Bt are random proxies that, conditional on history,
have expected value equal to true loss vector ¢, and £, > 0, then regret

of EXP is bounded as:
Regret — EXP(T) < %Z E

Z oL@y

Expected Average
“Variance”?

_|_

log(N)

nT



Update: Regret of EXP

- 1 Negative RN
(EXP) p: = argmin Z(p, £:) {—R(P)J (Entropy) R = ; pilog(p:)
<t

pEA n

Py X pp_q exp(—n £r_q)

Theorem. Assuming ?t are random proxies that, conditional on history,

have expected value equal to true loss vector £; and £; = 0, then regret
of EXP is bounded as:

log(N N log(N
Regret — EXPU ) <nN + g( ) = Regret — EXP(7 ) = g( )
T log(N) \
Forn ~

NT
See Lemma 20 and Theorem 2.22 and Corollary 4.2 of mal-018.dvi (huji.ac.il)



https://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf

Computational Game Theory for Complex Games
 Optimal auctions and mechanisms (1)

e. Simple vs optimal mechanisms (T)

HWE6: implement simple and optimal auctions,
a analyze revenue empirically

* Basics of Statistical Learning Theory (T)
6- Optimizing Mechanisms from Samples (T)

HW?7: implement procedures to learn approximately
optimal auctions from historical samples

Further Topics
* Econometrics in games and auctions (T+A)
a- A/B testing in markets (T+A)

e * HWS8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Data Science for Auctions and Mechanisms Guest Lectures
« Mechanism Design for LLMs, Renato Paes Leme,
Google Research

a . Auto—biddinéin Sponsored Search Auctions, Kshipra
Bhawalkar, Google Research
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What if we want to maximize
revenue”?



What if we post a reserve price?



How do we optimize over all
possible mechanisms!



Single-Parameter Settings

* Each bidder has some value v; for being allocated
* Bidders submit a reported value b; (without loss of generality)
* Mechanism decides on an allocation x € X € {0,1}"

* Mechanism fixes a probabilistic allocation rule:
x(b) € A(X)

* First question. Given an allocation rule, when can we find a
payment rule p so that the overall mechanism is truthful?

* |f we can find such a payment, we will say that x is implementable



Any implementable allocation rule must
be monotone!

“If not allocated with value v, | should not
be allocated if [ report a lower value!”



For any dominant-strategy truthful, NNT and
IR mechanism, given an allocation rule, utility
and payment are uniquely determined!




Myerson’s Theorem. When valuations are independently
distributed, for any dominant-strategy truthful, NNT and IR
mechanism, the payment contribution of each player is their
expected virtual value

' 1 — Fi(v;
Elp;(v)]| = E|x;(v) - ¢;(v;)], b;(v;) = v; (Vi)

fi(v;)




Myerson’s Optimal Auction. Assuming that virtual value
functions are monotone non-decreasing, the optimal
mechanism is the mechanism that maximizes virtual welfare

x(v) = argmaxxexz: x - ¢;(v;),

l

Rev = F

max
xXeEX

p;(v) = vix;(v) — jvixi(z, v_;)dz
0

zx - i (vy)

l
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Can non-truthful mechanisms
generate higher revenue at some
Bayes-Nash equilibrium?



Bayesian-Incentive Compatible Mechanism

* Adirect mechanism elicits private values and comprises of an
allocation function x and a payment function p

* BIC. bidders have no incentive to deviate from truthful reporting

Elu;(v;v;) | v;] = E[ui(vi’,v_i;vi) | vi]

* Implies “interim” expected utility, allocation and payment for bidder i

u;(v)) = E,_lu(v)], %) =E,_Ilx®)]  p:(v) =E,_[p;(v)]



For any BIC, NNT and BIR mechanism (and
any BNE of a non-truthful mechanism), given
the interim allocation rule, utility and payment
are uniquely determined!

X (v;)




Myerson’s Theorem. When valuations are independently
distributed, for any BIC, NNT and IR mechanism (and any BNE
of a non-truthful mechanism), the payment contribution of
each player is their expected virtual value

1 — Fi(v;
E[p;(w)] = E[&(v) - d:; ()], ¢:(v) = v; (1)

fi(v;)




Myerson’s Optimal Auction. Assuming that virtual value
functions are monotone non-decreasing, the mechanism that
maximizes virtual welfare, achieves the largest possible
revenue among all possible mechanisms and Bayes-Nash

x(v) = argmaxxexz: x - ¢i(v;), pi(v) = vix;(v) — jvixi(z; v_;)dz
0

l

xXeEX

l

Rev =F maxz x - ¢p;(v;)



Optimal auction is
1) cumbersome, 2) hard to understand, 3) hard to

explain, 4) does not always allocate to the highest
value player, 5) discriminates a lot, 6) iIs many
times counter-intuitive, 7) can seem unfair!



Are there simpler auctions that
always achieve almost as good
revenue?



Second-Price with Player-Specific Reserves

* What if we simply run a second price auction but have different
reserves for each bidder

* Each bidder( has areserve price r;

* Reject all bidders with bid below the reserve

* Among all bidders with value v; = r;, allocate to highest bidder

* Charge winner max of their reserve and the next highest surviving bid



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the
above auction achieves at least 2 of the optimal auction revenue!

e Choose @ such that:
Pr (m_axc,b;“(vi) > 9) =1/2
l

* Then set personalized reserve prices implied by:
Qb;_(vi)ZH@UiZTi



Computational Game Theory for Complex Games

Data Science for Auctions and Mechanisms

* Basics of Statistical Learning Theory (T)
G- Optimizing Mechanisms from Samples (T)

« HW7:implement procedures to learn approximately
optimal auctions from historical samples

Further Topics
* Econometrics in games and auctions (T+A)

a- A/B testing in markets (T+A)

* HWS8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of

A/B tests in markets

Guest Lectures

« Mechanism Design for LLMs, Renato Paes Leme,
Google Research
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Bhawalkar, Google Research
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All these designs required knowledge
of distributions of values F;!



What can we do If we only have
data from F;?



Basic Elements of Statistical
Learning Theory



General Framework

* Given samples S = {v4, ..., )} that are i.i.d. from distribution F
* Given a hypothesis/function space H
* Given a reward function r(v; h)

* Goal is to maximize the expected reward over distribution F
R(h) = Ey-plr(v; h)]



Desiderata

* Without knowledge of distribution F, we want to produce a
hypothesis hg, that achieves good reward on this distribution

* Forsome e(m) — 0 as the number of samples grows:
R(hs) = Eyplr(v; h)] 2 max R(h) — e(m)
* Either in expectation over the draw of the samples, i.e.
Es[R(hs)] =2 maxR(h) — e(m)
* Orwith high-probability over the draw of the samples, i.e.

w.p.1—68: R(hg) = max R(h) — es(m)



Desiderata

Distribution of

* Without knowledge of | ,i.cprofies 7 » WE WanNt to produce a
hypothesis hg, that achieves good revenuve 0N this distribution

* Forsome e(m) — 0 as the number of samples grows:
R(hs) = Ey Zipm} = max R(h) — e(m)
* Either in expectation over the draw of the samples, i.e.
Es[R(hs)] =2 maxR(h) — e(m)
* Orwith high-probability over the draw of the samples, i.e.

w.p.1—68: R(hg) = max R(h) — es(m)




The Obvious Algorithm

e \We want to choose r that maximizes

maxR(h) € E,_g|r(v; h)], (population objective)

heH
* With m samples, we can optimize average reward on samples!
1 m
max Rq(h) &€ —Zr vi:h), empirical objective
ner S( m ( ] ) ( P J )
J=1

* This approach is called Empirical Reward Maximization (ERM)

* Intuition. Since each value is drawn from distribution F the empirical
average over i.i.d. draws from F, by law of large numbers, should be
very close to expected value
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If we can bound representativeness
Rep = Eg [sup Rq¢(h) — R(h)] < e(m)
h

Then we can bound expected performance
E|R(hs)] = E[R(h.)] — e(m)



Equivalent Process

Rep. = E[Rs(hs) — Rp(hs)]
Rep, = E [Rs(hs) — ES’[RS’(hS)]] Population of Samples

Rep, = ES,S’[RS(hs) — Rs’(hs)]

Flip a coing; € {—1, 1} to decide

S which goes into S and which to §’ w I

?
?
;- (T(vi: hs) — 1 (vi, hS)) @

This is how much each pair of samples @
contributes to the discrepancy between
train and test reward

Choose hg € H to maximize 1 U
average reward on S Rep, < Ep s |[max— ) o; - (r(vi; h) — r(vi’; h))

heH m
_ i=1

L Forany Q, o, choose h € H to
eamer maximize the average discrepancy
Adversary

Population of Samples
Population of Samples




Empirical Rademacher Complexity

Empirical Rademacher Complexity of hypothesis space H on samples S:

m

1
Rad(S,H) = 2E; max — 2, o; - r(v;; h)
1=

Theorem. We have thus proven that:

E[R(hs)] = R(h.) — Eg[Rad(S, H)]



Massart’s lemma. For any finite hypothesis space H:

2log(|H|)
V m

Rad(S,H) < 2




Growth Rate of Function Space

* Suppose we can find a finite subspace HS C H suchthateveryh € H has a
representative h € Hy that has the exact same behavior on the samples S

Vv; € S:r(v;; h) = r(vl, h)
 Empirical Rademacher Complexity of H is upper bounded by that of 175

Growth Rate 7(m, H): the size of the smallest Hs that satisfies the above
property, in the worst case over sample dataset of size m

Example. For threshold classifiers T(m, H) = m + 1 SideNote For classification, a seminal notion

is the Vapnik-Chervonenkis (VC) dimension:
size d of largest dataset that the hypothesis

Theorem. For any hypothesis H . , _
can assign labels in all possible manners

Rad(S,H) <2 Zlog(‘[(m, H)) Cannot be assigned by
’ - m threshold classifiers => d = 2
-@® O ® >
— + —

Sauer’s Lemma. If has VC-dim < d then t(m, H) 3 29 = Rad(S,H) < /d/m



Discretization on Samples

* Suppose we can find a finite subspace 175,6 C H suchthatevery h € H has a
representative h € Hs . that has approximately the same behavior on the samples S
Vv; € S: |r(vi; h) — r(vi; h)| <e€

 Empirical Rademacher Complexity of H upper bounded approximately by Hs,e

Rad(S,H) = 2E,

m
: (w33 1)
max— Y o; - r(v;:
heH m ! L
i=1
m
1
max — ) o; - r(v;; h)
hEHS’em .

1=1

+ZES2\/

210g(|ﬁ5,6|) 9
m



Second Price with Player-Specific Reserves

* Suppose we are given a set of samples S of n bidder value profiles
* Optimize over the space of Second-Price with Player-Specific Reserves

* For every price vectorr = (74, ..., ;) we want to find a vector 7 that
achieves almost the same revenue as r for every value in the samples

Vv; = (V;q1, ..., Vin) € S: |rev(v;;r) —rev(v; 7)| < e

* For every rj, pick maximum of {largest multiple of € below r, largest
sampled value for bidder j below r}. At most (m + 1/€)™ prices.

2nloe(m + 1/¢ 2nlog(2m
Rad(S,H) <2 8( / )+26S4 s(2m)
m

\ T \

e=1/m

m




Competing with the Myerson Auction

* Want to optimize over virtual welfare maximizing mechanisms
* For each bidder i, we assign a monotone virtual value function ¢;
* Allocate to the bidder with highest positive virtual value ¢;(v;)
* Charge dominant strategy truthful payments
x; (v;)
1

Winning threshold:
6 = gbl_l (maX ¢](U]),T]l)

J#Fi




Optimizing over Virtual Value Functions

* ERM optimizes over all monotone functions for each bidder
* This space is infinite and a bit harder to discretize

* We will see that monotonicity is important!

bi .
¢i(v;)

1

* We introduce a variant of Rademacher complexity analysis that
will help us in the analysis of ERM over virtual welfare maximizers



Optimizing over Virtual Value Functions

* ERM optimizes over all monotone functions for each bidder

* For any monotone function, we receive strictly larger payment had
we used step-function on the samples (threshold to win is higher)!

b

1 V2i V3i Vg 1

Samples of bidder i values

* Hy contains only monotone step functions that change on one of
the 2m samples for each bidder




Coarsen Space of Mechanisms we Optimize

* Consider only virtual value functions that take values on an e-grid
¢;(v;) €E{—¢€,0,¢,..,1}
P

7€

* These step functionsin H, can be described by

“foreach value r on the}grid, specify the smallest of the 2m sampled
values for which tf17e rank of the bidder goes above r”

* These are = (2m)e combinations for each player



Putting it all together

* If we output the mechanism hg that optimizes the empirical
revenue among all monotone virtual welfare maximizers, with
virtual value functions taking values in an e-grid

2 nlog(2m
E[Rev(h,.)] = Rev(h,) — s2m)
y €'m

1
e Fore = (Zn longl(Zm))s

1

2nlog(2m)\3

E<[Rev(h.)] = Rev(h,) — 2 ( fi( )>
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A/B tests in markets
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Where do we get these samples from?



Typically, from historical executions of a truthful
mechanism

Example: if we had run second price auctions in the
past, we can use the bids of the players, in each of these
historical auctions, as samples from their values



What if our auction platform is based on a non-truthful
auctions?

Example: If we typically run a First Price Auction, now
we have historical samples of bids in an FPA. These are
not samples of values; bidders submit bids that are
much lower than values in an FPA.



How do we go from bids to values?



LU ALLLLLE

Econometrics in Games

and Auctions



Econometrics in Games and Auctions

* We are given data from actions of players in a game (and
potentially auxiliary contextual information about the game)

* Multiple instances were players played the same type of game
* We don’t know the exact utilities of the players in the game

* We want to use the data to learn the parameters of the utilities of
the players in the game or the distribution of these parameters



If | know the equilibrium bid distribution G, then
whenever | see a bid b;, | can reverse engineer and
uniquely determine the value that led to such a bid

1
unobserved V: = b: + ————— — .

value l l ; \/ (b ) \ Revgrsg hgzard ra.tlo
:(n L 1):| l ' of distribution of bids
! ||G (b ) I “Probability that opponent
| ! l ! bid is immediately below
| IN e e e e e — 7 b; giventhatitis below b;”
\ /

observed

o . More competition = less “value reduction”
equilibrium bid



Estimating CDFs and PDFs of Bids from FPA Bid Samples
Given bids b4, ..., b,,, of players in instances of First Price
Auction the CDF and PDF of the bid distribution can be
approximated by empirical CDF and a Kernel Density Estimate

1 ~
G(z) EPr(b<z) = —z 1{bij < Z} L G(2)
n.m " "
L]

9(2) = 0,G(2), g(z)——z . ( )

Fraction of samples that =lie within h
from z, divided by region length




Estimating CDFs and PDFs of Values from FPA Bid Samples
Given bids by, ..., b,,, of players in instances of First Price Auction the

CDF and PDF of the value distribution can be approximated using the
plug-in approach, by approximately “inverting the bid” and using the
“recovered value as a truthful sample”

G (bij)
5. = b..
CARCA (n—1) g(b;j)

) 1 1 (D —
F(Z)d—ef—z:l{vu 7}, f@):mz:h—z{(vfh Z)
i,j n n




Example 2: Econometrics in Entry Games

* Two firms deciding whether to enter a market
* Example: airline firms deciding whether to enter a particular route

* Observe entry decisions y; € {0, 1} for different markets with
characteristics x

* Each firm has profits from entering

T, = legl + + €4 Private costs or payoff
T shocks ¢; ~ F;
T, =X 182 + + €2 | known only by player i

effect of market
characteristics

* Learn parameters 3, 0



Key ldea: Two Stage Estimation

Two-Stage Estimation Approach

[Hotz-Miller’93, Bajari-Benkard-Levin’07, Pakes-Ostrovsky-Berry’07,
Aguirregabiria-Mira’07, Bajari-Hong-Chernozhukov-Nekipelov’09]

1. Compute non-parametric estimate 4;(x) of function o;(x) from data

2. Run parametric regressions for each agent individually using that:

o;(x) < exp[x - B; + 6_;(x) &;]

3. The latteris a simple logistic regression for each player to estimate [}, 9;
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What if all we want is to compare
between auctions A and B In
terms of revenue?



What | could potentially do is:
For each auction flip a coin;
If heads, then run auction A else run auction B

After many auctions compare average
revenue from A auctions, vs., average revenue
from B auctions



We will see that it can be problematic and
needs thought of how to analyze such
data or structure such A/B tests!



Interference

* Social Network interference
* Equilibrium effects
e Stateful systems and time effects




A/B Testing over Position Auction
Formats



We observe a bid distribution, described by the quantile

function b(q), from a randomized k-unit auction (which
chooses each k with positive probability)

For any other randomized k-unit (with probabilities wy,)
first-price auction among symmetric bidders, we have:

Rev =n 2 wy E[b(q) - f(q)]

k<N

for a function f(g) known in closed form



With access to bidding data from a single randomized k-unit
auction (which chooses each k with positive probability), we
can estimate Rev of any other k-unit auction.

Estimate CDF of bIdS using the empirical CDF G.
Thenuse b = G~1and

Rev =n ) w, j b(q) - f(q)dq

k<N

By convergence rates of empirical CDF, we can show:
|IRev — Rev| 3 1/y/m



What we did not learn!

* Monte-Carlo tree search

* Neural network approximation of values

* Multi-agent RL

* Budgets in auctions

* Correlated values in auctions

* A/B testing for pricing and equilibrium effects

* Econometrics in complete info games and partial identification



Course Learning Objectives

* Learn the fundamentals of game theory

* Learn how game theory can be applied in many real-world settings
(e.g. ad auctions, complex games)

* Learn the fundamentals of tools from data science and ML that
are useful in game theoretic contexts (online learning theory,
statistical learning theory, econometrics)

* Learn how these topics can be combined to

* provide computational solutions to the design of agents that perform well
in competitive environments

* optimize and analyze markets, mechanisms and platforms from data
* Be able to implement and code up these solutions in Python



Course Evaluations

http://course-evaluations.stanford.edu/



http://course-evaluations.stanford.edu/
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