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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games and equilibria (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra 

Bhawalkar, Google Research

1

2

3

4

5

6

7



Solving Extensive Form Games 
via No-Regret Learning



Recap: No-Regret Learning in Sequence Form

• We have successfully turned imperfect information extensive form 
zero-sum games into a familiar object

max
𝑥∈𝑋

min
𝑦∈𝑌

𝑥⊤𝐴 𝑦

• 𝑋, 𝑌 are convex sets, i.e., sequence-form strategies

• We can invoke minimax theorem to prove existence of equilibria
• We can calculate equilibria via LP duality
• We can calculate equilibria via no-regret learning!



Recap: Regret of FTRL

𝑥𝑡 = argmax
𝑥∈𝑋



𝜏<𝑡

⟨𝑥, 𝑢𝜏⟩ −
1

𝜂
ℛ(𝑥)

Theorem. Assuming the utility function at each period 
𝑓𝑡 𝑥 = ⟨𝑥, 𝑢𝑡⟩

is 𝐿-Lipschitz with respect to some norm ⋅  and the regularizer is 1-
strongly convex with respect to the same norm then

Regret − FTRL 𝑇 ≤ 𝜂𝐿 +
1

𝜂𝑇
max
𝑥∈𝑋

ℛ 𝑥 − min
𝑥∈𝑋

ℛ 𝑥

Average stability 
induced by regularizer

Average loss distortion 
caused by regularizer

(FTRL)

Historical performance 
of always choosing 

strategy 𝑥

1-strongly convex 
function of 𝑥 that 

stabilizes the maximizer



Recap: Regularizer for the Treeplex Space 𝑋

• The only thing we are missing is a good Regularizer for 𝑋

• Desiderata. Be strongly convex in 𝑥 within 𝑋 and for the 
optimization problem to be fast to solve

𝑥𝑡 = argmax
𝑥∈𝑋



𝜏<𝑡

⟨ 𝑥, 𝑢𝜏⟩ −
1

𝜂
ℛ( 𝑥) = argmax

𝑥∈𝑋
 ⟨ 𝑥, 𝑈𝑡−1⟩ −

1

𝜂
ℛ( 𝑥)

• 𝑋 is no longer a “simplex”, so entropy is not a good Regularizer

𝑈𝑡−1 = 

𝜏<𝑡

𝑢𝜏



Dilated Entropy

• 𝑋 is a combination of scaled simplices, i.e., 𝑥 = 𝑥𝑗
𝑗∈𝒥1

• 𝑥𝑗 = 𝑥𝑎 𝑎∈𝐴𝑗
: sequence-form strategies for actions in infoset 𝑗 ∈ 𝒥1

𝑥𝑗 ∈ 𝑥𝑝𝑗
⋅ Δ𝑗  ⇔  𝑥𝑗/ 𝑥𝑝𝑗

∈ Δ𝑗

• Consider a weighted combination of local negative entropies

ℛ 𝑥 ≔ 

𝑗

𝛽𝑗  𝑥𝑝𝑗
 H 𝑥𝑗/ 𝑥𝑝𝑗

, H 𝑢 = 

𝑖

𝑢𝑖 log 𝑢𝑖

• ℛ 𝑥  is 1/𝑀 strongly convex w.r.t. ℓ1 norm, where 𝑀 = max
𝑥∈𝑋

𝑥 1, for 
appropriate choice of 𝛽𝑗  based on game tree structure

Negative Entropy
Lies in a simplex Δ𝑗

Equivalent to the behavioral strategy 𝑥𝑗



Solving the Optimization Problem

• Optimization problem decomposes into local simplex problems



𝑗∈𝒥1

𝑥𝑗 , 𝑈𝑡−1
𝑗

−
1

𝜂
𝛽𝑗  𝑥𝑝𝑗

 H
𝑥𝑗

𝑥𝑝𝑗

= 

𝑗∈𝒥1

𝑥𝑝𝑗

𝑥𝑗

𝑥𝑝𝑗

, 𝑈𝑡−1
𝑗

−
1

𝜂𝑗
H

𝑥𝑗

𝑥𝑝𝑗

• Quantity 𝑥𝑗

𝑥𝑝𝑗

 is essentially the behavioral strategy 𝑥𝑗  at infoset 𝑗



𝑗∈𝒥1

𝑥𝑝𝑗
𝑥𝑗 , 𝑈𝑡−1

𝑗
−

1

𝜂𝑗
H 𝑥𝑗

• Quantity 𝑥𝑗over simplex Δ𝑗  is independent of solution 𝑥𝑎 for all ancestral 
actions and only appears in subsequent infosets

≔
1

𝜂𝑗



Solving the Optimization Problem

• Decomposes in local max over behavioral strategies 𝑥𝑗  solved bottom up

𝑉𝑗 = max
𝑥𝑗∈Δ𝑗

𝑥𝑗 , 𝑈𝑡−1
𝑗

−
1

𝜂𝑗
𝐻 𝑥𝑗 ⇒

𝑥𝑗 ∝ exp 𝜂𝑗𝑈𝑡−1
𝑗

𝑉𝑗 = log 

𝑎∈𝐴𝑗

exp 𝜂𝑗𝑈𝑡−1
𝑎 = softmax𝜂𝑗

𝑈𝑡−1
𝑗

• Value 𝑉𝑗  multiplies 𝑥𝑝𝑗
; when solving for 𝑥𝑝𝑗

 we need to take it into account. If 𝑝𝑗 ∈ 𝐴𝑘

max
𝑥𝑘∈Δ𝑘

𝑥𝑘 , 𝑈𝑡−1
𝑘 − 𝜂𝑘 𝑥𝑝𝑘

 H
𝑥𝑘

𝑥𝑝𝑘

+ 𝑥𝑝𝑗
𝑉𝑗 + ⋯

• Add 𝑉𝑗  to “cumulative utility” 𝑄𝑝𝑗
 (initialized at 𝑈𝑡−1,𝑝𝑗

) associated with 𝑝𝑗

𝑄𝑝𝑗
← 𝑄𝑝𝑗

+ 𝑉𝑗



Sum: Nash via FTRL with Dilated Entropy

Each player chooses 𝑥𝑡 , 𝑦𝑡  based on FTRL with dilated entropy

• For x-player 𝑢𝑡 = 𝐴 𝑦𝑡  and 𝑈𝑡 = 𝑈𝑡−1 + 𝑢𝑡  and initialize 𝑄 = 𝑈𝑡

• Traverse the tree bottom-up; for each infoset 𝑗 ∈ 𝒥1

𝑥𝑡+1
𝑗

∝ exp 𝜂𝑗𝑄𝑗 , 𝑉𝑗 = softmax𝜂𝑗
𝑄𝑗 , 𝑄𝑝𝑗

← 𝑄𝑝𝑗
+ 𝑉𝑗

• Define sequence-form strategies top-down: 𝑥𝑡+1
𝑗

= 𝑥𝑝𝑗
⋅ 𝑥𝑡+1

𝑗

Similarly, for 𝑦 player

Return average of sequence-form strategies as equilibrium



Interpreting utility vector

𝑢𝑡,𝑎 = 𝐴 𝑦𝑡 = 

𝑎′∈𝐴𝑃2

𝐴𝑎,𝑎′ 𝑦𝑡,𝑎′

𝐴𝑎,𝑎′  is zero if the combination of 𝑎, 𝑎′ does not lead to a leaf node

𝑢𝑡,𝑎 = 

Leafs 𝑧: 
𝑎 was last P1 action
𝑎′ was last P2 action

 

𝑢 𝑧 Pr
Chance chooses

sequence on
path to 𝑧

 Pr

P2 plays
sequence

leading to 𝑎′
 

Interpretation. If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 = 1) and 
then don’t make any other moves, what is the expected reward that I will 
collect, in expectation over the choices of my opponent and nature



Illustration: First Step of Dynamics

C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2
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• Go to Infoset 3
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1

2
𝑦𝑓∗

− 2
1

2
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1

2
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1

2
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𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐, 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3𝑄3)

• Go to Infoset 1
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2
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1
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2
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3

1 2
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𝑈1 += 𝑢𝑓, 𝑢𝑟 = −1
1

2
, 0

𝑄1 = 𝑈1 + 0, 𝑉3 = −1
1

2
, 𝑉3

𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1 𝑄1

• Go to Infoset 2

𝑈2 += 𝑢𝑓′ , 𝑢𝑟′ = 1
1

2
𝑦𝑓∗

− 3
1

2
𝑦𝑟∗

, −1
1

2

𝑄2 = 𝑈2, 𝑥2 = 𝑥𝑓′ , 𝑥𝑟′ ∝ exp 𝜂2𝑄2

C

P1
𝑥𝑓 𝑥𝑟

P1

P2

−31

−1

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

1 2

𝑈𝑓 𝑈𝑟

P1 P13

𝒙𝒇𝒙ො𝒄

𝑄 Ƹ𝑐 𝑄 መ𝑓 

𝑉3



Illustration: First Step of Dynamics
• Go to Infoset 3

𝑈3 += 𝑢 Ƹ𝑐 , 𝑢 መ𝑓 = −3
1

2
𝑦𝑓∗

+ 3
1

2
𝑦𝑟∗

, −2
1

2
𝑦𝑓∗

− 2
1

2
𝑦𝑟∗

𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐, 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3𝑄3)

• Go to Infoset 1

𝑈1 += 𝑢𝑓, 𝑢𝑟 = −1
1

2
, 0

𝑄1 = 𝑈1 + 0, 𝑉3 = −1
1

2
, 𝑉3

𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1 𝑄1

• Go to Infoset 2

𝑈2 += 𝑢𝑓′ , 𝑢𝑟′ = 1
1

2
𝑦𝑓∗

− 3
1

2
𝑦𝑟∗

, −1
1

2

𝑄2 = 𝑈2, 𝑥2 = 𝑥𝑓′ , 𝑥𝑟′ ∝ exp 𝜂2𝑄2

C

P1
𝒙𝒇 𝒙𝒓

P1

P2

−31

−1

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

1 2

𝑄𝑓 𝑄𝑟

P1 P13

𝒙𝒇𝒙ො𝒄

𝑄 Ƹ𝑐 𝑄 መ𝑓 

𝑉3



Illustration: First Step of Dynamics
• Go to Infoset 3

𝑈3 += 𝑢 Ƹ𝑐 , 𝑢 መ𝑓 = −3
1

2
𝑦𝑓∗

+ 3
1

2
𝑦𝑟∗

, −2
1

2
𝑦𝑓∗

− 2
1

2
𝑦𝑟∗

𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐, 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3𝑄3)

• Go to Infoset 1

𝑈1 += 𝑢𝑓, 𝑢𝑟 = −1
1

2
, 0

𝑄1 = 𝑈1 + 0, 𝑉3 = −1
1

2
, 𝑉3

𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1 𝑄1

• Go to Infoset 2

𝑈2 += 𝑢𝑓′ , 𝑢𝑟′ = 1
1

2
𝑦𝑓∗

− 3
1

2
𝑦𝑟∗

, −1
1

2

𝑄2 = 𝑈2, 𝑥2 = 𝑥𝑓′ , 𝑥𝑟′ ∝ exp 𝜂2𝑄2

C

P1
𝑥𝑓 𝑥𝑟

P1

P2

−31

−1

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

1 2

𝑄𝑓 𝑄𝑟

P1 P13

𝒙𝒇𝒙ො𝒄

𝑄 Ƹ𝑐 𝑄 መ𝑓 

𝑉3



Illustration: First Step of Dynamics
• Go to Infoset 3

𝑈3 += 𝑢 Ƹ𝑐 , 𝑢 መ𝑓 = −3
1

2
𝑦𝑓∗

+ 3
1

2
𝑦𝑟∗

, −2
1

2
𝑦𝑓∗

− 2
1

2
𝑦𝑟∗

𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐, 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3𝑄3)

• Go to Infoset 1

𝑈1 += 𝑢𝑓, 𝑢𝑟 = −1
1

2
, 0

𝑄1 = 𝑈1 + 0, 𝑉3 = −1
1

2
, 𝑉3

𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1 𝑄1

• Go to Infoset 2

𝑈2 += 𝑢𝑓′ , 𝑢𝑟′ = 1
1

2
𝑦𝑓∗

− 3
1

2
𝑦𝑟∗

, −1
1

2

𝑄2 = 𝑈2, 𝑥2 = 𝑥𝑓′ , 𝑥𝑟′ ∝ exp 𝜂2𝑄2

C

P1
𝑥𝑓 𝑥𝑟

P1

P2

−31

−1

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

1 2

𝑄𝑓 𝑄𝑟

P1 P13

𝒙𝒇𝒙ො𝒄

𝑄 Ƹ𝑐 𝑄 መ𝑓 

𝑉3



Illustration: First Step of Dynamics
• Go to Infoset 3

𝑈3 += 𝑢 Ƹ𝑐 , 𝑢 መ𝑓 = −3
1

2
𝑦𝑓∗

+ 3
1

2
𝑦𝑟∗

, −2
1

2
𝑦𝑓∗

− 2
1

2
𝑦𝑟∗

𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐, 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3𝑄3)

• Go to Infoset 1

𝑈1 += 𝑢𝑓, 𝑢𝑟 = −1
1

2
, 0

𝑄1 = 𝑈1 + 0, 𝑉3 = −1
1

2
, 𝑉3

𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1 𝑄1

• Go to Infoset 2

𝑈2 += 𝑢𝑓′ , 𝑢𝑟′ = 1
1

2
𝑦𝑓∗

− 3
1

2
𝑦𝑟∗

, −1
1

2

𝑄2 = 𝑈2, 𝑥2 = 𝑥𝑓′ , 𝑥𝑟′ ∝ exp 𝜂2𝑄2

C

P1
𝑥𝑓 𝑥𝑟

P1

𝒙𝒇′ 𝒙𝒓′

1 2

𝑄𝑟′𝑄𝑓′

𝑄𝑓 𝑄𝑟

P1 P13

𝒙𝒇𝒙ො𝒄

𝑄 Ƹ𝑐 𝑄 መ𝑓 

𝑉3



Sum: Nash via FTRL with Dilated Entropy

Each player chooses 𝑥𝑡 , 𝑦𝑡  based on FTRL with dilated entropy

• For x-player 𝑢𝑡 = 𝐴 𝑦𝑡  and 𝑈𝑡 = 𝑈𝑡−1 + 𝑢𝑡  and initialize 𝑄 = 𝑈𝑡

• Traverse the tree bottom-up; for each infoset 𝑗 ∈ 𝒥1

𝑥𝑡+1
𝑗

∝ exp 𝜂𝑗𝑄𝑗 , 𝑉𝑗 = softmax𝜂𝑗
𝑄𝑗 , 𝑄𝑝𝑗

← 𝑄𝑝𝑗
+ 𝑉𝑗

• Define sequence-form strategies top-down: 𝑥𝑡+1
𝑗

= 𝑥𝑝𝑗
⋅ 𝑥𝑡+1

𝑗

Similarly, for 𝑦 player

Return average of sequence-form strategies as equilibrium



Fast Rates

Theorem. If we use Optimistic FTRL instead of FTRL then we get 
faster convergence to a Nash equilibrium at rate 1/𝑇 instead of 
1/ 𝑇. Plus, we get last-iterate convergence instead of only average 
iterate convergence.



Monte-Carlo Stochastic Approximation of Utilities

• Calculating utilities on all nodes of the tree can be very expensive
• In linear online learning it suffices that we use an unbiased 

estimate of the utility vector

𝑥𝑡 = argmax
𝑥∈𝑋



𝜏<𝑡

⟨𝑥, ො𝑢𝜏⟩ −
1

𝜂
ℛ(𝑥) , 𝐸 ො𝑢𝜏 𝐹𝜏 = 𝑢𝜏

• By standard martingale concentration inequality arguments, the 
error vanishes with the number of iterations (we will see later)

• In this setting, it suffices that we “sample a path for opponent” 
and that we “sample chance moves”

All random 
variables 
observed 
before period 𝜏



Illustration: First Step of Dynamics

C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

• Sample chance moves based on fixed distribution 
and opponent moves based on 𝑦𝑡; Suppose, we 
sampled 𝐴 and 𝑓∗

• Go to Infoset 3

𝑈3 += ො𝑢 Ƹ𝑐 , ො𝑢 መ𝑓 = −3, −2

𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐 , 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3
𝑄3)

• Go to Infoset 1
𝑈1 += ො𝑢𝑓, ො𝑢𝑟 = −1, 0

𝑄1 = 𝑈1 + 0, 𝑉3 = −1, 𝑉3

𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1 𝑄1

3

1 2



Illustration: First Step of Dynamics

C

P1
𝑥𝑓 𝑥𝑟

P2
−1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

Equivalently top down and evaluate recursively

• Sample chance move (e.g. sampled A)

• Go to Infoset 1 

𝑈1 ≔ 𝑈𝑓, 𝑈𝑟 += −1, 0

 𝑄1 ≔ 𝑄𝑓, 𝑄𝑟 = 𝑈𝑓, 𝑈𝑟

• Recursively go down tree after action 𝑟

• Sample P2 move (e.g. sampled 𝑓∗)

• Go down to Infoset 3

𝑈3 = 𝑈 Ƹ𝑐 , 𝑈 መ𝑓 += −3, −2

𝑄3 = 𝑈3, 𝑥3 = 𝑥 Ƹ𝑐 , 𝑥 መ𝑓 ∝ exp 𝜂3 𝑄3

𝑉3 = softmax(𝜂3
𝑄3)

• Go back up to Infoset 1 

𝑄𝑟 += 𝑉3, 𝑥1 = 𝑥𝑓, 𝑥𝑟 ∝ exp 𝜂1
𝑄𝑓, 𝑄𝑟

3

1
P1

P2

−31

−1

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

2



Local Dynamics

• These dynamics seem to be doing “local updates” at each node
• They came out of a specific algorithm FTRL with Dilated Entropy
• Is this a general paradigm?
• Can we decompose the no-regret learning problem into local no-

regret learners at each node?
• What feedback should each node receive from the learners in 

nodes below? 
• What loss should each learner be optimizing?



Counterfactual Regret 
Minimization (CRM)



Re-interpretating Utilities
Interpretation of 𝒖𝒂. If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 = 1) and then 
don’t make any other moves, what is the expected reward that I will collect, in 
expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 =
1) and then continue playing based on some behavioral policy 𝑥, what is the expected 
reward that I will collect, in expectation over the choices of my opponent and nature
• Let 𝐶𝑎  be all infosets of the player that are reachable after playing 𝑎

𝑢𝑎 𝑥 = 𝑢𝑎 + 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

• Continuation utility 𝑉𝑘 𝑥  from paths that pass through 𝑘 recursively defined: 

𝑉𝑗 𝑥 = 

𝑎∈𝐴𝑗

𝑥𝑎 𝑢𝑎 = 

𝑎∈𝐴𝑗

𝑥𝑎𝑢𝑎 + 

𝑎∈𝐴𝑗

𝑥𝑎 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥



Re-interpretating Utilities
Interpretation of 𝒖𝒂. If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 = 1) and then 
don’t make any other moves, what is the expected reward that I will collect, in 
expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 =
1) and then continue playing based on some behavioral policy 𝑥, what is the expected 
reward that I will collect, in expectation over the choices of my opponent and nature
• Let 𝐶𝑎  be all infosets of the player that are reachable as next infosets after playing 𝑎

𝑢𝑎 𝑥 = 𝑢𝑎 + 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

• Continuation utility 𝑉𝑘 𝑥  from paths that pass through 𝑘 recursively defined: 

𝑉𝑗 𝑥 = 

𝑎∈𝐴𝑗

𝑥𝑎 𝑢𝑎 = 

𝑎∈𝐴𝑗

𝑥𝑎𝑢𝑎 + 

𝑎∈𝐴𝑗

𝑥𝑎 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

Continuation E[utility] from paths that 
pass through infoset 𝑘, if I continue 
playing based on behavioral strategy 𝑥“Instantaneous E[utility]”, if 

this is the last action I play



Re-interpretating Utilities
Interpretation of 𝒖𝒂. If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 = 1) and then 
don’t make any other moves, what is the expected reward that I will collect, in 
expectation over the choices of my opponent and nature

What if we now want to express: If I play with the intend to arrive at action 𝑎 (i.e. 𝑥𝑎 =
1) and then continue playing based on some behavioral policy 𝑥, what is the expected 
reward that I will collect, in expectation over the choices of my opponent and nature
• Let 𝐶𝑎  be all infosets of the player that are reachable as next infosets after playing 𝑎

𝑢𝑎 𝑥 = 𝑢𝑎 + 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

• Continuation utility 𝑉𝑗 𝑥  from paths that pass through infoset 𝑗 recursively defined: 

𝑉𝑗 𝑥 = 

𝑎∈𝐴𝑗

𝑥𝑎 𝑢𝑎(𝑥) = 

𝑎∈𝐴𝑗

𝑥𝑎𝑢𝑎 + 

𝑎∈𝐴𝑗

𝑥𝑎 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

Continuation E[utility] from paths that 
pass through infoset 𝑘, if I continue 
playing based on behavioral strategy 𝑥“Instantaneous E[utility]”, if 

this is the last action I play

“Instantaneous utility”, if 
this is the last move I make

“Continuation utility”, if I 
continue playing based on 𝑥



Re-interpretating Utilities

• Continuation utility 𝑉𝑗 𝑥  from paths that pass through 𝑗, assuming I 
play to arrive deterministically at the parent action 𝑝𝑗  (i.e., 𝑥𝑝𝑗

= 1)

𝑉𝑗 𝑥 = 

𝑎∈𝐴𝑗

𝑥𝑎 𝑢𝑎 𝑥 = 

𝑎∈𝐴𝑗

𝑥𝑎 𝑢𝑎 + 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

• Obviously 𝑉root(𝑥) is total expected utility from behavior strategy 𝑥
• From equivalence of behavioral and sequence-form strategies

𝑉root 𝑥 = ⟨ 𝑥, 𝑢⟩

• The same also holds for regrets

𝑅root 𝑥 = max
𝑥′

𝑉root 𝑥′ − 𝑉root 𝑥 = max
𝑥′∈𝑋

𝑥′, 𝑢 − 𝑥, 𝑢 = 𝑅 𝑥



Local Regrets

• We can also define infoset regrets based on local utilities 𝑢𝑎

𝑅𝑗 𝑥 = max
𝑥′

𝑉𝑗 𝑥′ − 𝑉𝑗 𝑥 = max
𝑥′



𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥′ − 𝑥𝑎 𝑢𝑎 𝑥

• Right-hand-side can be decomposed as:

max
𝑥′



𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥 − 𝑥𝑎 𝑢𝑎 𝑥 + 

𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥′ − 𝑢𝑎 𝑥  

• Maximum is upper bounded if we decouple the two objectives

max
𝑥′



𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥 − 𝑥𝑎 𝑢𝑎 𝑥 + 

𝑎

𝑥𝑎 max
𝑥′

𝑢𝑎 𝑥′ − 𝑢𝑎 𝑥

Fix continuation strategy to current 
strategy and only change the behavioral 
strategy at the current infoset

Weighted average of changes in 
continuation strategy



Local Regrets

• We can also define infoset regrets based on local utilities 𝑢𝑎

𝑅𝑗 𝑥 = max
𝑥′

𝑉𝑗 𝑥′ − 𝑉𝑗 𝑥 = max
𝑥′



𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥′ − 𝑥𝑎 𝑢𝑎 𝑥

• Right-hand-side can be decomposed as:

max
𝑥′



𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥 − 𝑥𝑎 𝑢𝑎 𝑥 + 

𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥′ − 𝑢𝑎 𝑥  

• Maximum is upper bounded by the decoupled optima

max
𝑥′



𝑎

𝑥𝑎
′ 𝑢𝑎 𝑥 − 𝑥𝑎 𝑢𝑎 𝑥 + 

𝑎

max
𝑥′

𝑢𝑎 𝑥′ − 𝑢𝑎 𝑥

Local Regret: 𝐋𝐑𝒋(x)
Regret if you only change current info set behavioral strategy and keep continuation strategy



Recursive Bound of Local Regrets

• Infoset regrets are bounded by local regret plus continuation terms

𝑅𝑗 𝑥 ≤ LR𝑗 𝑥 + 

𝑎

max
𝑥′

𝑢𝑎 𝑥′ − 𝑢𝑎 𝑥

• The continuation terms are recursive infoset regrets!

𝑢𝑎 𝑥′ − 𝑢𝑎 𝑥 = 𝑢𝑎 + 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥′ − 𝑢𝑎 − 

𝑘∈𝐶𝑎

𝑉𝑘 𝑥

• Deriving the recursive upper bound

𝑅𝑗 𝑥 ≤ LR𝑗 𝑥 + 

𝑎



𝑘∈𝐶𝑎

max
𝑥′

𝑉𝑘 𝑥′ − 𝑉𝑘 𝑥

≤ LR𝑗 𝑥 + 

𝑎



𝑘∈𝐶𝑎

𝑅𝑘 𝑥
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Regret over Time

Same inequalities can be followed for the average regret over time
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Achieving vanishing Local Regrets
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Counterfactual Regret Minimization

• Device local regret algorithms for local regret

LR𝑗 𝑥 = max
𝑥𝑗

1

𝑇


𝑡

𝑥𝑗 , 𝑢𝑡 𝑥𝑡 − 𝑥𝑡
𝑗
, 𝑢𝑡 𝑥𝑡

• Standard 𝑛-action no-regret problem: reward vector at period 𝑡 is 
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• At period 𝑡 run bottom-up recursion to calculate 𝑢𝑗 𝑥𝑡  for 𝑗 ∈ 𝒥1

• Update probabilities 𝑥𝑡+1
𝑗  using reward vectors 𝑢𝑗 𝑥𝑡  for 𝑗 ∈ 𝒥1
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Recursive Algorithm

Value(ActionHistory h, AccOtherProb 𝜋−1)

Let 𝐼 be infoset corresponding to ℎ

If 𝐼 is terminal node 𝑧 return 𝜋−1 ⋅ 𝑢 𝑧

If Player 𝐼 = chance

 Return σ𝑎∈𝐴𝐼
Value ℎ𝑎, 𝜋−1𝜋𝑎

𝐶

If Player 𝐼 = 2

 Return σ𝑎∈𝐴𝐼
𝑉𝑎𝑙𝑢𝑒 ℎ𝑎, 𝜋−1𝑦𝑎  

If Player 𝐼 = 1

 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += Value ℎ𝑎, 𝜋−1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ Value ℎ𝑎, 𝜋−1

Value(∅, 1)
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We arrive at the same infoset 𝐼 multiple times, once for each 
node in the set; 𝑢a accumulates continuation utility from 
taking action a from all these possible “arrival paths”.

Example. In infoset 3 we arrive once on the left node and add 
− 3

1

2
𝑦𝑓∗

 and once on the right node and add 3 1

2
𝑦𝑟∗

 to 𝑢 Ƹ𝑐

3



Recursive Algorithm
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Equivalent Recursive Algorithm

CValue(ActionHistory h, AccOtherProb 𝜋−1)

Let 𝐼 be infoset corresponding to ℎ

If 𝐼 is terminal node 𝑧 return 𝜋−1 ⋅ 𝑢 𝑧

If Player 𝐼 = chance

 Return σ𝑎∈𝐴𝐼
𝜋𝑎

𝐶 ⋅ CValue(ℎ𝑎, 𝜋−1𝜋𝑎
𝐶)

If Player 𝐼 = 2

 Return σ𝑎∈𝐴𝐼
𝑦𝑎 ⋅ CValue(ℎ𝑎, 𝜋−1𝑦𝑎) 

If Player 𝐼 = 1

 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += 𝜋−1 ⋅ CValue ℎ𝑎, 𝜋−1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ CValue ℎ𝑎, 𝜋−1

CValue(∅, 1)

C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓



The Typical CRM Algorithm Implementation

CValue(ActionHistory h, AccOtherProb 𝜋−1)

Let 𝐼 be infoset corresponding to ℎ

If 𝐼 is terminal node 𝑧 return 𝑢 𝑧

If Player 𝐼 = chance

 Return σ𝑎∈𝐴𝐼
𝜋𝑎

𝐶 ⋅ CValue(ℎ𝑎, 𝜋−1𝜋𝑎
𝐶)

If Player 𝐼 = 2

 Return σ𝑎∈𝐴𝐼
𝑦𝑎 ⋅ CValue(ℎ𝑎, 𝜋−1𝑦𝑎) 

If Player 𝐼 = 1

 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += 𝜋−1 ⋅ CValue ℎ𝑎, 𝜋−1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ CValue ℎ𝑎, 𝜋−1

CValue(∅, 1)

C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓



Recovering Equilibrium from CRM 
Dynamics



We have run CRM dynamics generating behavioral 
strategies 𝑥𝑡 , 𝑦𝑡  for 𝑇 periods. 

How do we calculate the behavioral strategies 
𝑥∗, 𝑦∗ that are an approximate Nash equilibrium?



Recovering Nash Equilibrium

• We need to translate the behavioral strategies into sequence-form
∀𝑎 ∈ 𝐴𝑗:  𝑥𝑡,𝑎 = 𝑥𝑡,𝑝𝑗

⋅ 𝑥𝑡

• Then average the sequence-form strategies

ҧ𝑥 =
1

𝑇


𝑡=1

𝑇

𝑥𝑡

• Then translate back to equilibrium behavioral strategies 𝑥∗

∀𝑎 ∈ 𝐴𝑗:  𝑥𝑎
∗ =

ҧ𝑥𝑎

ҧ𝑥𝑝𝑗

Product of probabilities of actions of 
player P1 on path to infoset of action 𝑖



Recovering Nash Equilibrium

• We need to translate the behavioral strategies into sequence-form
∀𝑎 ∈ 𝐴𝑗:  𝑥𝑡,𝑎 = 𝑥𝑡,𝑝𝑗

⋅ 𝑥𝑡

• Then average the sequence-form strategies

ҧ𝑥 =
1

𝑇


𝑡=1

𝑇

𝑥𝑡

• Then translate back to equilibrium behavioral strategies 𝑥∗

∀𝑎 ∈ 𝐴𝑗:  𝑥𝑎
∗ =

ҧ𝑥𝑎

ҧ𝑥𝑝𝑗

Product of probabilities of actions of 
player P1 on path to infoset of action 𝑖

=
1

𝑇


𝑡=1

𝑇

𝑥𝑡,𝑝𝑗
⋅ 𝑥𝑡

=
σ𝑡=1

𝑇 𝑥𝑡,𝑝𝑗
⋅ 𝑥𝑡,𝑎

σ𝑡=1
𝑇 𝑥𝑡,𝑝𝑗



The Typical CRM Algorithm Implementation

CValue(ActionHistory h, AccOtherProb 𝜋−1, AccProb 𝜋1)

Let 𝐼 be infoset corresponding to ℎ

If 𝐼 is terminal node 𝑧 return 𝑢 𝑧

If Player 𝐼 = chance

 Return σ𝑎∈𝐴𝐼
𝜋𝑎

𝐶 ⋅ CValue(ℎ𝑎, 𝜋−1𝜋𝑎
𝐶 , 𝜋1)

If Player 𝐼 = 2

 Return σ𝑎∈𝐴𝐼
𝑦𝑎 ⋅ CValue(ℎ𝑎, 𝜋−1𝑦𝑎 , 𝜋1) 

If Player 𝐼 = 1

 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += 𝜋−1 ⋅ CValue ℎ𝑎, 𝜋−1, 𝜋1𝑥𝑎

 Set 𝑞 𝐼 = 𝜋1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ CValue ℎ𝑎, 𝜋−1, 𝜋1𝑥𝑎

CValue(∅, 1)

This is the product of the probabilities of prior actions of player 
𝑃1 before arriving at infoset 𝐼

Note. Due to perfect recall this product is the same every time 
we visit the infoset; irrespective of which node of the infoset 
we arrived at.



The Typical CRM Algorithm Implementation

CValue(ActionHistory h, AccOtherProb 𝜋−1, AccProb 𝜋1)

Let 𝐼 be infoset corresponding to ℎ

If 𝐼 is terminal node 𝑧 return 𝑢 𝑧

If Player 𝐼 = chance

 Return σ𝑎∈𝐴𝐼
𝜋𝑎

𝐶 ⋅ CValue(ℎ𝑎, 𝜋−1𝜋𝑎
𝐶 , 𝜋1)

If Player 𝐼 = 2

 Return σ𝑎∈𝐴𝐼
𝑦𝑎 ⋅ CValue(ℎ𝑎, 𝜋−1𝑦𝑎 , 𝜋1) 

If Player 𝐼 = 1

 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += 𝜋−1 ⋅ CValue ℎ𝑎, 𝜋−1, 𝜋1𝑥𝑎

 Set 𝑞 𝐼 = 𝜋1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ CValue ℎ𝑎, 𝜋−1, 𝜋1𝑥𝑎

CValue(∅, 1)



The Overall Equilibrium Algorithm with CRM
After each period 𝑡 ∈ 1, … , 𝑇 :
• With last period behavior strategies 𝑥𝑡 , 𝑦𝑡  call CValue(∅, 1, 1)

• Store 𝑢𝑡,𝑎  and 𝑞𝑡 𝐼  for each action 𝑎 and infoset 𝐼 of P1
• Symmetrically, do so for player P2
• Update strategies at all information sets

∀𝑗 ∈ 𝒥1:  𝑥𝑡+1
𝑗

← Update 𝑢𝑡
𝑗

, ∀𝑗 ∈ 𝒥2: 𝑦𝑡+1
𝑗

← Update 𝑢𝑡
𝑗

∀𝐼 ∈ ℐ1∀𝑎 ∈ 𝐴𝐼: 𝑥𝑎
∗ =

σ𝑡 𝑞𝑡 𝐼 𝑥𝑡,𝑎

σ𝑡 𝑞𝑡 𝐼

∀𝐼 ∈ ℐ2∀𝑎 ∈ 𝐴𝐼: 𝑦𝑎
∗ =

σ𝑡 𝑞𝑡 𝐼 𝑦𝑡,𝑎

σ𝑡 𝑞𝑡 𝐼

Approximate Equilibrium in Behavioral Strategies

At the end:



What algorithm to use for local 
regret updates?



The Overall Equilibrium Algorithm with CRM
After each period 𝑡 ∈ 1, … , 𝑇 :
• With last period behavior strategies 𝑥𝑡 , 𝑦𝑡  call CValue(∅, 1, 1)

• Store 𝑢𝑡,𝑎  and 𝑞𝑡 𝐼  for each action 𝑎 and infoset 𝐼 of P1
• Symmetrically, do so for player P2
• Update strategies at all information sets

∀𝑗 ∈ 𝒥1:  𝑥𝑡+1
𝑗

← Update 𝑢𝑡
𝑗

, ∀𝑗 ∈ 𝒥2: 𝑦𝑡+1
𝑗

← Update 𝑢𝑡
𝑗

∀𝐼 ∈ ℐ1∀𝑎 ∈ 𝐴𝐼: 𝑥𝑎
∗ =

σ𝑡 𝑞𝑡 𝐼 𝑥𝑡,𝑎

σ𝑡 𝑞𝑡 𝐼

∀𝐼 ∈ ℐ2∀𝑎 ∈ 𝐴𝐼: 𝑦𝑎
∗ =

σ𝑡 𝑞𝑡 𝐼 𝑦𝑡,𝑎

σ𝑡 𝑞𝑡 𝐼

Approximate Equilibrium in Behavioral Strategies

At the end:

Any no-regret algorithm for the 𝑛-action no-regret 
problem can be used, e.g. FTRL, OFTRL, EXP, etc.

What performs well in practice is what is known as 
Regret Matching!



Regret Matching and Regret Matching+

• Consider the 𝑛 action no-regret learning setting; at each period we 
choose 𝑥𝑡 ∈ Δ 𝑛 , observe utility vector 𝑢𝑡 and get utility ⟨𝑥𝑡 , 𝑢𝑡⟩

• At each period 𝑡 calculate regret of not playing action 𝑎
𝑟𝑡,𝑎 = 𝑢𝑡,𝑎 − 𝑢𝑡 , 𝑥𝑡

• Calculate cumulative regret of not playing action 𝑎

𝑅𝑡,𝑎 = 

𝜏≤𝑡

𝑟𝑡,𝑎 = 𝑅𝑡−1,𝑎 + 𝑟𝑡,𝑎

• Choose next distribution, proportional to positive part of regret
𝑥𝑡+1,𝑎 ∝ 𝑅𝑡,𝑎

+
≔ max 𝑅𝑡,𝑎, 0

• People typically refer to CFR with RegretMatching as simply “CFR”



Regret Matching+

• Consider the 𝑛 action no-regret learning setting; at each period we 
choose 𝑥𝑡 ∈ Δ 𝑛 , observe utility vector 𝑢𝑡  and get utility ⟨𝑥𝑡 , 𝑢𝑡⟩

• At each period 𝑡 calculate regret of not playing action 𝑎
𝑟𝑡,𝑎 = 𝑢𝑡,𝑎 − 𝑢𝑡 , 𝑥𝑡

• Continuously clip above zero, as you accumulate regret of 𝑎
𝑅𝑡,𝑎 = 𝑅𝑡−1,𝑎 + 𝑟𝑡,𝑎

+

• Choose next distribution, proportional to 𝑅𝑡,𝑎

𝑥𝑡+1,𝑎 ∝ 𝑅𝑡,𝑎

• Regret Matching and Regret Macthing+ achieve Regret ≤ 𝑛/𝑇



Extra Tricks for Empirical 
Improvement



Monte-Carlo Stochastic Approximation of Utilities

C

P1
𝑥𝑓 𝑥𝑟

P1

P2 P2

−31

−1 −1

𝑦𝑓∗
𝑦𝑟∗

P1 P1

−3 −2 3 −2

𝑦𝑓∗
𝑦𝑟∗

𝑥𝑓′ 𝑥𝑟′

𝑥 Ƹ𝑐 𝑥 መ𝑓 𝑥 Ƹ𝑐 𝑥 መ𝑓

• Sample chance move (e.g. sampled A)
• Go to Infoset 1 

𝑢𝑓 = −1, 𝑢𝑟 = 0

• Go down tree the 𝑟 path
• Sample P2 move (e.g. sampled 𝑓∗)
• Go down to Infoset 3

𝑢 Ƹ𝑐 = −3,  𝑢 መ𝑓 = −1

𝑢𝑟 += 𝑥 Ƹ𝑐
𝑢 Ƹ𝑐 + 𝑥 መ𝑓

𝑢 መ𝑓

• Update probabilities of visited infosets
𝑥𝑓 , 𝑥𝑟 ← Update 𝑢𝑓, 𝑢𝑟

𝑥 Ƹ𝑐 , 𝑥 መ𝑓 ← Update 𝑢 Ƹ𝑐 , 𝑢 መ𝑓

3

1 2



Typical Monte Carlo Algorithm Implementation

MCCValue(ActionHistory h, AccProb 𝜋1)

Let 𝐼 be infoset corresponding to ℎ
If 𝐼 is terminal node 𝑧 return 𝑢 𝑧
If Player 𝐼 = chance
 Sample 𝑎 ∼ 𝜋𝐶

 Return MCCValue(ℎ𝑎, 𝜋1)
If Player 𝐼 = 2
 Sample 𝑎 ∼ 𝑦𝐼

 Return MCCValue(ℎ𝑎, 𝜋1)
If Player 𝐼 = 1
 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += MCCValue ℎ𝑎, 𝜋1 ⋅ 𝑥𝑎

 Set 𝑞 𝐼 = 𝜋1

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ MCCValue ℎ𝑎, 𝜋1 ⋅ 𝑥𝑎

Value(∅, 1)



Can Combine with Update Step in One Pass

MCCValue(ActionHistory h, AccProb 𝜋1)

Let 𝐼 be infoset corresponding to ℎ
If 𝐼 is terminal node 𝑧 return 𝑢 𝑧
If Player 𝐼 = chance
 Sample 𝑎 ∼ 𝜋𝐶

 Return MCCValue(ℎ𝑎, 𝜋1)
If Player 𝐼 = 2
 Sample 𝑎 ∼ 𝑦𝐼

 Return MCCValue(ℎ𝑎, 𝜋1)
If Player 𝐼 = 1
 For 𝑎 ∈ 𝐴𝐼:  𝑢𝑎 += MCCValue ℎ𝑎, 𝜋1 ⋅ 𝑥𝑎

 Set 𝑞 𝐼 = 𝜋1

 Update 𝑥next
𝐼 ← Update 𝑢𝐼

 Return σ𝑎∈𝐴𝐼
𝑥𝑎 ⋅ MCCValue ℎ𝑎, 𝜋1 ⋅ 𝑥𝑎



Alternation
After each period 𝑡:
• If 𝑡 is odd then update the strategy of the 𝑥-player
• If t is even then update strategy of the 𝑦-player

For most natural algorithms, alternation can only help in terms of 
reducing the violation of best response constraints!

Can converge faster to equilibrium



Weighted Averaging

• Instead of uniformly weighting all rounds, put more weight on 
more recent rounds of play

1

σ𝑡 𝑡𝛼


𝑡

𝑡𝛼 𝑥𝑡

• Typically, one uses linear averaging (i.e., 𝛼 = 1)

• The CFR algorithm that uses RegretMatching+, alternation and 
linear averaging is typically referred to as “CFR+”



Empirical Comparisons

Regret𝑦 𝑥∗, 𝑦∗ + Regret𝑥 𝑥∗, 𝑦∗ ≔ max
𝑦

𝑥∗
⊤𝐴𝑦 − 𝑥∗

⊤𝐴𝑦∗ + 𝑥∗
⊤𝐴𝑦∗ − min

𝑥
𝑥⊤𝐴𝑦∗ = max

𝑦
𝑥∗

⊤𝐴𝑦 − min
𝑥

𝑥⊤𝐴𝑦∗

𝑅𝑦 + 𝑅𝑥 = max
𝑦

ҧ𝑥⊤𝐴𝑦 −
1

𝑇


𝑡

𝑥𝑡
⊤𝐴𝑦𝑡 +

1

𝑇


𝑡

𝑥𝑡
⊤𝐴𝑦𝑡 − min

𝑥
𝑥⊤𝐴 ത𝑦 = max

𝑦
ҧ𝑥⊤𝐴𝑦 − min

𝑥
𝑥⊤𝐴 ത𝑦

Violations of best response saddle-point gap

Sum of learning 
algorithm regrets

saddle-point gap of 
average strategies ҧ𝑥, ത𝑦



Elements of the Libratus AI

• The first agent to achieve superhuman performance in two player 
No-Limit Texas Hold’em poker (10161 decision points)

• Prior best was Limit Texas Hold’em (1013 decision points); 
solution is basically “run CFR+”

• For No-Limit Texas Hold’em game is too big for this approach!



Elements of Libratus AI

Credits: Superhuman AI for heads-up no-limit poker: Libratus beats top professionals (youtube.com)

https://www.youtube.com/watch?v=2dX0lwaQRX0
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