MS\&E 233
 Game Theory, Data Science and AI Lecture 6

Vasilis Syrgkanis
Assistant Professor
Management Science and Engineering
(by courtesy) Computer Science and Electrical Engineering Institute for Computational and Mathematical Engineering

Computational Game Theory for Complex Games

- Basics of game theory and zero-sum games (T)
- Basics of online learning theory (T)
- Solving zero-sum games via online learning (T)

HW1: implement simple algorithms to solve zero-sum games

- Applications to ML and AI (T+A)
- HW2: implement boosting as solving a zero-sum game
- Basics of extensive-form games
- Solving extensive-form games via online learning (T)
- HW3: implement agents to solve very simple variants of poker
- General games and equilibria (T)
(3) Online learning in general games, multi-agent RL (T+A)
- HW4: implement no-regret algorithms that converge to correlated equilibria in general games

Data Science for Auctions and Mechanisms

- Basics and applications of auction theory (T+A)
- Learning to bid in auctions via online learning (T)
- HW5: implement bandit algorithms to bid in ad auctions
- Optimal auctions and mechanisms (T)

Simple vs optimal mechanisms (T)
. HW6: calculate equilibria in simple auctions, implement simple and optimal auctions, analyze revenue empirically

- Optimizing mechanisms from samples (T)
- Online optimization of auctions and mechanisms (T)
- HW7: implement procedures to learn approximately optimal auctions from historical samples and in an online manner

Further Topics

- Econometrics in games and auctions (T+A)
- A / B testing in markets ($\mathrm{T}+\mathrm{A}$)

7. HW8: implement procedure to estimate values from bids in an auction, empirically analyze inaccuracy of A / B tests in markets

Guest Lectures

- Mechanism Design for LLMs, Renato Paes Leme, Google Research
- Auto-bidding in Sponsored Search Auctions, Kshipra Bhawalkar, Google Research

Solving Extensive Form Games via No-Regret Learning

Recap: No-Regret Learning in Sequence Form

- We have successfully turned imperfect information extensive form zero-sum games into a familiar object

$$
\max _{\tilde{x} \in X} \min _{\tilde{y} \in Y} \tilde{x}^{\top} A \tilde{y}
$$

- X, Y are convex sets, i.e., sequence-form strategies
- We can invoke minimax theorem to prove existence of equilibria
- We can calculate equilibria via LP duality
- We can calculate equilibria via no-regret learning!

Recap: Regret of FTRL

Theorem. Assuming the utility function at each period

$$
f_{t}(x)=\left\langle x, u_{t}\right\rangle
$$

is L-Lipschitz with respect to some norm $\|\cdot\|$ and the regularizer is 1 strongly convex with respect to the same norm then

$$
\operatorname{Regret}-\mathrm{FTRL}(T) \leq \underbrace{\frac{1}{\eta T}\left(\max _{x \in X} \mathcal{R}(x)-\min _{x \in X} \mathcal{R}(x)\right)}_{\substack{\text { Average stability } \\
\text { induced by regularizer }}} \text { Average loss distortion } \begin{gathered}
\text { caused by regularizer }
\end{gathered}
$$

Recap: Regularizer for the Treeplex Space X

- The only thing we are missing is a good Regularizer for X

$$
U_{t-1}=\sum_{\tau<t} u_{\tau}
$$

- Desiderata. Be strongly convex in x within X and for the optimization problem to be fast to solve

$$
\tilde{x}_{t}=\underset{\tilde{x} \in X}{\operatorname{argmax}} \sum_{\tau<t}\left\langle\tilde{x}, u_{\tau}\right\rangle-\frac{1}{\eta} \mathcal{R}(\tilde{x})=\underset{\tilde{x} \in X}{\operatorname{argmax}}\left\langle\tilde{x}, U_{t-1}\right\rangle-\frac{1}{\eta} \mathcal{R}(\tilde{x})
$$

- X is no longer a "simplex", so entropy is not a good Regularizer

Dilated Entropy

- X is a combination of scaled simplices, i.e., $\tilde{x}=\left(\tilde{x}^{j}\right)_{j \in \mathcal{J}_{1}}$
- $\tilde{x}^{j}=\left(\tilde{x}_{a}\right)_{a \in A_{j}}$: sequence-form strategies for actions in infoset $j \in \mathcal{J}_{1}$

$$
\tilde{x}^{j} \in \tilde{x}_{p_{j}} \cdot \Delta_{j} \quad \Leftrightarrow \quad \tilde{x}^{j} / \tilde{x}_{p_{j}} \in \Delta_{j}
$$

- Consider a weighted combination of local negative entropies

$$
\mathcal{R}(\tilde{x}):=\sum_{j} \beta_{j} \tilde{x}_{p_{j}} \mathrm{H}\left(\tilde{x}^{j} / \tilde{x}_{p_{j}}\right), \quad \mathrm{H}(u)=\sum_{\substack{\text { Lies in a simplex } \Delta_{j} \\ \text { Equivalent to the behavioral strategy } x^{j}}} u_{i} \log \left(u_{i}\right)
$$

- $\mathcal{R}(\tilde{x})$ is $1 / M$ strongly convex w.r.t. ℓ_{1} norm, where $M=\max _{\tilde{x} \in X}\|\tilde{x}\|_{1}$, for appropriate choice of β_{j} based on game tree structure

Solving the Optimization Problem

- Optimization problem decomposes into local simplex problems

$$
\begin{array}{c:c}
\sum_{j \in \mathcal{J}_{1}} & \left.\tilde{x}^{j}, U_{t-1}^{j}\right\rangle \left.-\frac{1}{\eta} \beta_{j} \right\rvert\, \tilde{x}_{p_{j}} \\
& H\left(\frac{\tilde{x}^{j}}{\tilde{x}_{p_{j}}}\right)=\sum_{j \in \mathcal{J}_{1}} \tilde{x}_{p_{j}}\left(\left\{\begin{array}{l}
\tilde{x}^{j} \\
\tilde{x}_{p_{j}}
\end{array} U_{t-1}^{j}\right)-\frac{1}{\eta_{j}} \mathrm{H}\left(\frac{\tilde{x}^{j}}{\tilde{x}_{p_{j}}}\right)\right\}
\end{array}
$$

- Quantity $\frac{\tilde{x}^{j}}{\tilde{x}_{p_{j}}}$ is essentially the behavioral strategy x^{j} at infoset j

$$
\sum_{j \in \mathcal{J}_{1}} \tilde{x}_{p_{j}}\left\{\left\langle x^{j}, U_{t-1}^{j}\right\rangle-\frac{1}{\eta_{j}} \mathrm{H}\left(x^{j}\right)\right\}
$$

- Quantity x^{j} over simplex Δ_{j} is independent of solution x_{a} for all ancestral actions and only appears in subsequent infosets

Solving the Optimization Problem

- Decomposes in local max over behavioral strategies x^{j} solved bottom up

$$
V^{j}=\max _{x^{j} \in \Delta_{j}}\left\langle x^{j}, U_{t-1}^{j}\right\rangle-\frac{1}{\eta_{j}} H\left(x^{j}\right) \Rightarrow\left\{\begin{array}{l}
x^{j} \propto \exp \left(\eta_{j} U_{t-1}^{j}\right) \\
V^{j}=\log \sum_{a \in A_{j}} \exp \left(\eta_{j} U_{t-1}^{a}\right)=\operatorname{softmax}_{\eta_{j}}\left(U_{t-1}^{j}\right)
\end{array}\right.
$$

- Value V^{j} multiplies $\tilde{x}_{p_{j}}$; when solving for $\tilde{x}_{p_{j}}$ we need to take it into account. If $p_{j} \in A_{k}$

$$
\max _{x^{k} \in \Delta_{k}}\left\langle\tilde{x}^{k}, U_{t-1}^{k}\right\rangle-\eta_{k} \tilde{x}_{p_{k}} \mathrm{H}\left(\frac{\tilde{x}^{k}}{\tilde{x}_{p_{k}}}\right)+\tilde{x}_{p_{j}} V^{j}+\cdots
$$

- Add V^{j} to "cumulative utility" $Q_{p_{j}}$ (initialized at $U_{t-1, p_{j}}$) associated with p_{j}

$$
Q_{p_{j}} \leftarrow Q_{p_{j}}+V^{j}
$$

Sum: Nash via FTRL with Dilated Entropy

Each player chooses $\tilde{x}_{t}, \tilde{y}_{t}$ based on FTRL with dilated entropy

- For x-player $u_{t}=A \tilde{y}_{t}$ and $U_{t}=U_{t-1}+u_{t}$ and initialize $Q=U_{t}$
- Traverse the tree bottom-up; for each infoset $j \in \mathcal{J}_{1}$

$$
x_{t+1}^{j} \propto \exp \left(\eta_{j} Q^{j}\right), \quad V^{j}=\operatorname{softmax}_{\eta_{j}}\left(Q^{j}\right), \quad Q_{p_{j}} \leftarrow Q_{p_{j}}+V^{j}
$$

- Define sequence-form strategies top-down: $\tilde{x}_{t+1}^{j}=\tilde{x}_{p_{j}} \cdot x_{t+1}^{j}$

Similarly, for y player
Return average of sequence-form strategies as equilibrium

Interpreting utility vector

$$
u_{t, a}=A \tilde{y}_{t}=\sum_{a^{\prime} \in A_{P 2}} A_{a, a^{\prime}} \tilde{y}_{t, a^{\prime}}
$$

$A_{a, a^{\prime}}$ is zero if the combination of a, a^{\prime} does not lead to a leaf node

$$
u_{t, a}=\sum_{\substack{\text { Leafs } z:}}^{\substack{a \text { was last P1 action } \\
a^{\prime} \text { was last P2 action }}} u(z) \operatorname{Pr}\left(\begin{array}{c}
\text { Chance chooses } \\
\text { sequence on } \\
\text { path to } z
\end{array}\right) \operatorname{Pr}\left(\begin{array}{c}
\text { P2 plays } \\
\text { sequence } \\
\text { leading to } a^{\prime}
\end{array}\right)
$$

Interpretation. If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=(
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}},-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}},-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

$$
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
$$

- Go to Infoset 1

$$
U^{1}+=\left(u_{f}, u_{r}\right)=(\quad)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}},-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right)
$$

$$
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right)
$$

$$
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
$$

- Go to Infoset 1

$$
U^{1}+=\left(u_{f}, u_{r}\right)=\left(-1 \frac{1}{2}, 0\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

- Go to Infoset 1

$$
\begin{gathered}
U^{1}+=\left(u_{f}, u_{r}\right)=\left(-1 \frac{1}{2}, 0\right) \\
Q^{1}=U^{1}+\left(0, V^{3}\right)=\left(-1 \frac{1}{2}, V^{3}\right)
\end{gathered}
$$

C)

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

- Go to Infoset 1

$$
\begin{gathered}
U^{1}+=\left(u_{f}, u_{r}\right)=\left(-1 \frac{1}{2}, 0\right) \\
Q^{1}=U^{1}+\left(0, V^{3}\right)=\left(-1 \frac{1}{2}, V^{3}\right) \\
x^{1}=\left(x_{f}, x_{r}\right) \propto \exp \left(\eta_{1} Q^{1}\right)
\end{gathered}
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

- Go to Infoset 1

$$
\begin{gathered}
U^{1}+=\left(u_{f}, u_{r}\right)=\left(-1 \frac{1}{2}, 0\right) \\
Q^{1}=U^{1}+\left(0, V^{3}\right)=\left(-1 \frac{1}{2}, V^{3}\right) \\
x^{1}=\left(x_{f}, x_{r}\right) \propto \exp \left(\eta_{1} Q^{1}\right)
\end{gathered}
$$

- Go to Infoset 2

$$
U^{2}+=\left(u_{f^{\prime}}, u_{r^{\prime}}\right)=
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

- Go to Infoset 1

$$
\begin{gathered}
U^{1}+=\left(u_{f}, u_{r}\right)=\left(-1 \frac{1}{2}, 0\right) \\
Q^{1}=U^{1}+\left(0, V^{3}\right)=\left(-1 \frac{1}{2}, V^{3}\right) \\
x^{1}=\left(x_{f}, x_{r}\right) \propto \exp \left(\eta_{1} Q^{1}\right)
\end{gathered}
$$

- Go to Infoset 2

$$
U^{2}+=\left(u_{f^{\prime}}, u_{r^{\prime}}\right)=\left(1 \frac{1}{2} y_{f_{*}}-3 \frac{1}{2} y_{r_{*^{\prime}}}-1 \frac{1}{2}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
U^{3}+=\left(u_{\hat{c}}, u_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
Q^{3}=U^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} Q^{3}\right) \\
V^{3}=\operatorname{softmax}\left(\eta_{3} Q^{3}\right)
\end{gathered}
$$

- Go to Infoset 1

$$
\begin{gathered}
U^{1}+=\left(u_{f}, u_{r}\right)=\left(-1 \frac{1}{2}, 0\right) \\
Q^{1}=U^{1}+\left(0, V^{3}\right)=\left(-1 \frac{1}{2}, V^{3}\right) \\
x^{1}=\left(x_{f}, x_{r}\right) \propto \exp \left(\eta_{1} Q^{1}\right)
\end{gathered}
$$

- Go to Infoset 2

$$
\begin{aligned}
U^{2}+=\left(u_{f^{\prime}}, u_{r^{\prime}}\right) & =\left(1 \frac{1}{2} y_{f_{*}}-3 \frac{1}{2} y_{r_{x^{\prime}}}-1 \frac{1}{2}\right) \\
Q^{2}=U^{2}, \quad x^{2} & =\left(x_{f^{\prime}}, x_{r^{\prime}}\right) \propto \exp \left(\eta_{2} Q^{2}\right)
\end{aligned}
$$

Sum: Nash via FTRL with Dilated Entropy

Each player chooses $\tilde{x}_{t}, \tilde{y}_{t}$ based on FTRL with dilated entropy

- For x-player $u_{t}=A \tilde{y}_{t}$ and $U_{t}=U_{t-1}+u_{t}$ and initialize $Q=U_{t}$
- Traverse the tree bottom-up; for each infoset $j \in \mathcal{J}_{1}$

$$
x_{t+1}^{j} \propto \exp \left(\eta_{j} Q^{j}\right), \quad V^{j}=\operatorname{softmax}_{\eta_{j}}\left(Q^{j}\right), \quad Q_{p_{j}} \leftarrow Q_{p_{j}}+V^{j}
$$

- Define sequence-form strategies top-down: $\tilde{x}_{t+1}^{j}=\tilde{x}_{p_{j}} \cdot x_{t+1}^{j}$

Similarly, for y player
Return average of sequence-form strategies as equilibrium

Fast Rates

Theorem. If we use Optimistic FTRL instead of FTRL then we get faster convergence to a Nash equilibrium at rate $1 / T$ instead of $1 / \sqrt{T}$. Plus, we get last-iterate convergence instead of only average iterate convergence.

Monte-Carlo Stochastic Approximation of Utilities

- Calculating utilities on all nodes of the tree can be very expensive
- In linear online learning it suffices that we use an unbiased estimate of the utility vector

$$
\tilde{x}_{t}=\underset{x \in X}{\operatorname{argmax}} \sum_{\tau<t}\left\langle x, \hat{u}_{\tau}\right\rangle-\frac{1}{\eta} \mathcal{R}(x), \quad E\left[\hat{u}_{\tau} \mid F_{\tau}\right]=u_{\tau}
$$

- By standard martingale concentration inequality arguments, the error vanishes with the number of iterations (we will see later)
- In this setting, it suffices that we "sample a path for opponent" and that we "sample chance moves"

Illustration: First Step of Dynamics

- Sample chance moves based on fixed distribution and opponent moves based on y_{t}; Suppose, we sampled A and f_{*}
- Go to Infoset 3

$$
\begin{gathered}
\widehat{U}^{3}+=\left(\hat{u}_{\hat{c}}, \hat{u}_{\hat{f}}\right)=(-3,-2) \\
\hat{Q}^{3}=\widehat{U}^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} \hat{Q}^{3}\right) \\
\widehat{V}^{3}=\operatorname{softmax}\left(\eta_{3} \widehat{Q}^{3}\right)
\end{gathered}
$$

Illustration: First Step of Dynamics

Equivalently top down and evaluate recursively

- Sample chance move (e.g. sampled A)
- Go to Infoset 1

$$
\begin{gathered}
\widehat{U}^{1}:=\left(\widehat{U}_{f}, \widehat{U}_{r}\right)+=(-1,0) \\
\widehat{Q}^{1}:=\left(\widehat{Q}_{f}, \widehat{Q}_{r}\right)=\left(\widehat{U}_{f}, \widehat{U}_{r}\right)
\end{gathered}
$$

- Recursively go down tree after action r
- Sample P2 move (e.g. sampled f_{*})
- Go down to Infoset 3

$$
\begin{gathered}
\widehat{U}^{3}=\left(\widehat{U}_{\hat{C}}, \widehat{U}_{\hat{f}}\right)+=(-3,-2) \\
\widehat{Q}^{3}=\widehat{U}^{3}, \quad x^{3}=\left(x_{\hat{c}}, x_{\hat{f}}\right) \propto \exp \left(\eta_{3} \widehat{Q}^{3}\right) \\
\hat{V}^{3}=\operatorname{softmax}\left(\eta_{3} \widehat{Q}^{3}\right)
\end{gathered}
$$

- Go back up to Infoset 1

$$
\hat{Q}_{r}+=\hat{V}^{3}, \quad x^{1}=\left(x_{f}, x_{r}\right) \propto \exp \left(\eta_{1}\left(\hat{Q}_{f}, \hat{Q}_{r}\right)\right)
$$

Local Dynamics

- These dynamics seem to be doing "local updates" at each node
- They came out of a specific algorithm FTRL with Dilated Entropy
- Is this a general paradigm?
- Can we decompose the no-regret learning problem into local noregret learners at each node?
- What feedback should each node receive from the learners in nodes below?
-What loss should each learner be optimizing?

Counterfactual Regret Minimization (CRM)

Re-interpretating Utilities

Interpretation of $\boldsymbol{u}_{\boldsymbol{a}}$. If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature
What if we now want to express: If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=$ 1) and then continue playing based on some behavioral policy x, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature

Re-interpretating Utilities

Interpretation of $\boldsymbol{u}_{\boldsymbol{a}}$. If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature
What if we now want to express: If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=$ 1) and then continue playing based on some behavioral policy x, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature - Let C_{a} be all infosets of the player that are reachable as next infosets after playing a

$$
\begin{aligned}
& \qquad \tilde{u}_{a}(x)=u_{a} \sum_{\text {"Instantaneous E[utility]", if }} \sum_{k \in C_{a}^{*}(x)} \begin{array}{l}
\text { pontinuation E[utility] from paths that } \\
\text { this is the last action I play }
\end{array}
\end{aligned}
$$

Re-interpretating Utilities

Interpretation of $\boldsymbol{u}_{\boldsymbol{a}}$. If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=1$) and then don't make any other moves, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature
What if we now want to express: If I play with the intend to arrive at action a (i.e. $\tilde{x}_{a}=$ 1) and then continue playing based on some behavioral policy x, what is the expected reward that I will collect, in expectation over the choices of my opponent and nature - Let C_{a} be all infosets of the player that are reachable as next infosets after playing a

$$
\begin{aligned}
& \tilde{u}_{a}(x)=u_{a} \dagger+\sum V^{k}(x) \text { Continuation E[utility] from paths that } \\
& \text { "Instantaneous E[utility]", if } k \in C_{a} \quad \begin{array}{l}
\text { pass through infoset } k \text {, if I continue } \\
\text { playing based on behavioral strategy } x
\end{array} \\
& \text { this is the last action I play }
\end{aligned}
$$

- Continuation utility $V^{j}(x)$ from paths that pass through infoset j recursively defined:

$$
\begin{aligned}
& V^{j}(x)=\sum_{a \in A^{j}} x_{a} \tilde{u}_{a}(x)=\sum_{a=A} x_{a} u_{a} \sum_{a n t a n} x_{a}\left(\sum_{k \in C_{a}} V^{k}(x)\right) \\
& \text { this is the last move I make continue playing based on } x
\end{aligned}
$$

Re-interpretating Utilities

- Continuation utility $V^{j}(x)$ from paths that pass through j, assuming I play to arrive deterministically at the parent action p_{j} (i.e., $\tilde{x}_{p_{j}}=1$)

$$
V^{j}(x)=\sum_{a \in A^{j}} x_{a} \tilde{u}_{a}(x)=\sum_{a \in A^{j}} x_{a}\left(u_{a}+\sum_{k \in C_{a}} V^{k}(x)\right)
$$

- Obviously $V^{\text {root }}(x)$ is total expected utility from behavior strategy x
- From equivalence of behavioral and sequence-form strategies

$$
V^{\text {root }}(x)=\langle\tilde{x}, u\rangle
$$

- The same also holds for regrets

$$
R^{\text {root }}(x)=\max _{x^{\prime}} V^{\text {root }}\left(x^{\prime}\right)-V^{\text {root }}(x)=\max _{\tilde{x}^{\prime} \in X}\left\langle\tilde{x}^{\prime}, u\right\rangle-\langle\tilde{x}, u\rangle=R(\tilde{x})
$$

Local Regrets

- We can also define infoset regrets based on local utilities \tilde{u}_{a}

$$
R^{j}(x)=\max _{x^{\prime}} V^{j}\left(x^{\prime}\right)-V^{j}(x)=\max _{x^{\prime}} \sum_{a} x_{a}^{\prime} \tilde{u}_{a}\left(x^{\prime}\right)-x_{a} \tilde{u}_{a}(x)
$$

- Right-hand-side can be decomposed as:

$$
\max _{x^{\prime}} \sum_{a} x_{a}^{\prime} \tilde{u}_{a}(x)-x_{a} \tilde{u}_{a}(x)+\sum_{\substack{\text { Fix continuation strategy to current } \\ \text { strategy and only change the behavioral } \\ \text { strategy at the current infoset }}} x_{a}^{\prime}\left(\tilde{u}_{a}\left(x^{\prime}\right)-\tilde{u}_{a}(x)\right)
$$

Local Regrets

- We can also define infoset regrets based on local utilities \tilde{u}_{a}

$$
R^{j}(x)=\max _{x^{\prime}} V^{j}\left(x^{\prime}\right)-V^{j}(x)=\max _{x^{\prime}} \sum_{a} x_{a}^{\prime} \tilde{u}_{a}\left(x^{\prime}\right)-x_{a} \tilde{u}_{a}(x)
$$

- Right-hand-side can be decomposed as:

$$
\max _{x^{\prime}} \sum_{a} x_{a}^{\prime} \tilde{u}_{a}(x)-x_{a} \tilde{u}_{a}(x)+\sum_{a} x_{a}^{\prime}\left(\tilde{u}_{a}\left(x^{\prime}\right)-\tilde{u}_{a}(x)\right)
$$

- Maximum is upper bounded by the decoupled optima

$$
\max _{x^{\prime}} \sum_{a} x_{a}^{\prime} \tilde{u}_{a}(x)-x_{a} \tilde{u}_{a}(x)+\sum_{a} \max _{x^{\prime}}\left(\tilde{u}_{a}\left(x^{\prime}\right)-\tilde{u}_{a}(x)\right)
$$

Recursive Bound of Local Regrets

- Infoset regrets are bounded by local regret plus continuation terms

$$
R^{j}(x) \leq \operatorname{LR}^{j}(x)+\sum_{a} \max _{x^{\prime}}\left(\tilde{u}_{a}\left(x^{\prime}\right)-\tilde{u}_{a}(x)\right)
$$

- The continuation terms are recursive infoset regrets!

$$
\tilde{u}_{a}\left(x^{\prime}\right)-\tilde{u}_{a}(x)=\mu_{a}+\sum_{k \in C_{a}} V^{k}\left(x^{\prime}\right)-\not /_{a}-\sum_{k \in C_{a}} V^{k}(x)
$$

- Deriving the recursive upper bound

$$
\begin{aligned}
R^{j}(x) & \leq \operatorname{LR}^{j}(x)+\sum_{a} \sum_{k \in C_{a}} \max _{x^{\prime}} V^{k}\left(x^{\prime}\right)-V^{k}(x) \\
& \leq \operatorname{LR}^{j}(x)+\sum_{a} \sum_{k \in C_{a}} R^{k}(x)
\end{aligned}
$$

Recursive Bound of Local Regrets

- Deriving the recursive upper bound

$$
R^{j}(x) \leq \operatorname{LR}^{j}(x)+\sum_{a} \sum_{k \in C_{a}} R^{k}(x)
$$

Recursive Bound of Local Regrets

- Deriving the recursive upper bound

$$
R^{j}(x) \leq \operatorname{LR}^{j}(x)+\sum_{a} \sum_{k \in C_{a}} R^{k}(x)
$$

Theorem. By induction:

$$
R^{j}(x) \leq L R^{j}(x)+\sum_{k \text { eventually reachable from } j} L R^{k}(x)
$$

Local Regrets Upper Bound Total Regret

- Deriving the recursive upper bound

$$
R^{j}(x) \leq \operatorname{LR}^{j}(x)+\sum_{a} \sum_{k \in C_{a}} R^{k}(x)
$$

Theorem. By induction:

$$
R^{j}(x) \leq L R^{j}(x)+\sum_{k \text { eventually reachable from } j} L R^{k}(x)
$$

Main Corollary. Regret is upper bounded by sum of local regrets

$$
R(\tilde{x})=R^{\mathrm{root}}(x) \leq \sum_{k \in \mathcal{J}_{1}} L R^{k}(x)
$$

Regret over Time

Same inequalities can be followed for the average regret over time

$$
\begin{gathered}
R=\max _{\tilde{x}^{\prime} \in X} \frac{1}{T} \sum_{t}\left\langle\tilde{x}^{\prime}, u_{t}\right\rangle-\left\langle\tilde{x}_{t}, u_{t}\right\rangle \\
L R^{j}=\max _{x^{j}} \frac{1}{T} \sum_{t}\left\langle x^{j}, \tilde{u}_{t}\left(x_{t}\right)\right\rangle-\left\langle x_{t}^{j}, \tilde{u}_{t}\left(x_{t}\right)\right\rangle
\end{gathered}
$$

Main CFR Theorem. Regret is upper bounded by local regrets

$$
R \leq \sum_{j \in \mathcal{L}_{1}} L R^{j}
$$

Achieving vanishing Local Regrets

$$
\operatorname{LR}^{j}(x)=\max _{x^{j}} \frac{1}{T} \sum_{t}\left\langle x^{j}, \widetilde{u}_{t}\left(x_{t}\right)\right\rangle-\left\langle x_{t}^{j}, \widetilde{u}_{t}\left(x_{t}\right)\right\rangle
$$

Counterfactual Regret Minimization

- Device local regret algorithms for local regret

$$
\operatorname{LR}^{j}(x)=\max _{x^{j}} \frac{1}{T} \sum_{t}\left\langle x^{j}, \tilde{u}_{t}\left(x_{t}\right)\right\rangle-\left\langle x_{t}^{j}, \tilde{u}_{t}\left(x_{t}\right)\right\rangle
$$

- Standard n-action no-regret problem: reward vector at period t is $\tilde{u}^{j}\left(x_{t}\right)$ and reward for choice x^{j} is $\left\langle x^{j}, \tilde{u}^{j}\left(x_{t}\right)\right\rangle$
- At period t run bottom-up recursion to calculate $\tilde{u}^{j}\left(x_{t}\right)$ for $j \in \mathcal{J}_{1}$
- Update probabilities x_{t+1}^{j} using reward vectors $\tilde{u}^{j}\left(x_{t}\right)$ for $j \in \mathcal{J}_{1}$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}},-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}},-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
V^{3} \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}}+x_{\hat{f}} \tilde{u}_{\hat{f}}
\end{gathered}
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
V^{3} \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}}+x_{\hat{f}} \tilde{u}_{\hat{f}}
\end{gathered}
$$

- Go to Infoset 1

$$
\left(\tilde{u}_{f}, \tilde{u}_{r}\right)=\left(-1 \frac{1}{2}, V^{3}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
V^{3} \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}}+x_{\hat{f}} \tilde{u}_{\hat{f}}
\end{gathered}
$$

- Go to Infoset 1

$$
\left(\tilde{u}_{f}, \tilde{u}_{r}\right)=\left(-1 \frac{1}{2}, V^{3}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
V^{3} \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}}+x_{\hat{f}} \tilde{u}_{\hat{f}}
\end{gathered}
$$

- Go to Infoset 1

$$
\left(\tilde{u}_{f}, \tilde{u}_{r}\right)=\left(-1 \frac{1}{2}, V^{3}\right)
$$

- Go to Infoset 2

$$
\left(\tilde{u}_{f^{\prime}}, \tilde{u}_{r^{\prime}}\right)=\left(1 \frac{1}{2} y_{f_{*}}-3 \frac{1}{2} y_{r_{*^{\prime}}}-1 \frac{1}{2}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
V^{3} \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}}+x_{\hat{f}} \tilde{u}_{\hat{f}}
\end{gathered}
$$

- Go to Infoset 1

$$
\left(\tilde{u}_{f}, \tilde{u}_{r}\right)=\left(-1 \frac{1}{2}, V^{3}\right)
$$

- Go to Infoset 2

$$
\left(\tilde{u}_{f^{\prime}}, \tilde{u}_{r^{\prime}}\right)=\left(1 \frac{1}{2} y_{f_{*}}-3 \frac{1}{2} y_{r_{*^{\prime}}}-1 \frac{1}{2}\right)
$$

Illustration: First Step of Dynamics

- Go to Infoset 3

$$
\begin{gathered}
\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)=\left(-3 \frac{1}{2} y_{f_{*}}+3 \frac{1}{2} y_{r_{*}}-2 \frac{1}{2} y_{f_{*}}-2 \frac{1}{2} y_{r_{*}}\right) \\
V^{3} \leftarrow x_{\hat{c}} \tilde{u}_{\hat{c}}+x_{\hat{f}} \tilde{u}_{\hat{f}}
\end{gathered}
$$

- Go to Infoset 1

$$
\left(\tilde{u}_{f}, \tilde{u}_{r}\right)=\left(-1 \frac{1}{2}, V^{3}\right)
$$

- Go to Infoset 2

$$
\left(\tilde{u}_{f^{\prime}}, \tilde{u}_{r^{\prime}}\right)=\left(1 \frac{1}{2} y_{f_{*}}-3 \frac{1}{2} y_{r_{*^{\prime}}}-1 \frac{1}{2}\right)
$$

- Update probabilities

$$
\begin{aligned}
\left(x_{f}, x_{r}\right) & \leftarrow \operatorname{Update}\left(\tilde{u}_{f}, \tilde{u}_{r}\right) \\
\left(x_{f^{\prime}}, x_{r^{\prime}}\right) & \leftarrow \operatorname{Update}\left(\tilde{u}_{f^{\prime}}, \tilde{u}_{r^{\prime}}\right) \\
\left(x_{\hat{c}}, x_{\hat{f}}\right) & \leftarrow \operatorname{Update}\left(\tilde{u}_{\hat{c}}, \tilde{u}_{\hat{f}}\right)
\end{aligned}
$$

Recursive Algorithm

Value (ActionHistory h, AccOtherProb π_{-1})
Let I be infoset corresponding to h
If I is terminal node z return $\pi_{-1} \cdot u(z)$
If $\operatorname{Player}(I)=$ chance
Return $\sum_{a \in A_{I}} \operatorname{Value}\left(h a, \pi_{-1} \pi_{a}^{C}\right)$
If $\operatorname{Player}(I)=2$
Return $\sum_{a \in A_{I}} \operatorname{Value}\left(h a, \pi_{-1} y_{a}\right)$
If $\operatorname{Player}(I)=1$
For $a \in A_{I}: \tilde{u}_{a}+=\operatorname{Value}\left(h a, \pi_{-1}\right)$
Return $\sum_{a \in A_{I}} x_{a} \cdot \operatorname{Value}\left(h a, \pi_{-1}\right)$
Value (\varnothing, 1)

Recursive Algorithm

```
Value(ActionHistory h, AccOtherProb }\mp@subsup{\pi}{-1}{}\mathrm{ )
    Let I be infoset corresponding to h
    If I is terminal node z return }\mp@subsup{\pi}{-1}{}\cdotu(z
    If Player(I) = chance
```

 Return \(\sum_{a \in A_{I}} \operatorname{Value}\left(h a, \pi_{-1} \pi_{a}^{C}\right)\)
 If \(\operatorname{Player}(I)=2\)
 Return \(\sum_{a \in A_{I}} \operatorname{Value}\left(h a, \pi_{-1} y_{a}\right)\)
 If Player \((I)=1\)
 \(\left\{\begin{array}{l}\text { For } a \in A_{I}: \tilde{u}_{a}+=\operatorname{Value}\left(h a, \pi_{-1}\right) \\ \text { Return } \sum_{a \in A_{I}} x_{a} \cdot \operatorname{Value}\left(h a, \pi_{-1}\right)\end{array}\right\}\)
 We arrive at the same infoset I multiple times, once for each node in the set; \tilde{u}_{a} accumulates continuation utility from taking action a from all these possible "arrival paths".

Example. In infoset 3 we arrive once on the left node and add $-3 \frac{1}{2} y_{f_{*}}$ and once on the right node and add $3 \frac{1}{2} y_{r_{*}}$ to $u_{\hat{c}}$

Recursive Algorithm

Value (ActionHistory h, AccOtherProb π_{-1})
Let I be infoset corresponding to h
If I is terminal node z return $\pi_{-1} \cdot u(z)$
If $\operatorname{Player}(I)=$ chance
Return $\sum_{a \in A_{I}} \operatorname{Value}\left(h a, \pi_{-1} \pi_{a}^{C}\right)$
If $\operatorname{Player}(I)=2$
Return $\sum_{a \in A_{I}} \operatorname{Value}\left(h a, \pi_{-1} y_{a}\right)$
If $\operatorname{Player}(I)=1$
For $a \in A_{I}: \tilde{u}_{a}+=\operatorname{Value}\left(h a, \pi_{-1}\right)$
Return $\sum_{a \in A_{I}} x_{a} \cdot \operatorname{Value}\left(h a, \pi_{-1}\right)$
Value (\varnothing, 1)

Equivalent Recursive Algorithm

CValue (ActionHistory h, AccOtherProb π_{-1})
Let I be infoset corresponding to h
If I is terminal node z return $\pi /-1 \cdot u(z)$
If $\operatorname{Player}(I)=$ chance
Return $\sum_{a \in A_{l}} \pi_{a}^{C}$ CValue $\left(h a, \pi_{-1} \pi_{a}^{C}\right)$
If $\operatorname{Player}(I)=2$
Return $\sum_{a \in A} y_{a}$ CValue $\left(h a, \pi_{-1} y_{a}\right)$
If $\operatorname{Player}(I)=1$
For $a \in A_{I}: \tilde{u}_{a}+=\pi_{-1}$. $\operatorname{CValue}\left(h a, \pi_{-1}\right)$
Return $\sum_{a \in A_{I}} x_{a}$ CValue $\left(h a, \pi_{-1}\right)$
CValue (\varnothing, 1)

The Typical CRM Algorithm Implementation

```
CValue(ActionHistory h, AccOtherProb }\mp@subsup{\pi}{-1}{}\mathrm{ )
    Let I be infoset corresponding to }
    If I is terminal node z return u(z)
    If Player(I) = chance
        Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{\pi}{a}{C}\cdot\operatorname{CValue}(ha,\mp@subsup{\pi}{-1}{}\mp@subsup{\pi}{a}{C}
    If Player(I) = 2
        Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{y}{a}{}\cdot\operatorname{CValue}(ha,\mp@subsup{\pi}{-1}{}\mp@subsup{y}{a}{}
    If Player(I) = 1
        For }a\in\mp@subsup{A}{I}{}:\mp@subsup{\tilde{u}}{a}{}+=\mp@subsup{\pi}{-1}{}\cdot\mathrm{ CValue(ha, }\mp@subsup{\pi}{-1}{}
        Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{x}{a}{}\cdot\operatorname{CValue}(ha,\mp@subsup{\pi}{-1}{}
```

CValue (Ø, 1)

Recovering Equilibrium from CRM Dynamics

We have run CRM dynamics generating behavioral strategies x_{t}, y_{t} for T periods.

How do we calculate the behavioral strategies x^{*}, y^{*} that are an approximate Nash equilibrium?

Recovering Nash Equilibrium

- We need to translate the behavioral strategies into sequence-form

$$
\forall a \in A_{j}: \tilde{x}_{t, a}=\tilde{x}_{t, p_{j}} \cdot x_{t}
$$

- Then average the sequence-form strategies

$$
\overline{\tilde{x}}=\frac{1}{T} \sum_{t=1}^{T} \tilde{x}_{t}
$$

- Then translate back to equilibrium behavioral strategies x^{*}

$$
\forall a \in A_{j}: x_{a}^{*}=\frac{\overline{\tilde{x}}_{a}}{\overline{\tilde{x}}_{p_{j}}}
$$

Recovering Nash Equilibrium

- We need to translate the behavioral strategies into sequence-form

$$
\forall a \in A_{j}: \tilde{x}_{t, a}=\tilde{x}_{t, p_{j}} \cdot x_{t}
$$

- Then average the sequence-form strategies

$$
\overline{\tilde{x}}=\frac{1}{T} \sum_{t=1}^{T} \tilde{x}_{t}=\frac{1}{T} \sum_{t=1}^{T} \tilde{x}_{t, p_{j}} \cdot x_{t}
$$

- Then translate back to equilibrium behavioral strategies x^{*}

$$
\forall a \in A_{j}: x_{a}^{*}=\frac{\overline{\tilde{x}}_{a}}{\tilde{\tilde{x}}_{p_{j}}}=\frac{\sum_{t=1}^{T} \tilde{x}_{t, p_{j}} \cdot x_{t, a}}{\sum_{t=1}^{T} \tilde{x}_{t, p_{j}}}
$$

The Typical CRM Algorithm Implementation

```
CValue(ActionHistory h, AccOtherProb }\mp@subsup{\pi}{-1}{}, AccProb \pi m )
    Let I be infoset corresponding to }
    If I is terminal node z return u(z)
    If Player(I) = chance
            Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{\pi}{a}{C}\cdot\operatorname{CValue}(ha,\mp@subsup{\pi}{-1}{}\mp@subsup{\pi}{a}{C},\mp@subsup{\pi}{1}{}
    If Player(I) = 2
            Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{y}{a}{}\cdot\operatorname{CValue(ha, \mp@subsup{\pi}{-1}{}}\mp@subsup{y}{a}{},\mp@subsup{\pi}{1}{}
    If Player(I) = 1
```



```
        This is the product of the probabilities of prior actions of player
        P1 before arriving at infoset I
CValue(\emptyset, 1)
```

Note. Due to perfect recall this product is the same every time we visit the infoset; irrespective of which node of the infoset we arrived at.

The Typical CRM Algorithm Implementation

```
CValue(ActionHistory h, AccOtherProb }\mp@subsup{\pi}{-1}{}\mathrm{ , AccProb }\mp@subsup{\pi}{1}{}\mathrm{ )
    Let I be infoset corresponding to h
    If I is terminal node z return u(z)
    If Player(I) = chance
            Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{\pi}{a}{C}\cdot\textrm{CValue}(ha,\mp@subsup{\pi}{-1}{}\mp@subsup{\pi}{a}{C},\mp@subsup{\pi}{1}{}
    If Player(I)=2
            Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{y}{a}{}\cdot\operatorname{CValue(ha,\mp@subsup{\pi}{-1}{}}\mp@subsup{y}{a}{},\mp@subsup{\pi}{1}{}
    If Player(I)=1
        For }a\in\mp@subsup{A}{I}{}:\mp@subsup{\tilde{u}}{a}{}+=\mp@subsup{\pi}{-1}{}\cdot\operatorname{CValue(ha,\mp@subsup{\pi}{-1}{},\mp@subsup{\pi}{1}{}\mp@subsup{x}{a}{})
        Set q(I)= = \pi
        Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{x}{a}{}\cdot\textrm{CValue}(ha,\mp@subsup{\pi}{-1}{},\mp@subsup{\pi}{1}{}\mp@subsup{x}{a}{}
```


The Overall Equilibrium Algorithm with CRM

After each period $t \in\{1, \ldots, T\}$:

- With last period behavior strategies x_{t}, y_{t} call $\operatorname{CValue}(\varnothing, 1,1)$
- Store $\tilde{u}_{t, a}$ and $q_{t}(I)$ for each action a and infoset I of P1
- Symmetrically, do so for player P2
- Update strategies at all information sets

$$
\forall j \in \mathcal{J}_{1}: x_{t+1}^{j} \leftarrow \text { Update }\left(\tilde{u}_{t}^{j}\right), \quad \forall j \in \mathcal{J}_{2}: y_{t+1}^{j} \leftarrow \text { Update }\left(\tilde{u}_{t}^{j}\right)
$$

At the end:

$$
\begin{aligned}
& \forall I \in \mathcal{J}_{1} \forall a \in A_{I}: x_{a}^{*}=\frac{\sum_{t} q_{t}(I) x_{t, a}}{\sum_{t} q_{t}(I)} \\
& \forall I \in \mathcal{J}_{2} \forall a \in A_{I}: y_{a}^{*}=\frac{\sum_{t} q_{t}(I) y_{t, a}}{\sum_{t} q_{t}(I)}
\end{aligned}
$$

What algorithm to use for local regret updates?

The Overall Equilibrium

After each period $t \in\{1, \ldots, T\}$:
Any no-regret algorithm for the n-action no-regret problem can be used, e.g. FTRL, OFTRL, EXP, etc.

What performs well in practice is what is known as Regret Matching!

- With last period behavior strategies x_{t}, y_{t} call CVałue (ф, 1, 1)
- Store $\tilde{u}_{t, a}$ and $q_{t}(I)$ for each action a and intoset I of P1
- Symmetrically, do so for player P2
- Update strategies at allinformation sets

$$
\forall j \in \mathcal{J}_{1}:\left\{x_{t+1}^{j} \leftarrow \text { Update }\left(\tilde{u}_{t}^{j}\right), \quad \forall j \in \mathcal{J}_{2}: y_{t+1}^{j} \leftarrow \text { Update }\left(\tilde{u}_{t}^{j}\right)\right.
$$

$$
\begin{aligned}
& \forall I \in \mathcal{J}_{1} \forall a \in A_{I}: x_{a}^{*}=\frac{\sum_{t} q_{t}(I) x_{t, a}}{\sum_{t} q_{t}(I)} \\
& \forall I \in \mathcal{J}_{2} \forall a \in A_{I}: y_{a}^{*}=\frac{\sum_{t} q_{t}(I) y_{t, a}}{\sum_{t} q_{t}(I)}
\end{aligned}
$$

Regret Matching and Regret Matching+

- Consider the n action no-regret learning setting; at each period we choose $x_{t} \in \Delta(n)$, observe utility vector u_{t} and get utility $\left\langle x_{t}, u_{t}\right\rangle$
- At each period t calculate regret of not playing action a

$$
r_{t, a}=u_{t, a}-\left\langle u_{t}, x_{t}\right\rangle
$$

- Calculate cumulative regret of not playing action a

$$
R_{t, a}=\sum_{\tau \leq t} r_{t, a}=R_{t-1, a}+r_{t, a}
$$

- Choose next distribution, proportional to positive part of regret

$$
x_{t+1, a} \propto\left[R_{t, a}\right]^{+}:=\max \left\{R_{t, a}, 0\right\}
$$

- People typically refer to CFR with RegretMatching as simply "CFR"

Regret Matching+

- Consider the n action no-regret learning setting; at each period we choose $x_{t} \in \Delta(n)$, observe utility vector u_{t} and get utility $\left\langle x_{t}, u_{t}\right\rangle$
- At each period t calculate regret of not playing action a

$$
r_{t, a}=u_{t, a}-\left\langle u_{t}, x_{t}\right\rangle
$$

- Continuously clip above zero, as you accumulate regret of a

$$
R_{t, a}=\left[R_{t-1, a}+r_{t, a}\right]^{+}
$$

- Choose next distribution, proportional to $R_{t, a}$

$$
x_{t+1, a} \propto R_{t, a}
$$

- Regret Matching and Regret Macthing+ achieve Regret $\leq \sqrt{n / T}$

Extra Tricks for Empirical Improvement

Monte-Carlo Stochastic Approximation of Utilities

- Sample chance move (e.g. sampled A)
- Go to Infoset 1

$$
\hat{\tilde{u}}_{f}=-1, \quad \hat{\tilde{u}}_{r}=0
$$

- Go down tree the r path
- Sample P2 move (e.g. sampled f_{*})
- Go down to Infoset 3

$$
\begin{gathered}
\hat{\tilde{u}}_{\hat{c}}=-3, \quad \hat{\tilde{u}}_{\hat{f}}=-1 \\
\hat{\tilde{u}}_{r}+=x_{\hat{c}} \hat{\tilde{u}}_{\hat{c}}+x_{\hat{f}} \hat{\tilde{u}}_{\hat{f}}
\end{gathered}
$$

- Update probabilities of visited infosets

$$
\begin{aligned}
& \left(x_{f}, x_{r}\right) \leftarrow \operatorname{Update}\left(\hat{\tilde{u}}_{f}, \hat{\tilde{u}}_{r}\right) \\
& \left(x_{\hat{c}}, x_{\hat{f}}\right) \leftarrow \operatorname{Update}\left(\hat{\tilde{\tilde{u}}}_{\hat{c}}, \tilde{\tilde{u}}_{\hat{f}}\right)
\end{aligned}
$$

Typical Monte Carlo Algorithm Implementation

```
MCCValue(ActionHistory h, AccProb }\mp@subsup{\pi}{1}{}\mathrm{ )
    Let I be infoset corresponding to }
    If I is terminal node z return u(z)
    If Player(I) = chance
        Sample a~\mp@subsup{\pi}{}{C}
        Return MCCValue(ha, m
    If Player(I)=2
        Sample a~ y 
    Return MCCValue(ha, m
    If Player(I)=1
        For a \in AI: \tilde{u}}a+=\mathrm{ MCCValue(ha, }\mp@subsup{\pi}{1}{}\cdot\mp@subsup{x}{a}{}
        Setq(I)=\mp@subsup{\pi}{1}{}
        Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{x}{a}{}\cdot\operatorname{MCCValue(ha,\mp@subsup{\pi}{1}{}\cdot\mp@subsup{x}{a}{})
Value(\emptyset, 1)
```


Can Combine with Update Step in One Pass

```
MCCValue(ActionHistory h, AccProb }\mp@subsup{\pi}{1}{}\mathrm{ )
    Let I be infoset corresponding to h
    If I is terminal node z return u(z)
    If Player(I) = chance
    Sample a~\mp@subsup{\pi}{}{C}
    Return MCCValue(ha,\pi
    If Player(I) = 2
    Sample a~ y 
    Return MCCValue(ha,\pi
    If Player(I)=1
    For a }\in\mp@subsup{A}{I}{}:\mp@subsup{\tilde{u}}{a}{+}+=\operatorname{MCCValue(ha,}\mp@subsup{\pi}{1}{}\cdot\mp@subsup{x}{a}{}
    Setq(I)=\mp@subsup{\pi}{1}{}
    Update }\mp@subsup{x}{\mathrm{ next }}{I}\leftarrow\mathrm{ Update ( }\mp@subsup{\tilde{u}}{}{I
    Return }\mp@subsup{\sum}{a\in\mp@subsup{A}{I}{}}{}\mp@subsup{x}{a}{}\cdot\operatorname{MCCValue(ha, }\mp@subsup{\pi}{1}{}\cdot\mp@subsup{x}{a}{}
```


Alternation

After each period t :

- If t is odd then update the strategy of the x-player
- If t is even then update strategy of the y-player

For most natural algorithms, alternation can only help in terms of reducing the violation of best response constraints!

Can converge faster to equilibrium

Weighted Averaging

- Instead of uniformly weighting all rounds, put more weight on more recent rounds of play

$$
\frac{1}{\sum_{t} t^{\alpha}} \sum_{t} t^{\alpha} \tilde{x}_{t}
$$

- Typically, one uses linear averaging (i.e., $\alpha=1$)
- The CFR algorithm that uses RegretMatching+, alternation and linear averaging is typically referred to as "CFR+"

Empirical Comparisons

Violations of best response
$\operatorname{Regret}_{y}\left(x_{*}, y_{*}\right)+\operatorname{Regret}_{x}\left(x_{*}, y_{*}\right)!:=\max _{y} x_{*}^{\top} A y-x_{*}^{\top} A y_{*}+x_{*}^{\top} A y_{*}-\min _{x}^{\top} A y_{*}=\max _{y}^{1} x_{*}^{\top} A y-\min _{x} x^{\top} A y_{*}^{\prime}$

$$
R_{y}+R_{x}=\max _{y} \bar{x}^{\top} A y-\frac{1}{T} \sum_{t} x_{t}^{\top} A y_{t}+\frac{1}{T} \sum_{t} x_{t}^{\top} A y_{t}-\min _{x} x^{\top} A \bar{y}=\max _{y} \bar{x}^{\top} A y-\min _{x} x^{\top} A \bar{y}
$$

Sum of learning algorithm regrets

Elements of the Libratus AI

- The first agent to achieve superhuman performance in two player No-Limit Texas Hold'em poker ($10{ }^{161}$ decision points)
- Prior best was Limit Texas Hold'em (10^{13} decision points); solution is basically "run CFR+"
- For No-Limit Texas Hold'em game is too big for this approach!

Elements of Libratus AI

