MS&E 233
Game Theory, Data Science and Al

Lecture 8

Vasilis Syrgkanis
Assistant Professor
Management Science and Engineering
(by courtesy) Computer Science and Electrical Engineering
Institute for Computational and Mathematical Engineering

Computational Game Theory for Complex Games

e° Online learning in general games

* HWA4: implement no-regret algorithms that converge to
correlated equilibria in general games

Data Science for Auctions and Mechanisms
 Basics and applications of auction theory (T+A)
e' Learning to bid in auctions via online learning (T)

» HWS5: implement bandit algorithms to bid in ad
auctions

 Optimal auctions and mechanisms (T)
e. Simple vs optimal mechanisms (T)

HWE6: calculate equilibria in simple auctions,
implement simple and optimal auctions, analyze
revenue empirically

* Optimizing mechanisms from samples (T)
6- Online optimization of auctions and mechanisms (T)

HW?7: implement procedures to learn approximately
optimal auctions from historical samples and in an
online manner

Further Topics
* Econometrics in games and auctions (T+A)
a° A/B testing in markets (T+A)

* HW8: implement procedure to estimate values from
bids in an auction, empirically analyze inaccuracy of
A/B tests in markets

Guest Lectures

* Mechanism Design for LLMs, Renato Paes Leme,
Google Research

. Auto-biddinéin Sponsored Search Auctions, Kshipra
Bhawalkar, Google Research

Recap: Regret vs Correlated Equilibrium

Distributions that satisfy this are

* No- regret property, implies called Coarse Correlated Equilibria
f \I
iVS{:ZﬂT(S) (ui(S) —u;(s{, s) > —¢&(T,5) > 0
: S)

o e e mm m mm mm mm e mmm mmm mmm me mmm mmm M e Gmm Mmm M e Mmm Mmm M e mmm M M e e Mmm M e Mmm Smm M e mmm mmm M e Gmm R M e mmm M e e M e e

* Correlated equilibrium requires conditioning on recommendation

Vs/,s;: 2 l(s) (ui(s) — ui(sl-',s_l-) >0
S:S;=S

9 10

S

At subset of periods I I I You don’t regret
when played s; switching to s;

Recap: Swaps and Correlated Equilibrium

* Correlated equilibrium requires conditioning on recommendation

Vs/,s;: z ! (s) (ui(s) — ui(sl-',s_i) >0

S:5;=S;

* Equivalently: for any swap function ¢ that maps original actions s;
to deviating actions s; (potentially different for each original s;)

z T () (w;(s) — w;(P(sy),s-;)) = 0

S

1 2 3

S S 4 5

¢t 5 g6 7 ¢8 (9 (10
¢

S S

You don’t regret swapping

S
At all periods qu ¢| ¢ | | ¢ | your original action
based on the mapping ¢

Recap: No-Swap Regret!
* No-regret property requires

%Zu (St) > maxTZul(sl,St) — &(T, 5)

s|€S;

* No-swap regret property requires

T T
1 1
V: 7; u;(st) = T; u;(p(sfh),st;) — &, 8)

Theorem. If all players use no-swap regret
algorithms, then the empirical joint distribution
converges to a Correlated Equilibrium

Can we construct algorithms with
vanishing no-swap regret?

No Swap Regret vs No Regret

* At period t you choose action i, from distribution x; over n actions

* Observe vector £; = (fl, ...,f’,}) containing loss of each action

» You incur the loss of the action you chose ¢}
* No-regret: for any action i, you do not regret always taking action i

12 i1 .
SY A< BT, wpl-0
T t T t

Action 1 e

No-RegretJ

- ERERERSRRE S

time

_i _P __F _i i Total Loss =5

Chosen action

Alternatives

Always 1

|)] || Totloss=s
| | | | TotelLoss -6

Always 2

rt— p—— p—— | p——

Always 3

_| _| _| _| | _ Total Loss =5

No Swap Regret vs No Regret

* At period t you choose action i, from distribution x; over n actions

* Observe vector £; = (fl, ...,f’,}) containing loss of each action

* You incur the loss of the action you chose f,lf

* No-swap regret: for any swap function ¢ mapping original actions
i to alternatives i’ = ¢ (i), you do not regret making that swap

1~ ; 1 -
Tz £t < 72 ePU) 4 &(T,8), w.p.1-6
t t

No-Swap Regret -
Action 2 =

===

_i _i __P _i i Total Loss =5

{_i | mpmpm| | | Totalloss=5
wavs 1-2
St | (T T =Y =TT

Chosen action

Alternatives

1-1
Swap 2-1
3—-1

Always
switchto 1

Always 1-3
switchto 3 SWa p 2-3
3—3

_| _| _| _| | _ Total Loss =5

No-Swap Regret .
Action 2 e

B ===

time

Chosen action [_ i _ i _ _ F _ i i Total Loss = 5

Alternatives
1-1 5 9 F | |
Switchto 1
when playing 2

Swap 2-1 _i _i ___' i i Total Loss = 5

3-3

Switchto 3

whenplayingz OWap 2-3 _ i _ ’ _ | |_| t t Total Loss =4

3-3

No-Swap Regret

Action 1 e
Action 2 =

B ===

time

Chosen action

——

-P _ Sub Loss =2

Alternatives
Switch to 1 1-1
enslongz SWap 21 —1 1 Sub Loss = 2
_)

- |
Switch to 3 11 [

when playing 2 Swap 2-3 | |_ | Sub Loss =1
3-3

No-Swap Regret

Action 1 e
Action 2 =

B ===

time

Chosen action [_ i _ P _ _ F _ i i Total Loss = 5

Alternatives {

| ___b _h' __ Total Loss =7

1-2
Complex swaps Swa p 2-1
3-1

Vanishing regret for complex swaps is implied by vanishing regret of simple swaps:
switch to j' whenever you had played j and leave everything else as is

No Swap Regret vs No Regret

* No-swap regret: for any swap function ¢ mapping original actions
i to alternatives i’ = ¢ (i), you do not regret making that swap

1o, 1 |
Sy sy e, wpil-o
t t

* Equivalently: for subset of periods when you played i you don’t
regret any other action i’

1 - 1 ,
= z £} < max 2 0L E(T,8), w.p.l-6
l

t:it:i t:it:i

“u m

You have an online learning problem, for simplicity, with 2 actions. Is any no-swap regret
sequence a no-regret sequence?

Yes 0%

No 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

“u m

You have an online learning problem, for simplicity, with 2 actions. Is any no-regret sequence a
no-swap regret sequence?

Yes 0%

No 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

“u m

You have an online learning problem, for simplicity, with 3 actions. Is any no-regret sequence a
no-swap regret sequence?

Yes 0%

No 0%

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

No-Swap Regret _
Y,

e R R

. 1 1 2 1 1 2 2 2 1 1 .

Chosenaction[_p | empmm) m] | Totalloss=5

Action 1 e
Action 2 =

time

Alternatives
. 9 @ ___r |

whensiyings SWap ;:1 {_ i _ i _ _ _' i i Total Loss =5

Wflvrif&i?n; Swap ;Zﬁ [| _ | _ ' _ ' _ _ _ Total Loss =6

No-Swap Regret
/

e R R

. 1 1 2 1 1 2 2 2 1 1

Chosen action [_ i | i _ _ F _ i i Total Loss =5

Action 1 e
Action 2 =

time

Alternatives
. 9 @ ___r |

whenslyings SWap ;:1 {_ i _ i _ _ _' i i Total Loss =5

No-swap regret is weirdly implied by no-regret when you only have two actions.
Intuition: no-regret towards action j is the same as no-regret on the subset of periods when
you did not play j. With two actions, these are exactly the periods when you played j’

Wflvrif&i?n; Swap ;Zﬁ [| _ | _ ' _ ' _ _ _ Total Loss =6

Can we reduce no-swap regret to
no-regret?

No Swap Regret vs No Regret

* For subset of periods when played i don’t regret any other i’

Z Pl <max—z o'+ E(T,5), w.p.l-6

tltl tltl

* This looks like the no-regret property, but on a subset of periods
* |f ahead of time we knew on which subset of periods we’d play i
* We could spawn a separate no-regret algorithm A;

* When it was time to play i we would call A; and report back loss

Swap to No-Regret Reduction

actions Responsible for controlling regret

in periods when 1 was played

A;
Responsible for controlling regret

’ Master Algorithm (M)

in periods when i was played

An

Responsible for controlling regret

in periods when n was played

Swap to No-Regret Reduction

actions

Master Algorithm (M) >ql

dt

Choose algorithm i; based
on probability distribution g;

Ay
Responsible for controlling regret

in periods when 1 was played

A;
Responsible for controlling regret

in periods when i was played

An

Responsible for controlling regret

in periods when n was played

Swap to No-Regret Reduction

actions Responsible for controlling regret

Ay

in periods when 1 was played

Ai, chosen
Responsible for controlling regret)
algorithm

in periods when i; was played

’ Master Algorithm (M)

An

Responsible for controlling regret

in periods when n was played

Swap to No-Regret Reduction

actions ble for controlling regret

Ay

.10ds when 1 was played

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

’ Master Algorithm (M)

An

ble for controlling regret

.0ds when n was played

Swap to No-Regret Reduction

actions o ble for controlling regret
. \ .10ds when 1 was played
Algorithm A;,

reports

’ some probability

distribution p,* over
actions

N _/

Aq

A
S chosen
ble for controlling regret)
algorithm

ods when i; was played

’ Master Algorithm (M)

An

ble for controlling regret

.0ds when n was played

No Swap Regret vs No Regret

actions ble for controlling regret

Aq

.10ds when 1 was played

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

D < Master Algorithm (M)

Ay
i ble for controlling regret
action j; based on distribution ptt Wds when n was played

Master algorithm chooses an

Swap to No-Regret Reduction

actions ble for controlling regret

Aq

.10ds when 1 was played

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

Master Algorithm (M)

chosen
action

An

ble for controlling regret

.0ds when n was played

Swap to No-Regret Reduction

actions ble for controlling regret

Aq

.10ds when 1 was played

A
Lt
ble for controlling regret ChOS.en
algorithm

ods when i; was played

' Master Algorithm (M)
fjt / ‘
t

A
. . n
9 Loss vector #; is received] ble for controlling regret

.0ds when n was played

Swap to No-Regret Reduction

actions ble for controlling regret

Ay

.10ds when 1 was played

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

Master Algorithm (M)

Aj updated
Responsible for controlling regret .
algorithm

in periods when j; was played

Loss vector #; is given as
feedback to the algorithm An
responsible for action j;

ble for controlling regret

.0ds when n was played

Swap to No-Regret Reduction

actions ble for controlling regret

Ay

.10ds when 1 was played

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

o Master Algorithm (M)

Aj updated
Responsible for controlling regret .
algorithm

in periods when j; was played

Supposed to be the period that 4;, controls 4
But we used 4;, to choose the action. J ble forc’gmmmng i

.0ds when n was played

Swap to No-Regret Reduction

actions ble for controlling regret

Ay

.10ds when 1 was played

A
5 chosen

ble for controlling regret)
SR agorithm

/ o Master Algorithm (M)

Aj updated
Responsible for controlling regret .
algorithm

in periods when j; was played

| : . A,
Choose g, to achieve consistency on average! ble for controlling regret

Pr(M chooses action i) = Pr(M chooses algo i) .ods when n was played

Swap to No-Regret Reduction

t —

A

1

PI‘(M chooses action]) ble for controlling regret
.10ds when 1 was played

actions 4

Algorithm 4; receives £ with probability zjt and 0 otherwise

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

' Master Algorithm (M)
{jt / ‘
t

Aj updated
Responsible for controlling regret .
algorithm

in periods when j; was played

. . An
Choose ¢g; to achieve consistency on average! ble for controlling regret

Pr(M chooses action i) = Pr(M chooses algo i) .ods when n was played

Swap to No-Regret Reduction

actions th — PI'(M chooses action]) ble for controlling regret
. . . - . .10ds when 1 was played
Algorithm A; receives £ with probability th and 0 otherwise

Lower variance strategy
Update each 4; with the expected value vector th{’t

Ay

A
oo chosen
ble for controlling regret)
algorithm

ods when i; was played

o Master Algorithm (M)

Aj updated
Responsible for controlling regret .
algorithm

in periods when j; was played

. . Ap
Choose g, to achieve consistency on average! ble for controlling regret

Pr(M chooses action i) = Pr(M chooses algo i) .ods when n was played

Sum: The Reduction Protocol

actions

z; = Pr(M chooses action j)
Update each 4; with the
expected value vector z{ft

Ztlft /i

ble for controlling regret

.10ds when 1 was played

[;
YA t'gt Alt

ble for controlling regret

chosen
algorithm

ods when i; was played

4;
Responsible for controlling regret

in periods when j; was played

Choose g; to achieve consistency on average!
Pr(M chooses action i) = Pr(M chooses algo i)

An

ble for controlling regret

.0ds when n was played

Sum: The reduction protocol

* At each period we choose each action with probability

zg = Pr(M choose action j)

= ZEr(M choose algo Ai-&r(/li choose actlon]}
l

qi v
* We update each algorithm A; with loss vector

ztjft = Pr(M choose action j) - (loss vector)

* The distribution over algorithms g; is chosen such that

Pr(M choose action j) = Pr(M choose algo 4;)

From No-Regret of Algos
to No-Swap Regret of Master

Regret = Loss — Benchmark Loss

Loss Analysis at Each Step

* How much loss does algorithm A; perceive?

Pr(M choose action i) z Pr(A4; choose action j) - loss(j)
J

* How much total loss do all the algorithms perceive?
z Pr(M choose action i) z Pr(A; choose action j) - loss(j)
i J

* How much loss does the master algorithm incur?
Z Pr(M choose algo A;) z Pr(A; choose action j) - loss(j)
i J

Loss Analysis at Each Step

* How much loss does algorithm A; perceive?

Pr(M choose action i) z Pr(A4; choose action j) - loss(j)
J

* How much total loss do all the algorithms perceive?
z Pr(M choose action i) z Pr(A; choose action j) - loss(j)
i J

* How much lo oes the master algorithm incur?
Z Pr(M choose algo A;) z Pr(A; choose action j) - loss(j)
i J

Recap: Loss Analysis at Each Step

Corollary. If we can guarantee that

fr(M choose action L)z Er(M choose algo Ag

i i
Zt dt

Then the total loss perceived by the separate algorithms is
approximately the same as the total loss experienced by the master

total loss perceived by algos = total loss of master

Competing Benchmark Analysis at Each Step

* What can each algorithm A; compete with based on no-regret?
Pr(M choose action i) - loss(qb(i))

For each algo A; this is a constant
action comparison with i’ = ¢ (i)

* What can in total all algorithms compete with based on no-regret?

z Pr(M choose action i) - loss(¢(i))

* What does the master want to compete with for no-swap regret?

z Pr(M choose action j) - loss(¢(j))
J

Competing Benchmark Analysis at Each Step

* What can each algorithm A; compete with based on no-regret?
Pr(M choose action i) - loss(qb(i))

For each algo A; this is a constant
action comparison with i’ = ¢ (i)

* What can in total all algorithms compete with based on no-regret?

z Pr(M choose action i) - loss(¢(i))

|
z Pr(M choose action j) - loss(¢(j))
J

Recap: Benchmark Analysis at Each Step

Corollary. The total perceived benchmark loss that algorithms
compete with, where each algorithm 1 considers the no-regret
benchmark of always playing actioni’ = ¢ (i), is equal to the true
swap benchmark loss that the master wants to compete with,
associated with the swap function ¢.

Regret = Loss — Benchmark Loss

Regret Analysis at Each Step

Corollary. If we can guarantee that

Pr(M choose action i) = Pr(M choose algo A4;)
then swap regret of master is upper bounded by sum of plain regrets of algos

Swap Regret of Master = Total Loss of Master - Swap Benchmark
~ Total Perceived Loss by Algos — Total Algo Fixed Action Benchmark

= Total Perceived Regret of Algos

Regret Analysis at Each Step

Corollary. If we can guarantee that

Pr(M choose action i) = Pr(M choose algo A;)

then swap regret of master is upper bounded by sum of plain regrets of algos

QA=A =) D)t =)) At

t t J

yyztyp”f’ _ ZZ 1@
ZZ pt, 24y Zz,{f(tp(l)

2

Can we pick g, such that:

Pr(M choose action j) = Pr(M choose algo Aj)

Choosing distribution over algos

* Choose g, such that
Pr(M choose action j) ~ Pr(M choose algo Aj)

 Remember that

Pr(M choose action j) = z Pr(M choose algo A4;) - Pr(A; choose action j)
i

* We need the distribution over algos q; to satisfy the self-consistency property

z Pr(M choose algo A4;) - Pr(A; choose action j) = Pr(M choose algo Aj)

N L L _J
i L] J
dt¢ D¢ q:

Does there exist a distribution g; such that:
z Pr(M choose algo 4;) - Pr(4; choose action j) = Pr(M choose algo A]-)

\ n /
Z q: - vy =qi
=1

“u

There always exists a distribution ¢ that satisfies this property

0% 0%

True False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Choosing distribution over algos

Z Pr(M choose algo A4;) - Pr(A; choose action j) = Pr(M choose algo Aj)
i

Algo A,
Action 2

Algo A4
Action 1

Algo As
Action 3

Choosing distribution over algos

Z Pr(M choose algo A4;) - Pr(A; choose action j) = Pr(M choose algo Aj)
i

Algo A,
Action 2

Choosing distribution over algos

Z Pr(M choose algo A4;) - Pr(A; choose action j) = Pr(M choose algo Aj)
i

Algo A,
Action 2

“u

There always exists a distribution ¢ that satisfies this property

0% 0%

True False

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

A Markov Chain over the Algos/Actions

Starting from a distribution g over nodes and applying one step of
the random transitions, brings us to a new distribution over states

Stationary Distributions of Markov Chains

If new distribution is the same as the original distribution, then this
distribution is called a Stationary Distribution of the Markov Chain

Algo A,
Action 2

Stationary Distributions of Markov Chains

If new distribution is the same as the original distribution, then this
distribution is called a Stationary Distribution of the Markov Chain

Algo A,
Action 2

Theorem. Stationary
distributions of finite node
Markov Chains always exist.

Recap: Choosing Distribution over Algos

Corollary. If we choose q; as stationary distribution of the Markov
Chain defined by transition probabilities Pr(i — j) = péj then

Pr(M choose action j) = Pr(M choose algo Aj)
Therefore

Swap Regret of Master = Total Fixed Action Regret of Algos — 0

Sum: The reduction protocol

* At each period calculate stationary distribution g; of the Markov
Chain defined by the transition probabilities Pr(i — j) = pzj

* Choose each action with probability

Z,{ = Pr(M choose action j) = Pr(M choose algo j) = qg

* Update each algorithm A; with loss vector

ngt = Pr(M choose action j) - (loss vector)

Finding Stationary Distributions

* Define the matrix P;, whose (i, j) entry is pij

* Then the stationary distribution satisfies
T — TP
q q rt

* g is a left eigenvector of P, associated with eigenvalue 1

* We can calculate g via eigen-decomposition of P, and identifying
the eigenvector associated with eigenvalue 1

Overall Algorithm using EXP for each Algo

Initialize Pt with each row being the uniform distribution
For £t in 1..T

Calculate choice probability q of master based on

choice probabilities Pt of algos

Calculate stationary distribution g of matrix Pt

Draw action based on distribution q

Observe loss vector 1t

update each algorithms choice probabilities
For 1 in 1..n
Calculate perceived loss plt[i] = g[i] * 1t
Pt[i] = EXP-Update(Pt[1], plt[i])

Recap: Final Theorem

Theorem. If we choose gq; as stationary distribution of the Markov

Chain defined by transition probabilities Pr(i — j) = pij and each
algorithm updates their choice probabilities using the EXP rule then

2log(n) 0
\ T

Average Swap Regret of Master < 2n

Back to Games

Convergence to Correlated Equilibrium

Theorem. If all players use such an algorithm, then the empirical joint
distribution of actions converges to the set of correlated equilibria.

At every T the empirical joint distribution of strategies ! is an €(T)
approximate correlated equilibrium, in the sense that:

2log(n)

with €(T) = ZnJ , Where n is number of actions of player i\

Expected gains from switching
to s; whenever you played s;

Note on Approximation Error

z ' (s4,5-1) - (ui(Si’;S—i - ui(Si;S—i)) S €
S_i
* |f we wanted to analyze the conditional expectation of gains:
E._r|lwi(sf,s_;) —wi(si,s_) | s;| <€
* This translates to:
T[T(Siis—i) .
Pr(s;)

S—i

* We can get this version with € = € / Pr(s;)
* Actions that are played very infrequently have large € even if they have small €

(ui(Si,rS—i - ui(Si;S—i)) <€

Recent example
research in multi-
agent RL usin

Correlated

Equilibrium
Techniques

Multi-Agent Training beyond Zero-Sum with Correlated Equilibrium
Meta-Solvers

Luke Marris ' > Paul Muller ' * Marc Lanctot' Karl Tuyls' Thore Graepel '

Abstract

Two-player, constant-sum games are well stud-
ied in the literature, but there has been limited
progress outside of this setting. We propose Joint
Policy-Space Response Oracles (JPSRO), an algo-
rithm for training agents in n-player, general-sum
extensive form games, which provably converges
to an equilibrium. We further suggest correlated
equilibria (CE) as promising meta-solvers, and
propose a novel solution concept Maximum Gini
Correlated Equilibrium (MGCE), a principled and
computationally efficient family of solutions for
solving the correlated equilibrium selection prob-
lem. We conduct several experiments using CE
meta-solvers for JPSRO and demonstrate conver-
gence on n-player, general-sum games.

1. Introduction

Recent success in tackling two-player, constant-sum games
(Silver et al., 2016; Vinyals et al., 2019) has outpaced
progress in n-player, general-sum games despite a lot of
interest (Jaderberg et al., 2019; OpenAl et al., 2019; Brown
& Sandholm, 2019; Lockhart et al., 2020; Gray et al., 2020;
Anthony et al., 2020). One reason is because Nash equi-
librium (NE) (Nash, 1951) is tractable and interchange-
able in the two-player, constant-sum setting but becomes
intractable (Daskalakis et al., 2009) and potentially non-
interchangeable' in n-player and general-sum settings. The
problem of selecting from multiple solutions is known as
the equilibrium selection problem (Goldberg et al., 2013;

'DeepMind *University College London *Université Gustave
Eiffel. Correspondence to: Luke Marris <marris @google.com>.

Proceedings of the 38" International Conference on Machine

Avis et al., 2010; Harsanyi & Selten, 1988).”

Outside of normal form (NF) games, this problem setting
arises in multi-agent training when dealing with empiri-
cal games (also called meta-games), where a game pay-
off tensor is populated with expected outcomes between
agents playing an extensive form (EF) game, for example
the StarCraft League (Vinyals et al., 2019) and Policy-Space
Response Oracles (PSRO) (Lanctot et al., 2017), a recent
variant of which reached state-of-the-art results in Stratego
Barrage (McAleer et al., 2020).

In this work we propose using correlated equilibrium (CE)
(Aumann, 1974) and coarse correlated equilibrium (CCE) as
a suitable target equilibrium space for n-player, general-sum
games®. The (C)CE solution concept has two main bene-
fits over NE; firstly, it provides a mechanism for players to
correlate their actions to arrive at mutually higher payoffs
and secondly, it is computationally tractable to compute
solutions for n-player, general-sum games (Daskalakis et al.,
2009). We provide a tractable approach to select from the
space of (C)CEs (MG), and a novel training framework that
converges to this solution (JPSRO). The result is a set of
tools for theoretically solving any complete information*
multi-agent problem. These tools are amenable to scaling
approaches; including utilizing reinforcement learning, func-
tion approximation, and online solution solvers, however
we leave this to future work.

In Section 2 we provide background on a) correlated equi-
librium (CE), an important generalization of NE, b) coarse
correlated equilibrium (CCE) (Moulin & Vial, 1978), a sim-
ilar solution concept, and ¢) PSRO, a powerful multi-agent
training algorithm. In Section 3 we propose novel solution
concepts called Maximum Gini (Coarse) Correlated Equilib-
rium (MG(C)CE) and in Section 4 we thoroughly explore its
properties including tractability, scalability, invariance, and

*The equilibrium selection problem is subtle and can have
various interpretations. We describe it fully in Section 4.1 based

	Slide 1: MS&E 233 Game Theory, Data Science and AI Lecture 8
	Slide 2
	Slide 3: Recap: Regret vs Correlated Equilibrium
	Slide 4: Recap: Swaps and Correlated Equilibrium
	Slide 5: Recap: No-Swap Regret!
	Slide 6: Theorem. If all players use no-swap regret algorithms, then the empirical joint distribution converges to a Correlated Equilibrium
	Slide 7: Can we construct algorithms with vanishing no-swap regret?
	Slide 8: No Swap Regret vs No Regret
	Slide 9: No-Regret
	Slide 10: No Swap Regret vs No Regret
	Slide 11: No-Swap Regret
	Slide 12: No-Swap Regret
	Slide 13: No-Swap Regret
	Slide 14: No-Swap Regret
	Slide 15: No Swap Regret vs No Regret
	Slide 16
	Slide 17
	Slide 18
	Slide 19: No-Swap Regret
	Slide 20: No-Swap Regret
	Slide 21: Can we reduce no-swap regret to no-regret?
	Slide 22: No Swap Regret vs No Regret
	Slide 23: Swap to No-Regret Reduction
	Slide 24: Swap to No-Regret Reduction
	Slide 25: Swap to No-Regret Reduction
	Slide 26: Swap to No-Regret Reduction
	Slide 27: Swap to No-Regret Reduction
	Slide 28: No Swap Regret vs No Regret
	Slide 29: Swap to No-Regret Reduction
	Slide 30: Swap to No-Regret Reduction
	Slide 31: Swap to No-Regret Reduction
	Slide 32: Swap to No-Regret Reduction
	Slide 33: Swap to No-Regret Reduction
	Slide 34: Swap to No-Regret Reduction
	Slide 35: Swap to No-Regret Reduction
	Slide 36: Sum: The Reduction Protocol
	Slide 37: Sum: The reduction protocol
	Slide 38: From No-Regret of Algos to No-Swap Regret of Master
	Slide 39: Regret = Loss – Benchmark Loss
	Slide 40: Loss Analysis at Each Step
	Slide 41: Loss Analysis at Each Step
	Slide 42: Recap: Loss Analysis at Each Step
	Slide 43: Competing Benchmark Analysis at Each Step
	Slide 44: Competing Benchmark Analysis at Each Step
	Slide 45: Recap: Benchmark Analysis at Each Step
	Slide 46: Regret = Loss – Benchmark Loss
	Slide 47: Regret Analysis at Each Step
	Slide 48: Regret Analysis at Each Step
	Slide 49: Can we pick q sub t such that: Pr open paren cap M , choose , action , j , close paren almost equal to Pr open paren cap M , choose , algo , cap A. sub j , , close paren
	Slide 50: Choosing distribution over algos
	Slide 51: Does there exist a distribution q sub t such that: sum over i. of Pr open paren cap M , choose , algo , cap A. sub i. , , close paren , dot Pr open second paren cap A. sub i. , , choose , action , j , close second paren equals Pr open paren ca
	Slide 52
	Slide 53: Choosing distribution over algos
	Slide 54: Choosing distribution over algos
	Slide 55: Choosing distribution over algos
	Slide 56
	Slide 57: A Markov Chain over the Algos/Actions
	Slide 58: Stationary Distributions of Markov Chains
	Slide 59: Stationary Distributions of Markov Chains
	Slide 60: Recap: Choosing Distribution over Algos
	Slide 61: Sum: The reduction protocol
	Slide 62: Finding Stationary Distributions
	Slide 63: Overall Algorithm using EXP for each Algo
	Slide 64: Recap: Final Theorem
	Slide 65: Back to Games
	Slide 66: Convergence to Correlated Equilibrium
	Slide 67: Note on Approximation Error
	Slide 68

