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Class Music Auction!
We will be experimenting with putting music for the first three minutes of the class as people arrive!

You have the chance to choose the song of the day! 

Each of you has a total budget of 100 fake dollars for the whole class! You can choose to spend them however you 
want on each lecture.

For each lecture you can choose to bid anywhere from 0 to 20 dollars. 

We will then choose uniformly at random among the highest bidders. The winner of the auction will get to choose 
the song of the day and they have to pay their bid, i.e. the amount they bid will be subtracted from their 100$ 
budget. 

If you submit an illegal bid (i.e. a bid that goes beyond your total budget, your bid will be disqualified and ignored).

Please be appropriate in your choice of songs; I might need to censor and ask you to choose something else. I'll be 
emailing the winner on the morning of the lecture to email me the spotify link for the song.

Submit your bid by 11:59pm the day before the lecture. You should submit your bid using the corresponding canvas 
quiz that will be setup for each lecture

Class Music Auction: Game Theory, Data Science and AI (stanford.edu)

Go to canvas and check the quizzes section.

If there is no participation in the auction, I'll just choose the music myself. But that's not much fun...

Spotify playlist that will be populated with the songs we play each day: 
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f6
4d8f8b797368a83ed

https://canvas.stanford.edu/courses/190932/quizzes/154392
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f64d8f8b797368a83ed
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f64d8f8b797368a83ed


Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics and applications of extensive-form games (T+A)
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games and equilibria (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research
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Learning and Zero-Sum Games



Reminder: Two Player Zero-Sum Games

• Player one (“min” player or “row” player)
• Player two (“max” player or “column” player)
• Player one has n possible actions
• Player two has m possible actions

• If player one chooses action 𝑖 and player two chooses action 𝑗 
then player one incurs loss 𝐴 𝑖, 𝑗  and player two gains utility 𝐴 𝑖, 𝑗



Reminder: Equilibrium via Min-Max Theorem

• Suppose that both players behave pessimistically
• Row (min) player thinks: “I’ll choose a strategy 𝑥 such that I’ll try to 

minimize the worst-case loss that the other player can cause me”
ҧ𝑥 = argmin

𝑥
max

𝑦
𝑥′𝐴𝑦

• Column (max) player thinks: “I’ll choose a strategy 𝑦 such that I’ll 
try to maximize the worst-case utility that the other player will 
allow me to get”

ത𝑦 = argmax
𝑦

min
𝑥

𝑥′𝐴𝑦



Reminder: Equilibrium via Min-Max Theorem

• Suppose both players behave pessimistically
ҧ𝑥 = argmin

𝑥
max

𝑦
𝑥′𝐴𝑦 , ത𝑦 = argmax

𝑦
min

𝑥
𝑥′𝐴𝑦

• Von Neuman’s Min-Max Theorem [1928]: Pessimistic value that 
each player achieves is the same

min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦

ҧ𝑥′𝐴 ത𝑦 ≤ max
𝑦

ҧ𝑥′𝐴𝑦 = min
𝑥

max
𝑦

𝑥′𝐴𝑦 = max
𝑦

min
𝑥

𝑥′𝐴𝑦 = min
𝑥

𝑥′𝐴 ത𝑦

Pessimistic loss 
if I choose ҧ𝑥

Best pessimistic loss 
by definition of ҧ𝑥

Best pessimistic utility 
that max player can 
achieve

Pessimistic utility 
that max player 
achieves by using ത𝑦

Smallest loss that min 
player can achieve if 
max chooses ത𝑦

Loss of 
min player 
at ҧ𝑥, ത𝑦



Equilibrium via Learning

• What if we have the players play the game repeatedly?

• At each period 𝑡 each player picks a choice distribution, 𝑥𝑡 , 𝑦𝑡



Are there dynamics that will lead 
to a mixed Nash equilibrium?



What if each player uses a no-
regret algorithm!



Equilibrium via No-Regret Learning

• Think of the problem that the 𝑥-player faces:
• At each period 𝑡, pick a choice distribution 𝑥𝑡

• Incur loss 𝑥𝑡
⊤𝐴𝑦𝑡 and observe loss each action would incur: 𝐴𝑦𝑡

• Incur loss 𝑥𝑡
⊤ℓ𝑡 and observe loss each action would incur: ℓ𝑡 ≔ 𝐴𝑦𝑡

• Think of the problem the 𝑦-player faces
• At each period 𝑡, pick a choice distribution 𝑦𝑡

• Incur loss −𝑥𝑡
⊤𝐴𝑦𝑡 and observe loss each action would incur: −𝐴⊤𝑥𝑡

• Incur loss ෨ℓ𝑡
⊤𝑦𝑡 and observe loss each action would incur: ෨ℓ𝑡 ≔ −𝐴⊤𝑥𝑡

• Both players face a no-regret learning problem!
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No-Regret Implications

• We now know how to construct no-regret algorithms! (e.g. EXP)
𝑥𝑡 ∝ 𝑥𝑡−1 exp −𝜂 ℓ𝑡−1 , 𝑦𝑡 ∝ 𝑦𝑡−1 exp −𝜂෨ℓ𝑡−1

• What this implies is that in the limit as 𝑇 → ∞ for some 𝜖 → 0

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≤ min

𝑥

1

𝑇
෍

𝑡=1

𝑇

𝑥⊤𝐴𝑦𝑡 + 𝜖 = min
𝑥

𝑥⊤𝐴
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡 + 𝜖

Expected average 
loss of 𝑥-player

Average loss of 𝑥-player’s 
best fixed choice 

distribution in hindsight

Regret Average choice 
distribution of 𝑦-player



No-Regret Implications

• We now know how to construct no-regret algorithms! (e.g. EXP)
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⊤𝐴𝑦𝑡 ≤ min

𝑥

1
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𝑇
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𝑥
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1

𝑇
෍
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𝑇
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1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≥ max

𝑦

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦 − 𝜖 = max

𝑦

1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤ 𝐴𝑦 − 𝜖

Expected average 
utility of 𝑦-player

Regret Average choice 
distribution of 𝑥-player

Average utility of 𝑦-
player’s best fixed choice 
distribution in hindsight



No-Regret Implications

• We now know how to construct no-regret algorithms! (e.g. EXP)
𝑥𝑡 ∝ 𝑥𝑡−1 exp −𝜂 ℓ𝑡−1 , 𝑦𝑡 ∝ 𝑦𝑡−1 exp −𝜂෨ℓ𝑡−1

• What this implies is that in the limit as 𝑇 → ∞ for some 𝜖 → 0

• Define the average choice distributions as ҧ𝑥, ത𝑦 

ҧ𝑥 ≔
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 , then 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≤ min

𝑥
𝑥⊤𝐴 ത𝑦 + 𝜖

ത𝑦 ≔
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡 , then 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≥ max

𝑦
ҧ𝑥𝐴𝑦 − 𝜖

Expected average 
loss of 𝑥-player is a 
“best-response” to 
average strategy ത𝑦 

of 𝑦-player

Expected average 
utility of 𝑦-player is 
a “best-response” 
to average strategy 

ҧ𝑥 of 𝑥-player



Candidate Equilibrium

• 𝑥-player’s average loss is a best-response to ത𝑦

• 𝑦-player’s average utility is a best-response to ҧ𝑥

• Could it be that maybe ҧ𝑥, ത𝑦  is an equilibrium?
1

𝑇
෍

𝑡

𝑥𝑡
⊤𝐴𝑦𝑡 ≠ ҧ𝑥⊤𝐴 ത𝑦

• We need to see if loss (utility) under average strategies also 
satisfies the same best-response property

• Crucial: Average loss of 𝑥-player = Average utility of 𝑦-player

Average loss 
(utility) 

Loss (utility) under 
average strategies



No-Regret Implications

• Define the average choice distributions as ҧ𝑥, ത𝑦 

 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≤ min

𝑥
𝑥⊤𝐴 ത𝑦 + 𝜖

 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≥ max

𝑦
ҧ𝑥⊤𝐴𝑦 − 𝜖

=
Average loss of 𝑥-player = 
Average utility of 𝑦-player



No-Regret Implications

• Define the average choice distributions as ҧ𝑥, ത𝑦 

 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≤ min

𝑥
𝑥⊤𝐴 ത𝑦 + 𝜖

 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≥ max

𝑦
ҧ𝑥⊤𝐴𝑦 − 𝜖

≤ ҧ𝑥⊤𝐴 ത𝑦 + 𝜖

≥ ҧ𝑥⊤𝐴 ത𝑦 − 𝜖

Loss (utility) of 
average strategies

≤
≥

=
Average loss of 𝑥-player = 
Average utility of 𝑦-player



No-Regret Implications

• Define the average choice distributions as ҧ𝑥, ത𝑦 

 
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡
⊤𝐴𝑦𝑡 ≤ min

𝑥
𝑥⊤𝐴 ത𝑦 + 𝜖

 
1

𝑇
෍

𝑡=1

𝑇
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≤
≥
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ҧ𝑥⊤𝐴 ത𝑦 ≥ max
𝑦

ҧ𝑥⊤𝐴𝑦 − 2𝜖

ҧ𝑥⊤𝐴 ത𝑦 ≤ min
𝑥

𝑥⊤𝐴 ത𝑦 + 2𝜖

( ҧ𝑥, ത𝑦) is a 2𝜖-approximate 
equilibrium

ҧ𝑥, ത𝑦 → equilibrium as 𝑇 → ∞
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Main Takeaway: Equilibrium via No-Regret

Theorem. If two players play repeatedly a zero-sum game and each 
player uses any no-regret algorithm to pick their action distributions 
𝑥𝑡 , 𝑦𝑡 , then the average action distributions of each player

ҧ𝑥 =
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 , ത𝑦 =
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡

are a 2𝜖-approximate Nash equilibrium (where 𝜖 is the regret at of 
each algorithm after 𝑇 periods). Hence,

ҧ𝑥, ത𝑦 → equilibrium as 𝑇 → ∞



Main Takeaway: Equilibrium via No-Regret

Corollary. If two players play repeatedly a zero-sum game, with 𝑛 rows 
and 𝑚 columns, and each player uses EXP with step size 𝜂 =

log max(𝑛, 𝑚) /2𝑇, to pick their action distributions 𝑥𝑡 , 𝑦𝑡 , then the 
average action distributions of each player

ҧ𝑥 =
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 , ത𝑦 =
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡

are a 2𝜖- approximate Nash equilibrium, with 𝜖 =
2log max 𝑛,𝑚

𝑇
, i.e.

Regret𝑥 ҧ𝑥, ത𝑦 ≔ ҧ𝑥⊤𝐴 ത𝑦 − min
𝑥

𝑥⊤𝐴 ത𝑦 ≤ 2𝜖

Regret𝑦 ҧ𝑥, ത𝑦 ≔ max
𝑦

ҧ𝑥⊤𝐴𝑦 − ҧ𝑥⊤𝐴 ത𝑦 ≤ 2𝜖



Minimax Theorem via No-Regret

• Define the average choice distributions as ҧ𝑥, ത𝑦 

 
1

𝑇
෍
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𝑇
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𝑥
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=
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Average utility of 𝑦-player



Minimax Theorem via No-Regret

• Define the average choice distributions as ҧ𝑥, ത𝑦 
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෍
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𝑇
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𝑦
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Average utility of 𝑦-player

≤ max
𝑦

min
𝑥

𝑥⊤𝐴𝑦 + 𝜖

≥ min
𝑥

max
𝑦

𝑥⊤𝐴𝑦 − 𝜖



Minimax Theorem via No-Regret

• Define the average choice distributions as ҧ𝑥, ത𝑦 
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min
𝑥
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𝑥

max
𝑦

𝑥⊤𝐴𝑦 − 𝜖

max
𝑦

min
𝑥

𝑥⊤𝐴𝑦 ≥ min
𝑥

max
𝑦

𝑥⊤𝐴𝑦 + 2𝜖



Minimax Theorem via No-Regret

Theorem. Existence of no-regret algorithms implies (as 𝜖 → 0) that

max
𝑦

min
𝑥

𝑥⊤𝐴𝑦 ≥ min
𝑥

max
𝑦

𝑥⊤𝐴𝑦

The other direction is trivial (why?)

max
𝑦

min
𝑥

𝑥⊤𝐴𝑦 ≤ min
𝑥

max
𝑦

𝑥⊤𝐴𝑦

Thus

max
𝑦

min
𝑥

𝑥⊤𝐴𝑦 = min
𝑥

max
𝑦

𝑥⊤𝐴𝑦



Wait; we saw no-regret algorithms 
exist for convex losses too. 
What does that imply for games?



Convex-Concave Zero-Sum Games

• Player one (“min” player) chooses a vector 𝑥 from a convex set 𝒳
• Player two (“max” player) chooses a vector 𝑦 from a convex set 𝒴
• The min player incurs loss ℓ 𝑥, 𝑦 , with ℓ ⋅, 𝑦  a convex function
• The max player receives utility ℓ 𝑥, 𝑦  (equiv. incurs loss −ℓ 𝑥, 𝑦 ), 

with ℓ 𝑥,⋅  a concave function (equiv. −ℓ 𝑥,⋅  a convex function)

• We typically represent this game by its min-max formulation
min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ 𝑥, 𝑦



Equilibrium via No-Regret Learning

• Think of the problem that the 𝑥-player faces:
• At each period 𝑡, pick a vector 𝑥𝑡  from a convex set 𝒳
• Incur loss ℓ 𝑥𝑡 , 𝑦𝑡 ; observe convex loss function: ℓ ⋅, 𝑦𝑡

• Think of the problem the 𝑦-player faces
• At each period 𝑡, pick a vector 𝑦𝑡 from a convex set 𝒴
• Incur loss −ℓ 𝑥𝑡 , 𝑦𝑡 ; observe convex loss function: −ℓ 𝑥𝑡,⋅

• Both players face a convex no-regret learning problem!



Equilibrium via No-Regret Learning

• Think of the problem that the 𝑥-player faces:
• At each period 𝑡, pick a vector 𝑥𝑡  from a convex set 𝒳
• Incur loss ℓ 𝑥𝑡 , 𝑦𝑡 ; observe convex loss function: ℓ ⋅, 𝑦𝑡

• Think of the problem the 𝑦-player faces
• At each period 𝑡, pick a vector 𝑦𝑡 from a convex set 𝒴
• Incur loss −ℓ 𝑥𝑡 , 𝑦𝑡 ; observe convex loss function: −ℓ 𝑥𝑡,⋅

• Both players face a convex no-regret learning problem!

𝑥𝑡
⊤𝐴𝑦𝑡  in the 

finite action case
𝐴𝑦𝑡  in the finite 

action case

simplex Δ 𝑛  in the 
finite action case

−𝑥𝑡
⊤𝐴𝑦𝑡  in the 

finite action case
−𝐴⊤𝑥𝑡 in the 

finite action case

simplex Δ 𝑚  in the 
finite action case



No-Regret Implications

• We know no-regret algorithms exist! (e.g., online gradient descent)
𝑥𝑡 = 𝑥𝑡−1 − 𝜂∇xℓ 𝑥𝑡−1, 𝑦𝑡−1 , 𝑦𝑡 = 𝑦𝑡−1 + 𝜂∇𝑦ℓ 𝑥𝑡−1, 𝑦𝑡−1

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡 , 𝑦𝑡 ≤ min
𝑥

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥, 𝑦𝑡 + 𝜖 ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖

Average loss of 
𝑥-player

Average loss of 𝑥-player’s 
best fixed x vector in 

hindsight

Average vector 
of 𝑦-player

Jensen’s 
inequality

Concave function:𝑓 𝜆𝑦 + 1 − 𝜆 𝑦′ ≥ 𝜆𝑓 𝑦 + 1 − 𝜆 𝑓 𝑦′

𝑦 𝑦′𝑦𝜆



No-Regret Implications

• We know no-regret algorithms exist! (e.g., online gradient descent)
𝑥𝑡 = 𝑥𝑡−1 − 𝜂∇xℓ 𝑥𝑡−1, 𝑦𝑡−1 , 𝑦𝑡 = 𝑦𝑡−1 + 𝜂∇𝑦ℓ 𝑥𝑡−1, 𝑦𝑡−1

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡 , 𝑦𝑡 ≤ min
𝑥

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥, 𝑦𝑡 + 𝜖 ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡 , 𝑦𝑡 ≥ max
𝑦

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡, 𝑦 − 𝜖 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 𝜖

Jensen’s 
inequality

Convex function:𝑓 𝜆𝑦 + 1 − 𝜆 𝑦′ ≤ 𝜆𝑓 𝑦 + 1 − 𝜆 𝑓 𝑦′

𝑥 𝑥′𝑥𝜆



No-Regret Implications

• We know no-regret algorithms exist! (e.g., online gradient descent)
𝑥𝑡 = 𝑥𝑡−1 − 𝜂∇xℓ 𝑥𝑡−1, 𝑦𝑡−1 , 𝑦𝑡 = 𝑦𝑡−1 + 𝜂∇𝑦ℓ 𝑥𝑡−1, 𝑦𝑡−1

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡, 𝑦𝑡 ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡 , 𝑦𝑡 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 𝜖

Expected average 
loss of 𝑥-player is a 
“best-response” to 
average strategy ത𝑦 

of 𝑦-player

Expected average 
utility of 𝑦-player is 
a “best-response” 
to average strategy 

ҧ𝑥 of 𝑥-player



No-Regret Implications

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

 
1

𝑇
෍

𝑡=1

𝑇

ℓ(𝑥𝑡, 𝑦𝑡) ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖 ≤ ℓ( ҧ𝑥, ത𝑦) + 𝜖

 
1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡 , 𝑦𝑡 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 𝜖 ≥ ℓ ҧ𝑥, ത𝑦 − 𝜖

Loss (utility) of 
average strategies

≤
≥

=

Average loss of 𝑥-player = 
Average utility of 𝑦-player

ℓ ҧ𝑥, ത𝑦 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 2𝜖

ℓ ҧ𝑥, ത𝑦 ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 2𝜖

( ҧ𝑥, ത𝑦) is a 2𝜖-approximate 
equilibrium

ҧ𝑥, ത𝑦 → equilibrium as 𝑇 → ∞



No-Regret Implications

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

 
1

𝑇
෍

𝑡=1

𝑇

ℓ(𝑥𝑡, 𝑦𝑡) ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖 ≤ ℓ( ҧ𝑥, ത𝑦) + 𝜖

 
1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡 , 𝑦𝑡 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 𝜖 ≥ ℓ ҧ𝑥, ത𝑦 − 𝜖

Loss (utility) of 
average strategies

≤
≥

=

Average loss of 𝑥-player = 
Average utility of 𝑦-player

ℓ ҧ𝑥, ത𝑦 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 2𝜖

ℓ ҧ𝑥, ത𝑦 ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 2𝜖

( ҧ𝑥, ത𝑦) is a 2𝜖-approximate 
equilibrium

ҧ𝑥, ത𝑦 → equilibrium as 𝑇 → ∞



Main Takeaway: Equilibrium via No-Regret

Theorem. If two players play repeatedly a convex-concave zero-
sum game and each player uses any no-regret algorithm to pick 
their vector 𝑥𝑡 , 𝑦𝑡 , then the average vector of each player

ҧ𝑥 =
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 , ത𝑦 =
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡

are a 2𝜖-approximate Nash equilibrium (where 𝜖 is the regret at of 
each algorithm after 𝑇 periods). Hence,

ҧ𝑥, ത𝑦 → equilibrium as 𝑇 → ∞



Minimax Theorem via No-Regret

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

1

𝑇
෍

𝑡=1

𝑇

ℓ(𝑥𝑡 , 𝑦𝑡) ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖 ≤ max
𝑦

min
𝑥

ℓ(𝑥, 𝑦) + 𝜖

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡, 𝑦𝑡 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 𝜖 ≥ min
𝑥

max
𝑦

ℓ 𝑥, 𝑦 − 𝜖

=

Average loss of 𝑥-player = 
Average utility of 𝑦-player



Minimax Theorem via No-Regret

• What this implies is that in the limit as 𝑇 → ∞ for a regret 𝜖 → 0

1

𝑇
෍

𝑡=1

𝑇

ℓ(𝑥𝑡 , 𝑦𝑡) ≤ min
𝑥

ℓ 𝑥, ത𝑦 + 𝜖 ≤ max
𝑦

min
𝑥

ℓ(𝑥, 𝑦) + 𝜖

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑥𝑡, 𝑦𝑡 ≥ max
𝑦

ℓ ҧ𝑥, 𝑦 − 𝜖 ≥ min
𝑥

max
𝑦

ℓ 𝑥, 𝑦 − 𝜖

=

Average loss of 𝑥-player = 
Average utility of 𝑦-player

max
𝑦

min
𝑥

ℓ(𝑥, 𝑦) ≥ min
𝑥

max
𝑦

ℓ 𝑥, 𝑦 + 2𝜖



Minimax Theorem via No-Regret

Theorem. Existence of no-regret algorithms implies (as 𝜖 → 0) that
max
𝑦∈𝒴

min
𝑥∈𝒳

ℓ 𝑥, 𝑦 ≥ min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ 𝑥, 𝑦

The other direction is trivial (why?)

max
𝑦∈𝒴

min
𝑥∈𝒳

ℓ(𝑥, 𝑦) ≤ min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ 𝑥, 𝑦

Thus
max
𝑦∈𝒴

min
𝑥∈𝒳

ℓ(𝑥, 𝑦) = min
𝑥∈𝒳

max
𝑦∈𝒴

ℓ(𝑥, 𝑦)

(an alternative to von Neuman’s original proof)



Recap: Equilibrium via No-Regret

Corollary. If two players play repeatedly a zero-sum game, with 𝑛 
rows and 𝑚 columns, and each player uses EXP with step size 𝜂 =

log max(𝑛, 𝑚) /2𝑇, to pick their action distributions 𝑥𝑡 , 𝑦𝑡 , then 
the average action distributions of each player

ҧ𝑥 =
1

𝑇
෍

𝑡=1

𝑇

𝑥𝑡 , ത𝑦 =
1

𝑇
෍

𝑡=1

𝑇

𝑦𝑡

are a 2 2log max 𝑛,𝑚

𝑇
 - approximate Nash equilibrium.



Can we do better in terms of rate?



Fast Convergence

• 1/ 𝑇 is tight no-regret rate, if loss sequence chosen by adversary
• When we deploy learning in games, the loss sequence is the 

outcome of learning of another player
• This is far from adversarial and has many nice properties

• Can we prove faster rates of convergence for learning in games, by 
leveraging properties of the loss sequence implied by this?



Intuition

• Suppose we use regularized no-regret algorithms (e.g. FTRL)
• Then we know they satisfy stability

𝑥𝑡 − 𝑥𝑡−1 1 = 𝑂 𝜂 , 𝑦𝑡 − 𝑦𝑡−1 1 = 𝑂 𝜂

• The loss of the x-player between two periods is
ℓ𝑡 = 𝐴𝑦𝑡 , ℓ𝑡−1 = 𝐴𝑦𝑡−1 ⇒ ℓ𝑡 − ℓ𝑡−1 ≤ 𝑂 𝜂

• Last period loss is very similar to next period loss!

• Can we leverage this fact to device a better no-regret algorithm?



Reminder: FTRL

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 +
1

𝜂
ℛ 𝑝

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

𝑝𝑡 ∝ 𝑝𝑡−1 exp 𝜂 ℓ𝑡−1

Exponential weight updates algorithm!
(aka Hedge, Multiplicative Weight Updates, EXP, ….)

Historical performance 
of always choosing 𝑝

1-strongly convex 
function of 𝑝 that 

stabilizes the minimizer

Negative
Entropy



FTRL with Predictors

Remember Be-the-Leader Lemma: if we know next period loss and 
play the leader including next period loss, then we have no-regret!

• What if we have a predictor 𝑀𝑡  about the next period loss?

• Pretend as if it was the next period loss and play Be-The-Leader



FTRL with Predictors

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

 𝑝𝑡 ∝ 𝑝𝑡−1 exp 𝜂  ℓ𝑡−1 + 𝑀𝑡 − 𝑀𝑡−1

Exponential weight updates with predictors!

FTRL
w. Predictors

Historical performance 
of always choosing 𝑝

1-strongly convex 
function of 𝑝 that 

stabilizes the minimizer

Predictor of next 
period loss

Negative
Entropy



Regret of FTRL with Predictors

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝

෤𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, ℓ𝑡⟩ +
1

𝜂
ℛ 𝑝

Theorem. For any loss sequence, with  ℓ𝑡
𝑖 ∈ 0, 1 :

Regret ℓ1:𝑇 ≤ 2
1

𝑇
෍

𝑡=1

𝑇

෤𝑝𝑡 − 𝑝𝑡 +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Proof is identical to the bound on FTRL without predictors

FTRL
w. Predictors

BTRL



How close is FTRL with Predictors to BTRL?

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝

෤𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, ℓ𝑡⟩ +
1

𝜂
ℛ 𝑝

Theorem. For the FTRL with predictors: ෤𝑝𝑡 − 𝑝𝑡 1 ≤ 𝜂 ℓ𝑡 − 𝑀𝑡 ∞

Proof. Invoke stability of strongly convex functions theorem with

𝑓 𝑝 = ෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝 , 𝑔 𝑝 = ෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, ℓ𝑡⟩ +
1

𝜂
ℛ 𝑝

ℎ 𝑝 = 𝑔 𝑝 − 𝑓 𝑝 = 𝑝, ℓ𝑡 − 𝑀𝑡 ⇒ ℓ𝑡 − 𝑀𝑡 ∞ − Lipschitz w. r. t. ⋅ 1

𝑣 ∞ = max𝑖=1
𝑛 𝑣𝑖

FTRL
w. Predictors

BTRL



How stable is FTRL with Predictors?

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝

𝑝𝑡+1 = argmin
𝑝

෍

𝜏<𝑡+1

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡+1⟩ +
1

𝜂
ℛ 𝑝

Theorem. If losses and predictors lie in 0,1 𝑛: 𝑝𝑡+1 − 𝑝𝑡 1 ≤ 3𝜂

Proof. Invoke stability of strongly convex functions theorem with

𝑓 𝑝 = ෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝 , 𝑔 𝑝 = ෍

𝜏<𝑡+1

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡+1⟩ +
1

𝜂
ℛ 𝑝

ℎ 𝑝 = 𝑔 𝑝 − 𝑓 𝑝 = 𝑝, 𝑀𝑡+1 − 𝑀𝑡 + ℓ𝑡+1 ⇒ 3 − Lipschitz w. r. t. ⋅ 1

Assuming predictors 
and losses lie in 0, 1 𝑛



Punchline

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, 𝑀𝑡⟩ +
1

𝜂
ℛ 𝑝

Corollary. FTRL with predictors is 3𝜂-stable and has regret

≤
𝜂

𝑇
෍

𝑡=1

𝑇

ℓ𝑡 − 𝑀𝑡 ∞ +
1

𝜂𝑇
max

𝑝
ℛ 𝑝 − min

𝑝
ℛ 𝑝

Average stability with 
respect to BTRL 

induced by regularizer

Average loss distortion 
caused by regularizer

FTRL
w. Predictors

Historical performance 
of always choosing 𝑝

1-strongly convex 
function of 𝑝 that 

stabilizes the minimizer

Predictor of next 
period loss



What is a good predictor in the 
context of games?



Optimistic FTRL: Last Period Predictor

𝑝𝑡 = argmin
𝑝

෍

𝜏<𝑡

𝑝, ℓ𝜏 + ⟨𝑝, ℓ𝑡−1⟩ +
1

𝜂
ℛ 𝑝

ℛ 𝑝 = ෍

𝑖=1

𝑛

𝑝𝑖 log 𝑝𝑖

𝑝𝑡 ∝ 𝑝𝑡−1 exp 𝜂 2ℓ𝑡−1 − ℓ𝑡−2

Optimistic Exponential Weight Updates!

FTRL
w. Predictors

Historical performance 
of always choosing 𝑝

1-strongly convex 
function of 𝑝 that 

stabilizes the minimizer

Optimism: predict that the 
next period loss will be the 

same as last period loss

Negative
Entropy



Optimistic EXP

Corollary. Optimistic EXP is 3𝜂-stable and has regret

𝑅 𝑇 ≤
𝜂

𝑇
෍

𝑡=1

𝑇

ℓ𝑡 − ℓ𝑡−1 ∞ +
log 𝑛

𝜂 𝑇

Average stability of the 
loss vector



Applying Optimistic EXP to Games

Suppose both players use Optimistic EXP with step-size 𝜂

𝑅𝑥 𝑇 ≤
𝜂

𝑇
෍

𝑡=1

𝑇

𝐴 𝑦𝑡 − 𝑦𝑡−1 ∞ +
log 𝑛

𝜂 𝑇

≤
𝜂

𝑇
෍

𝑡=1

𝑇

𝑦𝑡 − 𝑦𝑡−1 1 +
log 𝑛

𝜂 𝑇

≤
𝜂

𝑇
෍

𝑡=1

𝑇

3𝜂 +
log 𝑛

𝜂𝑇
= 3𝜂2 +

log 𝑛

𝜂𝑇

stability of loss vector

stability of opponent

Since opponent uses 
an 𝜂-stable algorithm

Much smaller leading term 
(closeness to BTRL) than 

without predictors (i.e. 𝜂2 vs. 𝜂)



Optimistic EXP Dynamics

Corollary. If all players use Optimistic EXP with 𝜂 =
log 𝑛∨𝑚

𝑇

1/3

 

then each player’s regret is at most 𝜖 = 4
log 𝑛∨𝑚

𝑇

2/3

 and the 

average vectors ҧ𝑥, ത𝑦  are an 2𝜖-approximate equilibrium 

Larger step size than if we were 
playing against an adversary

𝑇−1/3 vs. 𝑇−1/2

(e.g. if 𝑇 = 1000, then 0.1 vs. 0.032)

Order of magnitude smaller regret 
than playing against an adversary

𝑇−2/3 vs. 𝑇−1/2

(e.g. if 𝑇 = 1000, then 0.01 vs. 0.032)



Optimistic EXP Dynamics

An even better theorem can be proven with a more refined analysis
[1311.1869] Optimization, Learning, and Games with Predictable Sequences (arxiv.org)

Theorem [Rakhlin-Sridharan’13]. If players use Optimistic EXP with 𝜂 = 𝑂 1  

then the average vectors ҧ𝑥, ത𝑦  are an 𝑂 log 𝑛∨𝑚

𝑇
-approximate equilibrium.

Intuition. Utilizes the fact that 𝜖 = 𝑅𝑥 + 𝑅𝑦. One can prove bounds on 𝑅𝑥 that 
contain more refined “negative terms” (typically ignored). Rather than ignoring 
them, these negative terms cancel out with positive terms in 𝑅𝑦, when you sum 
the two regret terms.

https://arxiv.org/abs/1311.1869


Do the dynamics actually 
converge?

ҧ𝑥, ത𝑦 → equilibrium   vs. 𝑥𝑇 , 𝑦𝑇 → equilibrium

“average iterate convergence” vs. “last-iterate convergence”



A simple example
Consider the game defined by loss matrix

𝐴 =
.5 0
0 1

EXP dynamics:

𝑥𝑡 ∝ 𝑥𝑡−1 exp −𝜂𝐴𝑦𝑡−1

𝑦𝑡 ∝ 𝑦𝑡−1 exp 𝜂𝐴⊤𝑥𝑡−1



A Simple Game Analysis

• Consider the simplest convex-concave zero-sum game
ℓ 𝑥, 𝑦 = 𝑥𝑦, 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅

• The only equilibrium of this game is 0, 0  (why?)
• What if both player use online gradient descent

𝑥𝑡 = 𝑥𝑡−1 − 𝜂∇𝑥ℓ 𝑥𝑡−1, 𝑦𝑡−1 = 𝑥𝑡−1 − 𝜂𝑦𝑡−1

𝑦𝑡 = 𝑦𝑡−1 + 𝜂∇𝑦ℓ 𝑥𝑡−1, 𝑦𝑡−1 = 𝑦𝑡−1 + 𝜂𝑥𝑡−1

• What happens to the distance to equilibrium at each period
𝑥𝑡

2 + 𝑦𝑡
2 = 𝑥𝑡−1

2 − 2𝜂𝑥𝑡−1𝑦𝑡−1 + 𝜂2𝑦𝑡−1
2 + 𝑦𝑡−1

2 + 2𝜂𝑥𝑡−1𝑦𝑡−1 + 𝜂2𝑥𝑡−1
2

= 1 + 𝜂2 𝑥𝑡−1
2 + 𝑦𝑡−1

2

• It grows!! We move away from equilibrium



A Simple Game Analysis

• Consider the simplest convex-concave zero-sum game
ℓ 𝑥, 𝑦 = 𝑥𝑦, 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅

• The only equilibrium of this game is 0, 0  (why?)
• What if both player use optimistic online gradient descent

𝑥𝑡 = 𝑥𝑡−1 − 𝜂 2𝑦𝑡−1 − 𝑦𝑡−2 = 𝑥𝑡−1 − 𝜂𝑦𝑡−1 − 𝜂 𝑦𝑡−1 − 𝑦𝑡−2
𝑦𝑡 = 𝑦𝑡−1 + 𝜂 2𝑥𝑡−1 − 𝑥𝑡−2 = 𝑦𝑡−1 + 𝜂𝑥𝑡−1 + 𝜂 𝑥𝑡−1 − 𝑥𝑡−2

• What happens to the distance to equilibrium at each period?
𝑑𝑥𝑡 ≔ 𝑥𝑡 − 𝑥𝑡−1 = −𝜂𝑦𝑡−1 − 𝜂𝑑𝑦𝑡−1
𝑑𝑦𝑡 ≔ 𝑦𝑡 − 𝑦𝑡−1 =  𝜂𝑥𝑡−1 + 𝜂𝑑𝑥𝑡−1

A form of “negative 
momentum”



𝑥𝑡, 𝑦𝑡

A form of negative momentum

−𝑦𝑡 , 𝑥𝑡

𝑥

𝑦

𝑥𝑡−1, 𝑦𝑡−1

0,0

−𝑑𝑦𝑡 , 𝑑𝑥𝑡

𝑥𝑡+1, 𝑦𝑡+1

Gradient 
descent-ascent 

update
Optimistic gradient 
descent-ascent 
update



A simple example
Consider the game defined by loss matrix

𝐴 =
.5 0
0 1

Optimistic EXP dynamics:

𝑥𝑡 ∝ 𝑥𝑡−1 exp −𝜂 2𝐴𝑦𝑡−1 − 𝐴𝑦𝑡−2

𝑦𝑡 ∝ 𝑦𝑡−1 exp 𝜂 2𝐴⊤𝑥𝑡−1 − 𝐴⊤𝑥𝑡−2



Convergence of Optimistic EXP

• Define distance to equilibrium as the KL-divergence:

𝑑𝑡 ≔ 𝐾𝐿 ԡ𝑥𝑡 , 𝑦𝑡 𝑥∗, 𝑦∗ = 𝑥∗, log
𝑥∗

𝑥𝑡
+ 𝑦∗, log

𝑦∗

𝑦𝑡

• We will investigate whether this distance decreases at each period:

Δt ≔ 𝑑𝑡+1 − 𝑑𝑡 = − 𝑥∗, log
𝑥𝑡+1

𝑥𝑡
− 𝑦∗, log

𝑦𝑡+1

𝑦𝑡

Theorem. For 𝜂 smaller than some constant, when 𝑥𝑡 , 𝑦𝑡  is “𝛺 𝜂1/3 -far from 𝑥∗, 𝑦∗ ” then

Δt ≤ −Ω 𝜂3

Hence, eventually 𝑥𝑡 , 𝑦𝑡  will be “𝑂 𝜂1/3 -close to 𝑥∗, 𝑦∗ ”



Appendix
Main arguments in proof of convergence of Optimistic EXP
[1807.04252] Last-Iterate Convergence: Zero-Sum Games and Constrained Min-Max Optimization (arxiv.org)

https://arxiv.org/abs/1807.04252


Convergence of Optimistic EXP

𝑥𝑡+1 =
𝑥𝑡 ⋅ exp −2𝜂𝐴𝑦𝑡 + 𝜂𝐴𝑦𝑡−1

⟨𝑥𝑡 , exp −2𝜂𝐴𝑦𝑡 + 𝜂𝐴𝑦𝑡−1 ⟩
, 𝑦𝑡+1 =

𝑦𝑡 ⋅ exp 2𝜂𝐴⊤𝑥𝑡 − 𝜂𝐴⊤𝑥𝑡−1

⟨𝑦𝑡, exp 2𝜂𝐴⊤𝑥𝑡 − 𝜂𝐴⊤𝑥𝑡−1 ⟩

• Decrease in distance simplifies to:

Δ𝑡 = 𝑥∗, 𝜂𝐴 2𝑦𝑡 − 𝑦𝑡−1 − 𝑦∗, 𝜂𝐴⊤ 2𝑥𝑡 − 𝑥𝑡−1

 + log⟨𝑥𝑡 , exp −2𝜂𝐴𝑦𝑡 + 𝜂𝐴𝑦𝑡−1 ⟩

+ log⟨𝑦𝑡, exp 2𝜂𝐴⊤𝑥𝑡 − 𝜂𝐴⊤𝑥𝑡−1 ⟩

• First part ≤ 𝟎. For small 𝜂, 2𝑦𝑡 − 𝑦𝑡−1 and 2𝑥𝑡 − 𝑥𝑡−1 lie in simplices. By 
equilibrium:

𝑥∗
⊤𝐴𝑦∗ ≤ 2𝑥𝑡 − 𝑥𝑡−1

⊤𝐴𝑦∗, 𝑥∗
⊤𝐴𝑦∗ ≥ 𝑥∗

⊤𝐴 2𝑦𝑡 − 𝑦𝑡−1

• Second part. Use Taylor approximations and definition of dynamics

Coordinate-wise 
multiplication of two 
vectors



Convergence of Optimistic EXP

Δ𝑡 ≤ log⟨𝑥𝑡 , exp −2𝜂𝐴𝑦𝑡 + 𝜂𝐴𝑦𝑡−1 ⟩ + log⟨𝑦𝑡 , exp 2𝜂𝐴⊤𝑥𝑡 − 𝜂𝐴⊤𝑥𝑡−1 ⟩

• Both quantities can be viewed as a weighted soft-max operator over a vector

• We will consider a Taylor approximation to the softmax after centering

• For simplicity define 𝑣𝑡 = 𝐴 2𝑦𝑡 − 𝑦𝑡−1  and 𝑢𝑡 = 𝐴⊤ 2𝑥𝑡 − 𝑥𝑡−1 , so that 

Δ𝑡 ≤ log⟨𝑥𝑡 , exp −𝜂𝑣𝑡 ⟩ + log⟨𝑦𝑡 , exp 𝜂𝑢𝑡 ⟩

• Center vectors around scalars ҧ𝑣𝑡 , ത𝑢𝑡, so that average deviations from centers are “small”

Δ𝑡 ≤ −𝜂 ҧ𝑣𝑡 + log⟨𝑥𝑡 , exp −𝜂 𝑣𝑡 − ҧ𝑣𝑡 ⟩ + 𝜂 ത𝑢𝑡 + log⟨𝑦𝑡 , exp 𝜂 𝑢𝑡 − ത𝑢𝑡 ⟩

Side note: if we were to use EXP 
then we can derive the same bound 
but with 𝑣𝑡 = 𝐴𝑦𝑡  and 𝑢𝑡 = 𝐴⊤𝑥𝑡



Convergence of Optimistic EXP

−𝜂 ҧ𝑣𝑡 + log⟨𝑥𝑡 , exp −𝜂 𝑣𝑡 − ҧ𝑣𝑡 ⟩

• Consider a second order Taylor approximation to “exp”

log 𝑥𝑡 , 1 + 𝑟𝑡 +
1

2
+ 𝑂 𝜂 𝑟𝑡

2 = log 1 + 𝑥𝑡 , 𝑟𝑡 +
1

2
+ 𝑂 𝜂 𝑥𝑡 , 𝑟𝑡

2

• Choose centers so that the first order term vanishes (i.e., ҧ𝑣𝑡 = 𝑥𝑡
⊤𝑣𝑡 and ത𝑢𝑡 = 𝑦𝑡

⊤𝑢𝑡)

𝑥𝑡 , 𝑟𝑡 = −𝜂 𝑥𝑡
⊤𝑣𝑡 − ҧ𝑣𝑡 = 0

• For the second order, we can simply upper bound using log 1 + 𝑥 ≤ 𝑥

−𝜂 𝑥𝑡
⊤𝑣𝑡 +

1

2
+ 𝑂 𝜂 𝜂2⟨𝑥𝑡 , 𝑣𝑡 − ⟨𝑥𝑡 , 𝑣𝑡⟩ 2⟩

𝑟𝑡



Decrease in distance is upper bounded by

Δ𝑡 ≤ 𝜂 𝑦𝑡
⊤𝑢𝑡 − 𝜂 𝑥𝑡

⊤𝑣𝑡 +
1

2
+ 𝑂 𝜂 𝜂2 𝑥𝑡 , 𝑣𝑡 − 𝑥𝑡 , 𝑣𝑡

2 + 𝑦𝑡 , 𝑢𝑡 − 𝑦𝑡 , 𝑢𝑡
2  

Quantity 𝑣𝑡 − ⟨𝑥𝑡 , 𝑣𝑡⟩ can be thought as a mixture of “regrets” of each action of 𝑥-player
𝑣𝑡 − 𝑥𝑡 , 𝑣𝑡 = 2 𝐴𝑦𝑡 − 𝑥𝑡

⊤𝐴𝑦𝑡 − 𝐴𝑦𝑡−1 − 𝑥𝑡
⊤𝐴𝑦𝑡−1

Definition. We say that a point is 𝜂1/3 far from equilibrium if at least one entry with weight 𝑥𝑡
𝑖 = Ω 𝜂1/3  

has regret 𝑥𝑡
⊤𝐴𝑦𝑡 − 𝐴𝑦𝑡 𝑖 = Ω 𝜂1/3

Given that algorithm is 𝜂-stable, we also have that 𝑦𝑡 − 𝑦𝑡−1 ≤ 𝑂 𝜂  

𝑣𝑡 − 𝑥𝑡 , 𝑣𝑡 𝑖 = −2 𝐴𝑦𝑡 − 𝑥𝑡
⊤𝐴𝑦𝑡 𝑖

+ 𝐴𝑦𝑡−1 − 𝑥𝑡
⊤𝐴𝑦𝑡−1 𝑖

= Ω 𝜂1/3 − 𝑂 𝜂 = Ω 𝜂1/3

Corollary. If we are 𝜂1/3-far from equilibrium then max 𝑅𝑡
𝑥 , 𝑅𝑡

𝑦
= Ω 𝜂

Convergence of Optimistic EXP

𝑅𝑡
𝑥 𝑅𝑡

𝑦



Convergence of Optimistic EXP

Decrease in distance is upper bounded by

Δ𝑡 ≤ 𝜂 𝑦𝑡
⊤𝑢𝑡 − 𝜂 𝑥𝑡

⊤𝑣𝑡 +
1

2
+ 𝑂 𝜂 𝜂2 𝑅𝑡

𝑥 + 𝑅𝑡
𝑦

Suppose we can also argue the following main lemma

Main Lemma. 𝑦𝑡
⊤𝑢𝑡 − 𝑥𝑡

⊤𝑣𝑡 ≤ − 1 − 𝑂 𝜂 𝜂 𝑅𝑡
𝑥 + 𝑅𝑡

𝑦
+ 𝑂 𝜂2

Combined with the corollary in the previous slide, we get the main theorem

Δt ≤ −
1

2
− 𝑂 𝜂 𝜂2 max 𝑅𝑡

𝑥, 𝑅𝑡
𝑦

+ 𝑂 𝜂3 ≤ −Ω 𝜂3



Main Lemma. 𝑦𝑡
⊤𝑢𝑡 − 𝑥𝑡

⊤𝑣𝑡 ≤ − 1 − 𝑂 𝜂 𝜂 max 𝑅𝑡
𝑥 , 𝑅𝑡

𝑦
+ 𝑂 𝜂2

𝑦𝑡
⊤𝑢𝑡 − 𝑥𝑡

⊤𝑣𝑡 = 2𝑥𝑡
⊤𝐴𝑦𝑡 − 𝑥𝑡−1

⊤ 𝐴𝑦𝑡 − 2𝑥𝑡
⊤𝐴𝑦𝑡 + 𝑥𝑡

⊤𝐴𝑦𝑡−1 = 𝑥𝑡
⊤𝐴𝑦𝑡−1 − 𝑥𝑡−1

⊤ 𝐴𝑦𝑡

• Note that by adding and subtracting the previous period utility/loss:

𝑥𝑡
⊤𝐴𝑦𝑡−1 − 𝑥𝑡−1

⊤ 𝐴𝑦𝑡 = 𝑥𝑡
⊤𝐴𝑦𝑡−1 −

1

2
𝑥𝑡−1

⊤ 𝐴𝑦𝑡−1 +
1

2
𝑥𝑡−1

⊤ 𝐴𝑦𝑡−1 − 𝑥𝑡−1
⊤ 𝐴𝑦𝑡 =

1

2
𝑦𝑡−1

⊤ 𝑢𝑡 −
1

2
𝑥𝑡−1

⊤ 𝑣𝑡

• We can derive that:

𝑦𝑡
⊤𝑢𝑡 − 𝑥𝑡

⊤𝑣𝑡 =
1

2
𝑦𝑡−1

⊤ 𝑢𝑡 −
1

2
𝑥𝑡−1

⊤ 𝑣𝑡

• Suppose that we can argue that

𝑥𝑡
⊤𝑣𝑡 − 𝑥𝑡−1

⊤ 𝑣𝑡 ≤ − 1 − 𝑂 𝜂 𝜂𝑅𝑡
𝑥 + 𝑂 𝜂2

𝑦𝑡−1
⊤ 𝑢𝑡 − 𝑦𝑡

⊤𝑢𝑡 ≤ − 1 − 𝑂 𝜂 𝜂𝑅𝑡
𝑦

+ 𝑂 𝜂2

• Then 𝑦𝑡
⊤𝑢𝑡 − 𝑥𝑡

⊤𝑣𝑡 =
1

2
𝑦𝑡

⊤𝑢𝑡 − 𝑥𝑡
⊤𝑣𝑡 −

1

2
− 𝑂 𝜂 𝜂 max 𝑅𝑡

𝑥, 𝑅𝑡
𝑦

• Rearranging yields the lemma

This wouldn’t be the case 
under EXP, where 𝑣𝑡 = 𝐴𝑦𝑡  
and 𝑢𝑡 = 𝐴⊤𝑥𝑡 in which 
case 𝑦𝑡

⊤𝑢𝑡 − 𝑥𝑡
⊤𝑣𝑡 = 0.

For optimistic EXP this 
difference is the bias that 
shrinks us towards the 
equilibrium.

(Main Sub-Lemma)



Main Sub-Lemma. 𝑥𝑡
⊤𝑣𝑡 − 𝑥𝑡−1

⊤ 𝑣𝑡 ≤ − 1 − 𝑂 𝜂 𝜂𝑅𝑡
𝑥 + 𝑂 𝜂2

Suffices to argue lemma for first-order approx. to the Optimistic EXP updates

෤𝑥𝑡 =
𝑥𝑡−1 ⋅ 1 − 𝜂𝑣𝑡−1

⟨𝑥𝑡−1, 1 − 𝜂𝑣𝑡−1⟩

Since, it can be argued that first-order approx. is close to original variant, i.e. 

𝑥𝑡 − ෤𝑥𝑡 = 𝑂 𝜂2

Thus, we want

෤𝑥𝑡
⊤𝑣𝑡 − 𝑥𝑡−1

⊤ 𝑣𝑡 = − 1 − 𝑂 𝜂  𝜂 ⟨𝑥𝑡 , 𝑣𝑡 − 𝑥𝑡 , 𝑣𝑡
2⟩

Further since 𝑥𝑡 − 𝑥𝑡−1 = 𝑂 𝜂 , it suffices that:

෤𝑥𝑡
⊤𝑣𝑡 − 𝑥𝑡−1

⊤ 𝑣𝑡 = − 1 − 𝑂 𝜂  𝜂 ⟨𝑥𝑡−1, 𝑣𝑡 − 𝑥𝑡−1, 𝑣𝑡
2⟩



Main Sub-Lemma: 𝑥𝑡
⊤𝑣𝑡 − 𝑥𝑡−1

⊤ 𝑣𝑡 ≤ − 1 − 𝑂 𝜂 𝜂𝑅𝑡
𝑥 + 𝑂 𝜂2

Let 𝑣′ = 𝐴 2𝑦𝑡−1 − 𝑦𝑡−2 , 𝑣 = 𝐴 2𝑦𝑡 − 𝑦𝑡−1 , 𝑥 = 𝑥𝑡−1, and ෤𝑥 = ෤𝑥𝑡. We want to show that

෤𝑥, 𝑣 − 𝑥, 𝑣 = − 1 − 𝑂 𝜂 𝜂 𝑥, 𝑣 − 𝑥, 𝑣 2 , ෤𝑥 =
𝑥 1 − 𝜂𝑣′

1 − 𝜂⟨𝑥, 𝑣′⟩

• Plugging in the update rule for ෤𝑥 and simplifying

෤𝑥, 𝑣 − 𝑥, 𝑣 =
𝑥, 𝑣

1 − 𝜂 𝑥, 𝑣′
− 𝜂

𝑥 ⋅ 𝑣′, 𝑣

1 − 𝜂 𝑥, 𝑣′
− 𝑥, 𝑣 =

𝜂 𝑥, 𝑣 𝑥, 𝑣′

1 − 𝜂 𝑥, 𝑣′
−

𝜂 𝑥, 𝑣 ⋅ 𝑣′

1 − 𝜂 𝑥, 𝑣′

• By stability 𝑣 − 𝑣′ = 𝑂 𝜂  and we can derive

෤𝑥, 𝑣 − 𝑥, 𝑣 =
𝜂 𝑥, 𝑣 2 − 𝑥, 𝑣2

1 − 𝜂 𝑥, 𝑣′
+ 𝑂 𝜂2

• Note 𝑥, 𝑣 − 𝑥, 𝑣 2  is variance of the vector 𝑣 under distribution 𝑥. By variance formula
𝑥, 𝑣 − 𝑥, 𝑣 2 = 𝑥, 𝑣2 − 𝑥, 𝑣 2

• Since 1 − 𝜂 𝑥, 𝑣′ ≤ 1 + O 𝜂 :

෤𝑥, 𝑣 − 𝑥, 𝑣 = −
𝜂 𝑥, 𝑣 − 𝑥, 𝑣 2

1 − 𝜂 𝑥, 𝑣′
+ 𝑂 𝜂2 ≤ − 1 − 𝑂 𝜂  𝜂 𝑥, 𝑣 − 𝑥, 𝑣 2 + 𝑂 𝜂2



Punchline: Last-Iterate Convergence to Equilibrium

For 𝜂 small enough, when 𝑥𝑡 , 𝑦𝑡  is not 𝑂 𝜂1/3 -close to 𝑥∗, 𝑦∗

Δt ≔ 𝑑𝑡+1 − 𝑑𝑡 ≤ −Ω 𝜂3

Thus eventually (𝑥𝑡 , 𝑦𝑡) will be 𝜂1/3-close to 𝑥∗, 𝑦∗ .

Some technicalities are also required to show that the definition of 
closeness used in the proof, also imply closeness with more 
standard definitions like ℓ1 distance.
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