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Computational Game Theory for Complex Games

 General games, equilibria and online learning (T)
e° Online learning in general games, multi-agent RL (T+A)

* HWA4: implement no-regret algorithms that converge to
correlated equilibria in general games

Data Science for Auctions and Mechanisms
 Basics and applications of auction theory (T+A)
e' Learning to bid in auctions via online learning (T)

» HWS5: implement bandit algorithms to bid in ad
auctions

 Optimal auctions and mechanisms (T)
e. Simple vs optimal mechanisms (T)

HWE6: calculate equilibria in simple auctions,
implement simple and optimal auctions, analyze
revenue empirically

* Optimizing mechanisms from samples (T)
6- Online optimization of auctions and mechanisms (T)

HW?7: implement procedures to learn approximately
optimal auctions from historical samples and in an
online manner

Further Topics
* Econometrics in games and auctions (T+A)
a° A/B testing in markets (T+A)

* HW8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Guest Lectures

* Mechanism Design for LLMs, Renato Paes Leme,
Google Research

. Auto-biddinéin Sponsored Search Auctions, Kshipra
Bhawalkar, Google Research



General Multiplayer Games



sum

Many real-world games are not zero




Are there simple scalable algorithms that
compute Nash equilibria or other reasonable
solution concepts in general games?
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Much harder to compute equilibria;

theory typically considers relaxed solution
concepts that are computationally easy
practice typically uses similar algorithms as in
Zero-sum games as good heuristics



Equilibria in General Games



Battle of Partners

Partner 2

Opera (O Football (F

o . .
How should partners behave?
o .

Partner 1



Recap: Mixed Nash Equilibrium

* A mixed strategy profile 0 = (o4, ..., 05,) is a Nash equilibrium if no
player is better off in expectation, by choosing another strategy s;

VSi, ESi:E51~01,...,Sn~an[ui(51»-- sn)] = Es_ i~0_ [ul(sl’s—l)]




Recap: Existence of Nash
Equilibrium [Nash1950]

Every n player finite action game has
at least one mixed Nash equilibrium

EQUILIBRIUM POINTS IN N-PERSON GAMES
By Jonﬁ F. NasH, Jr.*
PRINCETON UNIVERSITY

Communicated by S. Lefschetz, November 16, 1949

One may define a concept of an #-person game in which each player has
a finite set of pure strategies and in which a definite set of payments to the
n players corresponds to each n-tuple of pure strategies, one strategy
being taken for each player. For mixed strategies, which are probability
distributions over the pure strategies, the pay-off functions are the expecta-
tions of the players, thus becoming polylinear forms in the probab111t1es
with which the various players play their various pure strategies. =~

Any n-tuple of strategies, one for each player, may be regarded as a
point in the product space obtained by multiplying the n strategy spaces
of the players. One such n-tuple counters another if the strategy of each
player in the countering n-tuple yields the highest obtainable expectation
for its player against the n — 1 strategies of the other players -in the
countered n-tuple. A self-countering n-tuple is called an equilibrium point.

The correspondence of each n-tuple with its set of countering n-tuples
gives a one-to-many mapping of the product space into itself. From the
definition of countering we-see that the set of countering points of a point
is convex. By using the continuity of the pay-off functions we see that the
graph of the mapping is closed. The closedness is equivalent to saying:
if Py, Py, ...and Qy, @y, ..., Qn, ... are sequences of points in the product
space where Q, — Q, P, = P and Q, counters P, then Q counters P.

Since the graph is closed and since the-image of each point under the
mapping is convex, we infer from Kakutani’s theorem' that the mapping
has a fixed point (i.e., point contained in its image). Hence there is an
equilibrium point.

In the two-person zero-sum case the “main theorem”? and the existence
of an equilibrium point are equivalent. In this case any two equilibrium
pomts lead to the same expectatlons for the players, but this need not occur
in general



Battle of Partners

Partner 2

Opera (O Football (F

o . .
How should partners behave?
o .

Partner 1
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Choose whether you will go to your favorite or your non-favorite activity

Favorite

Non-Favorite

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Battle of Partners

Partner 2

Opera (O Football (F

o . .
How should partners behave?
o .

Partner 1



Battle of Partners

Partner 1

Partner 2

Opera (O Football (F

o . .
o .

How should partners behave?
For a full support NE both rows need to
yield the same utility to row player

3y1 + 0y, =0y + 1y, = y2 = 3y
and columns need to yield the same
utility to column player

1x; + 0x, = 0x1 + 3x, = x4 = 3x,



Battle of Partners

Partner 1

Partner 2
1/4 3/4
Opera (O Football (F

o . .
S .

How should partners behave?
For a full support NE both rows need to
yield the same utility to row player

3y1 + 0y, =0y + 1y, = y2 = 3y
and columns need to yield the same
utility to column player

1x; + 0x, = 0x1 + 3x, = x4 = 3x,



Battle of Partners

Partner 1

3/4  Opera (O)

1/4 Football (F)

Partner 2
1/4 3/4
Opera (O) Football (F)

What is the expected payoff to
each player at the mixed Nash?

Column:
31 33

14220

4 4 4 4

31 33

~-34+220

44 44

11

+==0

44

11

+==0

44

13

+-=3

44

13

+-=1

44

12
16

12
16



Recap: Intractability of Mixed Nash
Equilibrium

* If we know the supports of the player strategies then we can easily
calculate a mixed Nash equilibrium

* For games with many actions, we cannot enumerate all possible
supports (combinatorial explosion)

* Turns out there is no easy way to side-step this
* Computing a mixed NE in two player games is “intractable”

* |tis provable as hard as computing a “fixed point” (f (x) = x) of an
arbitrary function f, which is considered an intractable problem



No learning dynamics will converge to a
Nash Equilibrium, generically for every
game, In a reasonable amount of time /in
the worst-case!



Look for other equilibrium concepts

Analyze special classes of games

No learping dynamics will cony,ée toa
Nash Equilibrium In every game in a

reasonable time /in the worst-case!

/

Develop heuristics that typically converge fast in practice



Correlated equilibrium, coarse correlated equilibrium

Look for other equilibrium concepts

Zero-sum games, potential games, auction games, strictly monotone games...

Analyze special classes of games

No learping dynamics will cony,ée toa
Nash Equilibrium In every game in a

reasonable time /in the worst-case!

/

Develop heuristics that typically converge fast in practice

Fictitious play, EXP, perturbed fictitious play, best-response dynamics, self-play...



In Search for Other Equilibrium
Concepts



What if we can flip public coins?

Partner 2

Opera (O) Football(F)  We flip a coin!
Heads we choose (O, O)
Tails we choose (F, F)

Opera (O)

Partner 1

Football (F)
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Check whether you will go to Opera or Football

Opera

Football

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Check whether you will go to Opera or Football

Opera
0%

Football
0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



What if we can flip public coins?

Partner 2

Opera (O) Football (F) We flip a coin!

Heads we choose (O, O)
Tails we choose (F, F)
Opera (O)
Does P1 gain by not adhering to
the protocol if P2 adheres?

Partner 1

Football (F)




What if we can flip public coins?

Partner 2

We flip a coin!

Heads we choose (O, O)
Tails we choose (F, F)
==elp Opera (O)

Does P1 gain by not adhering to
the protocol if P2 adheres?

Partner 1

Heads. P2 chooses (O). If I don’t

Football (F) choose (O), 1 get 0. Now | get 3.




What if we can flip public coins?

Partner 2

}

Football(F) We flip a coin!
Heads we choose (O, O)
Tails we choose (F, F)

Opera (O)
Does P1 gain by not adhering to
the protocol if P2 adheres?

Partner 1

Heads. P2 chooses (O). If I don’t
choose (0O), 1 get 0. Now | get 3.
Tails. P2 chooses (F). If | don’t
choose (F), 1 get 0. Now | get 1.

===l FOoOtball (F)




Structure of equilibrium distributions

Consider a new game
You don’t know the utilities
The yellow numbers depict the

probability distribution over
outcomes (strategy profiles)

P1
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This distribution over pairs of strategies can be the result of a mixed Nash equilibrium?

True

False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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This distribution over pairs of strategies can be the result of a mixed Nash equilibrium?

70% 30%

True False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



The Junction Game

Driver 2
1 100
101 101
Pass (P) Not Pass (N)

S Pass (P) -100, -100
101

Driver 1

100

——  Not Pass (N)
101




What if we have a trusted third party that can
flip coins?

Driver 2

Pass (P) Not Pass (N)

The traffic system is the trusted third party.

-100, -100
Pass (P) It flips a coin

If heads, show red to D1 and green to D2.
If tails, show green to D1 and red to D2

Driver 1

Not Pass (N)




What if we have a trusted third party that can
flip coins?

Driver 2

Pass (P) Not Pass (N)

0

The traffic system is the trusted third party.

-100, -100
Pass (P) It flips a coin

Equivalently
If heads, show Not Pass to D1 and Pass to D2.
If tails, show Pass to D1 and Not Pass to D2

Driver 1

Not Pass (N)




Correlated Equilibrium

* Atrusted third party draws strategy profiles s = (s, ..., s,,) of the
game from some distribution D

* Communicates to each participant their part of the profile, i.e., the
recommended strategy s;

* The distribution D is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

Vs, s{ €S;t Esoplu(s) |s;] = Egplu(si,sy) | si]

For any recommendation s; Expected utility of choosing s; > Expected utility of deviating to sl-’
and possible deviation s; when recommended s; — when recommended s;



Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

(s (s
Vs;,s; €5;: z () u(s;,s_;) = 2 (5) u(s],s_;
S—i

PI‘(SL') Pr(Si)

S—i

For any recommendation s; Expected utility of choosing s; > Expected utility of deviating to s;
and possible deviation s; when recommended s; — when recommended s;



Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

——————————————

Vs;,s; €5;: Z.PI‘ES))u(SU S_j) = Pzg))u(sl',s_l

S—l |

I
o~

_______

—— o ——

By Bayes rule this is the conditional distribution s ~ m|s;, i.e., Pr (s | s;) =



Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

Vs;,s; €5;: z n(s) u(sl, S_j) = 2 n(s) u(sl-’,s_l-




Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

Vs;, s; €5;: z m(s) u(s;, s_;) = z 1(s) u(sl-’,s_l-
S—i

~
L]

S—i



Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

Vs;, s; € S;: z m(s;,S_;) (u(si,s_i) —u(s{,s_; ) >0
.

l



Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

N\

Vs;, s; € S;: Zn(s) u(s;, s_;) —uls,s_; ):>O

e e e e e e e e e e e e R R e e e e

A known quantity A; (S S: ) utility gain for playeri
when switching from s; = s; when others play s_;



Correlated Equilibria are Tractable

 Define a variable t(s) for every strategy profile s € §; X =+ X §,
* The variables encode a distribution

zn(s) —1

S
* The distribution it is a correlated equilibrium if participants don’t
have incentive to deviate from their recommended strategy

VSi,Sl-’ S Si: ZTC(S) Ai(S,Si’) >0
S—i

A Linear Program with variables m(s)
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Why do correlated equilibria always exist?

Since Nash Equilibria always exist ¢

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Recap: Mixed Nash Equilibrium

* A mixed strategy profile 0 = (o4, ..., 05,) is a Nash equilibrium if no
player is better off in expectation, by choosing another strategy s;

VSL', € Si: ESi~0'i, S_i~0'_i[ui(Si) S—i)] 2 ES_i~O'_i[ul'(Si,’ S—i)]




Recap: Mixed Nash Equilibrium

* A mixed strategy profile 0 = (o4, ..., 05,) is a Nash equilibrium if no
player is better off in expectation, by choosing another strategy s;

Vs; € support(a;),s; € Sit Es_ 53 [ui(si,s-)] 2 ES_i~:{,-_:i3[ui(Sl-’,S_i)]

Due to independence of strategies, o_; is
also the conditional distribution s_; | s;




Learning Dynamics and
Correlated Equilibria



Learning in General Games

At each period t:
Opera (O Football

o . -
3
S| == Football (F) 1

« Each player i picks a strategy s;



Learning in General Games

S

At each period t: l
« Each player i picks a strategy s} Opera (O)  Football (F)

* Receives a payoff

u;(s) = w(st, ..., s5) Opera (O)

5! ey Football (F)




Learning in General Games

At each period t: l

« Each player i picks a strategy s} Opet2 (Ol Football (F)

* Receives a payoff

u;(s) = w(st, ..., s5) Opera (O)

* Observes utility they would have
received from every other action

t
rf = (w(si, ) 5f === Football (F)
S;ES;

|
|
|
|
|
|
|
|
|
|
J



Learning in General Games

t

52
At each period t: l
« Each player i picks a strategy s} Opera (0)  Football (F)

* Receives a payoff
u;(s) = w(st, ..., s5) Opera (O)

* Observes utility they would have
received from every other action

t
rf = (w(si, ) 5f === Football (F)
S;ES;




No-Regret Learning in General Games

What if all players use a no-regret algorithm to choose s{ ~ g}, which
guarantees for some €(T) —» 0

. T
1 1 /
T; Elu;(sY)] = E?S;f?; E|u;(si,st;)| — e(T



No-Regret Learning in General Games

What if all players use a no-regret algorithm to choose s{ ~ g}, which
guarantees for some €(T) —» 0

%Z Elu;(sY)] = max ZE[U (si,sL;)] — e

Using standard Martingale concentration inequalities, this also implies
that with high probability 1— 6, for some éE(T,86) - 0:

TZu (st) = max Zui(sf,sfi — €(T, 0)

sies; T
t=1



What can we say about the empirical
distribution of outcomes of such
learning dynamics?



Empirical Distribution of Outcomes

1 2 3 4 5 6 S7 58 S9 SlO

S Ss° s§° s* s° s ,

Opera (O)

Want to understand the empirical
distribution of strategy profiles

(aka “outcomes”)
Football (F)

Opera (O

Football (F)




Empirical Distribution of Outcomes

O F
O F

Want to understand the empirical
distribution of strategy profiles
(aka “outcomes”)

tlme

Opera (O)

Opera (O)

Football (F)

Football (F)




Empirical Distribution of Outcomes

Want to understand the empirical
distribution of strategy profiles
(aka “outcomes”)

tlme

Opera (O)

Opera (O)

Football (F)

Football (F)




Empirical Distribution of Outcomes

OfF
O Ny

Want to understand the empirical
distribution of strategy profiles
(aka “outcomes”)

tlme

Opera (O)

Opera (O)

Football (F)

Football (F)




Empirical Distribution of Outcomes

Want to understand the empirical
distribution of strategy profiles
(aka “outcomes”)

tlme

Opera (O)

Opera (O)

Football (F)

Football (F)




Empirical Distribution of Outcomes

tlme
EEEIIIEE "
Opera (O)
Want to understand the empirical
distribution of strategy profiles
(aka “outcomes”)
Football (F)

‘t:st = S|
TrN
' (s) = -

Football (F)




Empirical Distribution of Outcomes

* For zero-sum games, looked at empirical distribution of marginals

t: st = s
p; (s;) = lT

* The product of empirical marginals converges to Nash

tT(s) = pi(sy) - pL(s,) = Nash equilibrium

* Now we look at the empirical joint distribution
|t: st = 5]

m(s) = ——




Correlation of Outcomes

* Players observe a shared history, their actions are correlated
* Shared history plays the role of the “correlating public coin flip”
* Maybe in some games, eventually the play de-correlates

* |f mixed strategies of the players converge

T *
O-i _)O-i

* Other players must choose approximate best-response strategies
to have vanishing regret

* Each player’s mixed strategy — best response to opponents’

T

* Empirical distributiont’ — g; X :-- X gy which is a Nash



Correlation of Outcomes

* Players observe a shared history, their actions are correlated
* Shared history plays the role of the “correlating public coin flip”
* Maybe in some games, eventually the play de-correlates

Even if play doesn’t decorrelate and the mixed strategies of the
players don’t converge, can we argue that empirical distribution
converges to some nice set?



“u

When all players use no-regret algorithms, the empirical distribution converges to a:

Nash Equilibrium
Correlated Equilibrium

Some other equilibrium concept
-

Nothing interesting

0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




What does the empirical distribution satisfy?

* No-regret property, for each player L.

%Zu (St) > maxTZul(sl,St ) — &(T, 5)

s{€ES;
* Re-write no-regret property in terms of the empirical distribution

T T
1 \ \
T esl

S t:st=s S t:st=s




What does the empirical distribution satisfy?

* No-regret property, for each player L.

%Zu (St) > maXTzul(S“St ) — &(T, 5)

s|€S;

* Re-write no- regret property in terms of the emprrrcal distribution

___________

___________

Empirical joint distribution of strategies



What does the empirical distribution satisfy?

* No-regret property, for each player L.

%Zu (St) > maXTzul(S“St ) — &(T, 5)

s|€S;

* Re-write no-regret property in terms of the empirical distribution

—— o o e e e e e e ey — o e e e e e e e S e e

! | l 1
z ! (s)u; (s)§> gnegj\;(z 'l (s) ui(si’,s_i — (T, 6)

S

1)

— o o o e o o e e o o

Average utility Average utility had |
always played s;



Regret Example

1 2 3 4 5 6 7 8 9 10

P1: 1 got average utility

5 1 2
=34+ 0+ —0+——1=— Football (F)

time..

Opera (O

Opera (O)

Football (F)




Regret Example

sl s2 3 % 5 6 7

S8

9

3 0 0 3 3 3 0 3

P1: 1 got average utility

If | were to always play O

> 34042340 = ok
10”710 "10° " 10 10

3

N ClICIFECRCRFRFRF RC
S ONFRFEBEORORgORFREORO
3 01 3 3 O 1 0 3

Football (F)




The correlated equilibrium calculation?

Sl SZ 53 S4 SS S6 S7 88 S9 SlO .
time...
(\ =
OJFfFRofojojFojo o N
Opera (O)
3 0 3 3 3 3
0 1 0 O 0 0
When recommended O, my opponent chooses with probability
5/6 O and with probability 1/10 F, utility from following
5 1 15 Football (F)
S =

My utility from deviating to F

50+11_1
6 6 6

Football (F)




The correlated equilibrium calculation?

1 2 3 4 5 6 7 8 9 10

time..
EEEIIIEE =
Opera (O
When recommended F, my opponent chooses with probability
1/2 O and with probability 1/2 F, utility from following
10+11 1 Fooihall (F)
2 2 2 >

My utility from deviating to O

13+10_3
2 2 2

Football (F)




Regret vs Correlated Equilibrium

* No-regret property, implies

vs!: 2 17 (s) (wi(s) — wi(shys-0)) = —&(T,8) > 0

S
* Correlated equilibrium requires conditioning on recommendation

Vs/,s;: 2 l(s) (ui(s) — ui(sl-',s_l- ) >0

9 10

S

At subset of periods I I I You don’t regret
when played s; switching to s;

S




Regret vs Correlated Equilibrium

Distributions that satisfy this are

* No- regret property, implies called Coarse Correlated Equilibria
f \I
Vs 2 () (ui(s) —u;(s{, 5 ) > —¢&(T,8) >0
:\ S /l

o e e mm m  mm mm mm e mmm mmm mmm me mmm mmm M e Gmm Mmm M e Mmm Mmm M e mmm M M e e Mmm M e Mmm Smm M e mmm mmm M e Gmm R M e mmm M e e M e e

* Correlated equilibrium requires conditioning on recommendation

Vs/,s;: 2 l(s) (ui(s) — ui(sl-',s_l- ) >0

S:Sj=S

At subset of periods I I I You don’t regret
when played s; switching to s;



Need a New Notion of Regret



Swaps and Correlated Equilibrium

* Correlated equilibrium requires conditioning on recommendation

Vs/,s;: z ! (s) (ui(s) — ui(sl-',s_i ) >0

S:5;=S;

* Equivalently: for any swap function ¢ that maps original actions s;
to deviating actions s; (potentially different for each original s;)

z T () (w;(s) — w;(P(sy),s-;)) = 0

S

1 2 3

S S 4 5

¢t 5 g6 7 ¢8 (9 (10
¢

S S

You don’t regret swapping

S
At all periods qu ¢| ¢ | | ¢ | your original action
based on the mapping ¢



No-Swap Regret!

* No-regret property requires

T

1

TZ u;(st) = maxTZul(sl,st ) — &(T, 8)
t=1

s|€S;

* No-swap regret property requires

T T
1 1
V: 7; u;(st) = T; u;(p(sfh),st;) — &, 8)



Theorem. If all players use no-swap regret
algorithms, then the empirical joint distribution
converges to a Correlated Equilibrium



Can we construct algorithms with
vanishing no-swap regret?
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