MS\&E 233
 Game Theory, Data Science and AI Lecture 8

Vasilis Syrgkanis
Assistant Professor
Management Science and Engineering
(by courtesy) Computer Science and Electrical Engineering Institute for Computational and Mathematical Engineering

Computational Game Theory for Complex Games

- Basics of game theory and zero-sum games (T)
- Basics of online learning theory (T)
- Solving zero-sum games via online learning (T)

HW1: implement simple algorithms to solve zero-sum games

- Applications to ML and AI (T+A)
- HW2: implement boosting as solving a zero-sum game

Basics of extensive-form games

Solving extensive-form games via online learning (T)
HW3: implement agents to solve very simple variants of poker

General games, equilibria and online learning (T)
(3) Online learning in general games

- HW4: implement no-regret algorithms that converge to correlated equilibria in general games

Data Science for Auctions and Mechanisms

- Basics and applications of auction theory (T+A)
- Learning to bid in auctions via online learning (T)
- HW5: implement bandit algorithms to bid in ad auctions
- Optimal auctions and mechanisms (T)

5 - Simple vs optimal mechanisms (T)
. HW6: calculate equilibria in simple auctions, implement simple and optimal auctions, analyze revenue empirically

- Optimizing mechanisms from samples (T)
- Online optimization of auctions and mechanisms (T)
- HW7: implement procedures to learn approximately optimal auctions from historical samples and in an online manner

Further Topics

- Econometrics in games and auctions (T+A)
- A / B testing in markets ($\mathrm{T}+\mathrm{A}$)
- HW8: implement procedure to estimate values from bids in an auction, empirically analyze inaccuracy of A/B tests in markets

Guest Lectures

- Mechanism Design for LLMs, Renato Paes Leme, Google Research
- Auto-bidding in Sponsored Search Auctions, Kshipra Bhawalkar, Google Research

Recap: Regret vs Correlated Equilibrium

- No-regret property, implies

Distributions that satisfy this are called Coarse Correlated Equilibria

$$
\forall s_{i}^{\prime}: \sum_{s} \pi^{T}(s)\left(u_{i}(s)-u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right) \geq-\tilde{\epsilon}(T, \delta) \rightarrow 0
$$

- Correlated equilibrium requires conditioning on recommendation

$$
\forall s_{i}^{*}, s_{i}^{\prime}: \sum_{s: s_{i}=s_{i}^{*}} \pi^{T}(s)\left(u_{i}(s)-u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right) \geq 0
$$

Recap: Swaps and Correlated Equilibrium

- Correlated equilibrium requires conditioning on recommendation

$$
\forall s_{i}^{*}, s_{i}^{\prime}: \sum_{s: s_{i}=s_{i}^{*}} \pi^{T}(s)\left(u_{i}(s)-u_{i}\left(s_{i}^{\prime}, s_{-i}\right)\right) \geq 0
$$

- Equivalently: for any swap function ϕ that maps original actions s_{i} to deviating actions s_{i}^{\prime} (potentially different for each original s_{i})

$$
\sum_{s} \pi^{T}(s)\left(u_{i}(s)-u_{i}\left(\phi\left(s_{i}\right), s_{-i}\right)\right) \geq 0
$$

You don't regret swapping
At all periods
 your original action based on the mapping ϕ

Recap: No-Swap Regret!

- No-regret property requires

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(s^{t}\right) \geq \max _{s_{i}^{\prime} \in S_{i}} \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(s_{i}^{\prime}, s_{-i}^{t}\right)-\tilde{\epsilon}(T, \delta)
$$

- No-swap regret property requires

$$
\forall \phi: \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(s^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(\phi\left(s_{i}^{t}\right), s_{-i}^{t}\right)-\tilde{\epsilon}(T, \delta)
$$

Theorem. If all players use no-swap regret algorithms, then the empirical joint distribution converges to a Correlated Equilibrium

Can we construct algorithms with vanishing no-swap regret?

No Swap Regret vs No Regret

- At period t you choose action i_{t} from distribution x_{t} over n actions
- Observe vector $\ell_{t}=\left(\ell_{t}^{1}, \ldots, \ell_{t}^{n}\right)$ containing loss of each action
- You incur the loss of the action you chose $\ell_{t}^{i_{t}}$
- No-regret: for any action i, you do not regret always taking action i

$$
\frac{1}{T} \sum_{t} e_{t}^{i_{t}} \leq \frac{1}{T} \sum_{t} \ell_{t}^{i}+\tilde{\epsilon}(T, \delta), \quad \text { w. p. } 1-\delta
$$

No-Regret

Action 1 -
Action $2=$
Action $3=$

Alternatives

No Swap Regret vs No Regret

- At period t you choose action i_{t} from distribution x_{t} over n actions
- Observe vector $\ell_{t}=\left(\ell_{t}^{1}, \ldots, \ell_{t}^{n}\right)$ containing loss of each action
- You incur the loss of the action you chose $\ell_{t}^{i_{t}}$
- No-swap regret: for any swap function ϕ mapping original actions i to alternatives $i^{\prime}=\phi(i)$, you do not regret making that swap

$$
\frac{1}{T} \sum_{t} e_{t}^{i_{t}} \leq \frac{1}{T} \sum_{t} \ell_{t}^{\phi\left(i_{t}\right)}+\tilde{\epsilon}(T, \delta), \quad \text { w. p. } 1-\delta
$$

No-Swap Regret

Action 1 -
Action $2=$
Action 3

Total Loss $=5$

No-Swap Regret

Action 1 -
Action $2=$
Action 3

$i_{t}: \begin{array}{lllllllllll}1 & 1 & 3 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & \ldots\end{array}$ time

Alternatives

Switch to 1
when playing 2

Switch to 3
when playing 2

Total Loss = 4

No-Swap Regret

Action 1 -
Action $2=$
Action $3=$

$i_{t}: \begin{array}{llllllllllll}1 & 1 & 3 & 1 & 1 & 2 & 2 & 2 & 1 & 1 & \ldots\end{array}$ time

Alternatives
 Switch to 1
 when playing 2

Sub Loss $=2$

Switch to 3
when playing 2

No-Swap Regret

Action 1 -

Action $2=$
Action 3

Vanishing regret for complex swaps is implied by vanishing regret of simple swaps: switch to j^{\prime} whenever you had played j and leave everything else as is

No Swap Regret vs No Regret

- No-swap regret: for any swap function ϕ mapping original actions i to alternatives $i^{\prime}=\phi(i)$, you do not regret making that swap

$$
\frac{1}{T} \sum_{t} e_{t}^{i_{t}} \leq \frac{1}{T} \sum_{t} e_{t}^{\phi\left(i_{t}\right)}+\tilde{\epsilon}(T, \delta), \quad \text { w. p. } 1-\delta
$$

- Equivalently: for subset of periods when you played i you don't regret any other action i^{\prime}

$$
\frac{1}{T} \sum_{t: i_{t}=i} \ell_{t}^{i_{t}} \leq \max _{i^{\prime}} \frac{1}{T} \sum_{t: i_{t}=i} \ell_{t}^{i^{\prime}}+\tilde{\epsilon}(T, \delta), \quad \text { w. p. } 1-\delta
$$

You have an online learning problem, for simplicity, with 2 actions. Is any no-swap regret sequence a no-regret sequence?

Yes

You have an online learning problem, for simplicity, with 2 actions. Is any no-regret sequence a no-swap regret sequence?

You have an online learning problem, for simplicity, with 3 actions. Is any no-regret sequence a no-swap regret sequence?

No-Swap Regret

Switch to 2
when playing 1

Total Loss $=6$

No-Swap Regret

No-swap regret is weirdly implied by no-regret when you only have two actions. Intuition: no-regret towards action j is the same as no-regret on the subset of periods when you did not play j. With two actions, these are exactly the periods when you played j^{\prime}

Switch to 2
when playing 1

Can we reduce no-swap regret to no-regret?

No Swap Regret vs No Regret

- For subset of periods when played i don't regret any other i^{\prime}

$$
\frac{1}{T} \sum_{t: i_{t}=i} \ell_{t}^{i_{t}} \leq \max _{i^{\prime}} \frac{1}{T} \sum_{t: i_{t}=i} \ell_{t}^{i^{\prime}}+\tilde{\epsilon}(T, \delta), \quad \text { w. p. } 1-\delta
$$

- This looks like the no-regret property, but on a subset of periods
- If ahead of time we knew on which subset of periods we'd play i
- We could spawn a separate no-regret algorithm A_{i}
- When it was time to play i we would call A_{i} and report back loss

Swap to No-Regret Reduction

Swap to No-Regret Reduction

No Swap Regret vs No Regret

Swap to No-Regret Reduction

Sum: The Reduction Protocol

Sum: The reduction protocol

- At each period we choose each action with probability

$$
\begin{aligned}
z_{t}^{j} & =\operatorname{Pr}(M \text { choose action } j) \\
& =\sum_{i} \underbrace{\operatorname{Pr}\left(M \text { choose algo } A_{i}\right)}_{q_{t}^{i}} \cdot \underbrace{\operatorname{Pr}\left(A_{i} \text { choose action } j\right)}_{p_{t}^{i j}}
\end{aligned}
$$

- We update each algorithm A_{j} with loss vector

$$
z_{t}^{j} \ell_{t}=\operatorname{Pr}(M \text { choose action } j) \cdot \text { (loss vector) }
$$

- The distribution over algorithms q_{t} is chosen such that

$$
\operatorname{Pr}(M \text { choose action } j) \approx \operatorname{Pr}\left(M \text { choose algo } A_{j}\right)
$$

From No-Regret of Algos
 to No-Swap Regret of Master

Regret $=$ Loss - Benchmark Loss

Loss Analysis at Each Step

- How much loss does algorithm A_{i} perceive?

$$
\underset{\substack{\text { Thetriaction of the loss vector that } M \\ \text { attributed and reported back to } A_{i}}}{\operatorname{Pr}(M \text { chion } j) \cdot \operatorname{loss}(j)}
$$

- How much total loss do all the algorithms perceive?

$$
\sum_{i} \operatorname{Pr}(M \text { choose action } i) \sum_{j} \operatorname{Pr}\left(A_{i} \text { choose action } j\right) \cdot \operatorname{loss}(j)
$$

- How much loss does the master algorithm incur?

$$
\sum_{i} \operatorname{Pr}\left(M \text { choose algo } A_{i}\right) \sum_{j} \operatorname{Pr}\left(A_{i} \text { choose action } j\right) \cdot \operatorname{loss}(j)
$$

Loss Analysis at Each Step

- How much loss does algorithm A_{i} perceive?

$$
\underset{\substack{\text { Thetriaction of the loss vector that } M \\ \text { attributed and reported back to } A_{i}}}{\operatorname{Pr}(M \text { chion } j) \cdot \operatorname{loss}(j)}
$$

- How much total loss do all the algorithms perceive?

- How much loss oes the master algorithm incur?

$$
\sum_{i} \operatorname{Pr}\left(M \text { choose algo } A_{i}\right) \sum_{j} \operatorname{Pr}\left(A_{i} \text { choose action } j\right) \cdot \operatorname{loss}(j)
$$

Recap: Loss Analysis at Each Step

Corollary. If we can guarantee that

Then the total loss perceived by the separate algorithms is approximately the same as the total loss experienced by the master
total loss perceived by algos \approx total loss of master

Competing Benchmark Analysis at Each Step

- What can each algorithm A_{i} compete with based on no-regret? $\operatorname{Pr}(M$ choose action $i) \cdot \operatorname{loss}(\phi(i))$
The fraction of the loss vector that M
For each algo A_{i} this is a constant
action comparison with $i^{\prime}=\phi(i)$
-What can in total all algorithms compete with based on no-regret?

$$
\sum_{i} \operatorname{Pr}(M \text { choose action } i) \cdot \operatorname{loss}(\phi(i))
$$

- What does the master want to compete with for no-swap regret?

$$
\sum_{j} \operatorname{Pr}(M \text { choose action } j) \cdot \operatorname{loss}(\phi(j))
$$

Competing Benchmark Analysis at Each Step

- What can each algorithm A_{i} compete with based on no-regret? $\operatorname{Pr}(M$ choose action $i) \cdot \operatorname{loss}(\phi(i))$
The fraction of the loss vector that M
For each algo A_{i} this is a constant action comparison with $i^{\prime}=\phi(i)$
- What can in total all algorithms compete with based on no-regret?

Recap: Benchmark Analysis at Each Step

Corollary. The total perceived benchmark loss that algorithms compete with, where each algorithm i considers the no-regret benchmark of always playing action $i^{\prime}=\phi(i)$, is equal to the true swap benchmark loss that the master wants to compete with, associated with the swap function ϕ.

Regret $=$ Loss - Benchmark Loss

Regret Analysis at Each Step

Corollary. If we can guarantee that

$$
\operatorname{Pr}(M \text { choose action } i) \approx \operatorname{Pr}\left(M \text { choose algo } A_{i}\right)
$$

then swap regret of master is upper bounded by sum of plain regrets of algos
Swap Regret of Master $=$ Total Loss of Master - Swap Benchmark
\approx Total Perceived Loss by Algos - Total Algo Fixed Action Benchmark
$=$ Total Perceived Regret of Algos

Regret Analysis at Each Step

Corollary. If we can guarantee that

$$
\operatorname{Pr}(M \text { choose action } i) \approx \operatorname{Pr}\left(M \text { choose algo } A_{i}\right)
$$

then swap regret of master is upper bounded by sum of plain regrets of algos

$$
\begin{aligned}
& =\quad \sum_{i} \sum_{t}\left\langle p_{t}^{i}, z_{t}^{i} \ell_{t}\right\rangle-z_{t}^{j} \ell_{t}^{\phi(i)}
\end{aligned}
$$

Can we pick q_{t} such that:

$\operatorname{Pr}(M$ choose action $j) \approx \operatorname{Pr}\left(M\right.$ choose algo $\left.A_{j}\right)$

Choosing distribution over algos

- Choose q_{t} such that

$$
\operatorname{Pr}(M \text { choose action } j) \approx \operatorname{Pr}\left(M \text { choose algo } A_{j}\right)
$$

- Remember that

$$
\operatorname{Pr}(M \text { choose action } j)=\sum_{i} \operatorname{Pr}\left(M \text { choose algo } A_{i}\right) \cdot \operatorname{Pr}\left(A_{i} \text { choose action } j\right)
$$

- We need the distribution over algos q_{t} to satisfy the self-consistency property

Does there exist a distribution q_{t} such that:

There always exists a distribution q that satisfies this property

| 0% | 0% |
| :---: | :---: | :---: |

Choosing distribution over algos

$\sum_{i} \operatorname{Pr}\left(M\right.$ choose algo $\left.A_{i}\right) \cdot \operatorname{Pr}\left(A_{i}\right.$ choose action $\left.j\right)=\operatorname{Pr}\left(M\right.$ choose algo $\left.A_{j}\right)$

Choosing distribution over algos

$\sum_{i} \operatorname{Pr}\left(M\right.$ choose algo $\left.A_{i}\right) \cdot \operatorname{Pr}\left(A_{i}\right.$ choose action $\left.j\right)=\operatorname{Pr}\left(M\right.$ choose algo $\left.A_{j}\right)$

Choosing distribution over algos

$\sum_{i} \operatorname{Pr}\left(M\right.$ choose algo $\left.A_{i}\right) \cdot \operatorname{Pr}\left(A_{i}\right.$ choose action $\left.j\right)=\operatorname{Pr}\left(M\right.$ choose algo $\left.A_{j}\right)$

There always exists a distribution q that satisfies this property

| 0% | 0% |
| :---: | :---: | :---: |

A Markov Chain over the Algos/Actions

Starting from a distribution q over nodes and applying one step of the random transitions, brings us to a new distribution over states

Stationary Distributions of Markov Chains

If new distribution is the same as the original distribution, then this distribution is called a Stationary Distribution of the Markov Chain

Stationary Distributions of Markov Chains

If new distribution is the same as the original distribution, then this distribution is called a Stationary Distribution of the Markov Chain

Recap: Choosing Distribution over Algos

Corollary. If we choose q_{t} as stationary distribution of the Markov Chain defined by transition probabilities $\operatorname{Pr}(\mathrm{i} \rightarrow \mathrm{j})=p_{t}^{i j}$ then

$$
\operatorname{Pr}(M \text { choose action } j)=\operatorname{Pr}\left(M \text { choose algo } A_{j}\right)
$$

Therefore
Swap Regret of Master $=$ Total Fixed Action Regret of Algos $\rightarrow 0$

Sum: The reduction protocol

- At each period calculate stationary distribution q_{t} of the Markov Chain defined by the transition probabilities $\operatorname{Pr}(i \rightarrow j)=p_{t}^{i j}$
- Choose each action with probability

$$
z_{t}^{j}=\operatorname{Pr}(M \text { choose action } j)=\operatorname{Pr}(M \text { choose algo } j)=q_{t}^{j}
$$

- Update each algorithm A_{j} with loss vector

$$
z_{t}^{j} \ell_{t}=\operatorname{Pr}(M \text { choose action } j) \cdot(\text { loss vector })
$$

Finding Stationary Distributions

- Define the matrix P_{t}, whose (i, j) entry is $p_{t}^{i j}$
- Then the stationary distribution satisfies

$$
q^{\top}=q^{\top} P_{t}
$$

- q is a left eigenvector of P_{t} associated with eigenvalue 1
- We can calculate q via eigen-decomposition of P_{t} and identifying the eigenvector associated with eigenvalue 1

Overall Algorithm using EXP for each Algo

```
Initialize Pt with each row being the uniform distribution
For t in 1..T
    # Calculate choice probability q of master based on
    # choice probabilities Pt of algos
    Calculate stationary distribution q of matrix Pt
    Draw action jt based on distribution q
    Observe loss vector lt
    # update each algorithms choice probabilities
    For i in 1..n
        Calculate perceived loss plt[i] = q[i] * lt
        Pt[i] = EXP-Update(Pt[i], plt[i])
```


Recap: Final Theorem

Theorem. If we choose q_{t} as stationary distribution of the Markov Chain defined by transition probabilities $\operatorname{Pr}(\mathrm{i} \rightarrow \mathrm{j})=p_{t}^{i j}$ and each algorithm updates their choice probabilities using the EXP rule then

$$
\text { Average Swap Regret of Master } \leq 2 n \sqrt{\frac{2 \log (n)}{T}} \rightarrow 0
$$

Back to Games

Convergence to Correlated Equilibrium

Theorem. If all players use such an algorithm, then the empirical joint distribution of actions converges to the set of correlated equilibria.

At every T the empirical joint distribution of strategies π^{T} is an $\epsilon(T)$ approximate correlated equilibrium, in the sense that:
$\operatorname{SwapRegret}_{i}\left(s_{i}, s_{i}^{\prime}, T\right)=\sum_{\left(s_{-i}\right.}^{(} \pi^{T}\left(s_{i}, s_{-i}\right) \cdot\left(u_{i}\left(s_{i}^{\prime}, s_{-i}\right)-u_{i}\left(s_{i}, s_{-i}\right)\right)_{1}^{\prime} \leq \epsilon(T)$
with $\epsilon(T)=2 n \sqrt{\frac{2 \log (n)}{T}}$, where n is number of actions of player i

Note on Approximation Error

$$
\sum_{s_{-i}} \pi^{T}\left(s_{i}, s_{-i}\right) \cdot\left(u_{i}\left(s_{i}^{\prime}, s_{-i}\right)-u_{i}\left(s_{i}, s_{-i}\right)\right) \leq \epsilon
$$

- If we wanted to analyze the conditional expectation of gains:

$$
E_{s \sim \pi^{T}}\left[u_{i}\left(s_{i}^{\prime}, s_{-i}\right)-u_{i}\left(s_{i}, s_{-i}\right) \mid s_{i}\right] \leq \tilde{\epsilon}
$$

- This translates to:

$$
\sum_{s_{-i}} \frac{\pi^{T}\left(s_{i}, s_{-i}\right)}{\operatorname{Pr}\left(s_{i}\right)} \cdot\left(u_{i}\left(s_{i}^{\prime}, s_{-i}\right)-u_{i}\left(s_{i}, s_{-i}\right)\right) \leq \tilde{\epsilon}
$$

- We can get this version with $\tilde{\epsilon}=\epsilon / \operatorname{Pr}\left(s_{i}\right)$
- Actions that are played very infrequently have large $\tilde{\epsilon}$ even if they have small ϵ

Recent example research in multiagent RL using Correlated Equilibrium Techniques

Luke Marris ${ }^{12}$ Paul Muller ${ }^{13}$ Marc Lanctot ${ }^{1}$ Karl Tuyls ${ }^{1}$ Thore Graepel ${ }^{12}$

Abstract
Two-player, constant-sum games are well studied in the literature, but there has been limited progress outside of this setting. We propose Joint Policy-Space Response Oracles (JPSRO), an algo-
rithm for training agents in n-player, general-sum rithm for training agents in n-player, general-sum
extensive form games, which provably converges extensive form games, which provably converges
to an equilibrium. We further suggest correlated equilibria (CE) as promising meta-solvers, and propose a novel solution concept Maximum Gini Correlated Equilibrium (MGCE), a principled and computationally efficient family of solutions for solving the correlated equilibrium selection problem. We conduct several experiments using CE meta-solvers for JPSRO and demonstrate convergence on n-player, general-sum games.

1. Introduction

Recent success in tackling two-player, constant-sum games (Silver et al., 2016; Vinyals et al., 2019) has outpaced progress in n-player, general-sum games despite a lot of \& Sandholm. 2019; Lockhart et al. 2020; Gray et al., 2020 Anthony et al. 2020). One reason is because Nash equi Anthony et al., 2020). One reason is because Nash equi
librium (NE) (Nash, 1951) is tractable and interchangelibrium (NE) (Nash, 1951) is tractable and interchange-
able in the two-player, constant-sum setting but becomes able in the two-player, constant-sum setting but becomes
intractable (Daskalakis et al., 2009) and potentially noninterchangeable ${ }^{1}$ in n-player and general-sum settings. The problem of selecting from multiple solutions is known as the equilibrium selection problem (Goldberg et al., 2013;
${ }^{1}$ DeepMind ${ }^{2}$ University College London ${ }^{3}$ Université Gustave Eiffel. Correspondence to: Luke Marris marris@google.com

Avis et al., 2010; Harsanyi \& Selten, 1988). ${ }^{2}$ Outside of normal form (NF) games, this problem setting arises in multi-agent training when dealing with empirical games (also called meta-games), where a game payagents playing an extensive form (EF) game, for example agents playing an extensive form (EF) game, for example the StarCraft League (Vinyals et al., 2019) and Policy-Space variant of which reached state-of-the-art results in Stratego Barrage (McAleer et al., 2020).
In this work we propose using correlated equilibrium (CE) (Aumann, 1974) and coarse correlated equilibrium (CCE) as (Aumann, 1974) and coarse correlated equilibrium (CCE) as a suitable target equilibrium space for n-player, general-sum
games games. The (C)CE solution concept has two main bene-
fits over NE; firstly, it provides a mechanism for players to fits over NE; firstly, it provides a mechanism for players to
correlate their actions to arrive at mutually higher payoffs and secondly, it is computationally tractable to compute solutions for n-player, general-sum games (Daskalakis et al., 2009). We provide a tractable approach to select from the space of (C)CEs (MG), and a novel training framework that converges to this solution (JPSRO). The result is a set of tools for theoretically solving any complete information ${ }^{4}$ multi-agent problem. These tools are amenable to scaling approaches; including utilizing reinforcement learning, funcwe leave this future work. we leave this to future work

In Section 2 we provide background on a) correlated equilibrium (CE), an important generalization of NE, b) coarse correlated equilibrium (CCE) (Moulin \& Vial, 1978), a similar solution concept, and c) PSRO, a powerful multi-agent rancepts called Maximum Gini (Coarse) Correlated Equilibrium (MG(C)CE) and in Section 4 we thoroughly explore its properties including tractability, scalability, invariance, and

