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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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What if all we want is to compare 
between auctions A and B in 
terms of revenue?



What I could potentially do is: 
For each auction flip a coin; 
If heads, then run auction A else run auction B

After many auctions compare average 
revenue from A auctions, vs., average revenue 
from B auctions 



RCTs are the gold standard for 
measuring the “causal effect” of a 
“treatment” on an “outcome”



Interference!
The Big Challenge of A/B Testing in 

Markets and Platforms



Interference

• Social Network interference
• Equilibrium effects
• Stateful systems and time effects



Image Source: https://www.leadpages.com/blog/ab-testing-split-testing/
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A/B Testing in Auctions



A/B Testing over Position Auction 
Formats



We observe a bid distribution, described by the quantile 
function 𝑏 𝑞 , from a randomized k-unit auction (which 
chooses each k with positive probability)

For any other randomized k-unit (with probabilities 𝑤𝑘) 
first-price auction among symmetric bidders, we have:

Rev = 𝑛 

𝑘≤𝑁

𝑤𝑘 𝐸 𝑏 𝑞 ⋅ 𝑓 𝑞

for a function 𝑓 𝑞  known in closed form



With access to bidding data from a single randomized k-unit 
auction (which chooses each k with positive probability), we 
can estimate Rev of any other k-unit auction. 

Estimate CDF of bids using the empirical CDF 𝐺. 
Then use  𝑏 = 𝐺−1 and 

Rev  = 𝑛 

𝑘≤𝑁

𝑤𝑘  න
0

1

𝑏 𝑞 ⋅ 𝑓 𝑞 𝑑𝑞

By convergence rates of empirical CDF, we can show:
Rev − Rev ≾ 1/ 𝑚



A/B Testing across Many 
Keywords with Budgets



Budgets!

• So far we did not place any budget constraints on bidders
• In practice, budget constraints are very important
• Bidders participate in many auctions and have a budget limit
• Can only spend at most 𝐵𝑖  in total across all the auctions

• This couples the bidding strategy across auctions
• Makes learning (e.g. no-regret learning hard)
• In its full generality a stochastic dynamic program



Simplified Budgets: Pacing Equilibria
• In practice, people use the following simplification
• We have 𝑛 bidders and a continuum of items 
• Items have type 𝜃 which follows some distribution with measure 𝑠
• 𝑣𝑖 𝜃  is bidder 𝑖’s value for an item of type 𝜃

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

https://arxiv.org/pdf/2402.07322


Simplified Budgets: Pacing Equilibria

The multipliers 𝛽 = 𝛽1, … , 𝛽𝑛  and price function 𝑝 𝜃  are a pacing 
equilibrium if there exists and allocation function 𝑥 𝜃  such that
• First-price payment: 𝑝 𝜃 = max

𝑖
𝛽𝑖𝑣𝑖 𝜃

• Highest-bidder wins: 𝑥𝑖 𝜃 ≥ 0 ⇒ 𝛽𝑖𝑣𝑖 𝜃 = max
𝑘

𝛽𝑘𝑣𝑘 𝜃

• Budgets are respected 

න
𝜃

𝑥𝑖 𝜃 𝑝 𝜃 𝑠 𝜃 𝑑𝜃 ≤ 𝐵𝑖

• No-overselling: σ𝑖 𝑥𝑖 𝜃 ≤ 1

• Full-allocation of competitive items: 𝑝 𝜃 > 0 ⇒ σ𝑖 𝑥𝑖 𝜃 = 1

• No un-necessary pacing: 𝜃
𝑥𝑖 𝜃 𝑝 𝜃 𝑠 𝜃 𝑑𝜃 < 𝐵𝑖 ⇒ 𝛽𝑖 = 1



Characterization of Pacing Equilibria

Multipliers in pacing equilibrium are characterized as solutions to a 
convex optimization problem (related to market equilibrium)

𝛽∗ = argmin
𝛽∈ 0,1 𝑛

𝐸 max
𝑖

𝛽𝑖𝑣𝑖 𝜃 − 

𝑖

𝐵𝑖 log 𝛽𝑖



Clustered Experiment Designs and Debiasing

1. For each sub-market want pacing multipliers 
as if the bad items don’t exist

2. With such multipliers, can estimate idealized 
revenue for each sub-market, as if isolated

3. Characterization of multipliers as minimizers 
of market equilibrium program ⇒ closed form 
first-order bias that bad items introduce

4. Subtract bias and measure revenue of A and 
B clusters using debiased multipliers

Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis (arxiv.org)

https://arxiv.org/pdf/2402.07322


A/B Testing in Two-Sided 
Matching Markets



Two-Sided Randomized Designs
Experimental Design in Two-Sided Platforms: An Analysis of Bias | Management Science (informs.org)

Colab Notebook: 
https://colab.research.google.com/drive/198fDKTPcXZm15cPwORoeYvDRrLfLHl9b?usp=sharing
Slide Version:
spring24/assets/presentations/AB_Testing_TwoSided_slides.html at master · stanford-
msande233/spring24 (github.com)

https://pubsonline.informs.org/doi/full/10.1287/mnsc.2021.4247
https://colab.research.google.com/drive/198fDKTPcXZm15cPwORoeYvDRrLfLHl9b?usp=sharing
https://github.com/stanford-msande233/spring24/blob/master/assets/presentations/AB_Testing_TwoSided_slides.html
https://github.com/stanford-msande233/spring24/blob/master/assets/presentations/AB_Testing_TwoSided_slides.html


Recap: 
What did we learn?



Course Learning Objectives 

• Learn the fundamentals of game theory
• Learn how game theory can be applied in many real-world settings 

(e.g. ad auctions, complex games)
• Learn the fundamentals of tools from data science and ML that 

are useful in game theoretic contexts (online learning theory, 
statistical learning theory, econometrics)

• Learn how these topics can be combined to
• provide computational solutions to the design of agents that perform well 

in competitive environments
• optimize and analyze markets, mechanisms and platforms from data

• Be able to implement and code up these solutions in Python



Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Example 1: Routing 
Games

• 𝑛 drivers; each 𝑖 wants to go from 
point 𝑎𝑖  to point 𝑏𝑖 on a road network

• Strategy space of player 𝑖: set of paths 
from 𝑎𝑖 → 𝑏𝑖

• When 𝑘𝑒 users use road 𝑒 it has 
latency 𝑐𝑒 𝑘𝑒

• Loss of a player: total latency on 
chosen path 𝑠𝑖

ℓ𝑖 𝑠 ≔ 

𝑒∈𝑠𝑖

𝑐𝑒 𝑘𝑒 𝑠

Image credits: chat.openai.com



Example 2: Sponsored Search Auctions

• 𝑛 bidders; each bidder 𝑖 has an ad to 
display under the search for a keyword

• Strategy space of bidder 𝑖: a bid 𝑠𝑖 ∈ 𝑅

• Bidders allocated slots in decreasing 
order of bids; 𝑗𝑖 𝑠  is slot allocated to 𝑖

• Each slot 𝑗 has a probability of click 𝑥𝑗

• When ad gets clicked, bidder pays bid 𝑠𝑖

• Utility of player is net expected gains
𝑢𝑖 𝑠 ≔ 𝑥𝑗𝑖 𝑠 ⋅ 𝑣𝑖 − 𝑠𝑖

Image credits: https://support.google.com/google-ads/answer/142918?hl=en



Example 3: 
Recreational Games

• Simple two-player poker
• Each players strategy is an action plan 

on what to do at each possible decision 
point in the game

• Some decisions are also being taken by 
“nature” randomly and only partly 
announced to players

• Each leaf node is an end-result and 
contains a utility for P1

• Utility of P1 is expected value of the 
terminal node that will be reached

• Utility of P2 is negative of P1 (zero-sum)

Image credits: https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf



Pure Nash Equilibrium

• A strategy profile 𝑠 = 𝑠1, … , 𝑠𝑛  is a pure Nash equilibrium if no 
player is better off, by choosing some other strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≥ 𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖



Mixed Nash Equilibrium

• A mixed strategy 𝜎𝑖  is a distribution over pure strategies
• At mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛 , player 𝑖 gets expected utility

𝑈𝑖 𝜎 = 𝐸𝑠1∼𝜎1,…,𝑠𝑛∼𝜎𝑛
𝑢𝑖 𝑠1, … , 𝑠𝑛

• Utility notation: 𝑈𝑖 𝑠𝑖
′, 𝜎−𝑖 = 𝐸𝑠−𝑖∼𝜎−𝑖

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

• A mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛  is a Nash equilibrium if no 
player is better off in expectation, by choosing another strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝑈𝑖 𝜎 ≥ 𝑈𝑖 𝑠𝑖

′, 𝜎−𝑖



Existence of Nash 
Equilibrium [Nash1950]

Every 𝑛 player finite action game has 
at least one mixed Nash equilibrium



Intractability of Mixed Nash Equilibrium

• The assumption of knowing the supports was crucial
• For games with many actions, we cannot enumerate all possible 

supports (combinatorial explosion)
• Turns out there is no easy way to side-step this

• Computing a mixed NE in two player games is “intractable”

• It is provable as hard as computing a “fixed point” (𝑓 𝑥 = 𝑥) of an 
arbitrary function 𝑓, which is considered an intractable problem



Two Player Zero-Sum Games

• Player one (“min” player or “row” player)
• Player two (“max” player or “column” player)
• Player one has n possible actions
• Player two has m possible actions

• If player one chooses action 𝑖 and player two chooses action 𝑗 
then player one incurs loss 𝐴 𝑖, 𝑗  and player two gains utility 𝐴 𝑖, 𝑗



Von-Neuman’s Min-Max Theorem [1928]

min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦



Are there dynamics that will lead 
to a mixed Nash equilibrium?
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Example in Math

• Device a choice picking algorithm 𝒊𝒕 

• Goal. At end of the year, looking back, 
not regret much either “always taking 
Bay” or “always taking Dumbarton”

Regret(ℓ1:𝑇) =
1

𝑇


𝑡=1

𝑇

ℓ𝑡
𝒊𝒕 − min

𝑖∈ 1,2

1

𝑇


𝑡=1

𝑇

ℓ𝑡
𝑖

ℓ𝟏
𝒕

ℓ𝟐
𝒕

𝒊𝒕Average # of 
jams you 

encountered

Average # of jams 
you would have 

encountered had 
you always chosen 

bridge 𝑖

Short-hand 
notation for 
sequence of 
loss vectors

ℓ1, … , ℓ𝑇 Image credits: chat.openai.com



A choice picking algorithm is called a no-regret learning 
algorithm if the worst-case regret over any sequence of losses 

𝑅 𝑇 = sup
ℓ1:𝑇

Regret ℓ1:𝑇

vanishes to zero with the number of periods

𝑅 𝑇 → 0



The 𝑛 action case

At each period choose a distribution 𝑝𝑡 ∈ Δ 𝑛  over 𝑛 actions

Observe a loss vector ℓ𝑡 ∈ 0,1 𝑛 and incur loss ⟨𝑝𝑡, ℓ𝑡⟩

𝑝𝑡 = min
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝 = min

𝑝


𝜏<𝑡

⟨𝑝, ℓ𝑡⟩ +
1

𝜂
ℛ 𝑝

For the negative entropy regularizer, leads to the simple EXP algorithm

𝑝𝑡
𝑖 ∝ 𝑝𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

The negative entropy is 1-strongly convex and now takes values in − log n , 0

𝑅 𝑇 ≤ 2𝜂 +
log 𝑛

𝜂𝑇
≤

2 log 𝑛

𝑇
→ 0 For 𝜂 =

log 𝑛

2𝑇

Short-hand for 
inner product 
between two 
vectors

Short-hand for 𝑛-dimensional simplex 
Δ 𝑛 ≔ 𝑥 ∈ 𝑅𝑛: 𝑥𝑖 ≥ 0, σ𝑖=1

𝑛 𝑥𝑖 = 1  

Play each action with probability proportional 
to the exponential of its historical performance

(FTRL)



Punchline

𝑝𝑡 = argmin
𝑝

ത𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Theorem. Assuming the linearized loss function at each period 
തℓ𝑡 𝑝 = ⟨𝑝, ∇ℓ𝑡 𝑝𝑡 ⟩

is 𝐿-Lipschitz with respect to some norm ⋅  and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Average stability 
induced by regularizer

Average loss distortion 
caused by regularizer

(Linearized FTRL)

Linearized historical 
performance of always 

choosing vector 𝑝

1-strongly convex 
function of 𝑝 that 

stabilizes the minimizer



Punchline: The Master Algorithms of our Times

𝑝𝑡 = argmin
𝑝

ത𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)(Linearized FTRL)

ℛ 𝑝 =
1

2
𝑝 2

𝑝𝑡 = 𝑝𝑡−1 − 𝜂∇ℓ𝑡−1 𝑝𝑡−1

ℛ 𝑝 = 

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ℓ𝑡−1

Online/Stochastic Gradient Descent Algorithm
(aka SGD)

Exponential weight updates algorithm!
(aka Hedge, Multiplicative Weight Updates, EXP, ….)
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Main Takeaway: Equilibrium via No-Regret

Theorem. If two players play repeatedly a convex-concave zero-
sum game and each player uses any no-regret algorithm to pick 
their vector 𝑥𝑡 , 𝑦𝑡 , then the average vector of each player

ҧ𝑥 =
1

𝑇


𝑡=1

𝑇

𝑥𝑡 , ത𝑦 =
1

𝑇


𝑡=1

𝑇

𝑦𝑡

are a 2𝜖-approximate Nash equilibrium (where 𝜖 is the regret at of 
each algorithm after 𝑇 periods). Hence,

ҧ𝑥, ത𝑦 → equilibrium as 𝑇 → ∞



Minimax Theorem via No-Regret

Theorem. Existence of no-regret algorithms implies (as 𝜖 → 0) that
max
𝑦∈𝒴

min
𝑥∈𝒳

ℓ 𝑥, 𝑦 ≥ min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ 𝑥, 𝑦

The other direction is trivial (why?)

max
𝑦∈𝒴

min
𝑥∈𝒳

ℓ(𝑥, 𝑦) ≤ min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ 𝑥, 𝑦

Thus
max
𝑦∈𝒴

min
𝑥∈𝒳

ℓ(𝑥, 𝑦) = min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ(𝑥, 𝑦)

(an alternative to von Neuman’s original proof)



Can we do better in terms of rate?



Optimistic FTRL: Last Period Predictor

𝑝𝑡 = argmin
𝑝



𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, ℓ𝑡−1⟩ +
1

𝜂
ℛ 𝑝

ℛ 𝑝 = 

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

𝑝𝑡 ∝ 𝑝𝑡−1 exp 𝜂 2ℓ𝑡−1 − ℓ𝑡−2

Optimistic Exponential Weight Updates!

FTRL
w. Predictors

Historical performance 
of always choosing 𝑝

1-strongly convex 
function of 𝑝 that 

stabilizes the minimizer

Optimism: predict that the 
next period loss will be the 

same as last period loss

Negative
Entropy



Optimistic EXP

Corollary. Optimistic EXP is 3𝜂-stable and has regret

𝑅 𝑇 ≤
𝜂

𝑇


𝑡=1

𝑇

ℓ𝑡 − ℓ𝑡−1 ∞ +
log 𝑛

𝜂 𝑇

Average stability of the 
loss vector



Optimistic EXP Dynamics

Corollary. If all players use Optimistic EXP with 𝜂 =
log 𝑛∨𝑚

𝑇

1/3

 

then each player’s regret is at most 𝜖 = 4
log 𝑛∨𝑚

𝑇

2/3

 and the 

average vectors ҧ𝑥, ത𝑦  are an 2𝜖-approximate equilibrium 

Larger step size than if we were 
playing against an adversary

𝑇−1/3 vs. 𝑇−1/2

(e.g. if 𝑇 = 1000, then 0.1 vs. 0.032)

Order of magnitude smaller regret 
than playing against an adversary

𝑇−2/3 vs. 𝑇−1/2

(e.g. if 𝑇 = 1000, then 0.01 vs. 0.032)



Do the dynamics actually 
converge?

ҧ𝑥, ത𝑦 → equilibrium   vs. 𝑥𝑇 , 𝑦𝑇 → equilibrium

“average iterate convergence” vs. “last-iterate convergence”



A simple example
Consider the game defined by loss matrix

𝐴 =
.5 0
0 1

EXP dynamics:

𝑥𝑡 ∝ 𝑥𝑡−1 exp −𝜂𝐴𝑦𝑡−1

𝑦𝑡 ∝ 𝑦𝑡−1 exp 𝜂𝐴⊤𝑥𝑡−1



A simple example
Consider the game defined by loss matrix

𝐴 =
.5 0
0 1

Optimistic EXP dynamics:

𝑥𝑡 ∝ 𝑥𝑡−1 exp −𝜂 2𝐴𝑦𝑡−1 − 𝐴𝑦𝑡−2

𝑦𝑡 ∝ 𝑦𝑡−1 exp 𝜂 2𝐴⊤𝑥𝑡−1 − 𝐴⊤𝑥𝑡−2
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Applications of Learning in Zero-
Sum Games to ML and AI
Boosting, Distributional Robustness, Generative Learning, Learning from 
Human Feedback, Causal ML, Fair ML



The boosting problem
Given “weak” classification oracle, can we 
construct in a computationally efficient 
manner a “strong” classifier that achieves 
accuracy on 𝐷 arbitrarily close to 1? 
Major open problem among the tiny ML community in late 80s-early 90s
Resolved by Robert Schapire and further developed by Freund-Schapire



Punchline: Solving Large Games with Oracles

Theorem. Suppose we have Best-Response oracle over 𝐽 for the 
max player for each distribution 𝑤 over actions of the min player. 
Repeat for 𝑇 iterations the process: 

𝑤𝑡 ∝ 𝑤𝑡−1 exp −𝜂ℓ𝑗𝑡−1

𝑗𝑡 = BR 𝑤𝑡

Then 𝑤∗ =
1

𝑇
σ𝑡=1

𝑇 𝑤𝑡  and 𝑃∗ = Uniform 𝑗1, … , 𝑗𝑇  is a 2 log 𝑛

𝑇
-

approximate equilibrium ⇒ 𝑃∗ is 2 2 log 𝑛

𝑇
-solution to max-min.

(EXP)

(Best-Response)



Punchline: AdaBoost Theorem

Theorem. Suppose we have a weak 𝛿-classification oracle WEAK. For 
every hypothesis ℎ, let ℓℎ be vector of 0-1 accuracies on each sample.

Repeat for 𝑇 periods, such that 2 log 𝑛

𝑇
< 𝛿

𝑤𝑡 ∝ 𝑤𝑡−1 exp −𝜂ℓℎ𝑡−1

ℎ𝑡 = WEAK 𝑤𝑡

Then the following majority classifier classifies all samples correctly

ℎ∗ = Majority ℎ1, … , ℎ𝑇 = 1
1

𝑇


𝑡=1

𝑇

ℎ𝑡 ⋅ >
1

2
 

(EXP)

(Weak-oracle)



Distributional 
Robustness

Image credits: chat.openai.com



Group Distributional Robustness; Group-DRO

• We pre-define a set of groups 𝐺 (race, gender, sensitive attributes)

• At train time, we know the group identity of each sample

• We want to learn a single model 𝜃 (that does not use the group 
attribute as input) that performs well on distribution of each group

min
𝜃∈Θ

max
𝑔∈𝐺

𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝜃(𝑥)

[1909.02060] Distributionally Robust Language Modeling (arxiv.org)
[1611.02041] Does Distributionally Robust Supervised Learning Give Robust Classifiers? (arxiv.org)

https://arxiv.org/abs/1909.02060
https://arxiv.org/abs/1611.02041


Group DRO as a Zero-Sum Game 

• The learner player chooses 𝜃 ∈ Θ

• The adversary player chooses a distribution 𝑤𝑡  over 𝐺
• If loss is convex in 𝜃 and Θ is convex set, solve via no-regret

𝜃𝑡 = 𝜃𝑡−1 − 𝜂 

g

𝑤𝑡−1
𝑔

𝐸 𝑥,𝑦 ∼𝐷𝑔
∇𝜃ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

𝑤𝑡
𝑔

∝ 𝑤𝑡−1
𝑔

exp 𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

• Even when loss is not convex in 𝜃, the above translates to a practical 
training algorithm for neural network parameters

• Expectations are typically approximated by averages over small 
batches of samples

(EXP)

(OGD)

[1911.08731] Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

Note: typically, last iterate and not average iterate is used despite theory…

https://arxiv.org/abs/1911.08731


Generative 
Adversarial 
Networks

Image credits: chat.openai.com



GANs as a Zero-Sum Game

• Learn a neural sample generator (max player)

• Learn a discriminator (min player)

• Discriminator minimizes classification error/Generator maximizes

max
𝜃

min
𝑤

−𝐸𝑧∼𝐷 log 𝐷𝑤 𝑧 + 𝐸𝜖 log 𝐷𝑤 𝐺𝜃 𝜖

Noise 𝜖 𝑧𝐺𝜃

𝐷𝑤 𝑧  close to 1 
when 𝑧 is real

𝐷𝑤 𝑧  close to 0 
when fake

𝑧 [0, 1] =[Fake, Real]𝐷𝑤

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

https://arxiv.org/abs/1701.00160


GANs as a Zero-Sum Game

• We are trying to find a generator that fools the discriminator

• Solve max-min problem by finding equilibrium of zero-sum game

max
𝜃

min
𝑤

ℓ 𝜃, 𝑤 ≔ −𝐸𝑧∼𝐷 log 𝐷𝑤 𝑧 + 𝐸𝜖 log 𝐷𝑤 𝐺𝜃 𝜖

• Compute via no-regret dynamics (online gradient descent/ascent)

𝜃𝑡 = 𝜃𝑡−1 + 𝜂∇𝜃ℓ 𝜃𝑡−1, 𝑤𝑡−1

𝑤𝑡 = 𝑤𝑡−1 − 𝜂∇𝑤ℓ 𝜃𝑡−1, 𝑤𝑡−1

• Even though non-convex/non-concave!
• Last-iterate used, though theory says average (optimism can help)

(OGD)

(OGD)

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

[1711.00141] Training GANs with Optimism (arxiv.org)

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1711.00141


Learning from 
Human Feedback

Image credits: chat.openai.com



Learning from Human Feedback

We have space of policies Π that given context 𝑥 produce 𝑦 = 𝜋 𝑥

AI Alignment Goal. Want to find a policy that produces output 𝑦 that is 
typically more “aligned” with people’s preferences

Human Feedback. We elicit pair-wise preferences over outputs
• We show people pairs of outputs 𝑦1 = 𝜋1 𝑥  and 𝑦2 = 𝜋2 𝑥

• We collect preference feedback, 1 𝑦1 > 𝑦2 − 1 𝑦2 < 𝑦1

• Our cumulative data provide a (anti-symmetric) preference function 𝑃
𝑃 𝜋, 𝜋′ ∈ −1,1 , 𝑃 𝜋, 𝜋′ = −𝑃 𝜋′, 𝜋

i.e. fraction of people with 𝜋 > 𝜋′ minus fraction of people with 𝜋′ > 𝜋



Social Choice Theory: Minimax Winner

• Choose a distribution 𝑝 over options such that you prefer samples 
from that distribution than samples from any other distribution 
with probability at least ½

min
𝑝′

𝐸𝜋∼𝑝,𝜋′∼𝑝′ 𝑃 𝜋, 𝜋′ ≥ 0

Lemma. The MW is the symmetric mixed 
Nash equilibrium of the zero-sum game 
defined by the preference matrix

[2401.04056] A Minimaximalist Approach to Reinforcement Learning from Human Feedback (arxiv.org)

https://arxiv.org/abs/2401.04056


Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Lecture 5



Extensive Form 
Games
History and Progress



Many Recent 
Success 
Stories



Game Representations 
Convenient for Computing a 
Nash Equilibrium



Recap: Sequence Form Representation

• The strategies of the player can be represented as 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

• 𝑥a: product of probabilities of all actions of P1 on the path to a
• 𝑦a: product of probabilities of all actions of P2 on the path to a

𝑋 ≔ ∀𝑗 ∈ 𝒥1: 

𝑎∈𝐴𝑗

𝑥𝑎 = 𝑥𝑝𝑗
,  𝑌 ≔ ∀𝑗 ∈ 𝒥2: 

𝑎∈𝐴𝑗

𝑦𝑎 = 𝑦𝑝𝑗

• The payoff to P1 under sequence strategies 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 is
𝑥⊤𝐴 𝑦

• 𝐴𝑎,𝑎′ = if 𝑎 was the last action of P1 and 𝑎′ the last action of P2 before 
some leaf 𝑧, then payoff to P1 at 𝑧 times product of chance 
probabilities on path to 𝑧 else zero



No-Regret Learning in Sequence Form

• We have successfully turned imperfect information extensive form 
zero-sum games into a familiar object

max
𝑥∈𝑋

min
𝑦∈𝑌

𝑥⊤𝐴 𝑦

• 𝑋, 𝑌 are convex sets, i.e., sequence-form strategies

• We can invoke minimax theorem to prove existence of equilibria
• We can calculate equilibria via LP duality
• We can calculate equilibria via no-regret learning!



Lecture 6



Sum: Nash via FTRL with Dilated Entropy

Each player chooses 𝑥𝑡 , 𝑦𝑡 based on FTRL with dilated entropy

• For x-player 𝑢𝑡 = 𝐴 𝑦𝑡  and 𝑈𝑡 = 𝑈𝑡−1 + 𝑢𝑡  and initialize 𝑄 = 𝑈𝑡

• Traverse the tree bottom-up; for each infoset 𝑗 ∈ 𝒥1

𝑥𝑡+1
𝑗

∝ exp 𝜂𝑗𝑄𝑗 , 𝑉𝑗 = softmax𝜂𝑗
𝑄𝑗 , 𝑄𝑝𝑗

← 𝑄𝑝𝑗
+ 𝑉𝑗

• Define sequence-form strategies top-down: 𝑥𝑡+1
𝑗

= 𝑥𝑝𝑗
⋅ 𝑥𝑡+1

𝑗

Similarly, for 𝑦 player

Return average of sequence-form strategies as equilibrium



Interpreting utility vector

𝑢𝑡,𝑎 = 𝐴 𝑦𝑡 = 

𝑎′∈𝐴𝑃2

𝐴𝑎,𝑎′ 𝑦𝑡,𝑎′

𝐴𝑎,𝑎′  is zero if the combination of 𝑎, 𝑎′ does not lead to a leaf node

𝑢𝑡,𝑎 = 

Leafs 𝑧: 
𝑎 was last P1 action
𝑎′ was last P2 action

 

𝑢 𝑧 Pr
Chance chooses

sequence on
path to 𝑧

 Pr

P2 plays
sequence

leading to 𝑎′
 

Interpretation. If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 = 1) and 
then don’t make any other moves, what is the expected reward that I will 
collect, in expectation over the choices of my opponent and nature



Counterfactual Regret 
Minimization (CRM)



Local Node Utilities
Interpretation of 𝒖𝒂. If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 = 1) and then 
don’t make any other moves, what is the expected reward that I will collect, in 
expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 =
1) and then continue playing based on some behavioral policy 𝑥, what is the expected 
reward that I will collect, in expectation over the choices of my opponent and nature
• Let 𝐶𝑎  be all infosets of the player that are reachable as next infosets after playing 𝑎

𝑢𝑎 𝑥 = 𝑢𝑎 + 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

• Continuation utility 𝑉𝑗 𝑥  from paths that pass through infoset 𝑗 recursively defined: 

𝑉𝑗 𝑥 = 

𝑎∈𝐴𝑗

𝑥𝑎 𝑢𝑎(𝑥) = 

𝑎∈𝐴𝑗

𝑥𝑎𝑢𝑎 + 

𝑎∈𝐴𝑗

𝑥𝑎 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

Continuation E[utility] from paths that 
pass through infoset 𝑘, if I continue 
playing based on behavioral strategy 𝑥“Instantaneous E[utility]”, if 

this is the last action I play

“Instantaneous utility”, if 
this is the last move I make

“Continuation utility”, if I 
continue playing based on 𝑥



Regret over Time

Same inequalities can be followed for the average regret over time

𝑅 = max
𝑥′∈𝑋

1

𝑇


𝑡

𝑥′, 𝑢𝑡 − 𝑥𝑡 , 𝑢𝑡

𝐿𝑅𝑗 = max
𝑥𝑗

1

𝑇


𝑡

𝑥𝑗 , 𝑢𝑡 𝑥𝑡 − 𝑥𝑡
𝑗
, 𝑢𝑡 𝑥𝑡

Main CFR Theorem. Regret is upper bounded by local regrets

𝑅 ≤ 

𝑗∈ℒ1

𝐿𝑅𝑗



Counterfactual Regret Minimization

• Device local regret algorithms for local regret

LR𝑗 𝑥 = max
𝑥𝑗

1

𝑇


𝑡

𝑥𝑗 , 𝑢𝑡 𝑥𝑡 − 𝑥𝑡
𝑗
, 𝑢𝑡 𝑥𝑡

• Standard 𝑛-action no-regret problem: reward vector at period 𝑡 is 
𝑢𝑗 𝑥𝑡  and reward for choice 𝑥𝑗  is 𝑥𝑗 , 𝑢𝑗 𝑥𝑡

• At period 𝑡 run bottom-up recursion to calculate 𝑢𝑗 𝑥𝑡  for 𝑗 ∈ 𝒥1

• Update probabilities 𝑥𝑡+1
𝑗  using reward vectors 𝑢𝑗 𝑥𝑡  for 𝑗 ∈ 𝒥1



The Typical CRM Algorithm Implementation

CValue(ActionHistory h, AccOtherProb 𝜋−1, AccProb 𝜋1)

Let 𝐼 be infoset corresponding to ℎ

If 𝐼 is terminal node 𝑧 return 𝑢 𝑧

If Player 𝐼 = chance

 Return σ𝑎∈𝐴𝐼
𝜋𝑎

𝐶 ⋅ CValue(ℎ𝑎, 𝜋−1𝜋𝑎
𝐶 , 𝜋1)

If Player 𝐼 = 2

 Return σ𝑎∈𝐴𝐼
𝑦𝑎 ⋅ CValue(ℎ𝑎, 𝜋−1𝑦𝑎 , 𝜋1) 

If Player 𝐼 = 1

 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += 𝜋−1 ⋅ CValue ℎ𝑎, 𝜋−1, 𝜋1𝑥𝑎

 Set 𝑞 𝐼 = 𝜋1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ CValue ℎ𝑎, 𝜋−1, 𝜋1𝑥𝑎

CValue(∅, 1)



The Overall Equilibrium Algorithm with CRM
After each period 𝑡 ∈ 1, … , 𝑇 :
• With last period behavior strategies 𝑥𝑡 , 𝑦𝑡  call CValue(∅, 1, 1)

• Store 𝑢𝑡,𝑎  and 𝑞𝑡 𝐼  for each action 𝑎 and infoset 𝐼 of P1
• Symmetrically, do so for player P2
• Update strategies at all information sets

∀𝑗 ∈ 𝒥1:  𝑥𝑡+1
𝑗

← Update 𝑢𝑡
𝑗

, ∀𝑗 ∈ 𝒥2: 𝑦𝑡+1
𝑗

← Update 𝑢𝑡
𝑗

∀𝐼 ∈ ℐ1∀𝑎 ∈ 𝐴𝐼: 𝑥𝑎
∗ =

σ𝑡 𝑞𝑡 𝐼 𝑥𝑡,𝑎

σ𝑡 𝑞𝑡 𝐼

∀𝐼 ∈ ℐ2∀𝑎 ∈ 𝐴𝐼: 𝑦𝑎
∗ =

σ𝑡 𝑞𝑡 𝐼 𝑦𝑡,𝑎

σ𝑡 𝑞𝑡 𝐼

Approximate Equilibrium in Behavioral Strategies

At the end:



Elements of Libratus AI

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Many real-world games are not zero-sum

Image credits: chat.openai.com



Recent Successes



Much harder to compute equilibria; 
theory typically considers relaxed solution 
concepts that are computationally easy
practice typically uses similar algorithms as in 
zero-sum games as good heuristics



No learning dynamics will converge to a 
Nash Equilibrium in every game in a 
reasonable time in the worst-case!

Look for other equilibrium concepts

Analyze special classes of games

Develop heuristics that typically converge fast in practice

Correlated equilibrium, coarse correlated equilibrium

Zero-sum games, potential games, auction games, strictly monotone games…

Fictitious play, EXP, perturbed fictitious play, best-response dynamics, self-play…



In Search for Other Equilibrium 
Concepts



Correlated Equilibrium

• A trusted third party draws strategy profiles 𝑠 = 𝑠1, … , 𝑠𝑛  of the 
game from some distribution 𝐷

• Communicates to each participant their part of the profile, i.e., the 
recommended strategy 𝑠𝑖

• The distribution 𝐷 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  𝐸𝑠∼𝐷 𝑢 𝑠 𝑠𝑖  ≥  𝐸𝑠∼𝐷 𝑢 𝑠𝑖

′, 𝑠−𝑖 𝑠𝑖

Expected utility of choosing 𝑠𝑖  
when recommended 𝑠𝑖

Expected utility of deviating to 𝑠𝑖
′ 

when recommended 𝑠𝑖

For any recommendation 𝑠𝑖  
and possible deviation 𝑠𝑖

′ ≥



Correlated Equilibria are Tractable

• Define a variable 𝜋 𝑠  for every strategy profile 𝑠 ∈ 𝑆1 × ⋯ × 𝑆𝑛

• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠  Δ𝑖 𝑠, 𝑠𝑖
′ ≥ 0

• A Linear Program with variables 𝜋 𝑠



Learning Dynamics and 
Correlated Equilibria



Regret vs Correlated Equilibrium

• No-regret property, implies

∀𝑠𝑖
′: 

𝑠

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ − ǁ𝜖 𝑇, 𝛿 → 0

• Correlated equilibrium requires conditioning on recommendation

∀𝑠𝑖
∗, 𝑠𝑖

′: 

𝑠:𝑠𝑖=𝑠𝑖
∗

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ 0

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

At subset of periods 
when played 𝒔𝒊

∗
You don’t regret 
switching to 𝒔𝒊

′

Distributions that satisfy this are 
called Coarse Correlated Equilibria



No-Swap Regret!

• No-regret property requires

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)

• No-swap regret property requires

∀𝜙:
1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥
1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝜙 𝑠𝑖
𝑡 , 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)



Theorem. If all players use no-swap regret 
algorithms, then the empirical joint distribution 
converges to a Correlated Equilibrium
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Sum: The Reduction Protocol

Master Algorithm (M)ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret 

in periods when 1 was played 

…
…

𝐴𝑖𝑡
Responsible for controlling regret 

in periods when 𝑖𝑡 was played 

𝐴𝑛
Responsible for controlling regret 

in periods when 𝑛 was played 

𝐴𝑗𝑡
Responsible for controlling regret 

in periods when 𝑗𝑡 was played 

…

𝑧𝑡
𝑗𝑡ℓ𝑡

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen 
algorithm

𝑧𝑗
𝑡 = Pr(𝑀 chooses action 𝑗)

Update each 𝐴𝑗  with the 
expected value vector 𝑧𝑡

𝑗ℓ𝑡

𝑧𝑡
𝑖𝑡ℓ𝑡

𝑧𝑡
1ℓ𝑡

𝑧𝑡
𝑛ℓ𝑡

𝑝𝑡
𝑖𝑡

ℓ𝑡

Choose 𝑞𝑡 to achieve consistency on average! 
Pr(𝑀 chooses action 𝑖)  ≈ Pr(𝑀 chooses algo 𝑖)



Sum: The reduction protocol

• At each period we choose each action with probability
𝑧𝑡

𝑗
= Pr 𝑀 choose action 𝑗

= 

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗

• We update each algorithm 𝐴𝑗  with loss vector 

𝑧𝑡
𝑗
ℓ𝑡 = Pr 𝑀 choose action 𝑗 ⋅ loss vector

• The distribution over algorithms 𝑞𝑡  is chosen such that

Pr 𝑀 choose action 𝑗 ≈ Pr(𝑀 choose algo 𝐴𝑗)

𝑞𝑡
𝑖 𝑝𝑡

𝑖𝑗



Recap: Choosing Distribution over Algos

Corollary. If we choose 𝑞𝑡  as stationary distribution of the Markov 
Chain defined by transition probabilities Pr i → j = 𝑝𝑡

𝑖𝑗  then 

Pr 𝑀 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

Therefore

Swap Regret of Master = Total Fixed Action Regret of Algos → 0



Sum: The reduction protocol

• At each period calculate stationary distribution 𝑞𝑡  of the Markov 
Chain defined by the transition probabilities Pr 𝑖 → 𝑗 = 𝑝𝑡

𝑖𝑗

• Choose each action with probability

𝑧𝑡
𝑗

= Pr 𝑀 choose action 𝑗 = Pr 𝑀 choose algo 𝑗 = 𝑞𝑡
𝑗

• Update each algorithm 𝐴𝑗  with loss vector 

𝑧𝑡
𝑗
ℓ𝑡 = Pr 𝑀 choose action 𝑗 ⋅ loss vector



Overall Algorithm using EXP for each Algo

Initialize Pt with each row being the uniform distribution

For t in 1..T

    # Calculate choice probability q of master based on

    # choice probabilities Pt of algos

    Calculate stationary distribution q of matrix Pt

    Draw action jt based on distribution q

    Observe loss vector lt

    # update each algorithms choice probabilities

    For i in 1..n

        Calculate perceived loss plt[i] = q[i] * lt  

        Pt[i] = EXP-Update(Pt[i], plt[i])



Recap: Final Theorem

Theorem. If we choose 𝑞𝑡  as stationary distribution of the Markov 
Chain defined by transition probabilities Pr i → j = 𝑝𝑡

𝑖𝑗   and each 
algorithm updates their choice probabilities using the EXP rule then

Average Swap Regret of Master ≤ 2𝑛
2 log(𝑛)

𝑇
→ 0



Recent example 
research in multi-
agent RL using 
Correlated 
Equilibrium 
Techniques



Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research

1

2

3

4

5

6

7
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Credits: https://www.wsj.com/articles/sothebys-sells-7-3-billion-in-art-fueled-by-moneyed-millennials-11639581146 

https://www.wsj.com/articles/sothebys-sells-7-3-billion-in-art-fueled-by-moneyed-millennials-11639581146


Sum: Auction Applications

• Traditionally, selling of luxury goods, art
• Digital auction markets for goods (eBay)
• Energy markets
• Digital ad markets (sponsored search, display ads, amazon ads)
• Spectrum auctions
• Government procurement auctions
• Web3.0 transaction protocols



Auction Basics

• 𝑛 bidders are interested in acquiring an item

• Bidder 𝑖 has value 𝑣𝑖  for the item
• Value is known only to them (private information)
• If bidder wins the item (𝑥𝑖 = 1) they gain a value 𝑣𝑖

• If at the end they are asked to pay a price 𝑝𝑖  they gain

𝑢𝑖 𝑥𝑖 , 𝑝𝑖; 𝑣𝑖 = 𝑣𝑖 ⋅ 𝑥𝑖 − 𝑝𝑖



Sum: First Price

• First Price is arguably the simplest auction rule
• It can be hard to strategize in such an auction
• The auction can lead to inefficient allocations

• Though approximately efficient
• Still used in practice in many settings (e.g. online advertising, 

government procurement)
• Primarily because it has very transparent rules



Sum: Second Price

• Second Price is arguably the simplest truthful auction rule
• It is very easy to strategize in such an auction (be truthful)
• Auction always leads to efficient allocations (highest value wins)
• Auction can be run very quickly (computationally efficient)

• Still not always the auction used in many places
• Primarily because it has not very transparent rules
• Susceptible to collusion and manipulations by the auctioneer



Sponsored Search Auctions

• Now we have many items to sell
• Slots on a web impressions

• Higher slots get more clicks!
• Each slot has some probability of click

𝑎1 > 𝑎2 > ⋯ > 𝑎𝑚

• Bidders have a value-per-click 𝑣𝑖

𝑎1

𝑎2

𝑎3

𝑎4



𝑎1

𝑎2

𝑎3

𝑎4

Generalized Second Price (GSP) Auction

• Bidders submit a bid-per-click 𝑏𝑖

• Slots allocated in decreasing order 
of bids

• Bidder 𝑖 is allocated slot 𝑗𝑖 𝑏

• Bidder pays the next highest bid 
when clicked

𝑢𝑖 𝑏; 𝑣𝑖 = 𝑎𝑗𝑖 𝑏 ⋅ 𝑣𝑖 − 𝑏 𝑗𝑖 𝑏 +1

𝑏 1

𝑏 2

𝑏 3

𝑏 4

≥
≥

≥
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Credits: https://arxiv.org/abs/1505.00720 

https://arxiv.org/abs/1505.00720


Lecture 10



Right intuition, why Second-Price is truthful

• Second price is truthful not because we charge next highest bid
• Second price is truthful not because we charge smallest bid to 

maintain the same allocation

• Second price is truthful because we charged the winner their 
“externalities to the rest of society”



The Vickrey-Clarke-Groves (VCG) 
Mechanism



General Auction (Mechanism Design) Setting

• Auctioneer (Designer) wants to choose among set of outcomes 𝑂
• Each bidder 𝑖 has some value for each outcome 𝑣𝑖 𝑜 ∈ 𝑅

• The value function 𝑣𝑖  is called the type of player 𝑖
• Designer elicits types/bids from players 𝑏 = 𝑏1, … , 𝑏𝑛

• Designer chooses allocation that maximizes the reported welfare

𝑥 𝑏 = argmax
𝑜∈𝑂

𝑅𝑊 𝑜; 𝑏 ≔ 

𝑖=1

𝑛

𝑏𝑖 𝑜

Total Reported 
Welfare



General Auction (Mechanism Design) Setting

• Designer chooses allocation that maximizes the reported welfare

𝑥 𝑏 = argmax
𝑜∈𝑂

𝑅𝑊 𝑜; 𝑏 ≔ 

𝑖=1

𝑛

𝑏𝑖 𝑜

• Charges to each player their externalities as payment

𝑝𝑖 𝑏 = max
𝑜∈𝑂



𝑗≠𝑖

𝑏𝑗 𝑜 − 

𝑗≠𝑖

𝑏𝑗 𝑥 𝑏 ≥ 0

RWelfare of others 
without me

RWelfare of others 
with me

Why?



Credits: https://rethinkmedia.org/blog/facebook-instagram-advertising-what-you-need-know-get-started 

https://rethinkmedia.org/blog/facebook-instagram-advertising-what-you-need-know-get-started


Learning in Non-Truthful Auctions



Learning how to bid in auctions

• Given the complexity of digital auction markets
• Given the hardness of strategizing in non-truthful auctions
• Many of these auctions are repeated!

• It makes sense to study learning over time, to decide how to bid

• How do we learn over time when we repeatedly participate in an 
auction? Can we compete with the best fixed bid in hindsight?



No-Regret Learning with Limited Feedback

• Want to choose my bids 𝑏𝑖
𝑡, based on algorithm that guarantees

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑏𝑡 ≥ max
𝑏𝑖∈ 𝑁

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑏𝑖 , 𝑏𝑡 − 𝜖 𝑇

• Seems like a standard 𝑁 action no-regret problem

• What’s the catch! I don’t receive after each period the utility for all my 
actions. Only the utility for action I took!

• Limited Feedback. I cannot calculate how much I would have gotten 
with any other bid (e.g. in an FP, solely knowing whether I won or not). 



No-Regret Learning with Bandit Feedback

At each period 𝑡
• Adversary chooses a loss vector ℓ𝑡 ∈ 0, 1 𝑁

• I choose an action 𝑖𝑡  (not knowing ℓ𝑡)

• I observe loss of my chosen action ℓ𝑡
𝑖𝑡

• I want to guarantee small expected regret with any fixed action:

max
𝑖∈𝑁

𝐸
1

𝑇


𝑡=1

𝑇

ℓ𝑡
𝑖𝑡 − ℓ𝑡

𝑖 ≤ 𝜖 𝑇



The EXP Algorithm with Bandit Feedback

Initialize pt to the uniform distribution

For t in 1..T

    Draw action jt based on distribution pt

    Observe loss of chosen action lt[jt]

    Construct un-biased proxy loss vector

 ltproxy[j] = 1(jt=j) * lt[jt] / pt[jt]

    Update probabilities based on EXP update

 pt = pt * exp(-eta * ltproxy)

 pt = pt / sum(pt)



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ



𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on history, 
have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, then regret 
of EXP is bounded as:

Regret − EXP 𝑇 ≤
𝜂

𝑇


𝑡

𝐸 

𝑗

𝑝𝑡
𝑗

𝐸 ෨ℓ𝑡
𝑗

2
+

log(𝑁)

𝜂𝑇

(EXP)
Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

Expected Average 
“Variance”?

ℛ 𝑝 = 

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖



Update: Regret of EXP

𝑝𝑡 = argmin
𝑝∈Δ



𝜏<𝑡

⟨𝑝, ෨ℓ𝜏⟩ +
1

𝜂
ℛ(𝑝)

Theorem. Assuming ෨ℓ𝑡  are random proxies that, conditional on history, 
have expected value equal to true loss vector ℓ𝑡  and ෨ℓ𝑡 ≥ 0, then regret 
of EXP is bounded as:

Regret − EXP 𝑇 ≤ 𝜂𝑁 +
log 𝑁

𝜂𝑇
⇒ Regret − EXP 𝑇 ≲

𝑁 log 𝑁

𝑇

(EXP) ℛ 𝑝 = 

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

Negative
Entropy

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ෨ℓ𝑡−1

For 𝜂 ∼
log 𝑁

𝑁𝑇

See Lemma 20 and Theorem 2.22 and Corollary 4.2 of mal-018.dvi (huji.ac.il)

https://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf


Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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What if we want to maximize 
revenue?



What if we post a reserve price?



How do we optimize over all 
possible mechanisms!



Single-Parameter Settings

• Each bidder has some value 𝑣𝑖  for being allocated
• Bidders submit a reported value 𝑏𝑖  (without loss of generality)
• Mechanism decides on an allocation 𝑥 ∈ 𝑋 ⊆ 0,1 𝑛

• Mechanism fixes a probabilistic allocation rule:
𝑥 𝑏 ∈ Δ 𝑋

• First question. Given an allocation rule, when can we find a 
payment rule 𝑝 so that the overall mechanism is truthful?

• If we can find such a payment, we will say that 𝑥 is implementable



Any implementable allocation rule must 
be monotone!
“If not allocated with value 𝑣, I should not 
be allocated if I report a lower value!”



For any dominant-strategy truthful, NNT and 
IR mechanism, given an allocation rule, utility 
and payment are uniquely determined!

𝑣

𝐴

𝑥 𝑣

𝑢 𝑣
𝑝 𝑣



Myerson’s Theorem. When valuations are independently 
distributed, for any dominant-strategy truthful, NNT and IR 
mechanism, the payment contribution of each player is their 
expected virtual value

𝐸 𝑝𝑖 𝑣 = 𝐸 𝑥𝑖 𝑣 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Myerson’s Optimal Auction. Assuming that virtual value 
functions are monotone non-decreasing, the optimal 
mechanism is the mechanism that maximizes virtual welfare

𝑥 𝑣 = argmax𝑥∈𝑋 

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖 ,  𝑝𝑖 𝑣 = 𝑣𝑖𝑥𝑖 𝑣 − න
0

𝑣𝑖

𝑥𝑖 𝑧, 𝑣−𝑖 𝑑𝑧

Rev = 𝐸 max
𝑥∈𝑋



𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖
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Can non-truthful mechanisms 
generate higher revenue at some 
Bayes-Nash equilibrium?



Bayesian-Incentive Compatible Mechanism

• A direct mechanism elicits private values and comprises of an 
allocation function 𝑥 and a payment function 𝑝

• BIC. bidders have no incentive to deviate from truthful reporting

𝐸 𝑢𝑖 𝑣; 𝑣𝑖 ∣ 𝑣𝑖 ≥ 𝐸 𝑢𝑖 𝑣𝑖
′, 𝑣−𝑖; 𝑣𝑖 ∣ 𝑣𝑖

𝐸 𝑣𝑖𝑥𝑖 𝑣 − 𝑝 𝑣 ∣ 𝑣𝑖 ≥ 𝐸 𝑣𝑖𝑥𝑖 𝑣𝑖
′, 𝑣−𝑖 − 𝑝𝑖 𝑣𝑖

′, 𝑣−𝑖 ∣ 𝑣𝑖

• Implies “interim” expected utility, allocation and payment for bidder 𝑖

ො𝑢𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑢𝑖 𝑣 , ො𝑥𝑖 𝑣𝑖 = 𝐸𝑣−𝑖

𝑥𝑖 𝑣 , Ƹ𝑝𝑖 𝑣𝑖 = 𝐸𝑣−𝑖
𝑝𝑖 𝑣

𝐸 𝑣𝑖𝑥𝑖 𝑣 − 𝑝 𝑣 ∣ 𝑣𝑖 ≥ 𝐸 𝑣𝑖𝑥𝑖 𝑣𝑖
′, 𝑣−𝑖 − 𝑝𝑖 𝑣𝑖

′, 𝑣−𝑖 ∣ 𝑣𝑖



For any BIC, NNT and BIR mechanism (and 
any BNE of a non-truthful mechanism), given 
the interim allocation rule, utility and payment 
are uniquely determined!

𝑣𝑖

𝐴

ො𝑥𝑖 𝑣𝑖

ො𝑢𝑖 𝑣𝑖
Ƹ𝑝𝑖 𝑣𝑖



Myerson’s Theorem. When valuations are independently 
distributed, for any BIC, NNT and IR mechanism (and any BNE 
of a non-truthful mechanism), the payment contribution of 
each player is their expected virtual value

𝐸 ො𝑝𝑖 𝑣𝑖 = 𝐸 ො𝑥𝑖 𝑣𝑖 ⋅ 𝜙𝑖 𝑣𝑖 , 𝜙𝑖 𝑣𝑖 = 𝑣𝑖 −
1 − 𝐹𝑖 𝑣𝑖

𝑓𝑖 𝑣𝑖



Myerson’s Optimal Auction. Assuming that virtual value 
functions are monotone non-decreasing, the mechanism that 
maximizes virtual welfare, achieves the largest possible 
revenue among all possible mechanisms and Bayes-Nash

𝑥 𝑣 = argmax𝑥∈𝑋 

𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖 ,  𝑝𝑖 𝑣 = 𝑣𝑖𝑥𝑖 𝑣 − න
0

𝑣𝑖

𝑥𝑖 𝑧, 𝑣−𝑖 𝑑𝑧

Rev = 𝐸 max
𝑥∈𝑋



𝑖

𝑥 ⋅ 𝜙𝑖 𝑣𝑖



Optimal auction is 
1) cumbersome, 2) hard to understand, 3) hard to 
explain, 4) does not always allocate to the highest 
value player, 5) discriminates a lot, 6) is many 
times counter-intuitive, 7) can seem unfair!



Are there simpler auctions that 
always achieve almost as good 
revenue?



Second-Price with Player-Specific Reserves

• What if we simply run a second price auction but have different 
reserves for each bidder

• Each bidder 𝑖 has a reserve price 𝑟𝑖

• Reject all bidders with bid below the reserve
• Among all bidders with value 𝑣𝑖 ≥ 𝑟𝑖, allocate to highest bidder
• Charge winner max of their reserve and the next highest surviving bid

Theorem. There exist personalized reserve prices such that the above 
auction achieves at least ½ of the optimal auction revenue!



Second-Price with Player-Specific Reserves

Theorem. There exist personalized reserve prices such that the 
above auction achieves at least ½ of the optimal auction revenue!

• Choose 𝜃 such that:

Pr max
𝑖

𝜙𝑖
+ 𝑣𝑖 ≥ 𝜃 = 1/2

• Then set personalized reserve prices implied by:
𝜙𝑖

+ 𝑣𝑖 ≥ 𝜃 ⇔ 𝑣𝑖 ≥ 𝑟𝑖



Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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All these designs required knowledge 
of distributions of values 𝐹𝑖!



What can we do if we only have 
data from 𝐹𝑖?



Basic Elements of Statistical 
Learning Theory



General Framework

• Given samples 𝑆 = 𝑣1, … , 𝑣𝑚  that are i.i.d. from distribution 𝐹
• Given a hypothesis/function space 𝐻
• Given a reward function 𝑟 𝑣; ℎ

• Goal is to maximize the expected reward over distribution 𝐹
𝑅 ℎ = 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ



Desiderata

• Without knowledge of distribution 𝐹, we want to produce a 
hypothesis ℎ𝑆, that achieves good reward on this distribution

• For some 𝜖 𝑚 → 0 as the number of samples grows:

𝑅 ℎ𝑆 ≝ 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖𝛿 𝑚



Desiderata (Mechanism Design from Samples)

• Without knowledge of distribution 𝐹, we want to produce a 
hypothesis ℎ𝑆, that achieves good reward on this distribution

• For some 𝜖 𝑚 → 0 as the number of samples grows:

𝑅 ℎ𝑆 ≝ 𝐸𝑣∼𝐹 𝑟 𝑣; ℎ ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖 𝑚

• Either in expectation over the draw of the samples, i.e.

𝐸𝑆 𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

𝑅 ℎ − 𝜖 𝑚

• Or with high-probability over the draw of the samples, i.e.

w. p. 1 − 𝛿:  𝑅 ℎ𝑆 ≥ max
ℎ∈𝐻

 𝑅 ℎ − 𝜖𝛿 𝑚

Distribution of 
value profiles 𝐹

Revenue



𝑖

𝑝𝑖 𝑣



The Obvious Algorithm

• We want to choose 𝑟 that maximizes

max
ℎ∈𝐻

𝑅(ℎ) ≝ 𝐸𝑣∼𝐹 𝑟(𝑣; ℎ) , (population objective)

• With 𝑚 samples, we can optimize average reward on samples!

max
ℎ∈𝐻

 𝑅𝑆 ℎ ≝
1

𝑚


𝑗=1

𝑚

𝑟 𝑣𝑗; ℎ , (empirical objective)

• This approach is called Empirical Reward Maximization (ERM)
• Intuition. Since each value is drawn from distribution 𝐹 the empirical 

average over i.i.d. draws from 𝐹, by law of large numbers, should be 
very close to expected value
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If we can bound representativeness
Rep = 𝐸𝑆 sup

ℎ
𝑅𝑆 ℎ − 𝑅(ℎ) ≤ 𝜖 𝑚

Then we can bound expected performance
𝐸 𝑅 ℎ𝑆 ≥ 𝐸 𝑅 ℎ∗ − 𝜖 𝑚
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Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝑅𝐷 ℎ𝑆

𝑆

Rep∗ = 𝐸 𝑅𝑆 ℎ𝑆 − 𝐸𝑆′ 𝑅𝑆′ ℎ𝑆

Choose ℎ𝑆 ∈ 𝐻 to maximize 
average reward on 𝑆

Learner

Rep∗ = 𝐸𝑆,𝑆′ 𝑅𝑆 ℎ𝑆 − 𝑅𝑆′ ℎ𝑆

Population of Samples

𝑣3𝑣2𝑣1 𝑣𝑖 𝑣𝑚
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′
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′

𝑣1
′

𝑣𝑖
′

𝑣𝑚
′

𝑆′

…
…

… …

Draw 2𝑚 samples 𝑄

𝑣3
′𝑣2

′𝑣1
′ 𝑣𝑖

′ 𝑣𝑚
′

𝑧3

𝑧2

𝑧1

𝑧𝑖

𝑧𝑚

𝑆

…

Flip a coin 𝜎𝑖 ∈ −1, 1  to decide 
which goes into 𝑆 and which to 𝑆′

𝑧3
′

𝑧2
′

𝑧1
′

𝑧𝑖
′

𝑧𝑚
′

𝑆′

𝑄

𝜎𝑖 ⋅ 𝑟 𝑣𝑖 , ℎ𝑆 − 𝑟 𝑣𝑖
′, ℎ𝑆

…

…
…

…
…

train test

Equivalent Process

This is how much each pair of samples 
contributes to the discrepancy between 

train and test reward 

Rep∗ ≤ 𝐸𝑄,𝜎 max
ℎ∈𝐻

1

𝑚


𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ − 𝑟 𝑣𝑖
′; ℎ

For any 𝑄, 𝜎, choose ℎ ∈ 𝐻 to 
maximize the average discrepancy

Adversary



Empirical Rademacher Complexity

Empirical Rademacher Complexity of hypothesis space 𝐻 on samples 𝑆:

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ

Theorem. We have thus proven that: 

𝐸 𝑅 ℎ𝑆 ≥ 𝑅 ℎ∗ − 𝐸𝑆 Rad 𝑆, 𝐻



Massart’s lemma. For any finite hypothesis space 𝐻:
 

Rad 𝑆, 𝐻 ≤ 2
2log 𝐻

𝑚



Growth Rate of Function Space

• Suppose we can find a finite subspace ෩𝐻𝑆 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆 that has the exact same behavior on the samples 𝑆

∀𝑣𝑖 ∈ 𝑆: 𝑟 𝑣𝑖; ℎ = 𝑟 𝑣𝑖; ෨ℎ

• Empirical Rademacher Complexity of 𝐻 is upper bounded by that of ෩𝐻𝑆

• Growth Rate 𝜏 𝑚, 𝐻 : the size of the smallest ෩𝐻𝑆 that satisfies the above 
property, in the worst case over sample dataset of size 𝑚

• Example. For threshold classifiers 𝜏 𝑚, 𝐻 = 𝑚 + 1

Theorem. For any hypothesis 𝐻

Rad 𝑆, 𝐻 ≤ 2
2log 𝜏 𝑚, 𝐻

𝑚

SideNote For classification, a seminal notion 
is the Vapnik-Chervonenkis (VC) dimension: 
size 𝑑 of largest dataset that the hypothesis 

can assign labels in all possible manners

Cannot be assigned by 
threshold classifiers ⇒ 𝑑 = 2

Sauer’s Lemma. If has VC-dim ≤ 𝑑 then 𝜏 𝑚, 𝐻 ≾ 2𝑑 ⇒ Rad 𝑆, 𝐻 ≾ 𝑑/𝑚



Discretization on Samples

• Suppose we can find a finite subspace ෩𝐻𝑆,𝜖 ⊆ 𝐻 such that every ℎ ∈ 𝐻 has a 
representative ෨ℎ ∈ ෩𝐻𝑆,𝜖  that has approximately the same behavior on the samples 𝑆

∀𝑣𝑖 ∈ 𝑆: 𝑟 𝑣𝑖; ℎ − 𝑟 𝑣𝑖; ෨ℎ ≤ 𝜖

• Empirical Rademacher Complexity of 𝐻 upper bounded approximately by ෩𝐻𝑆,𝜖

Rad 𝑆, 𝐻 ≔ 2𝐸𝜎 max
ℎ∈𝐻

1

𝑚


𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ

≤ 2𝐸𝜎 max
ℎ∈ ෩𝐻𝑆,𝜖

1

𝑚


𝑖=1

𝑚

𝜎𝑖 ⋅ 𝑟 𝑣𝑖; ℎ + 2𝜖 ≤ 2
2log ෩𝐻𝑆,𝜖

𝑚
+ 2𝜖



Second Price with Player-Specific Reserves

• Suppose we are given a set of samples 𝑆 of 𝑛 bidder value profiles
• Optimize over the space of Second-Price with Player-Specific Reserves
• For every price vector 𝑟 = (𝑟1, … , 𝑟𝑛) we want to find a vector ǁ𝑟 that 

achieves almost the same revenue as 𝑟 for every value in the samples
∀𝑣𝑖 = 𝑣𝑖1, … , 𝑣𝑖𝑛 ∈ 𝑆: rev 𝑣𝑖; 𝑟 − rev 𝑣𝑖; ǁ𝑟 ≤ 𝜖

• For every 𝑟𝑗, pick maximum of {largest multiple of 𝜖 below 𝑟, largest 
sampled value for bidder 𝑗 below 𝑟}. At most 𝑚 + 1/𝜖 𝑛 prices.

Rad 𝑆, 𝐻 ≤ 2
2𝑛log 𝑚 + 1/𝜖

𝑚
+ 2𝜖 ≤ 4

2𝑛log 2𝑚

𝑚

𝜖 = 1/𝑚



Competing with the Myerson Auction

• Want to optimize over virtual welfare maximizing mechanisms
• For each bidder 𝑖, we assign a monotone virtual value function 𝜙𝑖

• Allocate to the bidder with highest positive virtual value 𝜙𝑖 𝑣𝑖

• Charge dominant strategy truthful payments
𝑥𝑖 𝑣𝑖

𝑝1

𝑝𝑖 𝑣 = 𝜃

1
𝑣𝑖

Winning threshold:
𝜃 = 𝜙𝑖

−1 max
𝑗≠𝑖

𝜙𝑗 𝑣𝑗 , 𝜂𝑖

𝜃

1



Optimizing over Virtual Value Functions

• ERM optimizes over all monotone functions for each bidder
• This space is infinite and a bit harder to discretize
• We will see that monotonicity is important!

• We introduce a variant of Rademacher complexity analysis that 
will help us in the analysis of ERM over virtual welfare maximizers

𝑝1

1
𝑣𝑖

𝜙𝑖 𝑣𝑖

𝜙𝑖



Optimizing over Virtual Value Functions

• ERM optimizes over all monotone functions for each bidder
• For any monotone function, we receive strictly larger payment had 

we used step-function on the samples (threshold to win is higher)!

• 𝐻𝑄  contains only monotone step functions that change on one of 
the 2𝑚 samples for each bidder

𝑝1

1
𝑣𝑖

𝜙𝑖 𝑣𝑖

𝜙𝑖

𝑣4𝑖𝑣1𝑖 𝑣2𝑖 𝑣3𝑖

Samples of bidder 𝑖 values



Coarsen Space of Mechanisms we Optimize

• Consider only virtual value functions that take values on an 𝜖-grid
𝜙𝑖 𝑣𝑖 ∈ −𝜖, 0, 𝜖, … , 1

• These step functions in 𝐻𝑄 can be described by
“for each value 𝑟 on the grid, specify the smallest of the 2𝑚 sampled 
values for which the rank of the bidder goes above 𝑟”

• These are ≈ 2𝑚
1

𝜖 combinations for each player

𝑝1

1

𝑣𝑖

𝜙𝑖 𝑣𝑖

𝜙𝑖

𝑣4𝑖𝑣1𝑖 𝑣2𝑖 𝑣3𝑖

−𝜖

𝜖
2𝜖
3𝜖
4𝜖
5𝜖
6𝜖
7𝜖
1



Putting it all together

• If we output the mechanism ℎ𝑆 that optimizes the empirical 
revenue among all monotone virtual welfare maximizers, with 
virtual value functions taking values in an 𝜖-grid

𝐸𝑆 Rev ℎ𝜖 ≳ Rev ℎ∗ −
2 nlog 2𝑚

𝜖 ⋅ 𝑚
− 𝜖

• For 𝜖 =
2𝑛 log 2𝑚

𝑚

1

3

𝐸𝑆 Rev ℎ𝜖 ≳ Rev ℎ∗ − 2
2𝑛 log 2𝑚

𝑚

1
3



Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Basic Auctions and Learning to bid in auctions (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: implement simple and optimal auctions,   

analyze revenue empirically

• Basics of Statistical Learning Theory (T)
• Optimizing Mechanisms from Samples (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Where do we get these samples from?



Typically, from historical executions of a truthful 
mechanism

Example: if we had run second price auctions in the 
past, we can use the bids of the players, in each of these 
historical auctions, as samples from their values



What if our auction platform is based on a non-truthful 
auctions? 

Example: If we typically run a First Price Auction, now 
we have historical samples of bids in an FPA. These are 
not samples of values; bidders submit bids that are 
much lower than values in an FPA.



How do we go from bids to values?



Econometrics in Games 
and Auctions



Econometrics in Games and Auctions

• We are given data from actions of players in a game (and 
potentially auxiliary contextual information about the game)

• Multiple instances were players played the same type of game

• We don’t know the exact utilities of the players in the game

• We want to use the data to learn the parameters of the utilities of 
the players in the game or the distribution of these parameters



If I know the equilibrium bid distribution 𝐺, then 
whenever I see a bid 𝑏𝑖, I can reverse engineer and 
uniquely determine the value that led to such a bid

𝑣𝑖 = 𝑏𝑖 +
1

𝑛 − 1
𝑔 𝑏𝑖

𝐺 𝑏𝑖

observed 
equilibrium bid

More competition ⇒ less “value reduction”

unobserved 
value Reverse hazard ratio 

of distribution of bids
“Probability that opponent 
bid is immediately below 

𝑏𝑖  given that it is below 𝑏𝑖”



Estimating CDFs and PDFs of Bids from FPA Bid Samples
Given bids 𝑏1, … , 𝑏𝑚 of players in instances of First Price 
Auction the CDF and PDF of the bid distribution can be 
approximated by empirical CDF and a Kernel Density Estimate

𝐺 𝑧 ≝ Pr 𝑏 < 𝑧 ≈
1

𝑛 ⋅ 𝑚


𝑖,𝑗

1 𝑏𝑖𝑗 < 𝑧 ≝ 𝐺 𝑧

𝑔 𝑧 = 𝜕𝑧𝐺 𝑧 , ො𝑔 𝑧 =
1

𝑛 ⋅ 𝑚


𝑖,𝑗

1

ℎ𝑛
𝐾

𝑏𝑖𝑗 − 𝑧

ℎ𝑛

Fraction of samples that ≈lie within ℎ 
from 𝑧, divided by region length



Estimating CDFs and PDFs of Values from FPA Bid Samples
Given bids 𝑏1, … , 𝑏𝑚 of players in instances of First Price Auction the 
CDF and PDF of the value distribution can be approximated using the 
plug-in approach, by approximately “inverting the bid” and using the 
“recovered value as a truthful sample”

ො𝑣𝑖𝑗 = 𝑏𝑖𝑗 +
𝐺 𝑏𝑖𝑗

𝑛 − 1  ො𝑔 𝑏𝑖𝑗

𝐹 𝑧 ≝
1

𝑛 ⋅ 𝑚


𝑖,𝑗

1 ො𝑣𝑖𝑗 < 𝑧 , መ𝑓 𝑧 =
1

𝑛 ⋅ 𝑚


𝑖,𝑗

1

ℎ𝑛
𝐾

ො𝑣𝑖𝑗 − 𝑧

ℎ𝑛



Example 2: Econometrics in Entry Games

• Two firms deciding whether to enter a market
• Example: airline firms deciding whether to enter a particular route
• Observe entry decisions 𝑦𝑖 ∈ 0, 1  for different markets with 

characteristics 𝑥
• Each firm has profits from entering

𝜋1 = 𝑥⊤𝛽1 + 𝑦2𝛿1 + 𝜖1
𝜋2 = 𝑥⊤𝛽2 + 𝑦1𝛿2 + 𝜖2

• Learn parameters 𝛽, 𝛿

effect of market 
characteristics

effect of 
competition

Private costs or payoff 
shocks 𝜖𝑖 ∼ 𝐹𝑖

known only by player 𝒊



Key Idea: Two Stage Estimation

Two-Stage Estimation Approach 
[Hotz-Miller’93, Bajari-Benkard-Levin’07, Pakes-Ostrovsky-Berry’07, 
Aguirregabiria-Mira’07, Bajari-Hong-Chernozhukov-Nekipelov’09]

1. Compute non-parametric estimate ො𝜎𝑖(𝑥) of function 𝜎𝑖 𝑥  from data

2. Run parametric regressions for each agent individually using that:

𝜎𝑖 𝑥 ∝ exp[𝑥 ⋅ 𝛽𝑖 + ො𝜎−𝑖 𝑥  𝛿𝑖]

3. The latter is a simple logistic regression for each player to estimate 𝛽𝑖 , 𝛿𝑖
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What if all we want is to compare 
between auctions A and B in 
terms of revenue?



What I could potentially do is: 
For each auction flip a coin; 
If heads, then run auction A else run auction B

After many auctions compare average 
revenue from A auctions, vs., average revenue 
from B auctions 



We will see that it can be problematic and 
needs thought of how to analyze such 
data or structure such A/B tests!



Interference

• Social Network interference
• Equilibrium effects
• Stateful systems and time effects



A/B Testing over Position Auction 
Formats



We observe a bid distribution, described by the quantile 
function 𝑏 𝑞 , from a randomized k-unit auction (which 
chooses each k with positive probability)

For any other randomized k-unit (with probabilities 𝑤𝑘) 
first-price auction among symmetric bidders, we have:

Rev = 𝑛 

𝑘≤𝑁

𝑤𝑘 𝐸 𝑏 𝑞 ⋅ 𝑓 𝑞

for a function 𝑓 𝑞  known in closed form



With access to bidding data from a single randomized k-unit 
auction (which chooses each k with positive probability), we 
can estimate Rev of any other k-unit auction. 

Estimate CDF of bids using the empirical CDF 𝐺. 
Then use  𝑏 = 𝐺−1 and 

Rev  = 𝑛 

𝑘≤𝑁

𝑤𝑘  න
0

1

𝑏 𝑞 ⋅ 𝑓 𝑞 𝑑𝑞

By convergence rates of empirical CDF, we can show:
Rev − Rev ≾ 1/ 𝑚



What we did not learn!

• Monte-Carlo tree search 
• Neural network approximation of values
• Multi-agent RL
• Budgets in auctions
• Correlated values in auctions
• A/B testing for pricing and equilibrium effects
• Econometrics in complete info games and partial identification



Course Learning Objectives 

• Learn the fundamentals of game theory
• Learn how game theory can be applied in many real-world settings 

(e.g. ad auctions, complex games)
• Learn the fundamentals of tools from data science and ML that 

are useful in game theoretic contexts (online learning theory, 
statistical learning theory, econometrics)

• Learn how these topics can be combined to
• provide computational solutions to the design of agents that perform well 

in competitive environments
• optimize and analyze markets, mechanisms and platforms from data

• Be able to implement and code up these solutions in Python



Course Evaluations

http://course-evaluations.stanford.edu/

http://course-evaluations.stanford.edu/
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