
MS&E 233
Game Theory, Data Science and AI

Lecture 2
Vasilis Syrgkanis

Assistant Professor
Management Science and Engineering

(by courtesy) Computer Science and Electrical Engineering
Institute for Computational and Mathematical Engineering

Class Music Auction!
We will be experimenting with putting music for the first three minutes of the class as people arrive!

You have the chance to choose the song of the day!

Each of you has a total budget of 100 fake dollars for the whole class! You can choose to spend them however you
want on each lecture.

For each lecture you can choose to bid anywhere from 0 to 20 dollars.

We will then choose uniformly at random among the highest bidders. The winner of the auction will get to choose
the song of the day and they have to pay their bid, i.e. the amount they bid will be subtracted from their 100$
budget.

If you submit an illegal bid (i.e. a bid that goes beyond your total budget, your bid will be disqualified and ignored).

Please be appropriate in your choice of songs; I might need to censor and ask you to choose something else. I'll be
emailing the winner on the morning of the lecture to email me the spotify link for the song.

Submit your bid by 11:59pm the day before the lecture. You should submit your bid using the corresponding canvas
quiz that will be setup for each lecture

Class Music Auction: Game Theory, Data Science and AI (stanford.edu)

Go to canvas and check the quizzes section.

If there is no participation in the auction, I'll just choose the music myself. But that's not much fun...

Spotify playlist that will be populated with the songs we play each day:
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f6
4d8f8b797368a83ed

https://canvas.stanford.edu/courses/190932/quizzes/154392
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f64d8f8b797368a83ed
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f64d8f8b797368a83ed

Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics and applications of extensive-form games (T+A)
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of

poker

• General games and equilibria (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to

correlated equilibria in general games

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions,

implement simple and optimal auctions, analyze
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately

optimal auctions from historical samples and in an
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from

bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme,

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research

1

2

3

4

5

6

7

Introduction to Online Learning

Example

• You have a daily commute:
Stanford→Berkeley

• Every day you contemplate between
two options: (1) Bay Bridge, (2)
Dumbarton Bridge

• Don’t know which route will have more
traffic jams (due to un-predictable
events, e.g., accidents)

• You take one of the two options
• After the fact, you observe the traffic

jams that occurred on both routes

Image credits: chat.openai.com

Example in Math

• Every day 𝑡 ∈ {1, … , 𝑇} you have two
options: (1) Bay, (2) Dumbarton

• Don’t know which route will have more
traffic jams: ℓ𝑡 = ℓ1

𝑡 , ℓ2
𝑡

• You choose some option 𝑖𝑡 ∈ 1,2

• You observe the traffic jams on both
routes, i.e., you observe ℓ𝑡

Image credits: chat.openai.com

Example in Math

• Every day 𝑡 ∈ {1, … , 𝑇} you have two
options: (1) Bay, (2) Dumbarton

• Don’t know which route will have more
traffic jams: ℓ𝑡 = ℓ𝑡

1, ℓ𝑡
2

• You choose some option 𝑖𝑡 ∈ 1,2

• You observe the traffic jams on both
routes, i.e., you observe ℓ𝑡

of jams
on route (1)

ℓ𝒕
𝟏

ℓ𝒕
𝟐

𝒊𝒕

Image credits: chat.openai.com

Example in Math

• Device a choice picking algorithm 𝒊𝒕

• Goal. At end of the year, looking back,
not regret much either “always taking
Bay” or “always taking Dumbarton”

Regret(ℓ1:𝑇) =
1

𝑇
෍

𝑡=1

𝑇

ℓ𝑡
𝒊𝒕 − min

𝑖∈ 1,2

1

𝑇
෍

𝑡=1

𝑇

ℓ𝑡
𝑖

ℓ𝟏
𝒕

ℓ𝟐
𝒕

𝒊𝒕Average # of
jams you

encountered

Average # of jams
you would have

encountered had
you always chosen

bridge 𝑖

Short-hand
notation for
sequence of
loss vectors

ℓ1, … , ℓ𝑇 Image credits: chat.openai.com

A choice picking algorithm is called a no-regret learning
algorithm if the worst-case regret over any sequence of losses

𝑅 𝑇 = sup
ℓ1:𝑇

Regret ℓ1:𝑇

vanishes to zero with the number of periods

𝑅 𝑇 → 0

Elements of a No-Regret
Algorithm

Natural Algorithm

• Every day, choose option with the best historical performance

𝑖𝑡 = argmin
𝑖∈ 1,2

෍

𝜏=1

𝑡−1

ℓ𝑖
𝜏

• Many times, referred to as “Follow-the-Leader” (FTL) as we are
following the action that has the leading historical performance

Total # of jams
you on bridge 𝑖

in the past

Failure of the Natural Algorithm

• Suppose traffic jams alternate every day between the two bridges
• Suppose that ties are broken in favorite of Bay bridge

day
option

1 2 3 4 5 6 …

Bay 1 0 1 0 1 1 …

Du. 0 1 0 1 0 0 …

Choice

Failure of the Natural Algorithm

• Suppose traffic jams alternate every day between the two bridges
• Suppose that ties are broken in favorite of Bay bridge

day
option

1 2 3 4 5 6 …

Bay 1 0 1 0 1 0 …

Du. 0 1 0 1 0 1 …

Choice Bay Du. Bay Du. Bay Du. …

Historical
Losses

Bay: 0
Du.: 0

Bay: 1
Du.: 0

Bay: 1
Du.: 1

Bay: 2
Du.: 1

Bay: 2
Du.: 2

Bay: 3
Du.: 2

Failure of the Natural Algorithm

• Suppose traffic jams alternate every day between the two bridges
• Suppose that ties are broken in favorite of Bay bridge

• Total loss of algorithm is 𝑇 ⇒ Average loss is 1
• Loss of any fixed action is 𝑇/2 ⇒ Average loss 1/2

day
option

1 2 3 4 5 6 …

Bay 1 0 1 0 1 0 …

Du. 0 1 0 1 0 1 …

Choice Bay Du. Bay Du. Bay Du. …

Historical
Losses

Bay: 0
Du.: 0

Bay: 1
Du.: 0

Bay: 1
Du.: 1

Bay: 2
Du.: 1

Bay: 2
Du.: 2

Bay: 3
Du.: 2

Regret =
1

2

Problematic Traits of FTL

• The choice of an action each day is deterministic

• The chosen action is very unstable and can change even daily

Problematic Traits of FTL

• The choice of an action each day is deterministic
• We need to introduce randomization in our choices

• The chosen action is very unstable and can change even daily
• We need to make sure that our choice distribution does not

change too much at each step

Why is randomization necessary?

Theorem. Any deterministic algorithm has worst-case regret ≥ 1/2

Proof.
• Consider the sequence of losses that assign loss 1 to the choice

of the algorithm and 0 to the other choice
• Total loss of the algorithm is 𝑇 ⇒ average loss is 1
• The sum of losses of the two options is 𝑇
• Hence, one of two options must have total loss of at most 𝑇/2

• Average loss of that option is 1/2

Why is randomization necessary?

Theorem. Any deterministic algorithm has worst-case regret ≥ 1/2

Proof.
• Consider the sequence of losses that assign loss 1 to the choice

of the algorithm and 0 to the other choice
• Total loss of the algorithm is 𝑇 ⇒ average loss is 1
• The sum of losses of the two options is 𝑇
• Hence, one of two options must have total loss of at most 𝑇/2

• Average loss of that option is 1/2

Randomized Algorithms

• At each period, choose action 1 with probability 𝑝𝑡 and action 2
with probability 1 − 𝑝𝑡

• Our expected loss is
ℓ𝑡 𝑝𝑡 = 𝑝𝑡ℓ𝑡

1 + 1 − 𝑝𝑡 ℓ𝑡
2

• Our expected regret is

Regret(ℓ1:𝑇) =
1

𝑇
෍

𝑡=1

𝑇

ℓ𝑡 𝑝𝑡 − min
𝑖∈ 1,2

1

𝑇
෍

𝑡=1

𝑇

ℓ𝑡
𝑖

Expected average #
of jams you

encountered

Average # of jams you
would have

encountered had you
always chosen bridge 𝑖

Overloaded short-
hand notation for

expected loss

A randomized choice picking algorithm is called a no-regret
learning algorithm if the worst-case expected regret over any
sequence of losses

𝑅 𝑇 = sup
ℓ1:𝑇

Regret ℓ1:𝑇

vanishes to zero with the number of periods

𝑅 𝑇 → 0

Why is stability useful?

• For the FTL algorithm, regret for a loss sequence ℓ1:𝑇 is upper
bounded by stability of algorithm’s choice, under that sequence

Regret ℓ1:𝑇 ≤
1

𝑇
σ𝑡=1

𝑇 1 𝑖𝑡 ≠ 𝑖𝑡−1 =average # of changes

• Intuition. We behave as if we think that the historically best option
will be the best option for the next period; if the historically best
option change after we observe the next period loss, then our
assumption is roughly accurate

Why is stability useful?
Suppose algorithm makes relatively stable and historically well-performing choices

• Adversary chooses ℓ1:𝑇 trying to hurt us a lot, while keeping loss of one of the options small
• Assume adversary uses ℓ1:𝑇 such that option 1 will be the best performing option at the end

Regret ℓ1:𝑇 =
1

𝑇
෍

𝑡=1

𝑇

𝐸 ℓ𝑖𝑡

𝑡 − ℓ1
𝑡 =

1

𝑇
෍

𝑡=1

𝑇

𝐸 ℓ2
𝑡 − ℓ1

𝑡 1 𝑖𝑡 ≠ 1 = ෍

𝑡=1

𝑇

ℓ2
𝑡 − ℓ1

𝑡 Pr 𝑖𝑡 ≠ 1

• Adversary’s goal. Make us choose option 1 with small probability, while at the same time keeping the
difference ℓ2

𝑡 − ℓ1
𝑡 large on average

• If we are not stable, they can convince us to move to option 2, by introducing a “single bad apple
period” for option 1

• If we are stable, they need to introduce “many bad apple periods” for option 1, to make us move, which
will decrease the average difference ℓ2

2 − ℓ1
𝑡 by a lot

Why is stability useful?
Suppose algorithm makes relatively stable and historically well-performing choices

• Adversary chooses ℓ1:𝑇 trying to hurt us a lot, while keeping loss of one of the options small
• Assume adversary uses ℓ1:𝑇 such that option 1 will be the best performing option at the end

Regret ℓ1:𝑇 =
1

𝑇
෍

𝑡=1

𝑇

𝐸 ℓ𝑖𝑡

𝑡 − ℓ1
𝑡 =

1

𝑇
෍

𝑡=1

𝑇

𝐸 ℓ2
𝑡 − ℓ1

𝑡 1 𝑖𝑡 ≠ 1 = ෍

𝑡=1

𝑇

ℓ2
𝑡 − ℓ1

𝑡 Pr 𝑖𝑡 ≠ 1

Adversary goal: Make us choose option 1 with small probability, while keeping difference ℓ2
𝑡 − ℓ1

𝑡 large on
average

• If we are not stable, they can convince us to move to option 2, by introducing a “single bad apple
period” for option 1

• If we are stable, they need to introduce “many bad apple periods” for option 1, to make us move, which
will decrease the average difference ℓ2

2 − ℓ1
𝑡 by a lot

Why is stability useful?
Suppose algorithm makes relatively stable and historically well-performing choices

• Adversary chooses ℓ1:𝑇 trying to hurt us a lot, while keeping loss of one of the options small
• Assume adversary uses ℓ1:𝑇 such that option 1 will be the best performing option at the end

Regret ℓ1:𝑇 =
1

𝑇
෍

𝑡=1

𝑇

𝐸 ℓ𝑖𝑡

𝑡 − ℓ1
𝑡 =

1

𝑇
෍

𝑡=1

𝑇

𝐸 ℓ2
𝑡 − ℓ1

𝑡 1 𝑖𝑡 ≠ 1 = ෍

𝑡=1

𝑇

ℓ2
𝑡 − ℓ1

𝑡 Pr 𝑖𝑡 ≠ 1

Adversary goal: Make us choose option 1 with small probability, while keeping difference ℓ2
𝑡 − ℓ1

𝑡 large on
average

• If we are not stable, they can convince us to move to option 2, by introducing a “single bad apple
period” for option 1

• If we are stable, they need to introduce “many bad apple periods” for option 1, to make us move, which
will decrease the average difference ℓ2

2 − ℓ1
𝑡 by a lot

Constructing a No-Regret
Algorithm Formally

Stability and Regret, Formally

For convenience, let’s rewrite FTL in terms of probabilistic choices

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 ≔ ෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝
Historical performance
of always choosing one

with probability 𝑝

Short-hand notation
for past performance

of probability 𝑝

Stability and Regret, Formally

For convenience, let’s rewrite FTL in terms of probabilistic choices

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 ≔ ෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

Theorem. For any loss sequence, with ℓ𝑡
𝑖 ∈ 0, 1 :

Regret ℓ1:𝑇 ≤ 2
1

𝑇
෍

𝑡=1

𝑇

𝑝𝑡+1 − 𝑝𝑡

Average stability of algorithm’s
choice distribution

Historical performance
of always choosing one

with probability 𝑝

Proof of Regret via Stability

• Thought experiment: suppose we could look one-step ahead!
• We then modify our FTL algorithm to include that next step loss

෤𝑝𝑡 = argmin
𝑝

𝐿𝑡 𝑝 ≔ ෍

𝜏=1

𝑡

ℓ𝜏(𝑝)

• We will call this Be-The-Leader (BTL)

Historical performance of
always choosing one with

probability 𝑝, including
next period loss

Proof of Regret via Stability

• Thought experiment: suppose we could look one-step ahead!
• We then modify our FTL algorithm to include that next step loss

෤𝑝𝑡 = argmin
𝑝

𝐿𝑡 𝑝 ≔ ෍

𝜏=1

𝑡

ℓ𝜏(𝑝)

• We will call this Be-The-Leader (BTL)
Lemma 1. The difference in average loss between FTL and BTL is
upper bounded by the average stability (Proof. 𝑝𝑡+1 = ෤𝑝𝑡)
Lemma 2 (Be-The-Leader Lemma). BTL has zero regret

Historical performance of
always choosing one with

probability 𝑝, including
next period loss

Be-The-Leader Lemma (Proof by Induction)

• Suppose that up until period 𝑡 − 1 we have zero regret

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ min
𝑝

෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

• Hence, up until period 𝑡 − 1 we have no regret against always
choosing the next period probability ෤𝑝𝑡

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ ෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝑡

Be-The-Leader Lemma (Proof by Induction)

• Suppose that up until period 𝑡 − 1 we have zero regret

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ min
𝑝

෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

• Hence, up until period 𝑡 − 1 we have no regret against always
choosing the next period probability ෤𝑝𝑡

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ ෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝑡

Historical performance
(until period 𝑡 − 1) of

BTL algorithm

Historical performance
(until period 𝑡 − 1) of

always choosing the next
period probability ෤𝑝𝑡 of BTL

Be-The-Leader Lemma (Proof by Induction)

• Suppose that up until period 𝑡 − 1 we have zero regret

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ min
𝑝

෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

• Hence, up until period 𝑡 − 1 we have no regret against always
choosing the next period probability ෤𝑝𝑡

ℓ𝑡 ෤𝑝𝑡 + ෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ ෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝑡 + ℓ𝑡 ෤𝑝𝑡

Add performance of BTL
choice on next period

loss on both sides

Be-The-Leader Lemma (Proof by Induction)

• Suppose that up until period 𝑡 − 1 we have zero regret

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ min
𝑝

෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

• Hence, up until period 𝑡 − 1 we have no regret against always
choosing the next period probability ෤𝑝𝑡

ℓ𝑡 ෤𝑝𝑡 + ෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ ෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝑡 + ℓ𝑡 ෤𝑝𝑡

Historical performance
(until period 𝒕) of BTL

algorithm

Historical performance
(until period 𝒕) of always

choosing probability ෤𝑝𝑡

Be-The-Leader Lemma (Proof by Induction)

• Suppose that up until period 𝑡 − 1 we have zero regret

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ min
𝑝

෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

• Hence, up until period 𝑡 − 1 we have no regret against always
choosing the next period probability ෤𝑝𝑡

෍

𝜏=1

𝑡

ℓ𝜏 ෤𝑝𝜏 ≤ ෍

𝜏=1

𝑡

ℓ𝜏 ෤𝑝𝑡

Historical performance
(until period 𝒕) of BTL

algorithm

Historical performance
(until period 𝒕) of always

choosing probability ෤𝑝𝑡

Be-The-Leader Lemma (Proof by Induction)

• Suppose that up until period 𝑡 − 1 we have zero regret

෍

𝜏=1

𝑡−1

ℓ𝜏 ෤𝑝𝜏 ≤ min
𝑝

෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

• Hence, up until period 𝑡 − 1 we have no regret against always
choosing the next period probability ෤𝑝𝑡

෍

𝜏=1

𝑡

ℓ𝜏 ෤𝑝𝜏 ≤ ෍

𝜏=1

𝑡

ℓ𝜏 ෤𝑝𝑡

Historical performance
(until period 𝒕) of BTL

algorithm

Historical performance
(until period 𝒕) of always

choosing probability ෤𝑝𝑡

≤ min
𝑝

෍

𝜏=1

𝑡

ℓ𝜏 𝑝

By the definition of ෤𝑝𝑡 as the
probability that minimizes

this quantity

Recap: Stability and Regret

For convenience, let’s rewrite FTL in terms of probabilistic choices

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 ≔ ෍

𝜏=1

𝑡−1

ℓ𝜏 𝑝

Theorem. For any loss sequence, with ℓ𝑡
𝑖 ∈ 0, 1 :

Regret ℓ1:𝑇 ≤ 2
1

𝑇
෍

𝑡=1

𝑇

𝑝𝑡 − 𝑝𝑡−1

Average stability of algorithm’s
choice distribution

Historical performance
of always choosing one

with probability 𝑝

How do we stabilize FTL, such
that it is stable irrespective of the
loss sequence?

Closeness of optima of nearby functions

• The probabilities 𝑝𝑡 and 𝑝𝑡+1 are optima of very similar functions
𝑝𝑡 = argmin

𝑝
𝐿𝑡−1 𝑝 , 𝑝𝑡+1 = argmin

𝑝
𝐿𝑡 𝑝

• Note that: 𝐿𝑡 𝑝 − 𝐿𝑡−1 𝑝 = ℓ𝑡 𝑝 ∈ 0, 1

• Given that these two functions only differ in the final loss, can we
claim that their optima are close to each other?

Closeness of optima of nearby functions

• The probabilities 𝑝𝑡 and 𝑝𝑡+1 are optima of very similar functions
𝑝𝑡 = argmin

𝑝
𝐿𝑡−1 𝑝 , 𝑝𝑡+1 = argmin

𝑝
𝐿𝑡 𝑝

• Note that: 𝐿𝑡 𝑝 − 𝐿𝑡−1 𝑝 = ℓ𝑡 𝑝 ∈ 0, 1

• Given that these two functions only differ in the final loss, can we
claim that their optima are close to each other?

0 1

𝑝𝑡𝑝𝑡+1

Both are linear functions of 𝑝

𝐿𝑡 𝑝 = 𝑝 ෍

𝜏<𝑡

ℓ𝜏
1 + 1 − 𝑝 ෍

𝜏<𝑡

ℓ𝜏
2

𝐿𝑡 𝑝

𝐿𝑡−1 𝑝

Closeness of optima of nearby functions

• The probabilities 𝑝𝑡 and 𝑝𝑡+1 are optima of very similar functions
𝑝𝑡 = argmin

𝑝
𝐿𝑡−1 𝑝 , 𝑝𝑡+1 = argmin

𝑝
𝐿𝑡 𝑝

• Note that: 𝐿𝑡 𝑝 − 𝐿𝑡−1 𝑝 = ℓ𝑡 𝑝 ∈ 0, 1

• Given that these two functions only differ in the final loss, can we
claim that their optima are close to each other?

𝐿𝑡 𝑝

0 1

𝐿𝑡−1 𝑝

𝑝𝑡𝑝𝑡+1

Both are linear functions of 𝑝

𝐿𝑡 𝑝 = 𝑝 ෍

𝜏<𝑡

ℓ𝜏
1 + 1 − 𝑝 ෍

𝜏<𝑡

ℓ𝜏
2

0 1

𝐿𝑡−1 𝑝

What if loss
functions were
strictly convex?

Closeness of optima of nearby functions

• The probabilities 𝑝𝑡 and 𝑝𝑡+1 are optima of very similar functions
𝑝𝑡 = argmin

𝑝
𝐿𝑡−1 𝑝 , 𝑝𝑡+1 = argmin

𝑝
𝐿𝑡 𝑝

• Note that: 𝐿𝑡 𝑝 − 𝐿𝑡−1 𝑝 = ℓ𝑡 𝑝 ∈ 0, 1

• Given that these two functions only differ in the final loss, can we
claim that their optima are close to each other?

𝐿𝑡 𝑝

0 1

𝐿𝑡−1 𝑝

𝑝𝑡𝑝𝑡+1

Both are linear functions of 𝑝

𝐿𝑡 𝑝 = 𝑝 ෍

𝜏<𝑡

ℓ𝜏
1 + 1 − 𝑝 ෍

𝜏<𝑡

ℓ𝜏
2

0 1

𝐿𝑡−1 𝑝

Green line must
lie between
purple and gray

What if loss
functions were
strictly convex?

Closeness of optima of nearby functions

• The probabilities 𝑝𝑡 and 𝑝𝑡+1 are optima of very similar functions
𝑝𝑡 = argmin

𝑝
𝐿𝑡−1 𝑝 , 𝑝𝑡+1 = argmin

𝑝
𝐿𝑡 𝑝

• Note that: 𝐿𝑡 𝑝 − 𝐿𝑡−1 𝑝 = ℓ𝑡 𝑝 ∈ 0, 1

• Given that these two functions only differ in the final loss, can we
claim that their optima are close to each other?

𝐿𝑡 𝑝

0 1

𝐿𝑡−1 𝑝

𝑝𝑡𝑝𝑡+1

Both are linear functions of 𝑝

𝐿𝑡 𝑝 = 𝑝 ෍

𝜏<𝑡

ℓ𝜏
1 + 1 − 𝑝 ෍

𝜏<𝑡

ℓ𝜏
2

𝐿𝑡 𝑝

0 1

𝐿𝑡−1 𝑝

𝑝𝑡𝑝𝑡+1

Green line must
lie between
purple and gray

What if loss
functions were
strictly convex?

Stability via Convexity Theorem

Suppose two functions 𝑓, 𝑔: 0, 1 → 𝑅 are 1/𝜂-strictly convex

𝑓′′ 𝑝 , 𝑔′′ 𝑝 ≥
1

𝜂

and their difference ℎ 𝑝 = 𝑔 𝑝 − 𝑓 𝑝 is 𝐿-Lipschitz
ℎ 𝑝 − ℎ 𝑝′ ≤ 𝐿 ⋅ 𝑝 − 𝑝′

Let 𝑝𝑓 , 𝑝𝑔 be their corresponding minima. Then

𝑝𝑓 − 𝑝𝑔 ≤ 𝜂 ⋅ 𝐿

Proof. For any strictly convex function the value grows at least
quadratically as we move away from the optimum (Taylor expansion)

𝑓 𝑝 − 𝑓 𝑝𝑓 = 𝑓′ 𝑝𝑓 ⋅ 𝑝 − 𝑝𝑓 +
𝑓′′ ҧ𝑝

2
𝑝 − 𝑝𝑓

2
≥

1

2𝜂
𝑝 − 𝑝𝑓

2

≥ 0
by first-order

optimality of 𝑝𝑓

≥ 1/2𝜂
by strict

convexity

Proof. For any strictly convex function the value grows at least
quadratically as we move away from the optimum (Taylor expansion)

𝑓 𝑝 − 𝑓 𝑝𝑓 = 𝑓′ 𝑝𝑓 ⋅ 𝑝 − 𝑝𝑓 +
𝑓′′ ҧ𝑝

2
𝑝 − 𝑝𝑓

2
≥

1

2𝜂
𝑝 − 𝑝𝑓

2

≥ 0
by first-order

optimality of 𝑝𝑓

≥ 1/2𝜂
by strict

convexity

sub-optimality
of any point 𝑝

Grows quadratically
with distance from

optimum

Proof. For any strictly convex function the value grows at least
quadratically as we move away from the optimum

𝑓 𝑝 − 𝑓 𝑝𝑓 = 𝑓′ 𝑝𝑓 ⋅ 𝑝 − 𝑝𝑓 +
𝑓′′ ҧ𝑝

2
𝑝 − 𝑝𝑓

2
≥

1

2𝜂
𝑝 − 𝑝𝑓

2

Proof. For any strictly convex function the value grows at least
quadratically as we move away from the optimum

𝑓 𝑝 − 𝑓 𝑝𝑓 = 𝑓′ 𝑝𝑓 ⋅ 𝑝 − 𝑝𝑓 +
𝑓′′ ҧ𝑝

2
𝑝 − 𝑝𝑓

2
≥

1

2𝜂
𝑝 − 𝑝𝑓

2

1

𝜂
𝑝𝑓 − 𝑝𝑔

2
= 𝐴 + 𝐵 = 𝐶 − 𝐷 ≤ 𝐿 ⋅ 𝑝𝑓 − 𝑝𝑔

How do we use the stability
property of strictly convex
functions to stabilize FTL?

Follow-the-Regularized-Leader (FTRL)

Add a strictly convex “regularizer” to the FTL objective

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Historical performance
of always choosing one

with probability 𝑝

1-strictly convex
function of 𝑝 that

stabilizes the minimizer

Regret of FTRL

Add a strictly convex “regularizer” to the FTL objective

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Theorem. For any loss sequence, with ℓ𝑡
𝑖 ∈ 0, 1 :

Regret ℓ1:𝑇 ≤ 2
1

𝑇
෍

𝑡=1

𝑇

𝑝𝑡+1 − 𝑝𝑡 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Historical performance
of always choosing one

with probability 𝑝

1-strictly convex
function of 𝑝 that

stabilizes the minimizer

Average stability of algorithm’s
choice distribution

Average loss distortion
caused by regularizer

Proof of Regret of FTRL

Suppose we could foresee the next period loss and played

෤𝑝𝑡 = argmin
𝑝

𝐿𝑡 𝑝 +
1

𝜂
ℛ(𝑝)

We will call this algorithm Be-The-Regularized-Leader (BTRL)
Lemma 1. The difference in average loss between FTRL and BTRL is
upper bounded by the average stability (Proof. 𝑝𝑡+1 = ෤𝑝𝑡)
Lemma 2 (Be-The-Regularized-Leader). BTRL regret ≤ distortion

Historical performance
(including next period 𝒕)
of always choosing one

with probability 𝑝

1-strictly convex
function of 𝑝 that

stabilizes the minimizer

Proof of Regret of FTRL

Suppose we could foresee the next period loss and played

෤𝑝𝑡 = argmin
𝑝

𝐿𝑡 𝑝 +
1

𝜂
ℛ(𝑝)

We will call this algorithm Be-The-Regularized-Leader (BTRL)
Lemma 1. The difference in average loss between FTRL and BTRL is
upper bounded by the average stability (Proof. 𝑝𝑡+1 = ෤𝑝𝑡)
Lemma 2 (Be-The-Regularized-Leader). BTRL regret ≤ distortion

Historical performance
(including next period 𝒕)
of always choosing one

with probability 𝑝

1-strictly convex
function of 𝑝 that

stabilizes the minimizer

Be-the-Regularized-Leader Lemma

BTRL Lemma. BTRL has regret ≤ 1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Proof

• We can think of the regularizer as a “loss at time 0”

• Then BTRL is BTL on this augmented loss sequence

• Invoking the BTL lemma we get by induction (with 𝑝0 = min
𝑝

ℛ 𝑝)

1

𝜂
ℛ 𝑝0 + ෍

𝑡=1

𝑇

ℓ𝑡 ෤𝑝𝑡 ≤ min
𝑝

1

𝜂
ℛ 𝑝 + ෍

𝑡=1

𝑇

ℓ𝑡 𝑝 ≤ min
𝑝

෍

𝑡=1

𝑇

ℓ𝑡 𝑝 + max
𝑝

1

𝜂
ℛ 𝑝

Be-the-Regularized-Leader Lemma

BTRL Lemma. BTRL has regret ≤ 1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Proof

• We can think of the regularizer as a “loss at time 0”

• Then BTRL is BTL on this augmented loss sequence

• Invoking the BTL lemma we get by induction (with 𝑝0 = min
𝑝

ℛ 𝑝)

1

𝜂
ℛ 𝑝0 + ෍

𝑡=1

𝑇

ℓ𝑡 ෤𝑝𝑡 ≤ min
𝑝

1

𝜂
ℛ 𝑝 + ෍

𝑡=1

𝑇

ℓ𝑡 𝑝 ≤ min
𝑝

෍

𝑡=1

𝑇

ℓ𝑡 𝑝 + max
𝑝

1

𝜂
ℛ 𝑝

Recap: Regret of FTRL

Add a strictly convex “regularizer” to the FTL objective

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Theorem. For any loss sequence, with ℓ𝑡
𝑖 ∈ 0, 1 :

Regret ℓ1:𝑇 ≤ 2
1

𝑇
෍

𝑡=1

𝑇

𝑝𝑡+1 − 𝑝𝑡 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Historical performance
of always choosing one

with probability 𝑝

1-strictly convex
function of 𝑝 that

stabilizes the minimizer

Average stability of algorithm’s
choice distribution

Average loss distortion
caused by regularizer

Stability of FTRL

Theorem. For the FTRL algorithm: 𝑝𝑡 − 𝑝𝑡+1 ≤ 2 ⋅ 𝜂

Stability of FTRL

Theorem. For the FTRL algorithm: 𝑝𝑡 − 𝑝𝑡+1 ≤ 2 ⋅ 𝜂

Proof. Invoke stability of strictly convex functions theorem with

𝑓 𝑝 = 𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝 , 𝑔 𝑝 = 𝐿𝑡 𝑝 +

1

𝜂
ℛ 𝑝

ℎ 𝑝 = 𝑔 𝑝 − 𝑓(𝑝) = ℓ𝑡 𝑝 = 𝑝 ℓ𝑡
1 − ℓ𝑡

2 + ℓ𝑡
2 ⇒ 2 − Lipschitz

(linear) + (1/𝜂-strictly convex) function is 1/𝜂-strictly convex

Punchline

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Corollary. The regret of FTRL ≤ 2𝜂 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Average stability
induced by regularizer

Average loss distortion
caused by regularizer

(FTRL)
Historical performance
of always choosing one

with probability 𝑝

1-strictly convex
function of 𝑝 that

stabilizes the minimizer

What is a good regularizer?

Regularizing Probabilities via Negative Entropy

• A natural regularizer on distributions is the negative entropy
𝑅 𝑝 = 𝑝 log 𝑝 + 1 − 𝑝 log 1 − 𝑝

• Intuition: FTRL with negative entropy picks distribution over choices
that tries to minimize historical loss, while having large entropy (i.e. not
very deterministic)

• Negative entropy is 1-strictly convex and takes values in − log 2 , 0

ℛ′ 𝑝 = log 𝑝 + 1 − log 1 − 𝑝 − 1 = log
𝑝

1 − 𝑝

ℛ′′ 𝑝 =
1

𝑝
+

1

1 − 𝑝
=

1

𝑝 1 − 𝑝
≥ 1

FTRL with Negative Entropy

Corollary. Regret of FTRL with negative entropy regularizer is

𝑅 𝑇 ≤ 2𝜂 +
log 2

𝜂 𝑇

Choosing 𝜂 =
log 2

2𝑇
, to make the two terms equal

𝑅 𝑇 ≤
2 log 2

𝑇
→ 0

Closed Form of FTRL with Negative Entropy

We are optimizing

𝑝𝑡 = min
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝

Note that:

𝐿𝑡−1 𝑝 = 𝑝 ෍

𝜏<𝑡

ℓ𝑡
1 + 1 − 𝑝 ෍

𝜏<𝑡

ℓ𝑡
2 = 𝑝 ෍

𝜏<𝑡

ℓ𝑡
1 − ෍

𝜏<𝑡

ℓ𝑡
2 + ෍

𝜏<𝑡

ℓ𝑡
2

Hence our minimization is of the form

𝑝𝑡 = min
𝑝

𝑝 ℒ𝑡
1 − ℒ𝑡

2 +
1

𝜂
ℛ 𝑝

ℒ𝑡
1 ℒ𝑡

2

Closed Form of FTRL with Negative Entropy

𝑝𝑡 = min
𝑝

𝑝 ℒ𝑡
1 − ℒ𝑡

2 +
1

𝜂
ℛ 𝑝

First order conditions

ℒ𝑡
1 − ℒ𝑡

2 +
1

𝜂
ℛ′ 𝑝 = 0 ⇒ ℒ𝑡

1 − ℒ𝑡
2 +

1

𝜂
log

𝑝

1 − 𝑝
= 0

which implies that
𝑝

1 − 𝑝
= exp −𝜂 ℒ𝑡

1 − ℒ𝑡
2 ⇒ 𝑝 =

exp −𝜂 ℒ𝑡
1 − ℒ𝑡

2

1 + exp −𝜂 ℒ𝑡
1 − ℒ𝑡

2

=
exp −𝜂ℒ𝑡

1

exp −𝜂ℒ𝑡
2 + exp −𝜂ℒ𝑡

1

Punchline

At each period 𝑡 play each action 𝑖 ∈ 1, 2 with probability

𝑝𝑡
𝑖 ∝ exp −𝜂ℒ𝑡

𝑖

Choosing 𝜂 =
log 2

2𝑇
 we get 𝑅 𝑇 ≤

2 log 2

𝑇
→ 0

Simpler update implementation

𝑝𝑡
𝑖 =

exp −𝜂ℒ𝑡
𝑖

σ𝑗 exp −𝜂ℒ𝑡
𝑗

=
exp −𝜂ℒ𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

σ𝑗 exp −𝜂ℒ𝑡−1
𝑗

exp −𝜂ℓ𝑡−1
𝑗

=
𝑝𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

σ𝑗 𝑝𝑡−1
𝑗

exp −𝜂ℓ𝑡−1
𝑗

Exponential weight updates algorithm!
(aka Hedge, Multiplicative Weight Updates, EXP, ….)

Play each option with probability
proportional to the exponential of its

historical performance

What if we have many options?

The 𝑛 action case

At each period choose a distribution 𝑝𝑡 ∈ Δ 𝑛 over 𝑛 actions

Observe a loss vector ℓ𝑡 ∈ 0,1 𝑛 and incur loss ⟨𝑝𝑡, ℓ𝑡⟩

Regret ℓ1:𝑇 =
1

𝑇
෍

𝑡=1

𝑇

⟨𝑝𝑡, ℓ𝑡⟩ − min𝑖=1
𝑛 1

𝑇
෍

𝑡=1

𝑇

ℓ𝑡
𝑖

For the negative entropy regularizer, leads to the simple EXP algorithm

𝑝𝑡
𝑖 ∝ 𝑝𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

The negative entropy is 1-strongly convex and now takes values in − 𝑙𝑜𝑔 𝑛 , 0

𝑅 𝑇 ≤ 2𝜂 +
log 𝑛

𝜂𝑇
≤

2 log 𝑛

𝑇
→ 0

Short-hand for
inner product
between two
vectors

Short-hand for 𝑛-dimensional simplex
Δ 𝑛 ≔ 𝑥 ∈ 𝑅𝑛: 𝑥𝑖 ≥ 0, σ𝑖=1

𝑛 𝑥𝑖 = 1

The 𝑛 action case

At each period choose a distribution 𝑝𝑡 ∈ Δ 𝑛 over 𝑛 actions

Observe a loss vector ℓ𝑡 ∈ 0,1 𝑛 and incur loss ⟨𝑝𝑡, ℓ𝑡⟩

𝑝𝑡 = min
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝 = min

𝑝
෍

𝜏<𝑡

⟨𝑝, ℓ𝑡⟩ +
1

𝜂
ℛ 𝑝

For the negative entropy regularizer, leads to the simple EXP algorithm

𝑝𝑡
𝑖 ∝ 𝑝𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

The negative entropy is 1-strongly convex and now takes values in − 𝑙𝑜𝑔 𝑛 , 0

𝑅 𝑇 ≤ 2𝜂 +
log 𝑛

𝜂𝑇
≤

2 log 𝑛

𝑇
→ 0

Short-hand for
inner product
between two
vectors

(FTRL)

Short-hand for 𝑛-dimensional simplex
Δ 𝑛 ≔ 𝑥 ∈ 𝑅𝑛: 𝑥𝑖 ≥ 0, σ𝑖=1

𝑛 𝑥𝑖 = 1

The 𝑛 action case

At each period choose a distribution 𝑝𝑡 ∈ Δ 𝑛 over 𝑛 actions

Observe a loss vector ℓ𝑡 ∈ 0,1 𝑛 and incur loss ⟨𝑝𝑡, ℓ𝑡⟩

𝑝𝑡 = min
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝 = min

𝑝
෍

𝜏<𝑡

⟨𝑝, ℓ𝑡⟩ +
1

𝜂
ℛ 𝑝

For the negative entropy regularizer, leads to the simple EXP algorithm

𝑝𝑡
𝑖 ∝ 𝑝𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

The negative entropy is 1-strongly convex and now takes values in − log n , 0

𝑅 𝑇 ≤ 2𝜂 +
log 𝑛

𝜂𝑇
≤

2 log 𝑛

𝑇
→ 0 For 𝜂 =

log 𝑛

2𝑇

Short-hand for
inner product
between two
vectors

Short-hand for 𝑛-dimensional simplex
Δ 𝑛 ≔ 𝑥 ∈ 𝑅𝑛: 𝑥𝑖 ≥ 0, σ𝑖=1

𝑛 𝑥𝑖 = 1

Play each action with probability proportional
to the exponential of its historical performance

(FTRL)

Strong-convexity in 𝑛-dimensions

A function 𝑓: 𝑅𝑛 → 𝑅 is 𝜎-strongly convex if
𝑓 𝑝 − 𝑓 𝑝′ ≥ ⟨∇𝑓 𝑝′ , 𝑝 − 𝑝′⟩ +

𝜎

2
𝑝 − 𝑝′ 2

Theorem. Suppose two functions 𝑓, 𝑔: 0, 1 → 𝑅 are 1/𝜂-strongly
convex and their difference ℎ 𝑝 = 𝑔 𝑝 − 𝑓 𝑝 is 𝐿-Lipschitz

ℎ 𝑝 − ℎ 𝑝′ ≤ 𝐿 ⋅ 𝑝 − 𝑝′

Let 𝑝𝑓 , 𝑝𝑔 be their corresponding minima. Then

𝑝𝑓 − 𝑝𝑔 ≤ 𝜂 ⋅ 𝐿

Gradient of a function: ∇𝑓 𝑝 =
𝜕

𝜕𝑝1
𝑓 𝑝 , … ,

𝜕

𝜕𝑝𝑛
𝑓 𝑝

Some norm in the 𝑛-dimensional vector space:

e.g. 𝑝 2 = σ𝑖=1
𝑛 𝑝𝑖

2 or 𝑝 1 = σ𝑖=1
𝑛 𝑝𝑖

Strong-convexity in 𝑛-dimensions

A function 𝑓: 𝑅𝑛 → 𝑅 is 𝜎-strongly convex if
𝑓 𝑝 − 𝑓 𝑝′ ≥ ⟨∇𝑓 𝑝′ , 𝑝 − 𝑝′⟩ +

𝜎

2
𝑝 − 𝑝′ 2

Theorem. Suppose two functions 𝑓, 𝑔: 0, 1 → 𝑅 are 1/𝜂-strongly
convex and their difference ℎ 𝑝 = 𝑔 𝑝 − 𝑓 𝑝 is 𝐿-Lipschitz

ℎ 𝑝 − ℎ 𝑝′ ≤ 𝐿 ⋅ 𝑝 − 𝑝′

Let 𝑝𝑓 , 𝑝𝑔 be their corresponding minima. Then

≤ 𝜂 ⋅ 𝐿

Gradient of a function: ∇𝑓 𝑝 =
𝜕

𝜕𝑝1
𝑓 𝑝 , … ,

𝜕

𝜕𝑝𝑛
𝑓 𝑝

Some norm in the 𝑛-dimensional vector space:

e.g. 𝑝 2 = σ𝑖=1
𝑛 𝑝𝑖

2 or 𝑝 1 = σ𝑖=1
𝑛 𝑝𝑖

For a twice-differentiable function 𝑓, implied by

∀ ҧ𝑝: 𝑝 − 𝑝′ ⊤∇2𝑓 ҧ𝑝 𝑝 − 𝑝′ ≥ 𝜎 𝑝 − 𝑝′ 2

Hessian of a function: ∇2𝑓 𝑝 =

𝜕
2

𝜕𝑝1
2

𝑓 𝑝 ⋯
𝜕

2

𝜕𝑝1𝜕𝑝𝑛

𝑓 𝑝

⋮ ⋱ ⋮

𝜕
2

𝜕𝑝𝑛𝜕𝑝1

𝑓 𝑝 ⋯
𝜕

2

𝜕𝑝𝑛
2

𝑓 𝑝

Strong-convexity in 𝑛-dimensions

A function 𝑓: 𝑅𝑛 → 𝑅 is 𝜎-strongly convex if
𝑓 𝑝 − 𝑓 𝑝′ ≥ ⟨∇𝑓 𝑝′ , 𝑝 − 𝑝′⟩ +

𝜎

2
𝑝 − 𝑝′ 2

Theorem. Suppose two functions 𝑓, 𝑔: 0, 1 → 𝑅 are 1/𝜂-strongly
convex and their difference ℎ 𝑝 = 𝑔 𝑝 − 𝑓 𝑝 is 𝐿-Lipschitz

ℎ 𝑝 − ℎ 𝑝′ ≤ 𝐿 ⋅ 𝑝 − 𝑝′

Let 𝑝𝑓 , 𝑝𝑔 be their corresponding minima. Then

𝑝𝑓 − 𝑝𝑔 ≤ 𝜂 ⋅ 𝐿

Gradient of a function: ∇𝑓 𝑝 =
𝜕

𝜕𝑝1
𝑓 𝑝 , … ,

𝜕

𝜕𝑝𝑛
𝑓 𝑝

Some norm in the 𝑛-dimensional vector space:

e.g. 𝑝 2 = σ𝑖=1
𝑛 𝑝𝑖

2 or 𝑝 1 = σ𝑖=1
𝑛 𝑝𝑖

Punchline

𝑝𝑡 = argmin
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Theorem. Assuming the loss function at each period
ℓ𝑡 𝑝 = ⟨𝑝, ℓ𝑡⟩

is 𝐿-Lipschitz with respect to some norm ⋅ and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Average stability
induced by regularizer

Average loss distortion
caused by regularizer

(FTRL)

Historical performance
of always choosing one

with probability 𝑝

1-strongly convex
function of 𝑝 that

stabilizes the minimizer

Punchline

𝑝𝑡
𝑖 ∝ 𝑝𝑡−1

𝑖 exp −𝜂ℓ𝑡−1
𝑖

Corollary. If all actions have losses ℓ𝑡
𝑖 ∈ 0,1 , then loss function is

1-Lipschitz with respect to the norm ⋅ 1. The negative entropy is 1-
strongly convex with respect to the norm ⋅ 1 (bonus exercise).

Regret − EXP 𝑇 ≤ 2𝜂 +
log 𝑛

𝜂𝑇
≤

2 log 𝑛

𝑇
→ 0

(EXP)

For 𝜂 =
log 𝑛

2𝑇

What if loss function is not linear
in chosen vector?

The general convex case

At each period choose a vector 𝑝𝑡 ∈ 𝑆 ⊆ 𝑅𝑛, where 𝑆 is a convex set

Observe a convex loss function ℓ𝑡: 𝑆 → 𝑅 and incur loss ℓ𝑡 𝑝𝑡

𝑝𝑡 = min
𝑝

𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝 = min

𝑝
෍

𝜏<𝑡

𝑝, ∇ℓ𝑡 𝑝𝑡 +
1

𝜂
ℛ 𝑝

Linearization Lemma. Regret ℓ1:𝑇 ≤ Regret തℓ1:𝑇

Convex set: 𝑥, 𝑥′ ∈ 𝑆 ⇒ 𝜆𝑥 + 1 − 𝜆 𝑥′ ∈ 𝑆

Convex Not Convex

𝑥

𝑥′

Convex loss: ℓ 𝜆𝑥 + 1 − 𝜆 𝑥′ ≤ 𝜆ℓ 𝑥 + 1 − 𝜆 ℓ 𝑥′

𝑥 𝑥′𝑥𝜆

The general convex case

At each period choose a vector 𝑝𝑡 ∈ 𝑆 ⊆ 𝑅𝑛, where 𝑆 is a convex set

Observe a convex loss function ℓ𝑡: 𝑆 → 𝑅 and incur loss ℓ𝑡 𝑝𝑡

𝑝𝑡 = argmin
𝑝

ത𝐿𝑡−1 𝑝 +
1

𝜂
ℛ 𝑝 = argmin

𝑝
෍

𝜏<𝑡

𝑝, ∇ℓ𝑡 𝑝𝜏 +
1

𝜂
ℛ 𝑝

Linearization Lemma. Regret ℓ1:𝑇 ≤ Regret തℓ1:𝑇

Linearized
FTRL

Convex set: 𝑥, 𝑥′ ∈ 𝑆 ⇒ 𝜆𝑥 + 1 − 𝜆 𝑥′ ∈ 𝑆

Convex Not Convex

𝑥

𝑥′

Convex loss: ℓ 𝜆𝑥 + 1 − 𝜆 𝑥′ ≤ 𝜆ℓ 𝑥 + 1 − 𝜆 ℓ 𝑥′

𝑥 𝑥′𝑥𝜆

Linear approximation of loss around
chosen point തℓ𝑡 𝑝 = 𝑝, ∇ℓ𝑡 𝑝𝑡

Linearization Lemma: Regret ℓ1:𝑇 ≤ Regret തℓ1:𝑇

Convexity of function implies it lies above the linear approximation

𝑓 𝑥 ≥ 𝑓 𝑥∗ + ⟨∇𝑓 𝑥∗ , 𝑥 − 𝑥∗⟩

By convexity of losses

Regret ℓ1:𝑇 = min
𝑝

෍

𝑡=1

𝑇

ℓ𝑡 𝑝𝑡 − ℓ𝑡 𝑝

≤ 𝑚𝑖𝑛
𝑝

෍

𝑡=1

𝑇

∇ℓ𝑡 𝑝𝑡 , 𝑝𝑡 − 𝑝

= 𝑚𝑖𝑛
𝑝

෍

𝑡=1

𝑇

തℓ𝑡 𝑝𝑡 − തℓ𝑡 𝑝 = Regret തℓ1:𝑇

𝑥∗

𝑓 𝒙

𝑓 𝑥∗ + ⟨∇𝑓 𝑥∗ , 𝒙 − 𝑥∗⟩

Linearization Lemma: Regret ℓ1:𝑇 ≤ Regret തℓ1:𝑇

Convexity of function implies it lies above the linear approximation

𝑓 𝑥 ≥ 𝑓 𝑥∗ + ⟨∇𝑓 𝑥∗ , 𝑥 − 𝑥∗⟩

By convexity of losses

Regret ℓ1:𝑇 = min
𝑝

෍

𝑡=1

𝑇

ℓ𝑡 𝑝𝑡 − ℓ𝑡 𝑝

≤ 𝑚𝑖𝑛
𝑝

෍

𝑡=1

𝑇

∇ℓ𝑡 𝑝𝑡 , 𝑝𝑡 − 𝑝

= 𝑚𝑖𝑛
𝑝

෍

𝑡=1

𝑇

തℓ𝑡 𝑝𝑡 − തℓ𝑡 𝑝 = Regret തℓ1:𝑇

𝑥∗

𝑓 𝒙

𝑓 𝑥∗ + ⟨∇𝑓 𝑥∗ , 𝒙 − 𝑥∗⟩

Punchline

𝑝𝑡 = argmin
𝑝

ത𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)

Theorem. Assuming the linearized loss function at each period
തℓ𝑡 𝑝 = ⟨𝑝, ∇ℓ𝑡 𝑝𝑡 ⟩

is 𝐿-Lipschitz with respect to some norm ⋅ and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Average stability
induced by regularizer

Average loss distortion
caused by regularizer

(Linearized FTRL)

Linearized historical
performance of always

choosing vector 𝑝

1-strongly convex
function of 𝑝 that

stabilizes the minimizer

Another “decent” regularizer

Squared ℓ2 norm is 1-strongly convex regularizer with respect to ℓ2

ℛ 𝑝 =
1

2
𝑝 2 =

1

2
෍

𝑖=1

𝑛

𝑝𝑖
2 , ∇2ℛ 𝑝 = I

At each period we solve the minimization problem

min
𝑝

𝑝, ෍

𝜏<𝑡

∇ℓ𝜏 𝑝𝜏 +
1

2𝜂
𝑝 2

First order condition:σ𝜏<𝑡 ∇ℓ𝜏 𝑝𝜏 +
1

𝜂
𝑝 = 0 ⇒ 𝑝𝑡 = −𝜂 σ𝜏<𝑡 ∇ℓ𝜏 𝑝𝜏

Update rule: 𝑝𝑡 = 𝑝𝑡−1 − 𝜂∇ℓ𝑡−1 𝑝𝑡−1

Another “decent” regularizer

Squared ℓ2 norm is 1-strongly convex regularizer with respect to ℓ2

ℛ 𝑝 =
1

2
𝑝 2 =

1

2
෍

𝑖=1

𝑛

𝑝𝑖
2 , ∇2ℛ 𝑝 = I

At each period we solve the minimization problem

min
𝑝

𝑝, ෍

𝜏<𝑡

∇ℓ𝜏 𝑝𝜏 +
1

2𝜂
𝑝 2

First order condition:σ𝜏<𝑡 ∇ℓ𝜏 𝑝𝜏 +
1

𝜂
𝑝 = 0 ⇒ 𝑝𝑡 = −𝜂 σ𝜏<𝑡 ∇ℓ𝜏 𝑝𝜏

Update rule: 𝑝𝑡 = 𝑝𝑡−1 − 𝜂∇ℓ𝑡−1 𝑝𝑡−1

Online/Stochastic Gradient Descent Algorithm
(aka SGD)

Punchline: The Master Algorithms of our Times

𝑝𝑡 = argmin
𝑝

ത𝐿𝑡−1 𝑝 +
1

𝜂
ℛ(𝑝)(Linearized FTRL)

ℛ 𝑝 =
1

2
𝑝 2

𝑝𝑡 = 𝑝𝑡−1 − 𝜂∇ℓ𝑡−1 𝑝𝑡−1

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

𝑝𝑡 ∝ 𝑝𝑡−1 exp −𝜂 ℓ𝑡−1

Online/Stochastic Gradient Descent Algorithm
(aka SGD)

Exponential weight updates algorithm!
(aka Hedge, Multiplicative Weight Updates, EXP, ….)

	Slide 1: MS&E 233 Game Theory, Data Science and AI Lecture 2
	Slide 2: Class Music Auction!
	Slide 3
	Slide 4: Introduction to Online Learning
	Slide 5: Example
	Slide 6: Example in Math
	Slide 7: Example in Math
	Slide 8: Example in Math
	Slide 9: A choice picking algorithm is called a no-regret learning algorithm if the worst-case regret over any sequence of losses cap R of cap T , equals sup lower limit open paren ℓ sub , 1: cap T end subscript , close paren of Regret open second paren
	Slide 10: Elements of a No-Regret Algorithm
	Slide 11: Natural Algorithm
	Slide 12: Failure of the Natural Algorithm
	Slide 13: Failure of the Natural Algorithm
	Slide 14: Failure of the Natural Algorithm
	Slide 15: Problematic Traits of FTL
	Slide 16: Problematic Traits of FTL
	Slide 17: Why is randomization necessary?
	Slide 18: Why is randomization necessary?
	Slide 19: Randomized Algorithms
	Slide 20: A randomized choice picking algorithm is called a no-regret learning algorithm if the worst-case expected regret over any sequence of losses cap R of cap T , equals sup lower limit open paren ℓ sub , 1: cap T end subscript , close paren of Reg
	Slide 21: Why is stability useful?
	Slide 22: Why is stability useful?
	Slide 23: Why is stability useful?
	Slide 24: Why is stability useful?
	Slide 25: Constructing a No-Regret Algorithm Formally
	Slide 26: Stability and Regret, Formally
	Slide 27: Stability and Regret, Formally
	Slide 28: Proof of Regret via Stability
	Slide 29: Proof of Regret via Stability
	Slide 30: Be-The-Leader Lemma (Proof by Induction)
	Slide 31: Be-The-Leader Lemma (Proof by Induction)
	Slide 32: Be-The-Leader Lemma (Proof by Induction)
	Slide 33: Be-The-Leader Lemma (Proof by Induction)
	Slide 34: Be-The-Leader Lemma (Proof by Induction)
	Slide 35: Be-The-Leader Lemma (Proof by Induction)
	Slide 36: Recap: Stability and Regret
	Slide 37: How do we stabilize FTL, such that it is stable irrespective of the loss sequence?
	Slide 38: Closeness of optima of nearby functions
	Slide 39: Closeness of optima of nearby functions
	Slide 40: Closeness of optima of nearby functions
	Slide 41: Closeness of optima of nearby functions
	Slide 42: Closeness of optima of nearby functions
	Slide 43: Stability via Convexity Theorem
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: How do we use the stability property of strictly convex functions to stabilize FTL?
	Slide 49: Follow-the-Regularized-Leader (FTRL)
	Slide 50: Regret of FTRL
	Slide 51: Proof of Regret of FTRL
	Slide 52: Proof of Regret of FTRL
	Slide 53: Be-the-Regularized-Leader Lemma
	Slide 54: Be-the-Regularized-Leader Lemma
	Slide 55: Recap: Regret of FTRL
	Slide 56: Stability of FTRL
	Slide 57: Stability of FTRL
	Slide 58: Punchline
	Slide 59: What is a good regularizer?
	Slide 60: Regularizing Probabilities via Negative Entropy
	Slide 61: FTRL with Negative Entropy
	Slide 62: Closed Form of FTRL with Negative Entropy
	Slide 63: Closed Form of FTRL with Negative Entropy
	Slide 64: Punchline
	Slide 65: What if we have many options?
	Slide 66: The n action case
	Slide 67: The n action case
	Slide 68: The n action case
	Slide 69: Strong-convexity in n-dimensions
	Slide 70: Strong-convexity in n-dimensions
	Slide 71: Strong-convexity in n-dimensions
	Slide 72: Punchline
	Slide 73: Punchline
	Slide 74: What if loss function is not linear in chosen vector?
	Slide 75: The general convex case
	Slide 76: The general convex case
	Slide 77: Linearization Lemma: Regret open paren ℓ sub , 1: cap T end subscript , , close paren less than or equal to Regret open paren ℓ bar sub , 1: cap T end subscript , , close paren
	Slide 78: Linearization Lemma: Regret open paren ℓ sub , 1: cap T end subscript , , close paren less than or equal to Regret open paren ℓ bar sub , 1: cap T end subscript , , close paren
	Slide 79: Punchline
	Slide 80: Another “decent” regularizer
	Slide 81: Another “decent” regularizer
	Slide 82: Punchline: The Master Algorithms of our Times

