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Class Music Auction!
We will be experimenting with putting music for the first three minutes of the class as people arrive!

You have the chance to choose the song of the day! 

Each of you has a total budget of 100 fake dollars for the whole class! You can choose to spend them however you 
want on each lecture.

For each lecture you can choose to bid anywhere from 0 to 20 dollars. 

We will then choose uniformly at random among the highest bidders. The winner of the auction will get to choose 
the song of the day and they have to pay their bid, i.e. the amount they bid will be subtracted from their 100$ 
budget. 

If you submit an illegal bid (i.e. a bid that goes beyond your total budget, your bid will be disqualified and ignored).

Please be appropriate in your choice of songs; I might need to censor and ask you to choose something else. I'll be 
emailing the winner on the morning of the lecture to email me the spotify link for the song.

Submit your bid by 11:59pm the day before the lecture. You should submit your bid using the corresponding canvas 
quiz that will be setup for each lecture

Class Music Auction: Game Theory, Data Science and AI (stanford.edu)

Go to canvas and check the quizzes section.

If there is no participation in the auction, I'll just choose the music myself. But that's not much fun...

Spotify playlist that will be populated with the songs we play each day: 
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f6
4d8f8b797368a83ed

https://canvas.stanford.edu/courses/190932/quizzes/154392
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f64d8f8b797368a83ed
https://open.spotify.com/playlist/03yGb6URnCzG4pVV6RhK4C?si=wpINDMSGRJOho_6daaSLsA&pt=ff706933952e0f64d8f8b797368a83ed


Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics and applications of extensive-form games (T+A)
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games and equilibria (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Applications of Learning in Zero-
Sum Games to ML and AI
Boosting, Distributional Robustness, Generative Learning, Learning from 
Human Feedback, Causal ML, Fair ML



Boosting

Image credits: chat.openai.com



The Boosting Problem

• Given 𝑛 samples S = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛  from distribution 𝐷
• 𝑦𝑖 ∈ 0,1 : a binary classification label
• 𝑥𝑖: covariates associated with 𝑦𝑖  that can be used to predict label

• Suppose that I give you a weak classification “Oracle” algorithm
• Oracle looks at samples 𝑆 and produces hypothesis ℎ𝑆 from a simple 

class of base hypotheses 𝐻 that classifies more than half of the 
samples correctly

1

𝑛
෍

𝑖=1

𝑛

1 ℎ 𝑥𝑖 = 𝑦𝑖 ≥
1

2
+ 𝛿



The Boosting Problem

• Given 𝑛 samples S = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛  from distribution 𝐷
• 𝑦𝑖 ∈ 0,1 : a binary classification label
• 𝑥𝑖: covariates associated with 𝑦𝑖  that can be used to predict label

• Suppose that I give you a weak classification “Oracle” algorithm
• Oracle looks at weighted samples 𝑆 and produces hypothesis 

ℎ𝑆 ∈ 𝐻 that classifies more than half of the weight correctly
1

σ𝑖 𝑤𝑖
෍

𝑖=1

𝑛

𝑤𝑖1 ℎ 𝑥𝑖 = 𝑦𝑖 ≥
1

2
+ 𝛿



The boosting problem
Given “weak” classification oracle, can we 
construct in a computationally efficient 
manner a “strong” classifier that achieves 
accuracy on 𝐷 arbitrarily close to 1? 
Major open problem among the tiny ML community in late 80s-early 90s
Resolved by Robert Schapire and further developed by Freund-Schapire



Finite Sample Variant. Given “weak” 
classification oracle, can we construct in a 
computationally efficient manner a “strong” 
classifier that classifies all samples correctly and 
is not much more complex than functions in 𝐻 
Can then be combined with generalization bound arguments (VC dimension), 
which we will learn later in class, to fully solve the boosting problem.



Skyline View of the Solution as a Game
• View the problem as a game between a learner and an adversary
• Adversary chooses distributions 𝑤 over samples on which the 

learner makes many mistakes
• Learner chooses distribution 𝑃 over hypotheses with small 

expected number of mistakes for any sample distribution

ℎ1 ℎ2 …ℎ3

𝑠1

𝑠2

𝑠𝑖

𝑠𝑛

…
…

Adversary

ℎ𝑗

Learner



Skyline View of the Solution as a Game
• View the problem as a game between a learner and an adversary
• Weak Oracle assumption. No matter what distribution 𝑤 over 

samples you give me, there exists a hypothesis WEAK(w) that will 
classify majority correctly

ℎ1 ℎ2 …ℎ3

𝑠1

𝑠2

𝑠𝑖

𝑠𝑛

…
…

ℎ𝑗

𝑤

Adversary

WEAK(w)
Learner



Skyline View of the Solution as a Game
• View the problem as a game between a learner and an adversary
• We solve the game via no-regret dynamics
• At each period adversary chooses a distribution 𝑤𝑡  based on EXP
• Learner “best-responds” by applying the weak oracle on 𝑤𝑡

ℎ1 ℎ2 …ℎ3

𝑠1

𝑠2

𝑠𝑖

𝑠𝑛

…
…

ℎ𝑗

𝑤𝑡

Adversary

WEAK(wt)Learner

𝑤𝑡+1

Up-weights samples that 
were incorrectly classified by 
the last chosen hypothesis 
and down-weights samples 
that were correctly classified



Skyline View of the Solution as a Game
• The average 𝑤𝑡 and the uniform mixture over ℎ1, … , ℎ𝑇  are an 

approximate solution to the min-max problem
• Together with weak oracle assumption this means for any sample 

the majority of ℎ1, … , ℎ𝑇  classify it correctly
• The majority vote ensemble model classifies all samples correctly!

• This is roughly AdaBoost…





Let’s make it 
formal!



The Boosting Problem as a Zero-Sum Game

• Produce a hypothesis ℎ∗ such that no matter which sample we 
look, we accurately classify

max
ℎ∈𝐻

min
𝑖∈ 𝑛

1 ℎ 𝑥𝑖 = 𝑦𝑖

• Max player: learner that chooses hypotheses
• Min player: adversary that chooses bad samples



The Boosting Problem as a Zero-Sum Game

• Produce a hypothesis ℎ∗ such that no matter which distribution 
over samples we look, we accurately classify

max
ℎ∈𝐻

min
𝑤∈Δ 𝑛

෍

𝑖=1

𝑛

𝑤𝑖1 ℎ 𝑥𝑖 = 𝑦𝑖

• Max player: learner that chooses hypotheses
• Min player: adversary that chooses bad distributions over samples



Convexifying the Learner

• Produce mixture 𝑃∗ over base hypotheses, such that no matter 
which distribution over samples we look, we accurately classify

max
𝑃∈Δ 𝐻

min
𝑤∈Δ 𝑛

෍

𝑖=1

𝑛

𝑤𝑖𝐸ℎ∼𝑃 1 ℎ 𝑥𝑖 = 𝑦𝑖

• Max player: learner that chooses distributions over hypotheses
• Min player: adversary that chooses bad distributions over samples



Solution as an Equilibrium

• Produce mixture 𝑃∗ over base hypotheses, such that no matter 
which distribution over samples we look, we accurately classify

max
𝑃∈Δ 𝐻

min
𝑤∈Δ 𝑛

෍

𝑖=1

𝑛

𝑤𝑖𝐸ℎ∼𝑃 1 ℎ 𝑥𝑖 = 𝑦𝑖 =: ℓ 𝑤, 𝑃

• Max player: learner that chooses distributions over hypotheses
• Min player: adversary that chooses bad distributions over samples



Equilibria vs. Min-Max Solutions



Equilibria and Min-Max Solutions

Theorem. Any equilibrium 𝑤∗, 𝑃∗  is a solution to min-max

min
𝑤

ℓ 𝑤, 𝑃∗ ≥ ℓ 𝑤∗, 𝑃∗ ≥ max
𝑃

ℓ 𝑤∗, 𝑃 ≥ max
𝑃

min
𝑤

ℓ 𝑤, 𝑃

Theorem. Any 𝜖-equilibrium 𝑤∗, 𝑃∗  is an 𝜖-solution to min-max

min
𝑤

ℓ 𝑤, 𝑃∗ ≥ ℓ 𝑤∗, 𝑃∗ − 𝜖 ≥ max
𝑃

ℓ 𝑤∗, 𝑃 − 2𝜖

≥ max
𝑃

min
𝑤

ℓ 𝑤, 𝑃 − 2𝜖

Best-Response 
of 𝑤-player

Best-Response 
of 𝑃-player

ℓ 𝑤, 𝑃∗

min
𝑤

ℓ 𝑤, 𝑃∗ = ℓ 𝑤∗, 𝑃∗

ℓ 𝑤∗, 𝑃 min
𝑤

ℓ 𝑤, 𝑃

max
𝑃

min
𝑤

ℓ 𝑤, 𝑃



Equilibria and Min-Max Solutions

Theorem. Any equilibrium 𝑤∗, 𝑃∗  is a solution to min-max

min
𝑤

ℓ 𝑤, 𝑃∗ ≥ ℓ 𝑤∗, 𝑃∗ ≥ max
𝑃

ℓ 𝑤∗, 𝑃 ≥ max
𝑃

min
𝑤

ℓ 𝑤, 𝑃

Theorem. Any 𝜖-equilibrium 𝑤∗, 𝑃∗  is a 2𝜖-solution to min-max

min
𝑤

ℓ 𝑤, 𝑃∗ ≥ ℓ 𝑤∗, 𝑃∗ − 𝜖 ≥ max
𝑃

ℓ 𝑤∗, 𝑃 − 2𝜖

≥ max
𝑃

min
𝑤

ℓ 𝑤, 𝑃 − 2𝜖

Best-Response 
of 𝑤-player

Best-Response 
of 𝑃-player

𝜖-Best-Response 
of 𝑤-player

𝜖-Best-Response 
of 𝑃-player



Solving for Equilibrium via No-Regret

We let that two players play the game repeatedly
• At each period, adversary chooses a distribution 𝑤𝑡  over samples
• At each period, learner chooses a distribution 𝑃𝑡  over hypotheses

We want both players’ choice process to have vanishing regret

• Adversary online learning problem easy: 𝑛 action problem
• Learner’s online learning problem not clear…



Solving large games with 
oracles!

Image credits: chat.openai.com



Zero-Sum with Too Many Actions! 

• Min player has a set 𝐼 of 𝑛 actions
• Max player has a potentially infinite set of actions 𝐽
• Exists well-defined loss A 𝑖, 𝑗  for every choice 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽

• If min player chooses a distribution 𝑤 over 𝐼 and max player 
chooses distribution 𝑃 over 𝐽, expected loss is

ℓ 𝑤, 𝑃 = 𝐸𝑖∼𝑤,𝑗∼𝑃 𝐴 𝑖, 𝑗

• ℓ𝑗 ≔ 𝐴 1, 𝑗 , … , 𝐴 𝑛, 𝑗  is loss vector for action 𝑗 of max player

ℓ 𝑤, 𝑃 = 𝑤⊤𝐸𝑗∼𝑃 ℓ𝑗



Solving with No-Regret Learning

We let players play for 𝑇 periods
• Suppose we could device choice algorithms that satisfy the 

vanishing regret property for both players
• We already know that average of solutions of each player, are an 

equilibrium; hence also a solution to min-max problem

• For the finite action min player, it’s easy (e.g. EXP)

• For the infinite action player?



Online Learning with Oracles

• IDEA. We just need the sequence to be no-regret; don’t need to 
fully respect the online learning protocol

• Solution. Tell max player the choice of the min player before 
playing and have them choose best-response to it at each period

 

𝑤𝑡 ∝ 𝑤𝑡−1 exp −𝜂ℓ𝑗𝑡−1

𝑗𝑡 = argmax
𝑃∈Δ 𝐽

 𝑤𝑡
⊤𝐸𝑗∼𝑃 ℓ𝑗 = argmax

𝑗∈𝐽
𝑤𝑡

⊤ℓ𝑗 = BR 𝑤𝑡

(EXP)

(Best-Response)



Punchline: Solving Large Games with Oracles

Theorem. Suppose we have Best-Response oracle over 𝐽 for the 
max player for each distribution 𝑤 over actions of the min player. 
Repeat for 𝑇 iterations the process: 

𝑤𝑡 ∝ 𝑤𝑡−1 exp −𝜂ℓ𝑗𝑡−1

𝑗𝑡 = BR 𝑤𝑡

Then 𝑤∗ =
1

𝑇
σ𝑡=1

𝑇 𝑤𝑡  and 𝑃∗ = Uniform 𝑗1, … , 𝑗𝑇  is a 2 log 𝑛

𝑇
-

approximate equilibrium ⇒ 𝑃∗ is 2 2 log 𝑛

𝑇
-solution to max-min.

(EXP)

(Best-Response)



Back to 
Boosting

Image credits: chat.openai.com



Boosting as Oracle Based No-Regret in Games

• Weak classification oracle can be viewed as Best-Response oracle
• For every distribution 𝑤 over the samples, it returns

ℎ = WEAK 𝑤 , ෍

𝑖=1

𝑛

𝑤𝑖1 ℎ 𝑥𝑖 = 𝑦𝑖 ≥
1

2
+ 𝛿

• We can use the oracle approach to solving large games
• ℓℎ = 1 ℎ 𝑥1 = 𝑦1 , … , 1 ℎ 𝑥𝑛 = 𝑦𝑛 : accuracy on each sample

𝑤𝑡 ∝ 𝑤𝑡−1 exp −𝜂ℓℎ𝑡−1

ℎ𝑡 = WEAK 𝑤𝑡

(EXP)

(Weak-oracle)



Boosting as Oracle Based No-Regret in Games

• Even if weak oracle not Best-Response oracle, its good enough
• If 𝑃∗ the uniform distribution over ℎ1, … , ℎ𝑇

min
𝑖∈ 𝑛

ℓ 𝑖, 𝑃∗ + 𝜖 = min
𝑤

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑤, ℎ𝑡 + 𝜖 ≥
1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑤𝑡 , ℎ𝑡 ≥
1

2
+ 𝛿

• For 𝑇 large enough, such that 𝜖 < 𝛿 , for every sample 𝑖 ∈ [𝑛]

1

𝑇
෍

𝑡=1

𝑇

1 ℎ𝑡 𝑥𝑖 = 𝑦𝑖 ≥
1

2
+ 𝛿 − 𝜖 >

1

2

• Alternatively: majority of ℎ1, … , ℎ𝑇  classify sample correctly

Weak oracle 
guarantee

EXP regret 
guarantee



Boosting as Oracle Based No-Regret in Games

• Even if weak oracle not Best-Response oracle, its good enough
• If 𝑃∗ the uniform distribution over ℎ1, … , ℎ𝑇

min
𝑖∈ 𝑛

ℓ 𝑖, 𝑃∗ + 𝜖 = min
𝑤

1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑤, ℎ𝑡 + 𝜖 ≥
1

𝑇
෍

𝑡=1

𝑇

ℓ 𝑤𝑡 , ℎ𝑡 ≥
1

2
+ 𝛿

• For 𝑇 large enough, such that 𝜖 < 𝛿 , for every sample 𝑖 ∈ [𝑛]

1

𝑇
෍

𝑡=1

𝑇

1 ℎ𝑡 𝑥𝑖 = 𝑦𝑖 ≥
1

2
+ 𝛿 − 𝜖 >

1

2

• Alternatively: majority of ℎ1, … , ℎ𝑇  classify sample correctly

Weak oracle 
guarantee

EXP regret 
guarantee



Punchline: AdaBoost Theorem

Theorem. Suppose we have a weak 𝛿-classification oracle WEAK. For 
every hypothesis ℎ, let ℓℎ be vector of 0-1 accuracies on each sample.

Repeat for 𝑇 periods, such that 2 log 𝑛

𝑇
< 𝛿

𝑤𝑡 ∝ 𝑤𝑡−1 exp −𝜂ℓℎ𝑡−1

ℎ𝑡 = WEAK 𝑤𝑡

Then the following majority classifier classifies all samples correctly

ℎ∗ = Majority ℎ1, … , ℎ𝑇 = 1
1

𝑇
෍

𝑡=1

𝑇

ℎ𝑡 ⋅ >
1

2
 

(EXP)

(Weak-oracle)



Distributional 
Robustness

Image credits: chat.openai.com



Robust Models to Distribution Shifts

Supervised learning. Given samples 𝑥, 𝑦 ∼ 𝐷 learn model ℎ𝜃

min
𝜃∈Θ

𝐸 𝑥,𝑦 ∼𝐷 ℓ 𝑦, ℎ𝜃 𝑥

Example. 𝜃 are weights of neural network with output ℎ𝜃 𝑥  

Loss is mean squared prediction error
min
𝜃∈Θ

𝐸 𝑥,𝑦 ∼𝐷 𝑦 − ℎ𝜃 𝑥
2

Problem

• Data are typically biased and have under-represented groups

• Model trained to optimize average performance on training data

• Can perform poorly on sub-groups! Image credits: chat.openai.com

𝑥 𝑦ℎ𝜃



Robust Models to Distribution Shifts

Supervised learning. Given samples 𝑥, 𝑦 ∼ 𝐷 learn model h𝜃

min
𝜃∈Θ

𝐸 𝑥,𝑦 ∼𝐷 ℓ 𝑦, ℎ𝜃 𝑥

Example. 𝜃 are weights of neural network with output ℎ𝜃 𝑥  

Loss is mean squared prediction error
min
𝜃∈Θ

𝐸 𝑥,𝑦 ∼𝐷 𝑦 − ℎ𝜃 𝑥
2

Problem

• Data are typically biased and have under-represented groups

• Model trained to optimize average performance on training data

• Can perform poorly on sub-groups! Image credits: chat.openai.com

𝑥 𝑦ℎ𝜃



Group Distributional Robustness; Group-DRO

• We pre-define a set of groups 𝐺 (race, gender, sensitive attributes)

• At train time, we know the group identity of each sample

• We want to learn a single model 𝜃 (that does not use the group 
attribute as input) that performs well on distribution of each group

min
𝜃∈Θ

max
𝑔∈𝐺

𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝜃(𝑥)

[1909.02060] Distributionally Robust Language Modeling (arxiv.org)
[1611.02041] Does Distributionally Robust Supervised Learning Give Robust Classifiers? (arxiv.org)

https://arxiv.org/abs/1909.02060
https://arxiv.org/abs/1611.02041


Group DRO as a Zero-Sum Game 

• The learner player chooses 𝜃 ∈ Θ

• The adversary player chooses a distribution 𝑤𝑡  over 𝐺
• If loss is convex in 𝜃 and Θ is convex set, solve via no-regret

𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ෍

g

𝑤𝑡−1
𝑔

𝐸 𝑥,𝑦 ∼𝐷𝑔
∇𝜃ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

𝑤𝑡
𝑔

∝ 𝑤𝑡−1
𝑔

exp 𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

• Even when loss is not convex in 𝜃, the above translates to a practical 
training algorithm for neural network parameters

• Expectations are typically approximated by averages over small 
batches of samples

[1911.08731] Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

https://arxiv.org/abs/1911.08731


Group DRO as a Zero-Sum Game 

• The learner player chooses 𝜃 ∈ Θ

• The adversary player chooses a distribution 𝑤𝑡  over 𝐺
• If loss is convex in 𝜃 and Θ is convex set, solve via no-regret

𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ෍

g

𝑤𝑡−1
𝑔

𝐸 𝑥,𝑦 ∼𝐷𝑔
∇𝜃ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

𝑤𝑡
𝑔

∝ 𝑤𝑡−1
𝑔

exp 𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

• Even when loss is not convex in 𝜃, the above translates to a practical 
training algorithm for neural network parameters

• Expectations are typically approximated by averages over small 
batches of samples

(EXP)

(OGD)

[1911.08731] Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

https://arxiv.org/abs/1911.08731


Group DRO as a Zero-Sum Game 

• The learner player chooses 𝜃 ∈ Θ

• The adversary player chooses a distribution 𝑤𝑡  over 𝐺
• If loss is convex in 𝜃 and Θ is convex set, solve via no-regret

𝜃𝑡 = 𝜃𝑡−1 − 𝜂 ෍

g

𝑤𝑡−1
𝑔

𝐸 𝑥,𝑦 ∼𝐷𝑔
∇𝜃ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

𝑤𝑡
𝑔

∝ 𝑤𝑡−1
𝑔

exp 𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝜃𝑡−1

𝑥

• Even when loss is not convex in 𝜃, the above translates to a practical 
training algorithm for neural network parameters

• Expectations are typically approximated by averages over small 
batches of samples

(EXP)

(OGD)

[1911.08731] Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization

Note: typically, last iterate and not average iterate is used despite theory…

https://arxiv.org/abs/1911.08731


Group DRO as a Zero-Sum Game 

• The learner player chooses 𝜃 ∈ Θ

• The adversary player chooses a distribution 𝑤𝑡  over 𝐺
• Alternative. We have oracle (Stochastic Gradient Descent) that finds neural 

network ℎ𝜃  with small loss on distribution 𝑄 when trained on samples from 𝑄
• Solve via no-regret vs. best-response

𝑤𝑡
𝑔

∝ 𝑤𝑡−1
𝑔

exp 𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝑡−1 𝑥

ℎ𝑡 = Oracle ෍

𝑔

𝑤𝑡
𝑔

𝐷𝑔

• Return mixture (ensemble) of neural networks ℎ1, … , ℎ𝑇

• Provably a solution to min-max, assuming loss ℓ convex in ℎ𝑡−1 𝑥 , not 𝜃!

[1707.01047] Robust Optimization for Non-Convex Objectives (arxiv.org)

https://arxiv.org/abs/1707.01047


Group DRO as a Zero-Sum Game 

• The learner player chooses 𝜃 ∈ Θ

• The adversary player chooses a distribution 𝑤𝑡  over 𝐺
• Alternative. We have oracle (Stochastic Gradient Descent) that finds neural 

network ℎ𝜃  with small loss on distribution 𝑄 when trained on samples from 𝑄
• Solve via no-regret vs. best-response

𝑤𝑡
𝑔

∝ 𝑤𝑡−1
𝑔

exp 𝐸 𝑥,𝑦 ∼𝐷𝑔
ℓ 𝑦, ℎ𝑡−1 𝑥

ℎ𝑡 = Oracle ෍

𝑔

𝑤𝑡
𝑔

𝐷𝑔

• Return mixture (ensemble) of neural networks ℎ1, … , ℎ𝑇

• Provably a solution to min-max, assuming loss ℓ convex in ℎ𝑡−1 𝑥 , not 𝜃!

(EXP)

(Best-Response)

[1707.01047] Robust Optimization for Non-Convex Objectives (arxiv.org)

https://arxiv.org/abs/1707.01047


Robust Models to Adversarial Attacks

• Supervised learning. given samples 𝑥, 𝑦 ∼ 𝐷 learn model 𝜃
min
𝜃∈Θ

𝐸 𝑥,𝑦 ∼𝐷 ℓ 𝑥, 𝑦; 𝜃

• Adversaries can try to locally corrupt the samples to fool model
• We have in mind a set of adversarial attacks 𝐴, which alter the distribution 𝐷, 

i.e. 𝐷𝑎  formed by sampling 𝑥, 𝑦 ∼ 𝐷 and applying corruption 𝑎 𝑥, 𝑦 = ෤𝑥, ෤𝑦

• Mathematically same problem as group DRO:

min
𝜃∈Θ

max
𝑎∈𝐴

𝐸 𝑥,𝑦 ∼𝐷𝑎
ℓ 𝑥, 𝑦; 𝜃

[1707.01047] Robust Optimization for Non-Convex Objectives (arxiv.org)

https://arxiv.org/abs/1707.01047


Generative 
Adversarial 
Networks

Image credits: chat.openai.com



Generative Modelling

Given samples 𝑧1, … , 𝑧𝑛 from a distribution 𝐷 Be able to generate new samples from 𝐷

Image credits: https://medium.datadriveninvestor.com/artificial-intelligence-gans-can-create-fake-celebrity-faces-44fe80d419f7



Generative Modelling

Given samples 𝑧1, … , 𝑧𝑛 from some distribution 𝐷
Goal. Be able to generate new samples from 𝐷

• Learn a neural sample generator

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

https://arxiv.org/abs/1701.00160


Generative Modelling

Given samples 𝑧1, … , 𝑧𝑛 from some distribution 𝐷
Goal. Be able to generate new samples from 𝐷

• Learn a neural sample generator

• How do we train parameter 𝜃, so that 𝐺𝜃 𝜖  ≈ distributed as 𝐷?

Noise 𝜖 𝑧𝐺𝜃

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

https://arxiv.org/abs/1701.00160


Generative Adversarial Networks (GANs)

• Learn a neural sample generator

• Learn a discriminator

• Discriminator wants to minimize classification error

−𝐸𝑧∼𝐷 log 𝐷𝑤 𝑧 + 𝐸𝜖[log 𝐷𝑤 𝐺𝜃 𝜖

Noise 𝜖 𝑧𝐺𝜃

𝑧 [0, 1] =[Fake, Real]𝐷𝑤

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

https://arxiv.org/abs/1701.00160


Generative Adversarial Networks (GANs)

• Learn a neural sample generator

• Learn a discriminator

• Discriminator wants to minimize classification error

−𝐸𝑧∼𝐷 log 𝐷𝑤 𝑧 + 𝐸𝜖 log 𝐷𝑤 𝐺𝜃 𝜖

Noise 𝜖 𝑧𝐺𝜃

𝑧 [0, 1] =[Fake, Real]𝐷𝑤

𝐷𝑤 𝑧  close to 1 
when 𝑧 is real

𝐷𝑤 𝑧  close to 0 
when fake

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

https://arxiv.org/abs/1701.00160


GANs as a Zero-Sum Game

• Learn a neural sample generator (max player)

• Learn a discriminator (min player)

• Discriminator minimizes classification error/Generator maximizes

max
𝜃

min
𝑤

−𝐸𝑧∼𝐷 log 𝐷𝑤 𝑧 + 𝐸𝜖 log 𝐷𝑤 𝐺𝜃 𝜖

Noise 𝜖 𝑧𝐺𝜃

𝐷𝑤 𝑧  close to 1 
when 𝑧 is real

𝐷𝑤 𝑧  close to 0 
when fake

𝑧 [0, 1] =[Fake, Real]𝐷𝑤

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

https://arxiv.org/abs/1701.00160


GANs as a Zero-Sum Game

• We are trying to find a generator that fools the discriminator

• Solve max-min problem by finding equilibrium of zero-sum game

max
𝜃

min
𝑤

ℓ 𝜃, 𝑤 ≔ −𝐸𝑧∼𝐷 log 𝐷𝑤 𝑧 + 𝐸𝜖 log 𝐷𝑤 𝐺𝜃 𝜖

• Compute via no-regret dynamics (online gradient descent/ascent)

𝜃𝑡 = 𝜃𝑡−1 + 𝜂∇𝜃ℓ 𝜃𝑡−1, 𝑤𝑡−1

𝑤𝑡 = 𝑤𝑡−1 − 𝜂∇𝑤ℓ 𝜃𝑡−1, 𝑤𝑡−1

• Even though non-convex/non-concave!
• Last-iterate used, though theory says average (optimism can help)

(OGD)

(OGD)

[1701.00160] NIPS 2016 Tutorial: Generative Adversarial Networks (arxiv.org)

[1711.00141] Training GANs with Optimism (arxiv.org)

https://arxiv.org/abs/1701.00160
https://arxiv.org/abs/1711.00141


Learning from 
Human Feedback

Image credits: chat.openai.com



Learning from Human Feedback

We have space of policies Π that given context 𝑥 produce 𝑦 = 𝜋 𝑥

AI Alignment Goal. Want to find a policy that produces output 𝑦 that is 
typically more “aligned” with people’s preferences

Human Feedback. We elicit pair-wise preferences over outputs
• We show people pairs of outputs 𝑦1 = 𝜋1 𝑥  and 𝑦2 = 𝜋2 𝑥

• We collect preference feedback, 1 𝑦1 > 𝑦2 − 1 𝑦2 < 𝑦1

• Our cumulative data provide a (anti-symmetric) preference function 𝑃
𝑃 𝜋, 𝜋′ ∈ −1,1 , 𝑃 𝜋, 𝜋′ = −𝑃 𝜋′, 𝜋

i.e. fraction of people with 𝜋 > 𝜋′ minus fraction of people with 𝜋′ > 𝜋



Reward Based Approaches

• Most RLHF methods assume preference 
data are noisy versions of a reward model

• Implies that preference function is inline 
with a scalar reward function 𝑟: Π → 𝑅

𝑃 𝜋, 𝜋′ > 0 ⇔ 𝑟 𝜋 > 𝑟 𝜋′

• If population has heterogeneous 
preferences, preference function 𝑃 might 
not be consistent with any reward model!



Reward Based Approaches

• Most RLHF methods assume preference 
data are noisy versions of a reward model

• Implies that preference function is inline 
with a scalar reward function 𝑟: Π → 𝑅

𝑃 𝜋, 𝜋′ > 0 ⇔ 𝑟 𝜋 > 𝑟 𝜋′

• If population has heterogeneous 
preferences, preference function 𝑃 might 
not be consistent with any reward model!

Intransitive Preferences
𝑎 > 𝑐 > 𝑑 > 𝑎



Social Choice Theory: Minimax Winner

• Choose a distribution 𝑝 over options such that you prefer samples 
from that distribution than samples from any other distribution 
with probability at least ½

min
𝑝′

𝐸𝜋∼𝑝,𝜋′∼𝑝′ 𝑃 𝜋, 𝜋′ ≥ 0

• Such a 𝑝 is known as the Minimax Winner

• Does a Minimax Winner (MW) exist?

[2401.04056] A Minimaximalist Approach to Reinforcement Learning from Human Feedback (arxiv.org)

https://arxiv.org/abs/2401.04056


Social Choice Theory: Minimax Winner

• Choose a distribution 𝑝 over options such that you prefer samples 
from that distribution than samples from any other distribution 
with probability at least ½

min
𝑝′

𝐸𝜋∼𝑝,𝜋′∼𝑝′ 𝑃 𝜋, 𝜋′ ≥ 0

Lemma. The MW is the symmetric mixed 
Nash equilibrium of the zero-sum game 
defined by the preference matrix

[2401.04056] A Minimaximalist Approach to Reinforcement Learning from Human Feedback (arxiv.org)

https://arxiv.org/abs/2401.04056


Anti-Symmetric Zero-Sum Games

ℓ 𝑝, 𝑝′ = −𝐸𝜋∼𝑝,𝜋′∼𝑝′ 𝑃 𝜋, 𝜋′

Theorem. 𝑝, 𝑞  is equilibrium ⇒ 𝑝, 𝑝  is equilibrium
• Anti-symmetry of 𝑃 ⇒ ℓ 𝑝, 𝑝′ = −ℓ 𝑝′, 𝑝
• Value of any equilibrium is zero (player can deviate to opponent choice)

0 = ℓ 𝑝, 𝑝 ≤ ℓ 𝑝, 𝑞 ≤ ℓ 𝑞, 𝑞 = 0

• Best response constraints for 𝑞 and anti-symmetry imply
0 ≥ max

𝑝′
ℓ 𝑝, 𝑝′ = − min

𝑝′
ℓ 𝑝′, 𝑝

• Which directly imply best response constraints for 𝑝, 𝑝

ℓ 𝑝, 𝑝 = 0 ≥ max
𝑝′

ℓ 𝑝, 𝑝′  and ℓ 𝑝, 𝑝 = 0 ≤ min
𝑝′

ℓ 𝑝′, 𝑝



Anti-Symmetric Zero-Sum Games

ℓ 𝑝, 𝑝′ = −𝐸𝜋∼𝑝,𝜋′∼𝑝′ 𝑃 𝜋, 𝜋′

Theorem. 𝑝, 𝑞  is equilibrium ⇒ 𝑝, 𝑝  is equilibrium
• Anti-symmetry of 𝑃 ⇒ ℓ 𝑝, 𝑝′ = −ℓ 𝑝′, 𝑝
• Value of any equilibrium is zero (player can deviate to opponent choice)

0 = ℓ 𝑝, 𝑝 ≤ ℓ 𝑝, 𝑞 ≤ ℓ 𝑞, 𝑞 = 0

• Best response constraints for 𝑞 and anti-symmetry imply
0 ≥ max

𝑝′
ℓ 𝑝, 𝑝′ = − min

𝑝′
ℓ 𝑝′, 𝑝

• Which directly imply best response constraints for 𝑝, 𝑝

ℓ 𝑝, 𝑝 = 0 ≥ max
𝑝′

ℓ 𝑝, 𝑝′  and ℓ 𝑝, 𝑝 = 0 ≤ min
𝑝′

ℓ 𝑝′, 𝑝

Exact definition of MW: min
𝑝′

𝐸𝜋∼𝑝,𝜋′∼𝑝′ 𝑃 𝜋, 𝜋′ ≥ 0 ⇔ min
𝑝′

−ℓ 𝑝, 𝑝′ ≥ 0 ⇔ max
𝑝′

ℓ 𝑝, 𝑝′ ≤ 0



Learning in Anti-Symmetric Games

• It suffices to only use one no-regret learning algorithm!
• We use the choice of the algorithm as the choice of the adversary
• By anti-symmetry, this will be no-regret for the adversary too
• For instance, when we have finitely many policies Π

𝑝𝑡+1 𝜋 ∝ 𝑝𝑡 𝜋 exp −ℓ𝑡 𝜋 , ℓ𝑡 𝜋 = −𝐸𝜋′∼𝑝𝑡
𝑃 𝜋, 𝜋′

• More generally:

𝑝𝑡+1 = NoRegret ℓ1:𝑡 , ℓ𝑡 𝑝 = −𝐸𝜋∼𝑝,𝜋′∼𝑝𝑡
𝑃 𝜋, 𝜋′

• Return mixture of 𝑝1, … , 𝑝𝑇  as final distribution

[2401.04056] A Minimaximalist Approach to Reinforcement Learning from Human Feedback (arxiv.org)

https://arxiv.org/abs/2401.04056


Self-Play Preference Optimization; SPO

• Practical neural training algorithm that avoids adversarial training
• Represent policy by a neural network

• At each period draw 𝑀 samples ෤z = ෤𝑥, ෤𝑦 ∼ 𝐷𝑥 × 𝜋𝜃 = 𝒫𝜃

• Draw one more sample zt = 𝑥𝑡 , 𝑦𝑡 ∼ 𝒫𝜃 and assign reward

𝑟𝑡 𝜃 =
1

𝑀
෍

𝑚=1

𝑀

𝑃 𝑧𝑡 , ǁ𝑧𝑚 ≈ 𝐸𝑧∼𝜋𝜃, ෤𝑧∼𝜋𝜃
𝑃 𝑧, ǁ𝑧

• Perform online gradient descent on the policy parameters
• Extends to Reinforcement Learning, where 𝑦 is trajectory of decisions

𝑥
noise

𝑦𝜋𝜃

Reward of a sample 𝑧𝑡: 
fraction of times the 
sample is preferred to 
samples from the 
distribution of the current 
randomized policy



Causal Machine Learning



Estimating Price Elasticity of Demand

𝑌 =  𝜃0  ⋅  𝑇 +  𝜖

log(demand) elasticity log(price) noise

Conclusion: Increasing price increases demand!

Problem: Salespeople give discount to customers they foresee will have low probability of  buying through 

other signals (confounders) they observe

predictive

model

large 

discount

log(price)

log(demand)

small 

discount



Unobserved Confounding:
the major hurdle of causal analysis

• Healthcare:
• Estimating the effects of cancer immunotherapy (IO) from non-trial data
• Typically, late-stage patients undergo IO after standard of care treatment
• Stage of disease not available in many public datasets.
• Stage is an unobserved confounder

• In the tech sector:
• Estimating the effects of customer characteristics on engagement
• People who report more bugs last year, use the product more in the next year
• Customer need for product leads to more usage last year ⇒ more bug reporting
• Customer need is an unobserved confounder



Instrumental Variables and 2SLS
Instrumental Variable: any random variable Z that affects the 
treatment (log-price) T but does not affect the outcome (log-
demand) Y other than through the treatment [Wright’28, Bowden-
Turkington’90, Angrist-Krueger’91, Imbens-Angrist’94]

T Y

U

Z

unobserved 

confounder

outcome

treatmentinstrument

Philip Wright Sewall Wright



Instrumental Variables and 2SLS
Instrumental Variable: any random variable Z that affects the 
treatment (log-price) T but does not affect the outcome (log-
demand) Y other than through the treatment [Wright’28, Bowden-
Turkington’90, Angrist-Krueger’91, Imbens-Angrist’94]

T Y

U

Z

unobserved 

confounder

outcome

treatmentinstrument

• In pricing (c.f. [Kling AER06, Aizer-Doyle15] for effects of incarceration): Discounts sent to an 
approver desk; Approver assignment is random; approvers are more/less “lenient”; leniency is instrument

• In healthcare [Doyle et al., JPE15]: Random assignment to ambulance companies of nearby patients is 
an instrument for measuring hospital quality

• In Tech [Syrgkanis et al, NeurIPS19]: Recommendation A/B tests as instruments for the effects of 
downstream actions

https://www.aeaweb.org/articles?id=10.1257/aer.96.3.863
https://academic.oup.com/qje/article/130/2/759/2330376
https://www.journals.uchicago.edu/doi/full/10.1086/677756
https://arxiv.org/abs/1905.10176


Instrumental Variables and 2SLS
• Instrumental Variable: any random variable Z that 

affects the treatment (log-price) T but does not 
affect the outcome (log-demand) Y other than 
through the treatment 

Z= strict 

approver

predictive

model

price

demand

price

demand

mean price 

with strict 

approver

mean 

demand

with strict 

approver

Z= lenient 

approver

causal

model

T Y

U

Z

unobserved 

confounder

outcome

treatmentinstrument



Flexible Causal Models with Instruments

• Given outcome 𝑦, treatment 𝑇, instrument 𝑍
• Want to estimate the causal effect model ℎ 𝑇 :

𝑦 = ℎ 𝑇 + 𝑈

• Since 𝑈 is independent of 𝑍 (and without loss mean-zero)
𝔼 𝑦 − ℎ 𝑇 𝑍 = 𝔼 𝑈 𝑍 = 𝐸 𝑈 = 0

• Implies that for any function 𝑓: 𝑍 → 𝑅

𝔼 𝑦 − ℎ 𝑇 𝑓 𝑍 = 𝔼 𝔼 𝑦 − ℎ 𝑇 ∣ 𝑍  𝑓 𝑍 = 0



Instrumental Variables as Zero-Sum Game

• We know that the causal model must satisfy: for any function 𝑓: 𝑍 → 𝑅
𝔼 𝑦 − ℎ 𝑇 𝑓 𝑍 = 0

• Learner produces a candidate model ℎ
• Adversary examines whether there exists a violation, i.e.

max
𝑓∈𝐹

𝔼 𝑦 − ℎ 𝑇 𝑓 𝑍 > 0

• Learner wants to find a model that adversary cannot complain about

min
ℎ

max
𝑓

𝔼 𝑦 − ℎ 𝑇 𝑓 𝑍



Adversarial Estimation of Moment Models

Z= 1

reviewer

modeler

price

demand

price

demand

modeler



Instrumental Variables as Zero-Sum Game

• Consider case when ℎ and 𝑓 are linear functions
min

𝜃
max

𝑤
𝔼 𝑦 − 𝜃′𝑇 𝑤′𝑍

• A convex-concave zero-sum game. Solve via OGD vs OGD
𝜃𝑡 = 𝜃𝑡−1 + 𝜂𝔼 𝑇𝑍′𝑤𝑡−1

𝑤𝑡 = 𝑤𝑡−1 + 𝜂𝐸 𝑦 − 𝜃𝑡−1
′ 𝑇 𝑍

• Translates to practical training algorithm for neural networks
min

𝜃
max

𝑤
𝔼 𝑦 − ℎ𝜃 𝑇 𝑓𝑤 𝑍

• Variants have been proposed that have slightly better statistical properties

(OGD)

(OGD)



Punchline

Many problems in ML and AI can be cast as finding an equilibrium of 
a complex zero-sum game

No-regret dynamics are a typical paradigm that is used as solution

Translates to practical neural network training variants

Examples are Boosting, Distributional Robustness, Adversarial 
Robustness, Generative Learning, Learning from Human Feedback, 
Causal ML, Fair ML, Imitation Learning

Click on each topic for an example paper

https://www.cs.cmu.edu/~ninamf/LGO10/wm-minimax.pdf
https://arxiv.org/abs/1911.08731
https://arxiv.org/abs/1707.01047
https://arxiv.org/abs/1707.01047
https://arxiv.org/pdf/1701.00160.pdf
https://arxiv.org/abs/2401.04056
https://arxiv.org/abs/2006.07201
https://arxiv.org/abs/1809.04198
https://proceedings.mlr.press/v139/swamy21a.html
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