
MS&E 233
Game Theory, Data Science and AI

Lecture 8
Vasilis Syrgkanis

Assistant Professor
Management Science and Engineering

(by courtesy) Computer Science and Electrical Engineering
Institute for Computational and Mathematical Engineering

Computational Game Theory for Complex Games
• Basics of game theory and zero-sum games (T)
• Basics of online learning theory (T)
• Solving zero-sum games via online learning (T)
• HW1: implement simple algorithms to solve zero-sum

games
• Applications to ML and AI (T+A)
• HW2: implement boosting as solving a zero-sum game

• Basics of extensive-form games
• Solving extensive-form games via online learning (T)
• HW3: implement agents to solve very simple variants of

poker

• General games, equilibria and online learning (T)
• Online learning in general games
• HW4: implement no-regret algorithms that converge to

correlated equilibria in general games

Data Science for Auctions and Mechanisms
• Basics and applications of auction theory (T+A)
• Learning to bid in auctions via online learning (T)
• HW5: implement bandit algorithms to bid in ad

auctions

• Optimal auctions and mechanisms (T)
• Simple vs optimal mechanisms (T)
• HW6: calculate equilibria in simple auctions,

implement simple and optimal auctions, analyze
revenue empirically

• Optimizing mechanisms from samples (T)
• Online optimization of auctions and mechanisms (T)
• HW7: implement procedures to learn approximately

optimal auctions from historical samples and in an
online manner

Further Topics
• Econometrics in games and auctions (T+A)
• A/B testing in markets (T+A)
• HW8: implement procedure to estimate values from

bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Guest Lectures
• Mechanism Design for LLMs, Renato Paes Leme,

Google Research
• Auto-bidding in Sponsored Search Auctions, Kshipra

Bhawalkar, Google Research

1

2

3

4

5

6

7

Recap: Regret vs Correlated Equilibrium

• No-regret property, implies

∀𝑠𝑖
′: ෍

𝑠

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ − ǁ𝜖 𝑇, 𝛿 → 0

• Correlated equilibrium requires conditioning on recommendation

∀𝑠𝑖
∗, 𝑠𝑖

′: ෍

𝑠:𝑠𝑖=𝑠𝑖
∗

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ 0

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

At subset of periods
when played 𝒔𝒊

∗
You don’t regret
switching to 𝒔𝒊

′

Distributions that satisfy this are
called Coarse Correlated Equilibria

Recap: Swaps and Correlated Equilibrium

• Correlated equilibrium requires conditioning on recommendation

∀𝑠𝑖
∗, 𝑠𝑖

′: ෍

𝑠:𝑠𝑖=𝑠𝑖
∗

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 ≥ 0

• Equivalently: for any swap function 𝜙 that maps original actions 𝑠𝑖
to deviating actions 𝑠𝑖

′ (potentially different for each original 𝑠𝑖)

෍

𝑠

𝜋𝑇 𝑠 𝑢𝑖 𝑠 − 𝑢𝑖 𝜙 𝑠𝑖 , 𝑠−𝑖 ≥ 0

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5 𝑠6 𝑠7 𝑠8 𝑠9 𝑠10

At all periods

You don’t regret swapping
your original action
based on the mapping 𝝓

𝝓 𝝓 𝝓 𝝓 𝝓

Recap: No-Swap Regret!

• No-regret property requires

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥ max
𝑠𝑖

′∈𝑆𝑖

1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)

• No-swap regret property requires

∀𝜙:
1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝑠𝑡 ≥
1

𝑇
෍

𝑡=1

𝑇

𝑢𝑖 𝜙 𝑠𝑖
𝑡 , 𝑠−𝑖

𝑡 − ǁ𝜖(𝑇, 𝛿)

Theorem. If all players use no-swap regret
algorithms, then the empirical joint distribution
converges to a Correlated Equilibrium

Can we construct algorithms with
vanishing no-swap regret?

No Swap Regret vs No Regret

• At period 𝑡 you choose action 𝑖𝑡 from distribution 𝑥𝑡 over 𝑛 actions

• Observe vector ℓ𝑡 = ℓ𝑡
1, … , ℓ𝑡

𝑛 containing loss of each action

• You incur the loss of the action you chose ℓ𝑡
𝑖𝑡

• No-regret: for any action 𝑖, you do not regret always taking action 𝑖
1

𝑇
෍

𝑡

ℓ𝑡
𝑖𝑡 ≤

1

𝑇
෍

𝑡

ℓ𝑡
𝑖 + ǁ𝜖 𝑇, 𝛿 , w. p. 1 − 𝛿

No-Regret

1 1 3 1 1 2 2 2 1 1

Action 1
Action 2

… time
Chosen action

Losses

Total Loss = 5

Alternatives

Always 1 Total Loss = 5

Total Loss = 6Always 2

Action 3

Total Loss = 5Always 3

𝑖𝑡:

No Swap Regret vs No Regret

• At period 𝑡 you choose action 𝑖𝑡 from distribution 𝑥𝑡 over 𝑛 actions

• Observe vector ℓ𝑡 = ℓ𝑡
1, … , ℓ𝑡

𝑛 containing loss of each action

• You incur the loss of the action you chose ℓ𝑡
𝑖𝑡

• No-swap regret: for any swap function 𝜙 mapping original actions
𝑖 to alternatives 𝑖′ = 𝜙 𝑖 , you do not regret making that swap

1

𝑇
෍

𝑡

ℓ𝑡
𝑖𝑡 ≤

1

𝑇
෍

𝑡

ℓ𝑡
𝜙 𝑖𝑡 + ǁ𝜖 𝑇, 𝛿 , w. p. 1 − 𝛿

No-Swap Regret
Action 1
Action 2

…
time

Chosen action Total Loss = 5

Alternatives

Total Loss = 5

Total Loss = 6

Action 3

Total Loss = 5

Swap

Swap
1→2
2→2
3→2

1→1
2→1
3→1

Losses

Swap
1→3
2→3
3→3

Always
switch to 1

Always
switch to 2

Always
switch to 3

1 1 3 1 1 2 2 2 1 1𝑖𝑡:

No-Swap Regret
Action 1
Action 2

… time
Chosen action Total Loss = 5

Alternatives

Total Loss = 5

Action 3

Total Loss = 4

Swap
1→1
2→1
3→3

Losses

Swap
1→1
2→3
3→3

Switch to 1
when playing 2

Switch to 3
when playing 2

1 1 3 1 1 2 2 2 1 1𝑖𝑡:

No-Swap Regret
Action 1
Action 2

… time
Chosen action Sub Loss = 2

Alternatives

Sub Loss = 2

Action 3

Sub Loss = 1

Swap
1→1
2→1
3→3

Losses

Swap
1→1
2→3
3→3

Switch to 1
when playing 2

Switch to 3
when playing 2

1 1 3 1 1 2 2 2 1 1𝑖𝑡:

No-Swap Regret
Action 1
Action 2

… time
Chosen action Total Loss = 5

Alternatives

Total Loss = 7

Action 3

Swap
1→2
2→1
3→1

Losses

Complex swaps

Vanishing regret for complex swaps is implied by vanishing regret of simple swaps:
switch to 𝑗′ whenever you had played 𝑗 and leave everything else as is

1 1 3 1 1 2 2 2 1 1𝑖𝑡:

No Swap Regret vs No Regret

• No-swap regret: for any swap function 𝜙 mapping original actions
𝑖 to alternatives 𝑖′ = 𝜙 𝑖 , you do not regret making that swap

1

𝑇
෍

𝑡

ℓ𝑡
𝑖𝑡 ≤

1

𝑇
෍

𝑡

ℓ𝑡
𝜙 𝑖𝑡 + ǁ𝜖 𝑇, 𝛿 , w. p. 1 − 𝛿

• Equivalently: for subset of periods when you played 𝑖 you don’t
regret any other action 𝑖′

1

𝑇
෍

𝑡:𝑖𝑡=𝑖

ℓ𝑡
𝑖𝑡 ≤ max

𝑖′

1

𝑇
෍

𝑡:𝑖𝑡=𝑖

ℓ𝑡
𝑖′

+ ǁ𝜖 𝑇, 𝛿 , w. p. 1 − 𝛿

No-Swap Regret
Action 1
Action 2

… time
Chosen action Total Loss = 5

Alternatives

Total Loss = 5Swap 1→1
2→1

Losses

Swap 1→2
2→2

Switch to 1
when playing 2

Switch to 2
when playing 1

1 1 2 1 1 2 2 2 1 1𝑖𝑡:

Total Loss = 6

No-Swap Regret
Action 1
Action 2

… time
Chosen action Total Loss = 5

Alternatives

Total Loss = 5Swap 1→1
2→1

Losses

Swap 1→2
2→2

Switch to 1
when playing 2

Switch to 2
when playing 1

1 1 2 1 1 2 2 2 1 1𝑖𝑡:

Total Loss = 6

No-swap regret is weirdly implied by no-regret when you only have two actions.
Intuition: no-regret towards action 𝑗 is the same as no-regret on the subset of periods when

you did not play 𝑗. With two actions, these are exactly the periods when you played 𝑗′

Can we reduce no-swap regret to
no-regret?

No Swap Regret vs No Regret

• For subset of periods when played 𝑖 don’t regret any other 𝑖′
1

𝑇
෍

𝑡:𝑖𝑡=𝑖

ℓ𝑡
𝑖𝑡 ≤ max

𝑖′

1

𝑇
෍

𝑡:𝑖𝑡=𝑖

ℓ𝑡
𝑖′

+ ǁ𝜖 𝑇, 𝛿 , w. p. 1 − 𝛿

• This looks like the no-regret property, but on a subset of periods

• If ahead of time we knew on which subset of periods we’d play 𝑖

• We could spawn a separate no-regret algorithm 𝐴𝑖

• When it was time to play 𝑖 we would call 𝐴𝑖 and report back loss

Swap to No-Regret Reduction
𝐴1

Responsible for controlling regret

in periods when 1 was played

…
…

Master Algorithm (M)

𝐴𝑖
Responsible for controlling regret

in periods when 𝑖 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

j

n

actions

…
…

Swap to No-Regret Reduction

Master Algorithm (M) 𝑞𝑡
𝑖

𝑞𝑡
𝑛

Choose algorithm 𝑖𝑡 based
on probability distribution 𝑞𝑡

1

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖
Responsible for controlling regret

in periods when 𝑖 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

j

n

actions

…
…

𝑞𝑡
1

𝑞𝑡
𝑖

𝑞𝑡
𝑛

𝑞𝑡
1

Swap to No-Regret Reduction

Master Algorithm (M)

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

j

n

actions

…
…

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

chosen
algorithm

Swap to No-Regret Reduction

Master Algorithm (M)

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

j

n

actions

…
…

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

Swap to No-Regret Reduction

Master Algorithm (M)

Algorithm 𝐴𝑖𝑡
 reports

some probability
distribution 𝑝𝑡

𝑖𝑡 over
actions

2

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

j

n

actions

…
…

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

𝑝𝑡
𝑖𝑡

No Swap Regret vs No Regret

Master Algorithm (M)

Master algorithm chooses an
action 𝑗𝑡 based on distribution 𝑝𝑡

𝑖𝑡

3

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗

𝑝𝑡
𝑖𝑡𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

j

n

actions

…
…

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗

𝑝𝑡
𝑖𝑡𝑛

chosen
algorithm

𝑝𝑡
𝑖𝑡

Swap to No-Regret Reduction

Master Algorithm (M)

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

1

𝑗𝑡

n

actions

…
…

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

𝑝𝑡
𝑖1

𝑝𝑡
𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

chosen
algorithm

chosen
action

𝑝𝑡
𝑖𝑡

Swap to No-Regret Reduction

Master Algorithm (M)

Loss vector ℓ𝑡 is received
4

ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

chosen
algorithm

𝑝𝑡
𝑖𝑡

Swap to No-Regret Reduction

Master Algorithm (M)

Loss vector ℓ𝑡 is given as
feedback to the algorithm
responsible for action 𝑗𝑡

5

ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝐴𝑗𝑡
Responsible for controlling regret

in periods when 𝑗𝑡 was played

…

ℓ𝑡

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

updated
algorithm

𝑞𝑡
𝑗𝑡

𝑝𝑡
𝑖𝑡

Supposed to be the period that 𝐴𝑗𝑡
 controls

But we used 𝐴𝑖𝑡
 to choose the action.

Swap to No-Regret Reduction

Master Algorithm (M)ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝐴𝑗𝑡
Responsible for controlling regret

in periods when 𝑗𝑡 was played

…

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

updated
algorithm

𝑞𝑡
𝑗𝑡

𝑝𝑡
𝑖𝑡

ℓ𝑡

Swap to No-Regret Reduction

Master Algorithm (M)

Choose 𝑞𝑡 to achieve consistency on average!
Pr(𝑀 chooses action 𝑖) ≈ Pr(𝑀 chooses algo 𝑖)

ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝐴𝑗𝑡
Responsible for controlling regret

in periods when 𝑗𝑡 was played

…

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

updated
algorithm

𝑞𝑡
𝑗𝑡

ℓ𝑡

𝑝𝑡
𝑖𝑡

Swap to No-Regret Reduction

Master Algorithm (M)ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝐴𝑗𝑡
Responsible for controlling regret

in periods when 𝑗𝑡 was played

…

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

updated
algorithm

𝑧𝑗
𝑡 = Pr(𝑀 chooses action 𝑗)

Algorithm 𝐴𝑗 receives ℓ𝑡 with probability 𝑧𝑗
𝑡 and 𝟎 otherwise

𝑞𝑡
𝑗𝑡

𝑝𝑡
𝑖𝑡

ℓ𝑡

Choose 𝑞𝑡 to achieve consistency on average!
Pr(𝑀 chooses action 𝑖) ≈ Pr(𝑀 chooses algo 𝑖)

Swap to No-Regret Reduction

Master Algorithm (M)ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝐴𝑗𝑡
Responsible for controlling regret

in periods when 𝑗𝑡 was played

…

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

updated
algorithm

𝑧𝑗
𝑡 = Pr(𝑀 chooses action 𝑗)

Algorithm 𝐴𝑗 receives ℓ𝑡 with probability 𝑧𝑗
𝑡 and 𝟎 otherwise

Lower variance strategy

Update each 𝐴𝑗 with the expected value vector 𝑧𝑡
𝑗
ℓ𝑡

𝑞𝑡
𝑗𝑡

ℓ𝑡

𝑝𝑡
𝑖𝑡

Choose 𝑞𝑡 to achieve consistency on average!
Pr(𝑀 chooses action 𝑖) ≈ Pr(𝑀 chooses algo 𝑖)

Sum: The Reduction Protocol

Master Algorithm (M)ℓ𝑡

1

𝑗𝑡

n

actions

…
…

ℓ𝑡
1

ℓ𝑡
𝑗𝑡

ℓ𝑡
𝑛

𝐴1
Responsible for controlling regret

in periods when 1 was played

…
…

𝐴𝑖𝑡
Responsible for controlling regret

in periods when 𝑖𝑡 was played

𝐴𝑛
Responsible for controlling regret

in periods when 𝑛 was played

𝐴𝑗𝑡
Responsible for controlling regret

in periods when 𝑗𝑡 was played

…

𝑧𝑡
𝑗𝑡ℓ𝑡

𝑝𝑡
𝑖𝑡1

𝑝𝑡
𝑖𝑡𝑗𝑡

𝑝𝑡
𝑖𝑡𝑛

𝑞𝑡
1

𝑞𝑡
𝑖𝑡

𝑞𝑡
𝑛

𝑝𝑡
1

𝑝𝑡
𝑖𝑡

𝑝𝑡
𝑛

chosen
algorithm

𝑧𝑗
𝑡 = Pr(𝑀 chooses action 𝑗)

Update each 𝐴𝑗 with the
expected value vector 𝑧𝑡

𝑗ℓ𝑡

𝑧𝑡
𝑖𝑡ℓ𝑡

𝑧𝑡
1ℓ𝑡

𝑧𝑡
𝑛ℓ𝑡

𝑝𝑡
𝑖𝑡

ℓ𝑡

Choose 𝑞𝑡 to achieve consistency on average!
Pr(𝑀 chooses action 𝑖) ≈ Pr(𝑀 chooses algo 𝑖)

Sum: The reduction protocol

• At each period we choose each action with probability
𝑧𝑡

𝑗
= Pr 𝑀 choose action 𝑗

= ෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗

• We update each algorithm 𝐴𝑗 with loss vector

𝑧𝑡
𝑗
ℓ𝑡 = Pr 𝑀 choose action 𝑗 ⋅ loss vector

• The distribution over algorithms 𝑞𝑡 is chosen such that

Pr 𝑀 choose action 𝑗 ≈ Pr(𝑀 choose algo 𝐴𝑗)

𝑞𝑡
𝑖 𝑝𝑡

𝑖𝑗

From No-Regret of Algos
to No-Swap Regret of Master

Regret = Loss – Benchmark Loss

• How much loss does algorithm 𝐴𝑖 perceive?

Pr 𝑀 choose action 𝑖 ෍

𝑗

Pr 𝐴𝑖 choose action 𝑗 ⋅ loss 𝑗

• How much total loss do all the algorithms perceive?

෍

𝑖

Pr 𝑀 choose action 𝑖 ෍

𝑗

Pr 𝐴𝑖 choose action 𝑗 ⋅ loss 𝑗

• How much loss does the master algorithm incur?

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ෍

𝑗

Pr 𝐴𝑖 choose action 𝑗 ⋅ loss 𝑗

The fraction of the loss vector that M
attributed and reported back to 𝐴𝑖

Loss Analysis at Each Step

Loss Analysis at Each Step

• How much loss does algorithm 𝐴𝑖 perceive?

Pr 𝑀 choose action 𝑖 ෍

𝑗

Pr 𝐴𝑖 choose action 𝑗 ⋅ loss 𝑗

• How much total loss do all the algorithms perceive?

෍

𝑖

Pr 𝑀 choose action 𝑖 ෍

𝑗

Pr 𝐴𝑖 choose action 𝑗 ⋅ loss 𝑗

• How much loss does the master algorithm incur?

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ෍

𝑗

Pr 𝐴𝑖 choose action 𝑗 ⋅ loss 𝑗

≈

The fraction of the loss vector that M
attributed and reported back to 𝐴𝑖

Recap: Loss Analysis at Each Step

Corollary. If we can guarantee that
Pr 𝑀 choose action 𝑖 ≈ Pr 𝑀 choose algo 𝐴𝑖

Then the total loss perceived by the separate algorithms is
approximately the same as the total loss experienced by the master

total loss perceived by algos ≈ total loss of master

𝑧𝑡
𝑖 𝑞𝑡

𝑖

Competing Benchmark Analysis at Each Step

• What can each algorithm 𝐴𝑖 compete with based on no-regret?
Pr 𝑀 choose action 𝑖 ⋅ loss 𝜙 𝑖

• What can in total all algorithms compete with based on no-regret?

෍

𝑖

Pr 𝑀 choose action 𝑖 ⋅ loss 𝜙 𝑖

• What does the master want to compete with for no-swap regret?

෍

𝑗

Pr 𝑀 choose action 𝑗 ⋅ loss 𝜙 𝑗

For each algo 𝐴𝑖 this is a constant
action comparison with 𝑖′ = 𝜙 𝑖

The fraction of the loss vector that M
attributed and reported back to 𝐴𝑖

Competing Benchmark Analysis at Each Step

• What can each algorithm 𝐴𝑖 compete with based on no-regret?
Pr 𝑀 choose action 𝑖 ⋅ loss 𝜙 𝑖

• What can in total all algorithms compete with based on no-regret?

෍

𝑖

Pr 𝑀 choose action 𝑖 ⋅ loss 𝜙 𝑖

• What does the master want to compete with for no-swap regret?

෍

𝑗

Pr 𝑀 choose action 𝑗 ⋅ loss 𝜙 𝑗

For each algo 𝐴𝑖 this is a constant
action comparison with 𝑖′ = 𝜙 𝑖

The fraction of the loss vector that M
attributed and reported back to 𝐴𝑖

=

Recap: Benchmark Analysis at Each Step

Corollary. The total perceived benchmark loss that algorithms
compete with, where each algorithm 𝑖 considers the no-regret
benchmark of always playing action 𝑖′ = 𝜙 𝑖 , is equal to the true
swap benchmark loss that the master wants to compete with,
associated with the swap function 𝜙.

Regret = Loss – Benchmark Loss

Regret Analysis at Each Step

Corollary. If we can guarantee that

Pr 𝑀 choose action 𝑖 ≈ Pr 𝑀 choose algo 𝐴𝑖

then swap regret of master is upper bounded by sum of plain regrets of algos

Swap Regret of Master = Total Loss of Master – Swap Benchmark

≈ Total Perceived Loss by Algos – Total Algo Fixed Action Benchmark

= Total Perceived Regret of Algos

Regret Analysis at Each Step

Corollary. If we can guarantee that

Pr 𝑀 choose action 𝑖 ≈ Pr 𝑀 choose algo 𝐴𝑖

then swap regret of master is upper bounded by sum of plain regrets of algos

Swap Regret of Master = Total Loss of Master – Swap Benchmark

≈ Total Loss Perceived by Algos – Total Algo Fixed Action Benchmark

= Total Perceived Regret of Algos

෍

𝑡

෍

𝑗

𝑧𝑡
𝑗
ℓ𝑡

𝑗
− 𝑧𝑡

𝑗
ℓ𝑡

𝜙 𝑗
෍

𝑡

෍

𝑖

𝒒𝒕
𝒊 ෍

𝑗

𝑝𝑡
𝑖𝑗

ℓ𝑡
𝑗

෍

𝑡

෍

𝑗

𝑧𝑡
𝑗
ℓ𝑡

𝜙 𝑗

෍

𝑡

෍

𝑖

𝒛𝒕
𝒊 ෍

𝑗

𝑝𝑡
𝑖𝑗

ℓ𝑡
𝑗 ෍

𝑡

෍

𝑖

𝑧𝑡
𝑖ℓ𝑡

𝜙 𝑖

෍

𝑖

෍

𝑡

𝑝𝑡
𝑖 , 𝑧𝑡

𝑖ℓ𝑡 − 𝑧𝑡
𝑗
ℓ𝑡

𝜙 𝑖

Can we pick 𝑞𝑡 such that:

Pr 𝑀 choose action 𝑗 ≈ Pr 𝑀 choose algo 𝐴𝑗

Choosing distribution over algos

• Choose 𝑞𝑡 such that

Pr 𝑀 choose action 𝑗 ≈ Pr 𝑀 choose algo 𝐴𝑗

• Remember that

Pr 𝑀 choose action 𝑗 = ෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗

• We need the distribution over algos 𝑞𝑡 to satisfy the self-consistency property

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

𝑞𝑡
𝑖 𝑞𝑡

𝑗𝑝𝑡
𝑖𝑗

Does there exist a distribution 𝑞𝑡 such that:

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

෍

𝑖=1

𝑛

𝑞𝑡
𝑖 ⋅ 𝑝𝑡

𝑖𝑗
= 𝑞𝑡

𝑗

Choosing distribution over algos

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

Algo 𝐴1

Action 1

Algo 𝐴2

Action 2

Algo 𝐴3

Action 3

𝑝𝑡
12

𝑝𝑡
11

𝑝𝑡
13

Choosing distribution over algos

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

Algo 𝐴1

Action 1

Algo 𝐴2

Action 2

Algo 𝐴3

Action 3

𝑝𝑡
11

𝑝𝑡
31

𝑝𝑡
13

𝑝𝑡
12

𝑝𝑡
21

𝑝𝑡
32

𝑝𝑡
23

𝑝𝑡
22

𝑝𝑡
33

Choosing distribution over algos

෍

𝑖

Pr 𝑀 choose algo 𝐴𝑖 ⋅ Pr 𝐴𝑖 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

Algo 𝐴1

Action 1

Algo 𝐴2

Action 2

Algo 𝐴3

Action 3

𝑝𝑡
11

𝑝𝑡
31

𝑝𝑡
13

𝑝𝑡
12

𝑝𝑡
21

𝑝𝑡
32

𝑝𝑡
23

𝑝𝑡
22

𝑝𝑡
33

𝑞𝑡
1

𝑞𝑡
2

𝑞𝑡
3

෍

𝑖=1

𝑛

𝑞𝑡
𝑖 ⋅ 𝑝𝑡

𝑖𝑗
= 𝑞𝑡

𝑗

A Markov Chain over the Algos/Actions
Starting from a distribution 𝑞 over nodes and applying one step of
the random transitions, brings us to a new distribution over states

Algo 𝐴1

Action 1

Algo 𝐴2

Action 2

Algo 𝐴3

Action 3

𝑝𝑡
11

𝑝𝑡
31

𝑝𝑡
13

𝑝𝑡
12

𝑝𝑡
21

𝑝𝑡
32

𝑝𝑡
23

𝑝𝑡
22

𝑝𝑡
33

𝑞𝑡
1

𝑞𝑡
2

𝑞𝑡
3

෍

𝑖=1

𝑛

𝑞𝑡
𝑖 ⋅ 𝑝𝑡

𝑖𝑗
= 𝑞𝑡

𝑗

𝑞′ = ෍

𝑖=1

𝑛

𝑞 ⋅ 𝑝𝑡
𝑖𝑗

Stationary Distributions of Markov Chains
If new distribution is the same as the original distribution, then this
distribution is called a Stationary Distribution of the Markov Chain

Algo 𝐴1

Action 1

Algo 𝐴2

Action 2

Algo 𝐴3

Action 3

𝑝𝑡
11

𝑝𝑡
31

𝑝𝑡
13

𝑝𝑡
12

𝑝𝑡
21

𝑝𝑡
32

𝑝𝑡
23

𝑝𝑡
22

𝑝𝑡
33

𝑞𝑡
1

𝑞𝑡
2

𝑞𝑡
3

෍

𝑖=1

𝑛

𝑞𝑡
𝑖 ⋅ 𝑝𝑡

𝑖𝑗
= 𝑞𝑡

𝑗

𝑞 = ෍

𝑖=1

𝑛

𝑞 ⋅ 𝑝𝑡
𝑖𝑗

Stationary Distributions of Markov Chains
If new distribution is the same as the original distribution, then this
distribution is called a Stationary Distribution of the Markov Chain

Algo 𝐴1

Action 1

Algo 𝐴2

Action 2

Algo 𝐴3

Action 3

𝑝𝑡
11

𝑝𝑡
31

𝑝𝑡
13

𝑝𝑡
12

𝑝𝑡
21

𝑝𝑡
32

𝑝𝑡
23

𝑝𝑡
22

𝑝𝑡
33

𝑞𝑡
1

𝑞𝑡
2

𝑞𝑡
3

෍

𝑖=1

𝑛

𝑞𝑡
𝑖 ⋅ 𝑝𝑡

𝑖𝑗
= 𝑞𝑡

𝑗

𝑞 = ෍

𝑖=1

𝑛

𝑞 ⋅ 𝑝𝑡
𝑖𝑗

Theorem. Stationary
distributions of finite node

Markov Chains always exist.

Recap: Choosing Distribution over Algos

Corollary. If we choose 𝑞𝑡 as stationary distribution of the Markov
Chain defined by transition probabilities Pr i → j = 𝑝𝑡

𝑖𝑗 then

Pr 𝑀 choose action 𝑗 = Pr 𝑀 choose algo 𝐴𝑗

Therefore

Swap Regret of Master = Total Fixed Action Regret of Algos → 0

Sum: The reduction protocol

• At each period calculate stationary distribution 𝑞𝑡 of the Markov
Chain defined by the transition probabilities Pr 𝑖 → 𝑗 = 𝑝𝑡

𝑖𝑗

• Choose each action with probability

𝑧𝑡
𝑗

= Pr 𝑀 choose action 𝑗 = Pr 𝑀 choose algo 𝑗 = 𝑞𝑡
𝑗

• Update each algorithm 𝐴𝑗 with loss vector

𝑧𝑡
𝑗
ℓ𝑡 = Pr 𝑀 choose action 𝑗 ⋅ loss vector

Finding Stationary Distributions

• Define the matrix 𝑃𝑡, whose 𝑖, 𝑗 entry is 𝑝𝑡
𝑖𝑗

• Then the stationary distribution satisfies
𝑞⊤ = 𝑞⊤𝑃𝑡

• 𝑞 is a left eigenvector of 𝑃𝑡 associated with eigenvalue 1

• We can calculate 𝑞 via eigen-decomposition of 𝑃𝑡 and identifying
the eigenvector associated with eigenvalue 1

Overall Algorithm using EXP for each Algo

Initialize Pt with each row being the uniform distribution

For t in 1..T

 # Calculate choice probability q of master based on

 # choice probabilities Pt of algos

 Calculate stationary distribution q of matrix Pt

 Draw action jt based on distribution q

 Observe loss vector lt

 # update each algorithms choice probabilities

 For i in 1..n

 Calculate perceived loss plt[i] = q[i] * lt

 Pt[i] = EXP-Update(Pt[i], plt[i])

Recap: Final Theorem

Theorem. If we choose 𝑞𝑡 as stationary distribution of the Markov
Chain defined by transition probabilities Pr i → j = 𝑝𝑡

𝑖𝑗 and each
algorithm updates their choice probabilities using the EXP rule then

Average Swap Regret of Master ≤ 2𝑛
2 log(𝑛)

𝑇
→ 0

Back to Games

Convergence to Correlated Equilibrium

Theorem. If all players use such an algorithm, then the empirical joint
distribution of actions converges to the set of correlated equilibria.

At every 𝑇 the empirical joint distribution of strategies 𝜋𝑇 is an 𝜖 𝑇
approximate correlated equilibrium, in the sense that:

SwapRegret𝑖 𝑠𝑖 , 𝑠𝑖
′, 𝑇 = ෍

𝑠−𝑖

𝜋𝑇 𝑠𝑖 , 𝑠−𝑖 ⋅ 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 − 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≤ 𝜖(𝑇)

with 𝜖 𝑇 = 2𝑛
2 log(𝑛)

𝑇
, where 𝑛 is number of actions of player 𝑖

Expected gains from switching
to 𝑠𝑖

′ whenever you played 𝑠𝑖

Note on Approximation Error

෍

𝑠−𝑖

𝜋𝑇 𝑠𝑖 , 𝑠−𝑖 ⋅ 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 − 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≤ 𝜖

• If we wanted to analyze the conditional expectation of gains:

𝐸𝑠∼𝜋𝑇 𝑢𝑖 𝑠𝑖
′, 𝑠−𝑖 − 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ∣ 𝑠𝑖 ≤ ǁ𝜖

• This translates to:

෍

𝑠−𝑖

𝜋𝑇 𝑠𝑖 , 𝑠−𝑖

Pr 𝑠𝑖
⋅ 𝑢𝑖 𝑠𝑖

′, 𝑠−𝑖 − 𝑢𝑖 𝑠𝑖 , 𝑠−𝑖 ≤ ǁ𝜖

• We can get this version with ǁ𝜖 = 𝜖 / Pr(𝑠𝑖)

• Actions that are played very infrequently have large ǁ𝜖 even if they have small 𝜖

Recent example
research in multi-
agent RL using
Correlated
Equilibrium
Techniques

	Slide 1: MS&E 233 Game Theory, Data Science and AI Lecture 8
	Slide 2
	Slide 3: Recap: Regret vs Correlated Equilibrium
	Slide 4: Recap: Swaps and Correlated Equilibrium
	Slide 5: Recap: No-Swap Regret!
	Slide 6: Theorem. If all players use no-swap regret algorithms, then the empirical joint distribution converges to a Correlated Equilibrium
	Slide 7: Can we construct algorithms with vanishing no-swap regret?
	Slide 8: No Swap Regret vs No Regret
	Slide 9: No-Regret
	Slide 10: No Swap Regret vs No Regret
	Slide 11: No-Swap Regret
	Slide 12: No-Swap Regret
	Slide 13: No-Swap Regret
	Slide 14: No-Swap Regret
	Slide 15: No Swap Regret vs No Regret
	Slide 16
	Slide 17
	Slide 18
	Slide 19: No-Swap Regret
	Slide 20: No-Swap Regret
	Slide 21: Can we reduce no-swap regret to no-regret?
	Slide 22: No Swap Regret vs No Regret
	Slide 23: Swap to No-Regret Reduction
	Slide 24: Swap to No-Regret Reduction
	Slide 25: Swap to No-Regret Reduction
	Slide 26: Swap to No-Regret Reduction
	Slide 27: Swap to No-Regret Reduction
	Slide 28: No Swap Regret vs No Regret
	Slide 29: Swap to No-Regret Reduction
	Slide 30: Swap to No-Regret Reduction
	Slide 31: Swap to No-Regret Reduction
	Slide 32: Swap to No-Regret Reduction
	Slide 33: Swap to No-Regret Reduction
	Slide 34: Swap to No-Regret Reduction
	Slide 35: Swap to No-Regret Reduction
	Slide 36: Sum: The Reduction Protocol
	Slide 37: Sum: The reduction protocol
	Slide 38: From No-Regret of Algos to No-Swap Regret of Master
	Slide 39: Regret = Loss – Benchmark Loss
	Slide 40: Loss Analysis at Each Step
	Slide 41: Loss Analysis at Each Step
	Slide 42: Recap: Loss Analysis at Each Step
	Slide 43: Competing Benchmark Analysis at Each Step
	Slide 44: Competing Benchmark Analysis at Each Step
	Slide 45: Recap: Benchmark Analysis at Each Step
	Slide 46: Regret = Loss – Benchmark Loss
	Slide 47: Regret Analysis at Each Step
	Slide 48: Regret Analysis at Each Step
	Slide 49: Can we pick q sub t such that: Pr open paren cap M , choose , action , j , close paren almost equal to Pr open paren cap M , choose , algo , cap A. sub j , , close paren
	Slide 50: Choosing distribution over algos
	Slide 51: Does there exist a distribution q sub t such that: sum over i. of Pr open paren cap M , choose , algo , cap A. sub i. , , close paren , dot Pr open second paren cap A. sub i. , , choose , action , j , close second paren equals Pr open paren ca
	Slide 52
	Slide 53: Choosing distribution over algos
	Slide 54: Choosing distribution over algos
	Slide 55: Choosing distribution over algos
	Slide 56
	Slide 57: A Markov Chain over the Algos/Actions
	Slide 58: Stationary Distributions of Markov Chains
	Slide 59: Stationary Distributions of Markov Chains
	Slide 60: Recap: Choosing Distribution over Algos
	Slide 61: Sum: The reduction protocol
	Slide 62: Finding Stationary Distributions
	Slide 63: Overall Algorithm using EXP for each Algo
	Slide 64: Recap: Final Theorem
	Slide 65: Back to Games
	Slide 66: Convergence to Correlated Equilibrium
	Slide 67: Note on Approximation Error
	Slide 68

