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Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum 

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of 

poker

• General games, equilibria and online learning (T)
• Online learning in general games, multi-agent RL (T+A)
• HW4: implement no-regret algorithms that converge to 

correlated equilibria in general games 

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad 

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions, 

implement simple and optimal auctions, analyze 
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately 

optimal auctions from historical samples and in an 
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from 

bids in an auction, empirically analyze inaccuracy of 
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme, 

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research

1

2

3

4

5

6

7



General Multiplayer Games



Many real-world games are not zero-sum

Image credits: chat.openai.com



Are there simple scalable algorithms that 
compute Nash equilibria or other reasonable 
solution concepts in general games?



Recent Successes



Much harder to compute equilibria; 
theory typically considers relaxed solution 
concepts that are computationally easy
practice typically uses similar algorithms as in 
zero-sum games as good heuristics



Equilibria in General Games



Battle of Partners

How should partners behave?

Football (F)

Opera (O)

Opera (O) Football (F)

3, 1 0, 0

0, 0 1, 3

Pa
rt

ne
r 1

Partner 2



Recap: Mixed Nash Equilibrium

• A mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛  is a Nash equilibrium if no 
player is better off in expectation, by choosing another strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝐸𝑠1∼𝜎1,…,𝑠𝑛∼𝜎𝑛

𝑢𝑖 𝑠1, … , 𝑠𝑛 ≥ 𝐸𝑠−𝑖∼𝜎−𝑖
𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖



Recap: Existence of Nash 
Equilibrium [Nash1950]

Every 𝑛 player finite action game has 
at least one mixed Nash equilibrium
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Battle of Partners

How should partners behave?
For a full support NE both rows need to 
yield the same utility to row player

3𝑦1 + 0𝑦2 = 0𝑦1 + 1𝑦2 ⇒ 𝑦2 = 3𝑦1

and columns need to yield the same 
utility to column player

1𝑥1 + 0𝑥2 = 0𝑥1 + 3𝑥2 ⇒ 𝑥1 = 3𝑥2

Pa
rt

ne
r 1

Partner 2

Football (F)

Opera (O)

Opera (O) Football (F)

3, 1 0, 0

0, 0 1, 3



Battle of Partners

How should partners behave?
For a full support NE both rows need to 
yield the same utility to row player

3𝑦1 + 0𝑦2 = 0𝑦1 + 1𝑦2 ⇒ 𝑦2 = 3𝑦1

and columns need to yield the same 
utility to column player

1𝑥1 + 0𝑥2 = 0𝑥1 + 3𝑥2 ⇒ 𝑥1 = 3𝑥2

Pa
rt

ne
r 1

Partner 2

Football (F)

Opera (O)

Opera (O) Football (F)

3, 1 0, 0

0, 0 1, 3

3/4

1/4

1/4 3/4



Battle of Partners

What is the expected payoff to 
each player at the mixed Nash?
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Recap: Intractability of Mixed Nash 
Equilibrium
• If we know the supports of the player strategies then we can easily 

calculate a mixed Nash equilibrium
• For games with many actions, we cannot enumerate all possible 

supports (combinatorial explosion)
• Turns out there is no easy way to side-step this

• Computing a mixed NE in two player games is “intractable”

• It is provable as hard as computing a “fixed point” (𝑓 𝑥 = 𝑥) of an 
arbitrary function 𝑓, which is considered an intractable problem



No learning dynamics will converge to a 
Nash Equilibrium, generically for every 
game, in a reasonable amount of time in 
the worst-case!



No learning dynamics will converge to a 
Nash Equilibrium in every game in a 
reasonable time in the worst-case!

Look for other equilibrium concepts

Analyze special classes of games

Develop heuristics that typically converge fast in practice



No learning dynamics will converge to a 
Nash Equilibrium in every game in a 
reasonable time in the worst-case!

Look for other equilibrium concepts

Analyze special classes of games

Develop heuristics that typically converge fast in practice

Correlated equilibrium, coarse correlated equilibrium

Zero-sum games, potential games, auction games, strictly monotone games…

Fictitious play, EXP, perturbed fictitious play, best-response dynamics, self-play…



In Search for Other Equilibrium 
Concepts



What if we can flip public coins?

We flip a coin! 
Heads we choose (O, O)
Tails we choose (F, F)

Pa
rt

ne
r 1

Partner 2

Football (F)

Opera (O)

Opera (O) Football (F)

3, 1 0, 0

0, 0 1, 3
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2
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What if we can flip public coins?

We flip a coin! 
Heads we choose (O, O)
Tails we choose (F, F)

Does P1 gain by not adhering to 
the protocol if P2 adheres?
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0, 0 1, 3

1

2
0

0
1

2



What if we can flip public coins?

We flip a coin! 
Heads we choose (O, O)
Tails we choose (F, F)

Does P1 gain by not adhering to 
the protocol if P2 adheres?

Heads. P2 chooses (O). If I don’t 
choose (O), I get 0. Now I get 3.

Pa
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r 1

Partner 2

Football (F)

Opera (O)

Opera (O) Football (F)

3, 1 0, 0

0, 0 1, 3
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What if we can flip public coins?

We flip a coin! 
Heads we choose (O, O)
Tails we choose (F, F)

Does P1 gain by not adhering to 
the protocol if P2 adheres?

Heads. P2 chooses (O). If I don’t 
choose (O), I get 0. Now I get 3.
Tails. P2 chooses (F). If I don’t 
choose (F), I get 0. Now I get 1. 

Pa
rt

ne
r 1

Partner 2

Football (F)

Opera (O)

Opera (O) Football (F)

3, 1 0, 0

0, 0 1, 3

1

2
0

0
1

2



Structure of equilibrium distributions
P1

P2

(B)

(A)

(A) (B)

1

2
0

0
1

2

Consider a new game

You don’t know the utilities

The yellow numbers depict the 
probability distribution over 
outcomes (strategy profiles)









The Junction Game

Not Pass (N)

Pass (P)

Pass (P) Not Pass (N)

-100, -100 1, 0

0, 1 0, 0

D
riv

er
 1

Driver 2

Image credits: chat.openai.com
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What if we have a trusted third party that can 
flip coins?

Not Pass (N)

Pass (P)

Pass (P) Not Pass (N)

-100, -100 1, 0

0, 1 0, 0

D
riv

er
 1

Driver 2

Image credits: chat.openai.com

The traffic system is the trusted third party.

It flips a coin 

If heads, show red to D1 and green to D2.
If tails, show green to D1 and red to D2



What if we have a trusted third party that can 
flip coins?

Not Pass (N)

Pass (P)

Pass (P) Not Pass (N)

-100, -100 1, 0

0, 1 0, 0

D
riv

er
 1

Driver 2

Image credits: chat.openai.com

The traffic system is the trusted third party.

It flips a coin 

Equivalently
If heads, show Not Pass to D1 and Pass to D2.

If tails, show Pass to D1 and Not Pass to D2

1

2
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1
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Correlated Equilibrium

• A trusted third party draws strategy profiles 𝑠 = 𝑠1, … , 𝑠𝑛  of the 
game from some distribution 𝐷

• Communicates to each participant their part of the profile, i.e., the 
recommended strategy 𝑠𝑖

• The distribution 𝐷 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  𝐸𝑠∼𝐷 𝑢 𝑠 𝑠𝑖  ≥  𝐸𝑠∼𝐷 𝑢 𝑠𝑖

′, 𝑠−𝑖 𝑠𝑖

Expected utility of choosing 𝑠𝑖  
when recommended 𝑠𝑖

Expected utility of deviating to 𝑠𝑖
′ 

when recommended 𝑠𝑖

For any recommendation 𝑠𝑖  
and possible deviation 𝑠𝑖

′ ≥



Correlated Equilibria are Tractable

• Define a variable 𝜋 𝑠  for every strategy profile 𝑠 ∈ 𝑆1 × ⋯ × 𝑆𝑛

• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠

Pr 𝑠𝑖
𝑢 𝑠𝑖 , 𝑠−𝑖 ≥ 

𝑠−𝑖

𝜋 𝑠

Pr 𝑠𝑖
𝑢 𝑠𝑖

′, 𝑠−𝑖

Expected utility of choosing 𝑠𝑖  
when recommended 𝑠𝑖

Expected utility of deviating to 𝑠𝑖
′ 

when recommended 𝑠𝑖

For any recommendation 𝑠𝑖  
and possible deviation 𝑠𝑖

′ ≥



Correlated Equilibria are Tractable

• Define a variable 𝜋 𝑠  for every strategy profile 𝑠 ∈ 𝑆1 × ⋯ × 𝑆𝑛

• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠

Pr 𝑠𝑖
𝑢 𝑠𝑖 , 𝑠−𝑖 ≥ 

𝑠−𝑖

𝜋 𝑠

Pr 𝑠𝑖
𝑢 𝑠𝑖

′, 𝑠−𝑖

By Bayes rule this is the conditional distribution 𝑠 ∼ 𝜋|𝑠𝑖, i.e., Pr𝜋 𝑠 𝑠𝑖 =
𝜋(𝑠) 

σ𝑠−𝑖
𝜋 𝑠𝑖, ǁ𝑠−𝑖
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Correlated Equilibria are Tractable
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• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠  𝑢 𝑠𝑖 , 𝑠−𝑖 ≥ 

ǁ𝑠−𝑖

𝜋 𝑠  𝑢 𝑠𝑖
′, 𝑠−𝑖



Correlated Equilibria are Tractable

• Define a variable 𝜋 𝑠  for every strategy profile 𝑠 ∈ 𝑆1 × ⋯ × 𝑆𝑛

• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠𝑖 , 𝑠−𝑖 𝑢 𝑠𝑖 , 𝑠−𝑖 − 𝑢 𝑠𝑖
′, 𝑠−𝑖 ≥ 0



Correlated Equilibria are Tractable

• Define a variable 𝜋 𝑠  for every strategy profile 𝑠 ∈ 𝑆1 × ⋯ × 𝑆𝑛

• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠 𝑢 𝑠𝑖 , 𝑠−𝑖 − 𝑢 𝑠𝑖
′, 𝑠−𝑖 ≥ 0

A known quantity Δ𝑖 𝑠, 𝑠𝑖
′ : utility gain for player 𝑖 

when switching from 𝑠𝑖 → 𝑠𝑖
′ when others play 𝑠−𝑖



Correlated Equilibria are Tractable

• Define a variable 𝜋 𝑠  for every strategy profile 𝑠 ∈ 𝑆1 × ⋯ × 𝑆𝑛

• The variables encode a distribution



𝑠

𝜋 𝑠 = 1

• The distribution 𝜋 is a correlated equilibrium if participants don’t 
have incentive to deviate from their recommended strategy

∀𝑠𝑖 , 𝑠𝑖
′ ∈ 𝑆𝑖:  

𝑠−𝑖

𝜋 𝑠  Δ𝑖 𝑠, 𝑠𝑖
′ ≥ 0

• A Linear Program with variables 𝜋 𝑠





Recap: Mixed Nash Equilibrium

• A mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛  is a Nash equilibrium if no 
player is better off in expectation, by choosing another strategy 𝑠𝑖

′

∀𝑠𝑖
′ ∈ 𝑆𝑖: 𝐸𝑠𝑖∼𝜎𝑖, 𝑠−𝑖∼𝜎−𝑖

𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≥ 𝐸𝑠−𝑖∼𝜎−𝑖
𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖



Recap: Mixed Nash Equilibrium

• A mixed strategy profile 𝜎 = 𝜎1, … , 𝜎𝑛  is a Nash equilibrium if no 
player is better off in expectation, by choosing another strategy 𝑠𝑖

′

∀𝑠𝑖 ∈ support(𝜎𝑖), 𝑠𝑖
′ ∈ 𝑆𝑖: 𝐸𝑠−𝑖∼𝜎−𝑖

𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≥ 𝐸𝑠−𝑖∼𝜎−𝑖
𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖

Due to independence of strategies, 𝜎−𝑖 is 
also the conditional distribution 𝑠−𝑖 ∣ 𝑠𝑖



Learning Dynamics and 
Correlated Equilibria



Learning in General Games

At each period 𝑡:
• Each player 𝑖 picks a strategy 𝑠𝑖

𝑡

Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

𝑠2
𝑡

𝑠1
𝑡

3

1

0

0

1

3

0

0



Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

Learning in General Games

At each period 𝑡:
• Each player 𝑖 picks a strategy 𝑠𝑖

𝑡

• Receives a payoff

𝑢𝑖 𝑠𝑡 = 𝑢𝑖 𝑠1
𝑡, … , 𝑠𝑛

𝑡

𝑠2
𝑡

𝑠1
𝑡

𝑢1 𝑠𝑡

𝑢2 𝑠𝑡



Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

Learning in General Games

At each period 𝑡:
• Each player 𝑖 picks a strategy 𝑠𝑖

𝑡

• Receives a payoff

𝑢𝑖 𝑠𝑡 = 𝑢𝑖 𝑠1
𝑡, … , 𝑠𝑛

𝑡

• Observes utility they would have 
received from every other action

𝑟𝑖
𝑡 = 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖

𝑡

𝑠𝑖∈𝑆𝑖

Opera (O) Football (F)

𝑠2
𝑡

𝑠1
𝑡

𝑟1
𝑡



Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

Learning in General Games

At each period 𝑡:
• Each player 𝑖 picks a strategy 𝑠𝑖

𝑡

• Receives a payoff

𝑢𝑖 𝑠𝑡 = 𝑢𝑖 𝑠1
𝑡, … , 𝑠𝑛

𝑡

• Observes utility they would have 
received from every other action

𝑟𝑖
𝑡 = 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖

𝑡

𝑠𝑖∈𝑆𝑖

𝑠2
𝑡

𝑠1
𝑡

𝑟2
𝑡



No-Regret Learning in General Games

What if all players use a no-regret algorithm to choose 𝑠𝑖
𝑡 ∼ 𝜎𝑖

𝑡, which 
guarantees for some 𝜖 𝑇 → 0

1

𝑇


𝑡=1

𝑇

𝐸 𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝐸 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − 𝜖(𝑇)

Using standard Martingale concentration inequalities, this also implies 
that with high probability 1 − 𝛿, for some ǁ𝜖 𝑇, 𝛿 → 0:

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)



No-Regret Learning in General Games

What if all players use a no-regret algorithm to choose 𝑠𝑖
𝑡 ∼ 𝜎𝑖

𝑡, which 
guarantees for some 𝜖 𝑇 → 0

1

𝑇


𝑡=1

𝑇

𝐸 𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝐸 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − 𝜖(𝑇)

Using standard Martingale concentration inequalities, this also implies 
that with high probability 1 − 𝛿, for some ǁ𝜖 𝑇, 𝛿 → 0:

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)



What can we say about the empirical 
distribution of outcomes of such 
learning dynamics?



Empirical Distribution of Outcomes

Want to understand the empirical 
distribution of strategy profiles 
(aka “outcomes”)

Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

time…
𝑠1

𝑡:

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

O
O𝑠2

𝑡:

O
F

F
F

O
O

O
O

F
O

F
F

F
O

O
O

O
O



Empirical Distribution of Outcomes

Want to understand the empirical 
distribution of strategy profiles 
(aka “outcomes”)

Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

time…
𝑠1

𝑡:

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

O
O𝑠2

𝑡:

O
F

F
F

O
O

O
O

F
O

F
F

F
O

O
O

O
O 5

10

O
O

O
O

O
O

O
O



Empirical Distribution of Outcomes

Want to understand the empirical 
distribution of strategy profiles 
(aka “outcomes”)

Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

time…
𝑠1

𝑡:

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

O
O𝑠2

𝑡:

O
F

F
F

O
O

O
O

F
O

F
F

F
O

O
O

O
O 5

10

O
O

O
O

O
O

O
O

1

10



Empirical Distribution of Outcomes

Want to understand the empirical 
distribution of strategy profiles 
(aka “outcomes”)

Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

time…
𝑠1

𝑡:

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

O
O𝑠2

𝑡:

O
F

F
F

O
O

O
O

F
O

F
F

F
O

O
O

O
O 5

10

O
O

O
O

O
O

O
O

1

10

F
F

2

10



Empirical Distribution of Outcomes

Want to understand the empirical 
distribution of strategy profiles 
(aka “outcomes”)

Football (F)

Opera (O)

Opera (O) Football (F)

1 0, 0

0, 0 1, 3

3

1

0

0

1

3

0

0

time…
𝑠1

𝑡:

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

O
O𝑠2

𝑡:

O
F

F
F

O
O

O
O

F
O

F
F

F
O

O
O

O
O 5

10

O
O

O
O

O
O

O
O

1

10

F
F

2

10

F
O

2

10



Empirical Distribution of Outcomes

Want to understand the empirical 
distribution of strategy profiles 
(aka “outcomes”)
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Empirical Distribution of Outcomes

• For zero-sum games, looked at empirical distribution of marginals

𝜌𝑖
𝑇 𝑠𝑖 =

|𝑡: 𝑠𝑖
𝑡 = 𝑠𝑖|

𝑇

• The product of empirical marginals converges to Nash

𝜋𝑇 𝑠 = 𝜌1
𝑇 𝑠1 ⋅ 𝜌2

𝑇 𝑠2 → Nash equilibrium

• Now we look at the empirical joint distribution

𝜋𝑇 𝑠 =
𝑡: 𝑠𝑡 = 𝑠

𝑇



Correlation of Outcomes

• Players observe a shared history, their actions are correlated
• Shared history plays the role of the “correlating public coin flip”
• Maybe in some games, eventually the play de-correlates
• If mixed strategies of the players converge (typically not the case)

𝜎𝑖
𝑇 → 𝜎𝑖

∗

• Other players must choose approximate best-response strategies 
to have vanishing regret

• Each player’s mixed strategy → best response to opponents’
• Empirical distribution 𝜋𝑇 → 𝜎1

∗ × ⋯ × 𝜎𝑁
∗  which is a Nash



Correlation of Outcomes

• Players observe a shared history, their actions are correlated
• Shared history plays the role of the “correlating public coin flip”
• Maybe in some games, eventually the play de-correlates

Even if play doesn’t decorrelate and the mixed strategies of the 
players don’t converge, can we argue that empirical distribution 
converges to some nice set?





What does the empirical distribution satisfy?

• No-regret property, for each player 𝑖:

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)

• Re-write no-regret property in terms of the empirical distribution

1

𝑇


𝑠



𝑡:𝑠𝑡=𝑠

𝑇

𝑢𝑖 𝑠 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑠



𝑡:𝑠𝑡=𝑠

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 − ǁ𝜖(𝑇, 𝛿)
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𝑠

𝑢𝑖 𝑠
𝑡: 𝑠𝑡 = 𝑠

𝑇
≥ max

𝑠𝑖
′∈𝑆𝑖



𝑠

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡: 𝑠𝑡 = 𝑠

𝑇
− ǁ𝜖(𝑇, 𝛿)

Empirical joint distribution of strategies



What does the empirical distribution satisfy?

• No-regret property, for each player 𝑖:

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)

• Re-write no-regret property in terms of the empirical distribution



𝑠

𝜋𝑇 𝑠 𝑢𝑖 𝑠 ≥ max
𝑠𝑖

′∈𝑆𝑖



𝑠

𝜋𝑇 𝑠  𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 − ǁ𝜖(𝑇, 𝛿)

Average utility Average utility had I 
always played 𝑠𝑖

′



Regret Example
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Regret Example
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The correlated equilibrium calculation?

When recommended O, my opponent chooses with probability 
5/6 O and with probability 1/10 F, utility from following
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The correlated equilibrium calculation?

When recommended F, my opponent chooses with probability 
1/2 O and with probability 1/2 F, utility from following
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Regret vs Correlated Equilibrium

• No-regret property, implies

∀𝑠𝑖
′: 

𝑠

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ − ǁ𝜖 𝑇, 𝛿 → 0

• Correlated equilibrium requires conditioning on recommendation

∀𝑠𝑖
∗, 𝑠𝑖

′: 

𝑠:𝑠𝑖=𝑠𝑖
∗

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ 0

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

At subset of periods 
when played 𝒔𝒊

∗
You don’t regret 
switching to 𝒔𝒊

′



Regret vs Correlated Equilibrium

• No-regret property, implies

∀𝑠𝑖
′: 

𝑠
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′, 𝑠−𝑖 ≥ − ǁ𝜖 𝑇, 𝛿 → 0
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∀𝑠𝑖
∗, 𝑠𝑖

′: 
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′

Distributions that satisfy this are 
called Coarse Correlated Equilibria



Need a New Notion of Regret



Swaps and Correlated Equilibrium

• Correlated equilibrium requires conditioning on recommendation

∀𝑠𝑖
∗, 𝑠𝑖

′: 

𝑠:𝑠𝑖=𝑠𝑖
∗

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ 0

• Equivalently: for any swap function 𝜙 that maps original actions 𝑠𝑖  
to deviating actions 𝑠𝑖

′ (potentially different for each original 𝑠𝑖)



𝑠

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝜙 𝑠𝑖 , 𝑠−𝑖 ≥ 0

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

At all periods

You don’t regret swapping 
your original action 
based on the mapping 𝝓

𝝓 𝝓 𝝓 𝝓 𝝓



No-Swap Regret!

• No-regret property requires

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)

• No-swap regret property requires

∀𝜙:
1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥
1

𝑇


𝑡=1

𝑇

𝑢𝑖 𝜙 𝑠𝑖
𝑡 , 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)



Theorem. If all players use no-swap regret 
algorithms, then the empirical joint distribution 
converges to a Correlated Equilibrium



Can we construct algorithms with 
vanishing no-swap regret?
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