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Computational Game Theory for Complex Games
* Optimal auctions and mechanisms (T)

e- Simple vs optimal mechanisms (T)

HWE6: calculate equilibria in simple auctions,
a implement simple and optimal auctions, analyze
revenue empirically

* Optimizing mechanisms from samples (T)
6- Online optimization of auctions and mechanisms (T)
* HW7:implement procedures to learn approximately

* Basics of extensive-form games optimal auctions from historical samples and in an
e° Solving extensive-form games via online learning (T) online manner
* HWS3: implement agents to solve very simple variants of Further Topics
poker

* Econometrics in games and auctions (T+A)
* General games and equilibria (T) a. A/B testing in markets (T+A)

e° Online learning in general games, multi-agent RL (T+A) « HWS: implement procedure to estimate values from

« HW4: implement no-regret algorithms that converge to bids in an auction, empirically analyze inaccuracy of
correlated equilibria in general games A/B tests in markets

Data Science for Auctions and Mechanisms Guest Lectures

» Basics and applications of auction theory (T+A) ‘ gce)gglaenliRSergegscsﬁgn for LLMs, Renato Paes Leme,

a. Learning to bid in auctions via online learning (T) . Auto-biddinéin Sponsored Search Auctions, Kshipra

* HW5: implement bandit algorithms to bid in ad Bhawalkar, Google Research
auctions



Solving Extensive Form Games
via No-Regret Learning



Recap: No-Regret Learning in Sequence Form

* We have successfully turned imperfect information extensive form
zero-sum games into a familiar object

max min X' Ay
XEX YE€Y

* X,Y are convex sets, i.e., sequence-form strategies

* We can invoke minimax theorem to prove existence of equilibria
* We can calculate equilibria via LP duality
* We can calculate equilibria via no-regret learning!



Recap: Regret of FTRL

. 1-strongly convex
(FTRL) X¢ = argma (X, uT) ., R(X) function of x that
XEX <t stabilizes the maximizer

Historical performance
of always choosing
strategy x

Theorem. Assuming the utility function at each period
fr(x) = (x,uz)

is L-Lipschitz with respect to some norm ||-|| and the regularizer is 1-
strongly convex with respect to the same norm then

1
Regret — FTRL(T) <|nL o7 (max R(x) — mln R(x))

xeX

Average stability Average loss distortion
induced by regularizer caused by regularizer



Recap: Regularizer for the Treeplex Space X

* The only thing we are missing is a good Regularizer for X V-1 = EUT

<t

* Desiderata. Be strongly convex in x within X and for the
optimization problem to be fast to solve

1 1
Xy = argmaxz:(f, u;) ——R(X) = argmax (X, U;_{) ——R(X)

XEX XEX
<t ' '

* X iIsno longer a “simplex”, so entropy is not a good Regularizer



Dilated Entropy

* X Isacombination of scaled simplices, i.e., X = (xj)]eg
1

« %) = (xa)aeA sequence-form strategles for actions in infosetj € J,

vJ .
X Exp] A & /xp SWAY

* Consider a weighted combination of local negative entropies

R(X) = 2 B; %y, H x /xp ) H(u) = 2 u; log(u;)

[
Negative Entropy

Lies in a simplex 4;
Equivalent to the behavioral strategy x/

* R(X) is 1/M strongly convex w.r.t. £; norm, where M = rpa)?dlflll, for
xXe
appropriate choice of ,Bj based on game tree structure



Solving the Optimization Problem

* Optimization problem decomposes into local simplex problems
Z<~jUj> 1ﬁ~Hff Z 1H xJ
X7, _q ) = Di'Xy. — | = X i
~J

J€J1 1 JEJ1
Quantlty— IS essentially the behavioral strategy xJ at infoset j

T

pf
> 5, {{el. L) -]
JEJ1 J

* Quantity xJover simplex A Is independent of solution x, for all ancestral
actions and only appears |n subsequent infosets

x]
J
Ut 1

J

xp



Solving the Optimization Problem

« Decomposes in local max over behavioral strategies x’ solved bottom up

ij X exp (njUg_l)

. . 1 .
J = Jyul Y —— J . :
v ,{?S‘AXJ. <x ’ Ut‘1> nj H(x/) = V] =log z exp(n;Uf,) = softmaxy (Utj—l)

* Value I/ multiplies fpj; when solving for fpj we need to take it into account. If p; € Ay

_)?k

~k k - N .
s 5408t 1 () 45,0+

xkeAy Xpe
* Add V7 to “cumulative utility” ij (initialized at Ut—l,pj) associated with p;

Qp, « Qp; +V/



Sum: Nash via FTRL with Dilated Entropy

Each player chooses X, y; based on FTRL with dilated entropy

* For x-playeru; = Ay, and Uy = U;_1 + u; and initialize Q = Uy,
* Traverse the tree bottom-up; for each infosetj € J;
x], exp(anj) Vi = softmaxy, (Q7), Qp; < Up; T 2

=) J

* Define sequence-form strategies top-down: X;, ; = xp] X;4q

Similarly, for y player

Return average of sequence-form strategies as equilibrium



Interpreting utility vector

Urq =AYy = § Aa,a’Yt,a’

a’EApz

A, o is zero if the combination of a, a’ does not lead to a leaf node

Chance chooses P2 plays
Urg = z u(z) Pr| sequence on Pr|{ sequence
Leafs z. @ Was last P1 action path to z leading to a’

!

a’ was last P2 action

Interpretation. If | play with the intend to arrive at action a (i.e. X, = 1) and
then don’t make any other moves, what is the expected reward that | will
collect, in expectation over the choices of my opponent and nature



lllustration: First Step of Dynamics

e GotolInfoset3

0 += (uery) = ( )

/B8




lllustration: First Step of Dynamics

e GotolInfoset3

_ B 1 1 1 1
U° += (ué,uf)— —3§yf*+3§yr*,—2§yf*—2§yr*

T



lllustration: First Step of Dynamics
e Gotolnfoset3
U3 += (ué,uf) = (—B%yf* + B%yr*,—z%yf* — 2%3@)

Q3 = U3, x3 = (xé, xf) o exp(n3 Q3)




lllustration: First Step of Dynamics

e GotolInfoset3

- B 1 1 1 1
U += (ueuz) = (3537 +350m,~257 — 250

Q3 — U3’ x3 — (xé, Xf) (0'g eXp(n3 QS)
V3 = softmax(n303)




lllustration: First Step of Dynamics

e GotolInfoset3

_ B 1 1 1 1
U += (ueuz) = (3537 +350m,~257 — 250

Q3 = U3, x3 = (xé, xf) o exp(n3 Q3)
V3 = softmax(n303)




lllustration: First Step of Dynamics

)

e GotolInfoset3

_ B 1 1 1 1
U° += (ué,uf)— —3§yf*+3§yr*,—2§yf*—2§yr*

Q3 — U3’ x3 — (xé, Xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

e Gotolnfoset1

Ut += (up,u,) = ( )




lllustration: First Step of Dynamics

)

e GotolInfoset3

_ B 1 1 1 1
U° += (ué,uf)— —3§yf*+3§yr*,—2§yf*—2§yr*

Q3 — U3’ x3 — (xé, Xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

e Gotolnfoset1

1
Ut += (up,u,) = (—15,())




lllustration: First Step of Dynamics

e GotolInfoset3

X 1 1 1 1 Q0
U® += (Ué, U,f) =|-3 Eyf* + 3§yy~*, —2§yf* - 253’1'* ’Q// \06
\y

Q3 — U3’ x3 — (xé, Xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

* Gotolnfoset1
Ul += (uf,ur) = <_1§'0>
1
Q*=U+(0,v3) = <—1§,V3>




lllustration: First Step of Dynamics

e GotolInfoset3

3 1 1 1 1 Q{O
U® += (U@,Uf) = —3§yf* + 35%«*;_25}% - 253’7‘* 7 e

Q@O

Q3 — U3’ x3 — (xé, Xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

* Gotolnfoset1
Ul += (uf,ur) = <_1§'0>
1
Q*=U+(0,v3) = <—1—,V3>

x! = (xf,xr) o exp(n; Q1)




lllustration: First Step of Dynamics

e GotolInfoset3

1 1 1 1 S &
U3 += (ué u~)=(—3—y +3=y.,—2-yr — 2= ) O S
yUg > V. Te? Yf. Yr. 7 e f. O
2 2 2 S 8, 5

Q3 — U3’ x3 — (xé, xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

e Gotolnfoset1

1
Ul += (uf,ur) = <_1§'0>

Q*=U+(0,v3) = <—1%,V3>

x! = (xf,xr) o exp(n; Q1)

e GotolInfoset 2

0 += () = )




lllustration: First Step of Dynamics

e GotolInfoset3

1 1 1 1 S &
U3 += (ué u~)=(—3—y +3=y.,—2-yr — 2= ) O S
yUg > V. Te? Yf. Yr. 7 e f. O
2 2 2 S 8, 5

Q3 — U3’ x3 — (xé, xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

e Gotolnfoset1

1
Ul += (uf,ur) = <_1§'0>

Q*=U+(0,v3) = <—1%,V3>

x! = (xf,xr) o exp(n; Q1)

e GotolInfoset 2

U2 +—( )— = 32 -
= Ufl,u,rl — 2 yf* 2 yT'*’ 2



lllustration: First Step of Dynamics

e GotolInfoset3

1 1 1 1 % &

3 4 — AUzl =1 —3— —_ —) — — ) — Q- N
U* += (ue ) ( 35Y5 + 35V, =25y, Zzyr*> o7 %, Qg

) 2

Q3 — U3’ x3 — (X'é, xf) (0'g eXp(n3 QS)
V3 = softmax(n303)

e Gotolnfoset1

1
Ul += (uf,ur) = <_1§'0>

Q*=U+(0,v3) = (—1%,1/3)

x! = (xf,xr) o exp(n; Q1)

e GotolInfoset 2

U2 +—( )— = 32 -
= Ufl,u,rl — 2 yf* 2 yT'*’ 2

Q0?=U?  x%*= (xfr,xrr) o exp(n,0?)



Sum: Nash via FTRL with Dilated Entropy

Each player chooses X, y; based on FTRL with dilated entropy

* For x-playeru; = Ay, and Uy = U;_1 + u; and initialize Q = Uy,
* Traverse the tree bottom-up; for each infosetj € J;
x], exp(anj) Vi = softmaxy, (Q7), Qp; < Up; T 2

=) J

* Define sequence-form strategies top-down: X;, ; = xp] X;4q

Similarly, for y player

Return average of sequence-form strategies as equilibrium



Fast Rates

Theorem. If we use Optimistic FTRL instead of FTRL then we get
faster convergence to a Nash equilibrium at rate 1/T instead of

1/+/T. Plus, we get last-iterate convergence instead of only average
iterate convergence.



Monte-Carlo Stochastic Approximation of Utilities

* Calculating utilities on all nodes of the tree can be very expensive
* In linear online learning it suffices that we use an unbiased

All random

estimate of the utility vector variables
1 OeSoerreveerio T
Xp = argmaxz<x,af> ——R(x), Elo |E]l=u, 77
xXeX n
<t
* By standard martingale concentration inequality arguments, the
error vanishes with the number of iterations ( )

* |n this setting, it suffices that we “sample a path for opponent”
and that we “sample chance moves”



lllustration: First Step of Dynamics

 Sample chance moves based on fixed distribution

and opponent moves based on y;; Suppose, we
sampled 4 and f,

e GotolInfoset3

V3 = softmax(n30%)

e Gotolnfoset
0! += (4, 4,) = (—1,0)

Q' =0+ (0,V3) =(-1,V3)
x! = (xf,xr) o exp(n, Q1)

S
P Q

%)
Q@O




lllustration: First Step of Dynamics

Equivalently top down and evaluate recursively
* Sample chance move (e.g. sampled A)
* GotolInfoset1

01 = (0;,0,) += (~1,0) 1

Q" = (Qf' Qr) = (ﬁf' ﬁr)

* Recursively go down tree after actionr
« Sample P2 move (e.g. sampled f,)
* Godownto Infoset 3 B

03 = (0, 0;) += (=3,-2)

Q3 =03  x3= (x@, xf) o exp(n; Q%)

V3 = softmax(n30?) N
¢

* Go backuptolinfoset1
QT += VS, x1 — (xfrxr‘) X exp (771 (er Qr)) =



Local Dynamics

* These dynamics seem to be doing “local updates” at each node
* They came out of a specific algorithm FTRL with Dilated Entropy
* |s this a general paradigm?

* Can we decompose the no-regret learning problem into local no-
regret learners at each node?

e What feedback should each node receive from the learners in
nodes below?

* What loss should each learner be optimizing?



Counterfactual Regret
Minimization (CRM)



Re-interpretating Utilities

Interpretation of u,. If | play with the intend to arrive at action a (i.e. X, = 1) and then
don’t make any other moves, what is the expected reward that | will collect, in
expectation over the choices of my opponent and nature

What if we now want to express: If | play with the intend to arrive at action a (i.e. X, =
1) and then continue playing based on some behavioral policy x, what is the expected
reward that | will collect, in expectation over the choices of my opponent and nature



Re-interpretating Utilities

Interpretation of u,. If | play with the intend to arrive at action a (i.e. X, = 1) and then
don’t make any other moves, what is the expected reward that | will collect, in
expectation over the choices of my opponent and nature

What if we now want to express: If | play with the intend to arrive at action a (i.e. X, =
1) and then continue playing based on some behavioral policy x, what is the expected
reward that | will collect, in expectation over the choices of my opponent and nature

* Let C, be all infosets of the player that are reachable as next infosets after playing a

’ \ ( 1 . . ops
~ L : 7k | Continuation E[utility] from paths that
Ug (X) _'\yfl,' + z '\I{_ _(_ 2) pass through infoset k, if | continue
“Instantaneous E[utility]’; if keC, playing based on behavioral strategy x
this is the last action | play



Re-interpretating Utilities

Interpretation of u,. If | play with the intend to arrive at action a (i.e. X, = 1) and then
don’t make any other moves, what is the expected reward that | will collect, in
expectation over the choices of my opponent and nature

What if we now want to express: If | play with the intend to arrive at action a (i.e. X, =
1) and then continue playing based on some behavioral policy x, what is the expected
reward that | will collect, in expectation over the choices of my opponent and nature

* Let C, be all infosets of the player that are reachable as next infosets after playing a

~ f ' Continuation E[utility] from paths that
} 17k ' Continuation % p
Ug (X) 'ua'+ V ( ) I pass through infoset k, if | continue
“Instantaneous E[ut/l/ty] if keCgy playing based on behavioral strategy x
this is the last action | play

e Continuation utility V7 (x) from paths that pass through infoset j recurswely defined:

___________________________

Vi(x) = 2 Xg Uy () —i{z xaua‘i+ilz Xg z VE(x)

a€Al \aEAJ ) \g,EAj keC,

__________________________

“Instantaneous utility’, if “Continuation utility”, if |
this is the last move | make  continue playing based on x

_______

[ ——



Re-interpretating Utilities

e Continuation utility V7 (x) from paths that pass throughj, assuming |
play to arrive deterministically at the parent actionp; (i.e. xp = 1)

Vi(x) = Zxaaam = > (u > vkm)

acAl acAl keC,
 Obviously VT°°t(x) is total expected utility from behavior strategy x

* From equivalence of behavioral and sequence-form strategies
Vroot(x) = (%, u)
* The same also holds for regrets

RTO%Y(x) = max Voot (x") — V1ot (x) = ma;(((f’,u) — (%, u) = R(¥X)
x! x'e



Local Regrets

* We can also define infoset regrets based on local utilities 1,

RI(x) = maxV/(x') — VI (x) = quz x4 (x') — x4l (x)
X X
a
* Right- hand side can be decomposed as:

___________________________________________________

l

X I
'\9 _________________________________________________ .
Fix continuation strategy to current We/ghted average of changes in
Strategy and only change the behavioral continuation strategy

Strategy at the current infoset



Local Regrets

* We can also define infoset regrets based on local utilities 1,
RI(x) = maxV/(x') — VI (x) = quz x4 (x') — x4l (x)
X X

a
* Right-hand-side can be decomposed as:

max ) x4l () = Xala() + ¥ x4 (Ha(x) = Bg(x))

* Maximum is upper bounded by the decoupled optima

____________________________

EH}CE}XZ Xqllg(x) — x41q (x)§+ Z II}CEIIX(fLa(X') — aa(x))
I\ a /I a

_______________________________

Local Regret: LR/(x)
Regret if you only change current info set behavioral strategy and keep continuation strategy



Recursive Bound of Local Regrets

* Infoset regrets are bounded by local regret plus continuation terms

RI() < LRV + ) max(iig(x') = Ta())

* The continuation terms are recursive infoset regrets!

fig(x') = () =// + ) VK —/ - ) VE@)

keC, keC,
* Deriving the recursive upper bound

R/ (x) < LR/ (x) + z 2 max VE(x") — VE(x)

a keCg,

< LR/ (x) +Z Z R*(x)

a keCg



Recursive Bound of Local Regrets

* Deriving the recursive upper bound

R/ (x) < LR/(x) + 2 z R*(x)

a keCg,



Recursive Bound of Local Regrets

* Deriving the recursive upper bound
R (x) < LR/ (x) + 2 z R*(x)
a keCg,
Theorem. By induction:

R/ (x) < LR/ (x) + Z LR*(x)

k eventually reachable from j



Local Regrets Upper Bound Total Regret

* Deriving the recursive upper bound

R (x) < LR/ (x) + 2 z R*(x)

a keCg,

Theorem. By induction:

R/ (x) < LR/ (x) + Z LR*(x)

k eventually reachable from j

Main Corollary. Regret is upper bounded by sum of local regrets

R(¥) = R™%(x) < 2 LR¥ (%)

keds



Regret over Time

Same inequalities can be followed for the average regret over time

R = maxT2< ) — (R Ue)

LR] = max%Z(xj,ﬁt(xt)) — <x,{,at(xt)>

xJ
t

Main CFR Theorem. Regret is upper bounded by local regrets

RSZLRj

JEL,



Achieving vanishing Local Regrets
LR/ (x) = maXTz: xf ut(xt) <xt ut(xt)>



Counterfactual Regret Minimization

* Device local regret algorithms for local regret
. 1 . :
LR/ (x) = m?XTE<XJ;ﬂt(xt)) — <xi,ﬁt(xt)>
X
t

* Standard n-action no-regret problem: reward vector at period t is
i/ (x;) and reward for choice x’ is (xf, i/ (xt))

» At period t run bottom-up recursion to calculate @/ (x,) forj € J,

» Update probabilities xgﬂ using reward vectors i/ (x;) forj € J,



lllustration: First Step of Dynamics

e GotolInfoset3

(a aﬁ)— 3L, 431, i, ol
c’ f - ny* Zyr*’ ny* Zyr*

T



lllustration: First Step of Dynamics

e GotolInfoset3

(aAaA)— 3L, 431, i, ol
c f - ny* Zyr*’ ny* Zyr*




lllustration: First Step of Dynamics

e GotolInfoset3

(aAaA)— 3L, 431, i, ol
c f - ny* Zyr*’ ny* Zyr*

3 ~ ~
Ve xelle + xpls




lllustration: First Step of Dynamics

e GotolInfoset3

(e, 77 33y +35y —22y — 22 o
Us,Up ) = | —3= — ,—2 = — ) — V7

V3 e« xptis + xfilf
e Gotolnfoset1

(2, ) = (—1%,1/3)




lllustration: First Step of Dynamics

e GotolInfoset3

(e, 77 33y +35y —22y — 22 o
Us,Up ) = | —3= — ,—2 = — ) — V7

V3 e« xptis + xfilf
e Gotolnfoset1

(2, ) = (—1%,1/3)




lllustration: First Step of Dynamics

e GotolInfoset3

(aAaA)— 3L, 431, i, ol
c f - ny* Zyr*’ ny* Zyr*

3 7 17 A
Ve xelle + xpls

e Gotolnfoset1
1
(2, ) = (—1—,V3>
2
e Gotolnfoset 2

(1) = (1397~ 339 -13)




lllustration: First Step of Dynamics

e GotolInfoset3

(e, 77 33y +35y —22y — 22 o
Us,Up ) = | —3= — ,—2 = — ) — V7

3 7 17 A
Ve xelle + xpls

e Gotolnfoset1
1
(2, ) = (—1—,V3>
2
e Gotolnfoset 2

(1) = (1397~ 339 -13)




lllustration: First Step of Dynamics

Go to Infoset 3

(~ ") 31, 435y —21 21 3
u/\’ A p— — — —_— ’— — — — /

3 Y 17 A
Ve xelle + xpls

Go to Infoset 1
o 1
(s, @) = <—1§,V3>
Go to Infoset 2
o 1 1 1
(uf"ur’) = 153’f* ~ 353’”»—15

Update probabilities

(xf, xr) — Update(ﬁf, ﬁr)

(xfr,xrr « Update ﬁfr,ﬁrr)
(xé,xf « Update ﬁé‘,ﬁf")




Recursive Algorithm

Value (ActionHistory h, AccOtherProb m_q)

Let I be infoset corresponding to h
If | is terminal node z return m_q-u(z)
If Player(/) = chance

Return Ygeq, Value(ha, m_qm)
If Player(/) =2

Return X,eq4, Value(ha, m_1y,)
If Player(/) =1

For a € Aj: tiy, += Value(ha, m_;)

Return Xgeqa, Xq * Value(ha,m_q)

Value (@, 1) x?//




Recursive Algorithm

Value (ActionHistory h, AccOtherProb m_q)

Let I be infoset corresponding to h

If | is terminal node z return m_q-u(z)

If Player(/) = chance

Return ZaeAIValue(ha,n 17Ta)
If Player(/) =2

Return X,eq4, Value(ha, m_1y,)
If Player(/) =1

.rFor a € A;: i, += Value(ha, m_ 1) >

Return Xgeqa, Xq * Value(ha,m_q)

node in the set; i, accumulates continuation utility from
taking action a from all these possible “arrival paths”.

Example. Ininfoset 3 we arrive once on the left node and add

k_ B%yf* and once on the right node and add B%yr* to ues

/\Ne arrive at the same infoset I multiple times, once for each \

J




Recursive Algorithm

Value (ActionHistory h, AccOtherProb m_q)

Let I be infoset corresponding to h
If | is terminal node z return m_q-u(z)
If Player(/) = chance

Return Ygeq, Value(ha, m_qm)
If Player(/) =2

Return X,eq4, Value(ha, m_1y,)
If Player(/) =1

For a € Aj: tiy, += Value(ha, m_;)

Return Xgeqa, Xq * Value(ha,m_q)

Value (@, 1) x?//




Equivalent Recursive Algorithm

CValue (ActionHistory h, AccOtherProb m_q)
Let I be infoset corresponding to h
If | is terminal node z return - u(z)
If Player(/) = chance

Return ZaeAICValue(ha,n_lng)
If Player(/) =2

Return ZaeAValue(ha,ﬂ_lya) 1
If Player(/) =1

For a € A;: i, +=@- CValue(ha,m_;)
Return Xgeqa, Xq - CValue(ha, m_;)

CValue (@, 1) x/




The Typical CRM Algorithm Implementation

CValue (ActionHistory h, AccOtherProb m_q)
Let I be infoset corresponding to h
If | is terminal node z return u(z)
If Player(/) = chance
Return Ygeq, 75 - CValue(ha, m_ym§)
If Player(/) =2
Return Xgeqa, Vo - CValue(ha, m_1y,)
If Player(/) =1
For a € A;: iiy += m_4 - CValue(ha, m_,)
Return Xg,eqa, Xq - CValue(ha,m_;)

CValue (@, 1) x/



Recovering Equilibrium from CRM
Dynamics



We have run CRM dynamics generating behavioral
strategies x;, y; for T periods.

How do we calculate the behavioral strategies
x”*,y" that are an approximate Nash equilibrium?



Recovering Nash Equilibrium

* We need to translate the behavioral rs’gr_agegles Into sequence-form

Va € Aj: Xt q = Xep;r Xt

* Then average the sequence-form Strateg|é\ Product of probabilities of actions of

- player P1 on path to infoset of action {
= 1 Z N
X = — xt
T
t=1

* Then translate back to equilibrium behavioral strategies x*

Xa

| ] * —
Va € A;: x5 = =
Xy
j



Recovering Nash Equilibrium

* We need to translate the behavioral rs’gr_agegles Into sequence-form

Va € Aj: Xt q = Xep;r Xt

* Then average the sequence-form strateglé\ Product of probabilities of actions of

player P1 on path to infoset of action {

X = szt - sztp A

* Then translate back to equilibrlum behaworal strategles X"
= T ~
. Xg t=1Xtp; " Xta
Va€eA;: x, ==— = =
T % I %
pj t=1"t,pj




The Typical CRM Algorithm Implementation

CValue (ActionHistory h, AccOtherProb m_;, AccProb m)
Let I be infoset corresponding to h

If | is terminal node z return u(z)
If Player(/) = chance

Return Ygeq, M5 - CValue(ha, m_y7g, my)
If Player(/) =2

Return Xgeq, Vo - CValue(ha, m_1y,4, 71)
If Player(/) =1

For a € A;: ii, += m_4 - CValue(ha, m_{, m1x,)

~

___________________________ J‘N
Return ZaeA, xq - CValue(ha, m_q, T1x4) This is the product of the probabilities of prior actions of player\
P1 before arriving at infoset |

s (@ 1) Note. Due to perfect recall this product is the same every time
! we visit the infoset; irrespective of which node of the infoset
Qve arrived at.

J




The Typical CRM Algorithm Implementation

CValue (ActionHistory h, AccOtherProb m_;, AccProb m)
Let I be infoset corresponding to h
If | is terminal node z return u(z)
If Player(/) = chance
Return Ygeq, Mg - CValue(ha, m_;mg, my)
If Player(/) =2
Return Xgea, Yo - CValue(ha, m_1y,, m1)
If Player(/) =1
For a € A;: iy, += m_, - CValue(ha, m_q, m1x,)
Set q(I) =my
Return Xgeq, Xq - CValue(ha, m_y, m1x4)

CValue (@, 1)



The Overall Equilibrium Algorithm with CRM

After each period t € {1, ..., T}:

* With last period behavior strategies x;, y; call CValue(9, 1, 1)
» Store ii; , and g, (I) for each action a and infoset I of P1

« Symmetrically, do so for player P2

* Update strategles at all information sets

Vj € Jip: xt+1 « Update (ut) Vj € J,: yH1 « Update (ut)

g ZtCIt(I)xta \
VI € J,Va € A;: x} =
! fra tht(l)

Zt CIt(I)yta

At the end:

L T p——

VI € I,Va € A;: y,

________________________________________

Approximate Equilibrium in Behavioral Strategies



What algorithm to use for local
regret updates?



Any no-regret algorithm for the n-action no-regret

Th e Ove ra l_l Eq u i l_i b ri u m problem can be used, e.g. FTRL, OFTRL, EXP, etc.

What performs well in practice is what is known as

After each period t € {1, ..., T}: Regret Matching!

\

* With last period behavior strategies x;, y; call C
» Store ii; , and q.(I) for each action a a
* Symmetrically, do so for player

VI € I,Va € A;: y,

________________________________________

* Update strateg_lg_s_gjc_ql aformationsets . Yoo
VJ S (71 |xt+1 — Update (ut)" v] € (72 yt+1 < Update (ut)i
\""'/ ““““““““““““““““““““ I-;C------:\: """""
VI € J,Va E 4, thqt( 21)”‘ ;
At the end: | e e i
i Zt q:(DYtq |

Approximate Equilibrium in Behavioral Strategies



Regret Matching and Regret Matching+

* Consider the n action no-regret learning setting; at each period we
choose x; € A(n), observe utility vector u; and get utility (x;, u;)

* At each period t calculate regret of not playing action a
Tea = Upa — (Up X¢)
* Calculate cumulative regret of not playing action a
Rt,a — Z Tta = Rt—l,a T Tta

T<t
* Choose next distribution, proportional to positive part of regret

+
Xt+1,a X [Rt,a] = maX{Rt,a» O}
* People typically refer to CFR with RegretMatching as simply “CFR”



Regret Matching+

* Consider the n action no-regret learning setting; at each period we
choose x; € A(n), observe utility vector u; and get utility (x;, u;)

* At each period t calculate regret of not playing action a
Tta = Urq — (Ug, X¢)
* Continuously clip above zero, as you accumulate regret of a
Rt,a — [Rt—l,a T rt,a]+
* Choose next distribution, proportional to R; ,
xt+1,a X Rt,a

* Regret Matching and Regret Macthing+ achieve Regret < /n/T



Extra Tricks for Empirical
Improvement



Monte-Carlo Stochastic Approximation of Utilities

« Sample chance move (e.g. sampled A)

* Gotolnfoset1
ur=-1, U, =0
* Go down tree the r path
* Sample P2 move (e.g. sampled f,)
* Godownto Infoset 3
e = =3, i = —1

U, += Xplp + Xfﬁf

* Update probabilities of visited infosets
(xf, xr) «— Update(ﬁf,ﬁr)
(xé, xf) « Update (ﬁ@, ﬁf)




Typical Monte Carlo Algorithm Implementation

MCCValue (ActionHistory h, AccProb mq)
Let I be infoset corresponding to h
If | is terminal node z return u(z)

If Player(/) = chance
Sample a ~ ¢
Return MCCValue(ha, ;)

If Player(/) =2
Sample a ~Yy
Return MCCValue(ha, ;)

If Player(/) =1
For a € A;: i, += MCCValue(ha, m; - x,)
Setq(l) = m,

Return Xgeq4, Xq - MCCValue(ha, 7y - x,)

Value (@, 1)

I



Can Combine with Update Step in One Pass

MCCValue (ActionHistory h, AccProb mq)
Let I be infoset corresponding to h
If | is terminal node z return u(z)

If Player(/) = chance
Sample a ~ ¢
Return MCCValue(ha, ;)

If Player(/) =2
Sample a ~Yy
Return MCCValue(ha, ;)

If Player(/) =1
For a € A;: i, += MCCValue(ha, m; - x,)
Setq(l) = m,

Update xley < Update(@)
Return Xgeq4, Xq - MCCValue(ha, 7y - x,4)

I



Alternation

After each period t:

* If t is odd then update the strategy of the x-player
* Iftis even then update strategy of the y-player

For most natural algorithms, alternation can only help in terms of
reducing the violation of best response constraints!

Can converge faster to equilibrium



Weighted Averaging

* Instead of uniformly weighting all rounds, put more weight on
more recent rounds of play

1 o
Ztt“zt *t

t
* Typically, one uses linear averaging (i.e.,a = 1)

* The CFR algorithm that uses RegretMatching+, alternation and
linear averaging is typically referred to as “CFR+”



Empirical Comparisons

Leduc Leduc

10]. E IIII 1 i [ R R | + i I LI I I I LI III| I I [N I
~ F 3 CFR
Mi 10° | E % 1.5
5 | g 10071 )
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o 1072 ¢ OFTRL = 2 10 i
= 3 - g 2 OFTRL
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Iteration number (7") Iteration number (7")
Violations of best response saddle-point gap
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Sum of learning saddle-point gap of
algorithm regrets average strategies x, y



Elements of the Libratus Al

* The first agent to achieve superhuman performance in two player
No-Limit Texas Hold’em poker (10! decision points)

* Prior best was Limit Texas Hold’em (10%3 decision points);
solution is basically “run CFR+”

* For No-Limit Texas Hold’em game is too big for this approach!



Elements of Libratus Al

Libratus

Rules of the game

4

Abstraction

Subgame solver Self-improver
Equilibrium
finding

Belief distributions fand g l

New action abstraction for part of game

Credits: Superhuman Al for heads-up no-limit poker: Libratus beats top professionals (youtube.com)



https://www.youtube.com/watch?v=2dX0lwaQRX0
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