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Computational Game Theory for Complex Games
* Optimal auctions and mechanisms (T)

e. Simple vs optimal mechanisms (T)

HWE6: calculate equilibria in simple auctions,
a implement simple and optimal auctions, analyze
revenue empirically

* Optimizing mechanisms from samples (T)
6- Online optimization of auctions and mechanisms (T)
* HW7:implement procedures to learn approximately

* Basics of extensive-form games optimal auctions from historical samples and in an
e° Solving extensive-form games via online learning (T) online manner
* HWS3: implement agents to solve very simple variants of Further Topics
poker

* Econometrics in games and auctions (T+A)
* General games and equilibria (T) a. A/B testing in markets (T+A)

e° Online learning in general games, multi-agent RL (T+A) « HWS: implement procedure to estimate values from

« HW4: implement no-regret algorithms that converge to bids in an auction, empirically analyze inaccuracy of
correlated equilibria in general games A/B tests in markets

Data Science for Auctions and Mechanisms Guest Lectures

* Basics and applications of auction theory (T+A) ‘ gce)gglaenliksergegscsggn for LLMs, Renato Paes Leme,

e. Learning to bid in auctions via online learning (T) . Auto-biddinéin Sponsored Search Auctions, Kshipra

* HW5: implement bandit algorithms to bid in ad Bhawalkar, Google Research
auctions
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Historical Challenge in Game Theory and Al

Nash1950

294 JOHN NASH

A Three-Man Poker Game

As an example of the application of our theory to a more or less realistic case
we include the simplified poker game given below. The rules are as follows:

(a) The deck is large, with equally many high and low cards, and a hand
consists of one card.

(b) Two chips are used to ante, open, or call.

(¢) The players play in rotation and the game ends after all have passed or
after one player has opened and the others have had a chance to call.

(d) If no one bets the antes are retrieved.

(e) Otherwise the pot is divided equally among the highest hands which have
bet.

Kuhn1950

A SIMPLIFIED TWO-PERSON POKER *
H. W. Kuhn'

A fascinating problem for the game theoretician 1s posed by the
common card game, Poker. Whlle generally regarded as partaking of psycho-
logical aspects (such as bluffing) which supposedly render it inaccessible
to mathematical treatment, it is evident that Poker falls within the general
theory of games as elaborated by von Neumann and Morgenstern [1]. Relevant
probability problems have been considered by Borel and Ville [2] and several
variants are examined by von Neumann [1] and by Bellman and Blackwell [3].

Waterman1970

ARTIFICIAL INTELLIGENCE 121

Generalization Learning Techniques for
Automating the Learning of Heuristics'

D. A. Waterman

Carnegie-Mellon University, Pittsburgh, Pennsylvania
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Key Elements to Success

New approaches to approximate the “continuation value of the
game” via deep learning and other domain specific techniques

Scalable algorithmic methods to compute approximate Nash
equilibria of zero-sum games via learning dynamics




Extensive Form
Games

The Basics




Perfect Information Games

* Players take turns in choosing actions
* All actions are publicly observable

* The “state” of the game is publicly
observable

* Some sequence of actions lead to
terminal states

* Each player receives some utility/loss at
a terminal state

* |n zero-sum games: utility of player 1
equals loss of player 2




Tree Representation
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Solving Games via Backwards Induction

P1 — PIL _, Pl
T e A
P2 P2 P2 P2 -2 -1
/\ /\
) P1 -1 1 ) 2 -1 1
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-3 2 1



Imperfect Information
Games

Players don’t have perfect knowledge
about the “state” of the game




Why are Imperfect Information Games Hard

A

The optimal strategy in the orange sub-tree can depend
on how we play and what happens in the purple sub-tree




A Simple Game

Rules of the game

* Nature (chance) flips a coin


https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game

* Nature (chance) flips a coin

* Player one sees the outcome of the coin


https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game
* Nature (chance) flips a coin
* Player one sees the outcome of the coin

* Player one chooses whether to fold or play



https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game

* Nature (chance) flips a coin

* Player one sees the outcome of the coin

* Player one chooses whether to fold or play

* |f they fold with heads they win 0.5 if they fold
with tails they lose 0.5



https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game

* Nature (chance) flips a coin

* Player one sees the outcome of the coin

* Player one chooses whether to fold or play

* |f they fold with heads they win 0.5 if they fold
with tails they lose 0.5

* |fthey play thenitis player two turn



https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game

Nature (chance) flips a coin
Player one sees the outcome of the coin
Player one chooses whether to fold or play

If they fold with heads they win 0.5 if they fold
with tails they lose 0.5

If they play then it is player two turn

Player two doesn’t see the outcome of the coin



https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game

Nature (chance) flips a coin
Player one sees the outcome of the coin
Player one chooses whether to fold or play

If they fold with heads they win 0.5 if they fold
with tails they lose 0.5

If they play then it is player two turn
Player two doesn’t see the outcome of the coin

They choose either heads or tails



https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game

Rules of the game

Nature (chance) flips a coin
Player one sees the outcome of the coin
Player one chooses whether to fold or play

If they fold with heads they win 0.5 if they fold
with tails they lose 0.5

If they play then it is player two turn
Player two doesn’t see the outcome of the coin
They choose either heads or tails

If they match the coin theywin 1 (P1 loses 1) if
they don’t match they lose 1 (P1 wins 1)



https://www.youtube.com/watch?v=2dX0lwaQRX0

A Simple Game




A Simple Game

P1 information set P1 information set

P2 information set




A Simple Game

o
fé.\\O Not a “proper” subgame in the formal game

Y S theory sense of a proper subgame, because it
starts at a non-singleton information set. This
notion of an “imperfect info subgame” is useful
for computational approaches, e.g., “value
function approximation” for large games.

Imperfect Information
Subgame




How should P2 play in the sub-game?




How should P2 play in the sub-game?




How should P2 play in the sub-game?

E|V] =.75




How should P2 play in the sub-game?




How should P2 play in the sub-game?




How should P2 play in the sub-game?




How should P2 play in the sub-game?

E|V] =.25




How should P2 play in the sub-game?




How should P2 play in the sub-game?




How should P2 play in the sub-game?




How should P2 play in the sub-game?




What if we change the value of the fold?




What if we change the value of the fold?




What if we change the value of the fold?

The optimal strategy in the “play” sub-game,
Q requires knowledge of what happens in the
blue and green “fold” sub-games



The Elements of an Imperfect
Information Game Tree



Tree Representation and Information Sets

* Nodes. Each node in the tree is a decision point for some player

* Information sets (infoset). Nodes that belong to playeri are
partitioned into information sets I € J;, with indices J; = {jl, ...,jKl.}

* Player does not know which node in the information set is chosen

* Must use the same strategy on all nodes in information set

* Eachinfosetj € J; has a set of actions A; that the player can take

* Leaf nodes Z. The set of terminal states. Player 1 gains utility u(z)
* Chance nodes. Chance or Nature moves with a fixed distribution



Perfect Recall

* Players remember all the past actions they took
* For each infoset I, there is unique “parent” (infoset, action) pair

* For every nodeinl € J;, the parent pair I’, a’ was the last infoset
visited and action taken by player i before reaching |

* Letp; the last action player took before reaching infoset indexed j



Strategic Form Representation

* Mixed strategy. A distribution over pure strategies

* Behavioral strategy. A set of distributions over actions at each
Information set

Kuhn’s Theorem. For every mixed strategy there is an equivalent

behavioral strategy that against all profiles of strategies of
opponents induces the same distribution over terminal nodes

We will only be talking about behavioral strategies hereafter



A Simple “Weird” Poker Game

What are the rules of the game?
3 2 3 2 (f)old, (r)aise, (c)heck


https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf

Why is Nash Equilibrium a Good Idea?

* |n zero-sum games where no player has an a-priori competitive
advantage, Nash Equilibrium guarantees no loss in expectation

* [tis a “safe” strategy no matter what the opponent does!



Game Representations
Convenient for Computing a
Nash Equilibrium



Computing Nash Equilibrium

* We know how to compute equilibria of static zero-sum games

* Can we view the extensive form zero-sum game also as min-max

max min x ' Ay
xXeX yeyY

* What does x and y encode?

* What if x = (xf) . where x/ is mixed strategy at infosetj € J;

JEJ1
* Whatify = (yj)jec7 , where y/ is mixed strategy at infoset j € J,
2



Behavioral Strategy Representation

What is the expected payoff of x?




Behavioral Strategy Representation

What is the expected payoff of x?

1

> (—xf — 3 X YrXe — 2 XrYrXp + 3x,Vr Xe + 2 xry,.*xf)
1

+ > (xfryf* —3 X! Yy, — xrr)




Behavioral Strategy Representation

What is the expected payoff of x?

1

> (—xf — 3 X YrXe — 2 XrYrXp + 3x,Vr Xe + 2 xry,.*xf)
1

+ > (xfryf* —3 X! Yy, — xrr)

s it of the form x T Ay? -1




Behavioral Strategy Representation

What is the expected payoff of x?

1

> (—xf — 3% Vg X — 2 XrYfXp + 3x,Vr Xe + 2 xry,.*xf)
1

+ > (xfryf* —3 X! Yy, — xrr)

s it of the form x T Ay? -1




Behavioral Strategy Representation

What is the expected payoff of x?

1
_ (_xf — 3 YpXe— 22X VEXP)F 3% VX T 2 xryr*xf)

2 1 Xre X,
+ > (xfryf* —3 X! Yy, — xrr)
IDEA. Group together products that appear

into new “variables” 1

New variables represent the product of the
probabilities of the actions chosen by P1 on
the path to the last action in the sequence!

We will annotate them just with the last action
Xe¢

Xyé er

Xre = Xg, er = Xf

-3 —2 3




Sequence Form Representation

What is the expected payoff of x?

1

> (—xf — 3 XAYAXe ) 2 XA Vp X7 + 30, Yrxe 1+ 2 xryr*xf)
1 Xre X,z Kor s

+ E (Xfry]f* - 3 xf’:)?;‘ri - x,rl) rf re xrf

Sequence form strategies. We can define
these new variables X,for all actions of P1| —1

X,: represents product of probabilities of
all actions of P1 on the pathto a
Xf, Xy, ffr, X1, Xe, ff




Sequence Form Representation

What is the expected payoff of x?
%(;xf —3 xryf*xci— 2 x,,.yf;xf + 3xry,.*x@~+ 2 xryr*xf)
Sequence form strategies. We can define
these new variables X for all actions of P1| —1

X,: represents product of probabilities of
all actions of P1 on the pathto a

Xf, Xy, ffr, X1, Xe, ff
V,: represents product of probabilities of xé/
all actions of P2 on the pathto a

yf*' 5;1”* —3 —2




Sequence Form Representation

What is the expected payoff of x?
1, N N N N
> (1—xf — 3y Xe — 2 VrXz + 3y Xe + 2 yr*xf)

= (%097, — 3 %019, — %)

Sequence form strategies. We can define
these new variables X for all actions of P1

X,: represents product of probabilities of
all actions of P1 on the pathto a

Xf, Xy, ffr, X1, Xe, ff
V,: represents product of probabilities of
all actions of P2 on the pathto a

Vs Vr, -3 2 ) (3 )(-2




Sequence Form Representation

S
Q‘
What is the expected payoff of x? Q//@o@
L, g g g g
> (1—xf —3YrXe — 2Y£Xp + 3y Xe + 2 yr*xf)
= (%097, — 3 %019, — %)

Observation. This is of the form x " Ay.

What is the dimension of 4?



Sequence Form Representation

What is the expected payoff of x?
%(—ff —3yp¥e = 2yp X + 3y X + 2 yr*ff)
+ % (ff’f’f* — 3 Xp Yy, — fr’)

Observation. This is of the form x " Ay.
What is the dimension of A?

One row for each possible action a of P

One column for each possible action a’ of P2




Sequence Form Representation

What is the expected payoff of x?

Lo s s s s
> (1—xf —3YrXe — 2Y£Xp + 3y Xe + 2 yr*xf)
+ 5 (%97, = 3 %9, — %)

Observation. This is of the form x " Ay.
What is the dimension of 4?

One row for each possible action a of P
One column for each possible action a’ of P2

What is the value 4, ,/?




Sequence Form Representation

What is the expected payoff of x?

Lo s s s s
> (1—xf —3YrXe — 2Y£Xp + 3y Xe + 2 yr*xf)
+ 5 (%97, = 3 %9, — %)

Observation. This is of the form x T Ay.
What is the dimension of 4?

One row for each possible action a of P
One column for each possible action a’ of P2

What is the value 4, ,/?

If there exists a terminal node, such that a was the last action chosen by P1 and a
was the last action chosen by P2 then it is the value of the leaf multiplied by all
“chance” probabilities on the path to the leaf

!



Sequence Form Representation

%
Q‘
What is the expected payoff of x? Q//@o@
1

. (1—5c'f —3Yp % — 2V %7 + 3y Te + 2 9 %y )
(55~ 3505 - 5) ,
What constraints does X need to respect?




Sequence Form Representation

What is the expected payoff of x?

Lo o s s 8 g
> (1—xf —3YrXe — 2Y£Xp + 3y Xe + 2 yr*xf)
= (%097, — 3 %019, — %)

Xf
What constraints does X need to respect?

Since Xz is supposed to represent x,.xz and ff
IS supposed to represent Xy Xf

£@+ff=xr(x@+xf)=xr




Sequence Form Representation

What is the expected payoff of x?

Lo s s s s
> (1—xf —3YrXe — 2Y£Xp + 3y Xe + 2 yr*xf)
+ 5 (%97, = 3 %9, — %)

Xf
What constraints does X need to respect?
Since Xz is supposed to represent x,.xz and ff
IS supposed to represent Xy Xf

Xe t+ X7 =xr(x5+xf) = X

The sum of X, for all actions at an info setj €
J; must be matching fpj, i.e., variable

associated with the last action chosen before j

/




Sequence Form Representation

What is the expected payoff of x?
1, N N N N
> (—xf — 3y Xe — 2 VrXz + 3y Xe + 2 yr*xf)
1, N o~
+§(xf,yf* _Bxf,yr* _xT‘,) Xf
Are these all?
Since Xz is supposed to represent x,.xz and ff

IS supposed to represent Xy Xf
Xe + Xf =xr(x@+xf) = Xy = Xp
For every, X, we can find a valid behavioral x
e F
Xy

= Xz, Xf

Xr



Recap: Sequence Form Representation

* The strategies of the player can be representedasx € X,y €Y
* X,: product of probabilities of all actions of P1 on the pathto a
* y,: product of probabilities of all actions of P2 on the path to a
X = {‘v’jEJl: Z fazfpj}, Y = {‘v’jEJz: Z ya=yp]}
a€d; AEA;
* The payoff to P1 under sequence sTtrategies XeEX,VyEYIS
X' Ay

« A, =if awas the last action of P1 and a’ the last action of P2 before

some leaf z, then payoff to P1 at z times product of chance
probabilities on path to z else zero



Recap: From Sequence to Behavioral

* Every sequence form strategy X can be transformed into a

behavioral form strategy as (recursively bottom up):
xa
Ya € A]-: Xg = —

X, .
Dj
If info-set is un-reachable, i.e. fpj = 0, then use any behavioral

* Every behavioral strategy x can be transformed into a sequence
form strategy as (recursively top down):
Va € A;: X, = Xp;* Xq



Sequence Form Representation

Let’s fill it in!




Sequence Form Representation

b
O

%)
0 Q?P

I R 7 N

—~1/2
Xf
1/2 —3/2
—-1/2 -1
—3/2 3/2
—2/2 —2/2




TreePlex Representation of Strategy Space

The strategy space of each player is a set of interconnected “scaled” simplices

Vj € Jqi: 2 Xq = Xp;
aEAj
To generate X,
* Generate an element of the simplex (i.e. a behavioral strategy x,)

* Scale allits coordinates by Xp l.e. X, = Xpi " Xg

Al X A2

q1 qz q3 q4

s 06 ar ds8 q9 d10 q11 q12



TreePlex Representation

4 N
\_ /
Let’s fill it in!

4 I




TreePlex Representation

/ Aq X A, \
Xg Y Xf X,
Xy - A3
X %;

\_ /
4 N
Ay

yf* 377‘




Solving Extensive Form Games
via No-Regret Learning



No-Regret Learning in Sequence Form

* We have successfully turned imperfect information extensive form
zero-sum games into a familiar object

max min X' Ay
XEX YE€Y

* X,Y are convex sets, i.e., sequence-form strategies

* We can invoke minimax theorem to prove existence of equilibria
* We can calculate equilibria via LP duality
* We can calculate equilibria via no-regret learning!



Recap from Lecture 2: Regret of FTRL

z 1

. . 1-strongly convex

(FTRL) X¢ = argmin (X, £T> n fR(X) function of x that

XEX <t stabilizes the minimizer
Historical performance

of always choosing
strategy x

Theorem. Assuming the loss function at each period
fr(x) = (x,£)

is L-Lipschitz with respect to some norm ||-|| and the regularizer is 1-
strongly convex with respect to the same norm then

Regret — FTRL(T) <[nL J{an (max R(x) — mln R(x))}

xeX

. J
Average stability Average loss distortion

induced by regularizer caused by regularizer




Same for utilities

. 1-strongly convex
(FTRL) X¢ = argma (X, uT) ., R(X) function of x that
XEX <t stabilizes the maximizer

Historical performance
of always choosing
strategy x

Theorem. Assuming the utility function at each period
fr(x) = (x,uz)

is L-Lipschitz with respect to some norm ||-|| and the regularizer is 1-
strongly convex with respect to the same norm then

1
Regret — FTRL(T) <|nL o7 (max R(x) — mln R(x))

xeX

Average stability Average loss distortion
induced by regularizer caused by regularizer



Regularizer for the Treeplex Space X

* The only thing we are missing is a good Regularizer for X V-1 = EUT

<t

* Desiderata. Be strongly convex in x within X and for the
optimization problem to be fast to solve

1 1
Xy = argmaxz:(f, u;) ——R(X) = argmax (X, U;_{) ——R(X)
xex 4 N XeEX N

* X iIsno longer a “simplex”, so entropy is not a good Regularizer



Dilated Entropy

* X Isacombination of scaled simplices, i.e., X = (xj)]eg
1

« %) = (xa)aeA sequence-form strategles for actions in infosetj € J,

vJ .
X Exp] A & /xp SWAY

* Consider a weighted combination of local negative entropies

R(X) = 2 B; %y, H x /xp ) H(u) = 2 u; log(u;)

[
Negative Entropy

Lies in a simplex 4;
Equivalent to the behavioral strategy x/

* R(X) is 1/M strongly convex w.r.t. £; norm, where M = rpa)?dlxlll, for
xXe
appropriate choice of ,Bj based on game tree structure



Solving the Optimization Problem

* Optimization problem decomposes into local simplex problems
z<~jUj> 1ﬁ~Hff Z~ X/ ) 1H X/
XH U1 == PjXp; = | = Xpi W\ VYeor| — B\ =—
_ =1~ ip PI P T, _ Pj Tp; t=1 N \%p,

* Max of quantity;— over simplex A; is independent of solution x, for
"y

|
all ancestral actions

~j .
* Quantity = is essentially the behavioral strategy x/ at infoset j

xpj



Solving the Optimization Problem

« Decomposes in local max over behavioral strategies x’ solved bottom up

ij X exp (njUg_l)

. . 1 .
J = Jyul Y —— J . :
v ,E?SAXJ. <x ’ Ut‘1> nj H(x/) = V] =log z exp(n;Uf,) = softmaxy (Utj—l)

* Value I/ multiplies Xp > when solving for Xp; We need to take itinto account. If p; € Ay

_)?k

~k k o .
s 540851 () 45+

xkeAy Xpe
* Add V7 to “cumulative utility” ij (initialized at Ut—l,pj) associated with p;

Qp, « Qp; +V/
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