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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games and equilibria (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research
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Extensive Form 
Games
History and Progress



Historical Challenge in Game Theory and AI

Nash1950 Kuhn1950 Waterman1970



Many Recent 
Success 
Stories



Key Elements to Success

New approaches to approximate the “continuation value of the 
game” via deep learning and other domain specific techniques

Scalable algorithmic methods to compute approximate Nash 
equilibria of zero-sum games via learning dynamics



Extensive Form 
Games
The Basics



Perfect Information Games

• Players take turns in choosing actions
• All actions are publicly observable
• The “state” of the game is publicly 

observable
• Some sequence of actions lead to 

terminal states
• Each player receives some utility/loss at 

a terminal state
• In zero-sum games: utility of player 1 

equals loss of player 2



Tree Representation



Solving Games via Backwards Induction



Imperfect Information 
Games
Players don’t have perfect knowledge 
about the “state” of the game



Why are Imperfect Information Games Hard

The optimal strategy in the orange sub-tree can depend 
on how we play and what happens in the purple sub-tree



A Simple Game C

Rules of the game

• Nature (chance) flips a coin

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

• Player one chooses whether to fold or play

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

0.5 −0.5

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

• Player one chooses whether to fold or play

• If they fold with heads they win 0.5 if they fold 
with tails they lose 0.5

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

P2 P2

0.5 −0.5

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

• Player one chooses whether to fold or play

• If they fold with heads they win 0.5 if they fold 
with tails they lose 0.5

• If they play then it is player two turn

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

P2 P2

0.5 −0.5

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

• Player one chooses whether to fold or play

• If they fold with heads they win 0.5 if they fold 
with tails they lose 0.5

• If they play then it is player two turn

• Player two doesn’t see the outcome of the coin

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

P2 P2

0.5 −0.5

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

• Player one chooses whether to fold or play

• If they fold with heads they win 0.5 if they fold 
with tails they lose 0.5

• If they play then it is player two turn

• Player two doesn’t see the outcome of the coin

• They choose either heads or tails

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game C

P1 P1

P2 P2

0.5 −0.5

−111−1

Rules of the game

• Nature (chance) flips a coin

• Player one sees the outcome of the coin

• Player one chooses whether to fold or play

• If they fold with heads they win 0.5 if they fold 
with tails they lose 0.5

• If they play then it is player two turn

• Player two doesn’t see the outcome of the coin

• They choose either heads or tails

• If they match the coin they win 1 (P1 loses 1) if 
they don’t match they lose 1 (P1 wins 1)

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0


A Simple Game
C

P1 P1

P2 P2

0.5 −0.5

−111−1



A Simple Game
C

P1 P1

P2 P2

0.5 −0.5

−111−1

P1 information set P1 information set

P2 information set



A Simple Game
C

P1 P1

P2 P2

0.5 −0.5

−111−1

Imperfect Information 
Subgame

Not a “proper” subgame in the formal game 
theory sense of a proper subgame, because it 
starts at a non-singleton information set. This 
notion of an “imperfect info subgame” is useful 
for computational approaches, e.g.,  “value 
function approximation” for large games.



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1

𝑉 = 1𝑉 = −1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

𝟎. 𝟓 −0.5

−111−1

𝑽 = 𝟏𝑉 = −1𝑬 𝑽 =. 𝟕𝟓



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1

𝑉 = −1𝑉 = 1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −𝟎. 𝟓

−111−1

𝑉 = −1𝑽 = 𝟏𝑬 𝑽 =. 𝟐𝟓



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1

𝑉 = −0.5𝑉 = 0.5



How should P2 play in the sub-game?
C

P1 P1

P2 P2

0.5 −0.5

−111−1

𝑬 𝑽 = 𝟎 𝑉 = −0.5𝑉 = 0.5



What if we change the value of the fold?
C

P1 P1

P2 P2

−𝟎. 𝟓 𝟎. 𝟓

−111−1



What if we change the value of the fold?
C

P1 P1

P2 P2

−𝟎. 𝟓 𝟎. 𝟓

−111−1

𝑬 𝑽 = 𝟎 𝑉 = 0.5𝑉 = −0.5



What if we change the value of the fold?
C

P1 P1

P2 P2

−111−1

EVEV

The optimal strategy in the “play” sub-game, 
requires knowledge of what happens in the 
blue and green “fold” sub-games



The Elements of an Imperfect 
Information Game Tree



Tree Representation and Information Sets

• Nodes. Each node in the tree is a decision point for some player
• Information sets (infoset). Nodes that belong to player 𝑖 are 

partitioned into information sets 𝐼 ∈ ℐ𝑖, with indices 𝒥𝑖 = 𝑗1, … , 𝑗𝐾𝑖
 

• Player does not know which node in the information set is chosen
• Must use the same strategy on all nodes in information set
• Each infoset 𝑗 ∈ 𝒥𝑖  has a set of actions 𝐴𝑗  that the player can take
• Leaf nodes 𝒁. The set of terminal states. Player 1 gains utility 𝑢(𝑧)

• Chance nodes. Chance or Nature moves with a fixed distribution



Perfect Recall

• Players remember all the past actions they took

• For each infoset 𝐼, there is unique “parent” (infoset, action) pair

• For every node in 𝐼 ∈ ℐ𝑖, the parent pair 𝐼′, 𝑎′ was the last infoset 
visited and action taken by player 𝑖 before reaching 𝐼

• Let 𝑝𝑗  the last action player took before reaching infoset indexed 𝑗



Strategic Form Representation

• Mixed strategy. A distribution over pure strategies
• Behavioral strategy. A set of distributions over actions at each 

information set

Kuhn’s Theorem. For every mixed strategy there is an equivalent 
behavioral strategy that against all profiles of strategies of 
opponents induces the same distribution over terminal nodes

We will only be talking about behavioral strategies hereafter



A Simple “Weird” Poker Game
C

P1
𝑓

𝑟

P1

𝑓′

P2 P2

−31

Credits: main_ai_games_markets.pdf (columbia.edu)

−1

𝑟′

−1

𝑓∗ 𝑟∗

P1 P1

𝑓∗ 𝑟∗

Ƹ𝑐 መ𝑓 Ƹ𝑐 መ𝑓

−3 −2 3 −2

What are the rules of the game?
(f)old, (r)aise, (c)heck

https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf


Why is Nash Equilibrium a Good Idea?

• In zero-sum games where no player has an a-priori competitive 
advantage, Nash Equilibrium guarantees no loss in expectation

• It is a “safe” strategy no matter what the opponent does!



Game Representations 
Convenient for Computing a 
Nash Equilibrium



Computing Nash Equilibrium

• We know how to compute equilibria of static zero-sum games
• Can we view the extensive form zero-sum game also as min-max

max
𝑥∈𝑋

min
𝑦∈𝑌

𝑥⊤𝐴𝑦

• What does 𝑥 and 𝑦 encode?

• What if 𝑥 = 𝑥𝑗
𝑗∈𝒥1

, where 𝑥𝑗  is mixed strategy at infoset 𝑗 ∈ 𝒥1

• What if 𝑦 = 𝑦𝑗
𝑗∈𝒥2

, where 𝑦𝑗  is mixed strategy at infoset 𝑗 ∈ 𝒥2



Behavioral Strategy Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

What is the expected payoff of 𝑥?

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓



Behavioral Strategy Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
−𝑥𝑓 − 3 𝑥𝑟𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑥𝑟𝑦𝑓∗
𝑥 መ𝑓 + 3𝑥𝑟𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑥𝑟𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′𝑦𝑓∗

− 3 𝑥𝑓′𝑦𝑟∗
− 𝑥𝑟′



Behavioral Strategy Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
−𝑥𝑓 − 3 𝑥𝑟𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑥𝑟𝑦𝑓∗
𝑥 መ𝑓 + 3𝑥𝑟𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑥𝑟𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′𝑦𝑓∗

− 3 𝑥𝑓′𝑦𝑟∗
− 𝑥𝑟′

Is it of the form 𝑥⊤𝐴𝑦?



Behavioral Strategy Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
−𝑥𝑓 − 3 𝑥𝑟𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑥𝑟𝑦𝑓∗
𝑥 መ𝑓 + 3𝑥𝑟𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑥𝑟𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′𝑦𝑓∗

− 3 𝑥𝑓′𝑦𝑟∗
− 𝑥𝑟′

Is it of the form 𝑥⊤𝐴𝑦?



Behavioral Strategy Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
−𝑥𝑓 − 3 𝑥𝑟𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑥𝑟𝑦𝑓∗
𝑥 መ𝑓 + 3𝑥𝑟𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑥𝑟𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′𝑦𝑓∗

− 3 𝑥𝑓′𝑦𝑟∗
− 𝑥𝑟′

IDEA. Group together products that appear 
into new “variables”
New variables represent the product of the 
probabilities of the actions chosen by P1 on 
the path to the last action in the sequence!
We will annotate them just with the last action

𝑥rොc ≡ 𝑥 Ƹ𝑐 , 𝑥𝑟 መ𝑓 ≡ 𝑥 መ𝑓

𝑥𝑟 Ƹ𝑐 𝑥𝑟 መ𝑓 𝑥𝑟 Ƹ𝑐 𝑥𝑟 መ𝑓



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
−𝑥𝑓 − 3 𝑥𝑟𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑥𝑟𝑦𝑓∗
𝑥 መ𝑓 + 3𝑥𝑟𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑥𝑟𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′𝑦𝑓∗

− 3 𝑥𝑓′𝑦𝑟∗
− 𝑥𝑟′

𝑥𝑟 Ƹ𝑐 𝑥𝑟 መ𝑓 𝑥𝑟 Ƹ𝑐 𝑥𝑟 መ𝑓

Sequence form strategies. We can define 
these new variables 𝑥afor all actions of P1
𝑥a: represents product of probabilities of 
all actions of P1 on the path to a

𝑥𝑓 , 𝑥𝑟 , 𝑥𝑓′ , 𝑥𝑟′ , 𝑥 Ƹ𝑐 , 𝑥 መ𝑓

𝑦a: represents product of probabilities of 
all actions of P2 on the path to a

𝑦𝑓∗
, 𝑦𝑟∗



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
−𝑥𝑓 − 3 𝑥𝑟𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑥𝑟𝑦𝑓∗
𝑥 መ𝑓 + 3𝑥𝑟𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑥𝑟𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′𝑦𝑓∗

− 3 𝑥𝑓′𝑦𝑟∗
− 𝑥𝑟′

𝑥𝑟 Ƹ𝑐 𝑥𝑟 መ𝑓 𝑥𝑟 Ƹ𝑐 𝑥𝑟 መ𝑓

Sequence form strategies. We can define 
these new variables 𝑥afor all actions of P1
𝑥a: represents product of probabilities of 
all actions of P1 on the path to a

𝑥𝑓 , 𝑥𝑟 , 𝑥𝑓′ , 𝑥𝑟′ , 𝑥 Ƹ𝑐 , 𝑥 መ𝑓

𝑦a: represents product of probabilities of 
all actions of P2 on the path to a

𝑦𝑓∗
, 𝑦𝑟∗



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

Sequence form strategies. We can define 
these new variables 𝑥afor all actions of P1
𝑥a: represents product of probabilities of 
all actions of P1 on the path to a

𝑥𝑓 , 𝑥𝑟 , 𝑥𝑓′ , 𝑥𝑟′ , 𝑥 Ƹ𝑐 , 𝑥 መ𝑓

𝑦a: represents product of probabilities of 
all actions of P2 on the path to a

𝑦𝑓∗
, 𝑦𝑟∗



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

Observation. This is of the form 𝑥⊤𝐴𝑦.
What is the dimension of 𝑨?



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

Observation. This is of the form 𝑥⊤𝐴𝑦.
What is the dimension of 𝑨?
One row for each possible action 𝑎 of P
One column for each possible action 𝑎′ of P2



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

Observation. This is of the form 𝑥⊤𝐴𝑦.
What is the dimension of 𝑨?
One row for each possible action 𝑎 of P
One column for each possible action 𝑎′ of P2

What is the value 𝑨𝒂,𝒂′?



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

Observation. This is of the form 𝑥⊤𝐴𝑦.
What is the dimension of 𝑨?
One row for each possible action 𝑎 of P
One column for each possible action 𝑎′ of P2

What is the value 𝑨𝒂,𝒂′?

If there exists a terminal node, such that 𝑎 was the last action chosen by P1 and 𝑎′ 
was the last action chosen by P2 then it is the value of the leaf multiplied by all 
“chance” probabilities on the path to the leaf



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2
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𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

What constraints does 𝒙 need to respect?

Since 𝑥 Ƹ𝑐  is supposed to represent 𝑥𝑟𝑥 Ƹ𝑐  and 𝑥 መ𝑓  
is supposed to represent 𝑥𝑟𝑥 መ𝑓

𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟 𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟

The sum of 𝑥𝑎 for all actions at an info set 𝑗 ∈
𝒥𝑖  must be matching 𝑥𝑝𝑗

, i.e. variable 
associated with the last action chosen before 𝑗



Sequence Form Representation
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𝑥𝑓 𝑥𝑟
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−31

−1 −1
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𝑦𝑟∗
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𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

What constraints does 𝒙 need to respect?

Since 𝑥 Ƹ𝑐  is supposed to represent 𝑥𝑟𝑥 Ƹ𝑐  and 𝑥 መ𝑓  
is supposed to represent 𝑥𝑟𝑥 መ𝑓

𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟 𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟

The sum of 𝑥𝑎 for all actions at an info set 𝑗 ∈
𝒥𝑖  must be matching 𝑥𝑝𝑗

, i.e. variable 
associated with the last action chosen before 𝑗
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−31

−1 −1
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𝑦𝑟∗
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𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

What constraints does 𝒙 need to respect?

Since 𝑥 Ƹ𝑐  is supposed to represent 𝑥𝑟𝑥 Ƹ𝑐  and 𝑥 መ𝑓  
is supposed to represent 𝑥𝑟𝑥 መ𝑓

𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟 𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟

The sum of 𝑥𝑎 for all actions at an info set 𝑗 ∈
𝒥𝑖  must be matching 𝑥𝑝𝑗

, i.e., variable 
associated with the last action chosen before 𝑗



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

What is the expected payoff of 𝑥?
1

2
− 𝑥𝑓 − 3 𝑦𝑓∗

𝑥 Ƹ𝑐 − 2 𝑦𝑓∗
𝑥 መ𝑓 + 3𝑦𝑟∗

𝑥 Ƹ𝑐 + 2 𝑦𝑟∗
𝑥 መ𝑓

+
1

2
𝑥𝑓′ 𝑦𝑓∗

− 3 𝑥𝑓′ 𝑦𝑟∗
− 𝑥𝑟′

Are these all?

Since 𝑥 Ƹ𝑐  is supposed to represent 𝑥𝑟𝑥 Ƹ𝑐  and 𝑥 መ𝑓  
is supposed to represent 𝑥𝑟𝑥 መ𝑓

𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟 𝑥 Ƹ𝑐 + 𝑥 መ𝑓 = 𝑥𝑟 = 𝑥𝑟

For every, 𝑥, we can find a valid behavioral 𝑥 
𝑥𝑐

𝑥𝑟
= 𝑥 Ƹ𝑐 ,

𝑥 መ𝑓

𝑥𝑟
= 𝑥 መ𝑓



Recap: Sequence Form Representation

• The strategies of the player can be represented as 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌

• 𝑥a: product of probabilities of all actions of P1 on the path to a
• 𝑦a: product of probabilities of all actions of P2 on the path to a

𝑋 ≔ ∀𝑗 ∈ 𝒥1: 

𝑎∈𝐴𝑗

𝑥𝑎 = 𝑥𝑝𝑗
,  𝑌 ≔ ∀𝑗 ∈ 𝒥2: 

𝑎∈𝐴𝑗

𝑦𝑎 = 𝑦𝑝𝑗

• The payoff to P1 under sequence strategies 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 is
𝑥⊤𝐴 𝑦

• 𝐴𝑎,𝑎′ = if 𝑎 was the last action of P1 and 𝑎′ the last action of P2 before 
some leaf 𝑧, then payoff to P1 at 𝑧 times product of chance 
probabilities on path to 𝑧 else zero



Recap: From Sequence to Behavioral

• Every sequence form strategy 𝑥 can be transformed into a 
behavioral form strategy as (recursively bottom up):

∀𝑎 ∈ 𝐴𝑗:  𝑥𝑎 =
𝑥𝑎

𝑥𝑝𝑗

   if info-set is un-reachable, i.e. 𝑥𝑝𝑗
= 0, then use any behavioral

• Every behavioral strategy 𝑥 can be transformed into a sequence 
form strategy as (recursively top down):

∀𝑎 ∈ 𝐴𝑗:  𝑥𝑎 = 𝑥𝑝𝑗
⋅ 𝑥𝑎



Sequence Form Representation
C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

Let’s fill it in!

∅ 𝒇∗ 𝒓∗

𝒇

𝒓

𝒇′

𝒓′

ො𝒄

𝒇



Sequence Form Representation
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−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗
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−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

∅ 𝒇∗ 𝒓∗

𝒇 −1/2

𝒓

𝒇′ 1/2 −3/2

𝒓′ −1/2

ො𝒄 −3/2 3/2

𝒇 −2/2 −2/2



TreePlex Representation of Strategy Space
The strategy space of each player is a set of interconnected “scaled” simplices

∀𝑗 ∈ 𝒥1: 

𝑎∈𝐴𝑗

𝑥𝑎 = 𝑥𝑝𝑗

To generate 𝑥𝑎

• Generate an element of the simplex (i.e. a behavioral strategy 𝑥𝑎) 
• Scale all its coordinates by 𝑥𝑝𝑗

, i.e. 𝑥𝑎 = 𝑥𝑝𝑗
⋅ 𝑥𝑎



TreePlex Representation
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−31
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𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

Let’s fill it in!



TreePlex Representation
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𝑥𝑓 𝑥𝑟
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P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗
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𝑦𝑓∗
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𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

Δ1

𝑥𝑓 𝑥𝑟

𝑥𝑟 ⋅ Δ3

𝑥 Ƹ𝑐 𝑥 መ𝑓

Δ2

𝑥𝑓′ 𝑥𝑟′

×

Δ1

𝑦𝑓∗
𝑦𝑟∗



Solving Extensive Form Games 
via No-Regret Learning



No-Regret Learning in Sequence Form

• We have successfully turned imperfect information extensive form 
zero-sum games into a familiar object

max
𝑥∈𝑋

min
𝑦∈𝑌

𝑥⊤𝐴 𝑦

• 𝑋, 𝑌 are convex sets, i.e., sequence-form strategies

• We can invoke minimax theorem to prove existence of equilibria
• We can calculate equilibria via LP duality
• We can calculate equilibria via no-regret learning!



Recap from Lecture 2: Regret of FTRL

𝑥𝑡 = argmin
𝑥∈𝑋



𝜏<𝑡

⟨𝑥, ℓ𝜏⟩ +
1

𝜂
ℛ(𝑥)

Theorem. Assuming the loss function at each period 
𝑓𝑡 𝑥 = ⟨𝑥, ℓ𝑡⟩

is 𝐿-Lipschitz with respect to some norm ⋅  and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max
𝑥∈𝑋

ℛ 𝑥 − min
𝑥∈𝑋

ℛ 𝑥

Average stability 
induced by regularizer

Average loss distortion 
caused by regularizer

(FTRL)

Historical performance 
of always choosing 

strategy 𝑥

1-strongly convex 
function of 𝑥 that 

stabilizes the minimizer



Same for utilities

𝑥𝑡 = argmax
𝑥∈𝑋



𝜏<𝑡

⟨𝑥, 𝑢𝜏⟩ −
1

𝜂
ℛ(𝑥)

Theorem. Assuming the utility function at each period 
𝑓𝑡 𝑥 = ⟨𝑥, 𝑢𝑡⟩

is 𝐿-Lipschitz with respect to some norm ⋅  and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max
𝑥∈𝑋

ℛ 𝑥 − min
𝑥∈𝑋

ℛ 𝑥

Average stability 
induced by regularizer

Average loss distortion 
caused by regularizer

(FTRL)

Historical performance 
of always choosing 

strategy 𝑥

1-strongly convex 
function of 𝑥 that 

stabilizes the maximizer



Regularizer for the Treeplex Space 𝑋

• The only thing we are missing is a good Regularizer for 𝑋

• Desiderata. Be strongly convex in 𝑥 within 𝑋 and for the 
optimization problem to be fast to solve

𝑥𝑡 = argmax
𝑥∈𝑋



𝜏<𝑡

⟨ 𝑥, 𝑢𝜏⟩ −
1

𝜂
ℛ( 𝑥) = argmax

𝑥∈𝑋
 ⟨ 𝑥, 𝑈𝑡−1⟩ −

1

𝜂
ℛ( 𝑥)

• 𝑋 is no longer a “simplex”, so entropy is not a good Regularizer

𝑈𝑡−1 = 

𝜏<𝑡

𝑢𝜏



Dilated Entropy

• 𝑋 is a combination of scaled simplices, i.e., 𝑥 = 𝑥𝑗
𝑗∈𝒥1

• 𝑥𝑗 = 𝑥𝑎 𝑎∈𝐴𝑗
: sequence-form strategies for actions in infoset 𝑗 ∈ 𝒥1

𝑥𝑗 ∈ 𝑥𝑝𝑗
⋅ Δ𝑗  ⇔  𝑥𝑗/ 𝑥𝑝𝑗

∈ Δ𝑗

• Consider a weighted combination of local negative entropies

ℛ 𝑥 ≔ 

𝑗

𝛽𝑗  𝑥𝑝𝑗
 H 𝑥𝑗/ 𝑥𝑝𝑗

, H 𝑢 = 

𝑖

𝑢𝑖 log 𝑢𝑖

• ℛ 𝑥  is 1/𝑀 strongly convex w.r.t. ℓ1 norm, where 𝑀 = max
𝑥∈𝑋

𝑥 1, for 
appropriate choice of 𝛽𝑗  based on game tree structure

Negative Entropy
Lies in a simplex Δ𝑗

Equivalent to the behavioral strategy 𝑥𝑗



Solving the Optimization Problem

• Optimization problem decomposes into local simplex problems



𝑗∈𝒥1

𝑥𝑗 , 𝑈𝑡−1
𝑗

−
1

𝜂
𝛽𝑗 𝑥𝑝𝑗

 H
𝑥𝑗

𝑥𝑝𝑗

= 

𝑗∈𝒥1

𝑥𝑝𝑗

𝑥𝑗

𝑥𝑝𝑗

, 𝑈𝑡−1
𝑗

−
1

𝜂𝑗
H

𝑥𝑗

𝑥𝑝𝑗

• Max of quantity 𝑥𝑗

𝑥𝑝𝑗

 over simplex Δ𝑗  is independent of solution 𝑥𝑎 for 

all ancestral actions

• Quantity 𝑥𝑗

𝑥𝑝𝑗

 is essentially the behavioral strategy 𝑥𝑗  at infoset 𝑗

≔
1

𝜂𝑗



Solving the Optimization Problem

• Decomposes in local max over behavioral strategies 𝑥𝑗  solved bottom up

𝑉𝑗 = max
𝑥𝑗∈Δ𝑗

𝑥𝑗 , 𝑈𝑡−1
𝑗

−
1

𝜂𝑗
𝐻 𝑥𝑗 ⇒

𝑥𝑗 ∝ exp 𝜂𝑗𝑈𝑡−1
𝑗

𝑉𝑗 = log 

𝑎∈𝐴𝑗

exp 𝜂𝑗𝑈𝑡−1
𝑎 = softmax𝜂𝑗

𝑈𝑡−1
𝑗

• Value 𝑉𝑗  multiplies 𝑥𝑝𝑗
; when solving for 𝑥𝑝𝑗

 we need to take it into account. If 𝑝𝑗 ∈ 𝐴𝑘

max
𝑥𝑘∈Δ𝑘

𝑥𝑘 , 𝑈𝑡−1
𝑘 − 𝜂𝑘 𝑥𝑝𝑘

 H
𝑥𝑘

𝑥𝑝𝑘

+ 𝑥𝑝𝑗
𝑉𝑗 + ⋯

• Add 𝑉𝑗  to “cumulative utility” 𝑄𝑝𝑗
 (initialized at 𝑈𝑡−1,𝑝𝑗

) associated with 𝑝𝑗

𝑄𝑝𝑗
← 𝑄𝑝𝑗

+ 𝑉𝑗
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