MS\&E 233
 Game Theory, Data Science and AI Lecture 9

Vasilis Syrgkanis
Assistant Professor
Management Science and Engineering
(by courtesy) Computer Science and Electrical Engineering Institute for Computational and Mathematical Engineering

Computational Game Theory for Complex Games

- Basics of game theory and zero-sum games (T)
- Basics of online learning theory (T)
- Solving zero-sum games via online learning (T)

HW1: implement simple algorithms to solve zero-sum games

- Applications to ML and AI (T+A)
- HW2: implement boosting as solving a zero-sum game

Basics of extensive-form games

Solving extensive-form games via online learning (T)
HW3: implement agents to solve very simple variants of poker

General games, equilibria and online learning (T)
(3)

Online learning in general games
HW4: implement no-regret algorithms that converge to correlated equilibria in general games

Data Science for Auctions and Mechanisms

- Basics and applications of auction theory (T+A)
- Learning to bid in auctions via online learning (T)
- HW5: implement bandit algorithms to bid in ad auctions
- Optimal auctions and mechanisms (T)

5 - Simple vs optimal mechanisms (T)
. HW6: calculate equilibria in simple auctions, implement simple and optimal auctions, analyze revenue empirically

- Optimizing mechanisms from samples (T)
- Online optimization of auctions and mechanisms (T)
- HW7: implement procedures to learn approximately optimal auctions from historical samples and in an online manner

Further Topics

- Econometrics in games and auctions (T+A)
- A / B testing in markets ($\mathrm{T}+\mathrm{A}$)
- HW8: implement procedure to estimate values from bids in an auction, empirically analyze inaccuracy of A/B tests in markets

Guest Lectures

- Mechanism Design for LLMs, Renato Paes Leme, Google Research
- Auto-bidding in Sponsored Search Auctions, Kshipra Bhawalkar, Google Research

Auctions

White Nike Air Force 1 Low x Supreme Red Box Logo Shoes

$\rightarrow \rightarrow+4$ product ratings

Condition: New with box

Time left: 2d 2h | Thursday, 04:40 PM

Current bid: US \$115.00

[29 bids]

Place bid

\bigcirc Add to watchlist

Shipping: US \$77.28 eBay International Shipping © . See details Located in: New York, United States
This item may be subject to duties and taxes upon delivery
Delivery:
| Estimated between Tue, Jul 25 and Mon, Aug 7 to 90210 Please note the delivery estimate is greater than 17 business days.

Returns: 30 days returns. Buyer pays for return shipping. See details
Payments: PayPal G Pay VISA O ANV DISCOVER

Shop with confidence

eBay Money Back Guarantee
\$ Get the item you ordered or your money back.
Learn more

Seller information

Store (212
100% positive feedback
\bigcirc Save seller
Contact seller
See other items

Auction \& dates

Here you can find the important dates of the current program:

Register by April 30, 2024

We bundle all the registered households and present them as a group to electricity providers. We conduct a reverse auction where electricity providers bid against each other to determine who can provide the lowest offer. Register now.

Auction on April 30, 2024

All interested electricity providers requested to participate in the auction, but only those who met our specific quality requirements made the cut. It's our way of ensuring customers get a smooth and reliable switch. We will be sending out an email about the winning provider and our competitive rates by $\mathbf{7}$ May.

Sign up today

Already registered?

More Information

How it works
Signing up
Auction \& dates
ABOUT US PARTICIPATE STAY INFORMED PLANNING MARKET \& OPERATIONS RULES ISO EN ESPAÑOL

About Us

Participate
Stay Informed
Planning
Market \& Operations

- Market Processes

Congestion revenue rights
Network and Resource
Modeling
Outage Management
Interchange Scheduling
Metering and Telemetry
Settlements
Transmission Operations
Power Contracts Bulletin Board

Reports and Bulletins
Market Monitoring

Market processes and products

The ISO wholesale energy market is comprised of distinct day-ahead and real-time processes. The energy products and services traded in our market allow us to meet reliability needs and serve load. The market also offers services in which qualified entities can buy and sell congestion revenue rights and engage in convergence bidding activities.

Day-ahead market

The day-ahead market is made up of three market processes that run sequentially. First, the ISO runs a market power mitigation test. Bids that fail the test are revised to predetermined limits. Then the integrated forward market establishes the generation needed to meet forecast demand. And last, the residual unit commitment process designates additional power plants that will be needed for the next day and must be ready to generate electricity. Market prices set are based on bids.

A major component of the market is the full network model, which analyzes the active transmission and generation resources to find the least cost energy to serve demand. The model produces prices that show the cost of producing and delivering energy from individual nodes, or locations on the grid where transmission lines and generation interconnect.
Scheduling coordinators (SCs) are pre-qualified entities authorized to transact in the ISO market. The day-ahead market opens for bids and schedules seven days before and closes the day prior to the trade date. Results are published at 1:00 p.m.

Real-time market

The real-time market is a spot market in which utilities can buy power to meet the last few increments of demand no covered in their day ahead schedules. It is also the market that secures energy reserves, held ready and available for ISO use if needed, and the energy needed to regulate transmission line stability.

What is a renewable energy auction?

Renewable Energy Auctions Toolkit

First-ever California offshore wind auction nets \$757 million

DECEMBER 6, 2022 UPDATED DECEMBER 7, 2022

All Images News Videos Shopping : More

About $6,620,000,000$ results (0.44 seconds)

Sponsored

(3) Reddit
https://www.reddifforbusiness.com :

Advertise on Reddit

Reach over 100 K communities - Connect with passionate communities that deliver results for brands across all industries. Create impact \& own top communities in your target category for 24 hours. Try Reddit ads.

Sponsored

- Microsoft

Microsoft htps://about.ads.microsoft.com, advertising, start-now :
Microsoft Advertising ${ }^{\circledR}$ | Get a \$500 Advertising Credit We'll Help You Find Your Customers and Reach Searchers Across The Microsoft Network. Plus, Receive a \$500 Microsoft Advertising Credit When You Spend Just \$250! Free Sign Up.

Sponsored

(c) coseom

COSEOM ${ }^{\text {TM }}$ - Generate Leads For Your Business Using Advanced PPC Strategies. Request A Proposal Today!

Sponsored

(3) Simpli.fi

Simpli.fi | Advertising Success Platform
四 Established in 2010 - Enjoy the perks of multi-channel targeting, measurement, \& reporting with our interface. CTV.

a Amazon Ads

atps://advertising. amazon.com > library , guides, wha...

Online advertising

Online advertising, also known as online marketing, Internet advertising, digital advertising or web advertising, is a form of marketing and advertising that uses the Internet to promote products and services to audiences and platform users. Wikipedia

Efficacy

s online advertising effective? \checkmark

Benefits

Online advertising benefits

Top 10 best

Top 10 best online advertising

How to

How to advertise online

1-48 of over 9,000 results for "game theory"
Popular Shopping Ideas
Shirt
Book

Book

Eligible for Free Shipping

\square Free Shipping by Amazon Get FREE Shipping on eligible orders shipped by Amazon

\square Get It by Tomorrow

Kindle Unlimited
\square Kindle Unlimited Eligible

Department

Books
Mathematics
Business \& Money
Puzzles \& Games
Kindle Store
Science \& Math
Business \& Investing

Customer Reviews

放放 \& U

Book Series

Affordable Original Classics
Shop now >

The Science of Getting Rich

\checkmark prime
Results

The Game of Life \& How to Play It

prime

As a Man Thinketh
651
/prime

Best Seller

THE ART OF

GAME

 THEORY "nixisumisw

WISDOM UNIVERSITY
The Art Of Game Theory: How To Win Life's Ultimate Payoffs Throuah The Craft Of

The Art
Strategy
$\xrightarrow{\text { Barrr J. Nalebleff }}$

The Art of Strategy: A Game Theorist's Guide to Success in Business and Life by Avinash K. Dixit and Barry J.

Game Theory 101: The Complete Textbook
by William Spaniel

Auctions

Summary
General Releases
Archived Auction Releases
About Auctions
Broadcast Incentive Auction
Prohibited Communications

Completed Spectrum Auctions

Auction	Licenses Auctioned	Licenses Won	Net Winning Bids	Rounds	
1	Nationwide Narrowband (PCS) $7 / 25 / 1994-7 / 29 / 1994$	10	10	$\$ 617,006,674$	47
2	Interactive Video and Data Services (IVDS)				
7/28/1994-7/29/1994					
	Map: CMA (MSA \& RSA) (pdf)	594	594	$\$ 213,892,375$	Oral
3	Regional Narrowband (PCS)				Outcry

Auction 97: Advanced Wireless Services (AWS-3)

Go to an auction
Select an Auction
Summary
General Releases
Archived Auction Releases
About Auctions
Broadcast Incentive Auction

Summary	Fact Sheet	Releases	Education
	Results	Ap	
Summary			
November 13, 2014 - January 29, 2015			
Rounds:	341		
Bidding Days:	45		
Qualified Bidders:	70		
Winning Bidders:	31 Bidders won 1611 Licenses		
Licenses Held by FCC:	3		
Gross Bids:	$\$ 44,899,451,600$		
Net Bids:	$\$ 41,329,673,325$		

Home / Economics and Analytics / Auctions

Auction 107: 3.7 GHz Service

Go to an auction
 Select an Auction

Summary
General Releases
Archived Auction Releases
About Auctions

Fact Sheet

Winning Bidders:	21
Qualified Bidders:	57
Licenses Won:	5684
Licenses Held by FCC:	0
Total Licenses:	5684
Net Bids:	$\$ 81,114,481,921$
Gross Bids:	$\$ 81,168,677,645$

Dashboard
Reverse Auction
Auction Summary
Announcements
Initial Commitments
Winning Bids
Bids
Results
Statistics
Stations
Ownership Changes

Forward Auction

Auction Summary
Announcements
Bids
Results
Product Status
Bidder Status
Bidder Market
Stage Transition
Split Transition
Max Reserved Blocks
License Impairment
Markets
Band Plans
Assignment Phase

Incentive Auction Dashboard
Auction concluded. See the Auction 1000 website for more information.

Final Stage Rule

Reverse Auction		
Current Round	Bidding Concluded	
Clearing cost	$\$ 10,054,676,822$	
Qualified Bidders	$>$	705
Winning Bidders	142	
Qualified Stations	1030	
Winning Stations	$>$	175

Forward Auction		
Current Round	-	Bidding Concluded
Gross Proceeds	-	\$19,768,437,378
Net Proceeds	-	\$19,311,003,826
Net Proceeds as of Closing PN	-	\$19,318,157,706
Qualified Bidders	-	62
Winning Bidders	-	50

What is EIP-1559?

Ethereum Improvement Proposal (EIP) 1559 is an upgrade that happened on August 5, 2021 to change how Ethereum calculates and processes network transaction fees (called "gas fees"). The upgrade made Ethereum transactions more efficient by using a system of block-based base fees, and senderspecified max fees, rather than bidding on gas prices to more evenly incentivize miners in periods of high or low network congestion. It was packaged with the London hard fork. Four other EIPs will join EIP 1559 in London.

Transaction Fee Mechanism Design for the Ethereum Blockchain: An Economic Analysis of EIP-1559

Tim Roughgarden
EIP-1559 is a proposal to make several tightly coupled additions to Ethereum's transaction fee mechanism, including variable-size blocks and a burned base fee that rises and falls with demand. This report assesses the game-theoretic strengths and weaknesses of the proposal and explores some alternative designs.

```
Subjects: Computer Science and Game Theory (cs.GT); Distributed, Parallel, and Cluster Computing (cs.DC); Data Structures and Algorithms (cs.DS); Theoretical Economics
    (econ.TH)
Cite as: arXiv:2012.00854 [cs.GT]
    (or arXiv:2012.00854v1 [cs.GT] for this version)
    https://doi.org/10.48550/arXiv.2012.00854 i
```

Auction Basics

Auction Basics

- n bidders are interested in acquiring an item
- Bidder i has value v_{i} for the item
- Value is known only to them (private information)
- If bidder wins the item ($x_{i}=1$) they gain a value v_{i}
- If at the end they are asked to pay a price p_{i} they gain

$$
u_{i}\left(x_{i}, p_{i} ; v_{i}\right)=v_{i} \cdot x_{i}-p_{i}
$$

Sealed-Bid Auctions

- Each bidder privately communicates a bid b_{i} to the auctioneer
- Auctioneer applies an allocation rule x to bid vector $b=\left(b_{1}, \ldots, b_{n}\right)$

$$
x_{i}(b)=\text { Probability bidder } i \text { gets the item, } \quad \sum_{i} x_{i}(b) \leq 1
$$

- Auctioneer applies a price rule p to bid vector $b=\left(b_{1}, \ldots, b_{n}\right)$

$$
p_{i}(b)=\text { Price that bidder } i \text { is asked to pay }
$$

Welfare of the outcome

- The expected welfare of the outcome of an auction is the expected value of the winner!

$$
S W(b)=\sum_{i} x_{i}(b) \cdot v_{i}
$$

- It depends on the allocation rule of the auction and on how bidders bid as a function of their value (which in turn depends on the auction allocation and payment rules)

Revenue of the outcome

- The expected revenue of the outcome of an auction is the expected total payments made to the auctioneer!

$$
\operatorname{Rev}(b)=\sum_{i} p_{i}(b)
$$

Total utility of the outcome

- The expected total utility of the outcome of an auction is the expected total net gains made by the bidders!

$$
U(b)=\sum_{i} v_{i} \cdot x_{i}(b)-p_{i}(b)=S W(b)-\operatorname{Rev}(b)
$$

How would you maximize welfare?

What if we just elicit bids, give it to the highest bidder, and don't charge anything...

First-Price Auction

- Arguably the simplest auction to describe
- Each bidder submits a bid b_{i}
- The highest bidder wins the item (ties broken at random)
- The winner pays their bid
- Utility of a bidder with value v_{i} under a bid profile b :

$$
u_{i}\left(b ; v_{i}\right)=\left(v_{i}-b_{i}\right) \cdot 1\left\{b_{i} \geq \max b_{j}\right\}
$$

How would you bid!

https://www.google.com/search?q=random+number+generator+1+to+10

Google random number generator 1 to $10 \times$, \times

You will be participate in a first price auction for an item, competing with 1 other randomly chosen student in class. Submit your bid!

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

You will be participate in a first price auction for an item, competing with 1 other randomly chosen student in class. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

You will be participate in a first price auction for an item, competing with 1 other randomly chosen student in class. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

You will be participate in a first price auction for an item, competing with 10 other randomly chosen students in class. Submit your bid!

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

You will be participate in a first price auction for an item, competing with 10 other randomly chosen students in class. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

You will be participate in a first price auction for an item, competing with 10 other randomly chosen students in class. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Bayesian Formulation

- Each bidder's value is drawn from some distribution

$$
v_{i} \sim F_{i}, \quad v=\left(v_{1}, \ldots, v_{n}\right) \sim F=F_{1} \times \cdots \times F_{n}
$$

- Bidders submit a bid as a function of their value

$$
s_{i}\left(v_{i}\right)=\text { Bid of player } i \text { when their value is } v_{i}
$$

Bayes-Nash Equilibrium. A bidding strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ is a Bayes-Nash equilibrium, if players cannot gain by deviating in expectation, assuming others follow their strategies

$$
E_{v \sim F}\left[u_{i}\left(s(v) ; v_{i}\right)\right] \geq E_{v \sim F}\left[u_{i}\left(b_{i}^{\prime}, s_{-i}\left(v_{-i}\right) ; v_{i}\right)\right]
$$

Equilibrium of a First Price Auction (FPA)

- Consider a FPA with two bidders
- Each player's value is distributed uniformly in $[0,1]$
- It suffices to look at symmetric bidding strategies

Theorem. The following is a Bayes-Nash equilibrium

$$
s_{i}=\frac{1}{2} v_{i}
$$

Equilibrium of a First Price Auction (FPA)

- Consider a FPA with two bidders
- Each player's value is distributed uniformly in $[0,1]$
- It suffices to look at symmetric bidding strategies

Theorem. The following is a Bayes-Nash equilibrium

$$
s_{i}=\frac{1}{2} v_{i}
$$

Proof. Suppose bidder 2 follows strategy. Bidder 1 utility from $b_{1} \in\left[0, \frac{1}{2}\right]$:

$$
\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>\frac{1}{2} v_{2}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(2 b_{1}>v_{2}\right)=\left(v_{1}-b_{1}\right) 2 b_{1}
$$

Equilibrium of a First Price Auction (FPA)

- Consider a FPA with two bidders
- Each player's value is distributed uniformly in $[0,1]$
- It suffices to look at symmetric bidding strategies

Theorem. The following is a Bayes-Nash equilibrium

$$
s_{i}=\frac{1}{2} v_{i}
$$

Proof. Suppose bidder 2 follows strategy. Bidder 1 utility from $b_{1} \in\left[0, \frac{1}{2}\right]$:

$$
\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>\frac{1}{2} v_{2}\right)=\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(2 b_{1}>v_{2}\right)=\left(v_{1}-b_{1}\right) 2 b_{1}
$$

FOC with respect to $b_{1}: 2 v_{1}-4 b_{1}=0 \Rightarrow b_{1}=v_{1} / 2$!

Equilibrium of a First Price Auction (FPA)

- Consider a FPA with n bidders
- Each player's value is distributed uniformly in $[0,1]$ Theorem. The following is a Bayes-Nash equilibrium

$$
s_{i}=\left(1-\frac{1}{n}\right) v_{i}
$$

Equilibrium of a First Price Auction (FPA)

- Consider a FPA with n bidders
- Each player's value is distributed uniformly in $[0,1]$

Theorem. The following is a Bayes-Nash equilibrium

$$
s_{i}=\left(1-\frac{1}{n}\right) v_{i}
$$

Proof. Suppose others follow strategy. Bidder 1 utility from $b_{1} \in[0,1 / 2]$:

$$
\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>\frac{n-1}{n} \max _{j \neq i} v_{j}\right)=\left(v_{1}-b_{1}\right) \prod_{j \neq i} \operatorname{Pr}\left(\frac{n}{n-1} b_{1}>v_{j}\right)=\left(v_{1}-b_{1}\right)\left(\frac{n}{n-1} b_{1}\right)^{n-1}
$$

Equilibrium of a First Price Auction (FPA)

- Consider a FPA with n bidders
- Each player's value is distributed uniformly in $[0,1]$

Theorem. The following is a Bayes-Nash equilibrium

$$
s_{i}=\left(1-\frac{1}{n}\right) v_{i}
$$

Proof. Suppose others follow strategy. Bidder 1 utility from $b_{1} \in[0,1 / 2]$:

$$
\left(v_{1}-b_{1}\right) \operatorname{Pr}\left(b_{1}>\frac{n-1}{n} \max _{j \neq i} v_{j}\right)=\left(v_{1}-b_{1}\right) \prod_{j \neq i} \operatorname{Pr}\left(\frac{n}{n-1} b_{1}>v_{j}\right)=\left(v_{1}-b_{1}\right)\left(\frac{n}{n-1} b_{1}\right)^{n-1}
$$

FOC with respect to b_{1} :

$$
(n-1) \frac{n}{n-1}\left(\frac{n}{n-1} b_{1}\right)^{n-2}\left(v_{1}-b_{1}\right)-\left(\frac{n}{n-1} b_{1}\right)^{n-1}=0 \Rightarrow n\left(v_{1}-b_{1}\right)-\frac{n}{n-1} b_{1}=0
$$

https://www.google.com/search?q=random+number+generator+60+to+70

You will be participate in a first price auction with a competitor whose value is distributed uniformly in $[0,50]$. Submit your bid!

$1-5$
$6-10$
$11-15$
$16-20$
$21-25$
$26-30$
$31-35$
$36-40$
$41-45$
$46-50$
$51-55$

You will be participate in a first price auction with a competitor whose value is distributed uniformly in $[0,50]$. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

You will be participate in a first price auction with a competitor whose value is distributed uniformly in $[0,50]$. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

https://www.google.com/search?q=random+number+generator+0+to+50

Google

random number generator 0 to 50

All Images Videos Shopping Forums : More

About 68,700,000 results (0.39 seconds)

You will be participate in a first price auction with a competitor whose value is distributed uniformly in [60, 70]. Submit your bid!

$1-5$
$6-10$
$11-15$
$16-20$
$21-25$
$26-30$
$31-35$
$36-40$
$41-45$
$46-50$
$51-55$

You will be participate in a first price auction with a competitor whose value is distributed uniformly in [60, 70]. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

You will be participate in a first price auction with a competitor whose value is distributed uniformly in [60, 70]. Submit your bid!

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Equilibrium with Asymmetric Bidders

Figure 1: Equilibrium 1. The thicker line is buyer 1's bid function.

Inefficiency of First Price Auction

- At equilibrium, with positive probability, lower value player wins!
- Expected welfare of auction, not equal to expected highest value!
- The auction can be "inefficient"!
- How inefficient?

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{\dot{v}_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\begin{gathered}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{gathered}
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{v_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
U_{i}^{\prime} \geq\left(\frac{v_{i}}{2}-\max _{j} b_{j}\right) 1 \text { (highest value) }
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{\dot{v}_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
E\left[U_{i}^{\prime}\right] \geq E\left[\left(\frac{v_{i}}{2}-\max _{j} b_{j}\right) 1(\text { highest value })\right]
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{\dot{v}_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
\quad \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
E\left[U_{i}(b)\right] \geq E\left[U_{i}^{\prime}\right] \geq E\left[\left(\frac{v_{i}}{2}-\max _{j} b_{j}\right) 1(\text { highest value })\right]
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{\dot{v}_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:
$\sum_{i}\left[U_{i}(b)\right] \geq E\left[U_{i}^{\prime}\right] \geq E\left[\left(\frac{v_{i}}{2}-\max _{j} b_{j}\right) 1\right.$ (highest value) $]$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{\dot{v}_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
E[U(b)] \geq E\left[\sum_{i} \frac{v_{i}}{2} 1(\text { highest value })-\max _{j} b_{j}\right]
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{\dot{v}_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
E[U(b)] \geq \frac{1}{2} E\left[\sum_{i} v_{i} 1 \text { (highest value) }\right]-E[\operatorname{Rev}(b)]
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{v_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
E[\operatorname{Rev}(b)+U(b)] \geq \frac{1}{2} E\left[\sum_{i} v_{i} 1 \text { (highest value) }\right]
$$

Efficiency Guarantees

- At any equilibrium, each bidder does not want to deviate to bidding half of their value!
- Either wins with such a bid and gains:

$$
U_{i}^{\prime}=v_{i}-\frac{v_{i}}{2}=\frac{v_{i}}{2}
$$

- Or loses, in which case highest bid is that high:

$$
\max _{j} b_{j} \geq \frac{v_{i}}{2}
$$

$$
\left\{\begin{array}{c}
\max _{j} b_{j}+U_{i}^{\prime} \geq \frac{v_{i}}{2} \\
U_{i}^{\prime} \geq \frac{v_{i}}{2}-\max _{j} b_{j}
\end{array}\right.
$$

- Equilibrium utility is at least this much and always non-negative:

$$
E[S W(b)] \geq \frac{1}{2} E[\text { highest value }]
$$

Sum: First Price

- First Price is arguably the simplest auction rule
- It can be hard to strategize in such an auction
- The auction can lead to inefficient allocations
- Though approximately efficient
- Still used in practice in many settings (e.g. online advertising, government procurement)
- Primarily because it has very transparent rules

Second-Price (Vickrey) Auction

- Each bidder submits a bid b_{i}
- The highest bidder wins the item (ties broken at random)
- The winner pays the second highest bid
- Utility of a bidder with value v_{i} under a bid profile b :

$$
u_{i}\left(b ; v_{i}\right)=\left(v_{i}-b_{(2)}\right) \cdot 1\left\{b_{i} \geq \max b_{j}\right\}
$$

https://www.google.com/search?q=random+number+generator+1+to+10

Google random number generator 1 to $10 \times$, \times

Submit your bid to the second-price auction!

Submit your bid to the second-price auction!

0\% 0 \%

Submit your bid to the second-price auction!

0\% 0 \%

Truthfulness of Second Price Auction

- In a second price auction it is dominant strategy to bid your value
- No matter what the value is and no matter how others behave

Suppose I bid my value. Would I want to deviate?

Truthfulness of Second Price Auction

- In a second price auction it is dominant strategy to bid your value
- No matter what the value is and no matter how others behave

Suppose I bid my value. Would I want to deviate?

- Case 1. My value is below highest other bid
- Only way to change anything is bid above
- But then I get negative utility as I pay more than value

Truthfulness of Second Price Auction

- In a second price auction it is dominant strategy to bid your value
- No matter what the value is and no matter how others behave

Suppose I bid my value. Would I want to deviate?

- Case 2. My value is above highest other bid
- I get non-negative utility
- Only way to change anything is bid below
- But then I get zero utility as I lose

Sum: Second Price

- Second Price is arguably the simplest truthful auction rule
- It is very easy to strategize in such an auction (be truthful)
- Auction always leads to efficient allocations (highest value wins)
- Auction can be run very quickly (computationally efficient)
- Still not always the auction used in many places
- Primarily because it has not very transparent rules
- Susceptible to collusion and manipulations by the auctioneer

Sponsored Search Auctions

Sponsored Search Auctions

digital advertising
\times

- Now we have many items to sell
- Slots on a web impressions
- Higher slots get more clicks!
- Each slot has some probability of click

$$
a_{1}>a_{2}>\cdots>a_{m}
$$

- Bidders have a value-per-click v_{i}

Generalized First Price (GFP) Auction

- Bidders submit a bid-per-click b_{i}
- Slots allocated in decreasing order of bids
- Bidder i is allocated slot $j_{i}(b)$
- Bidder pays their bid when clicked

$$
u_{i}\left(b ; v_{i}\right)=a_{j_{i}(b)} \cdot\left(v_{i}-b_{i}\right)
$$

Generalized First Price (GFP) Auction

Google

digital advertising
All Images News Videos Shopping : More To

- The first auction that was used by Overture in late 90s
- Lead to weird bidding patterns

Generalized Second Price (GSP) Auction

Google

- Bidders submit a bid-per-click b_{i}
- Slots allocated in decreasing order of bids
- Bidder i is allocated slot $j_{i}(b)$
- Bidder pays the next highest bid when clicked

$$
u_{i}\left(b ; v_{i}\right)=a_{j_{i}(b)} \cdot\left(v_{i}-b_{\left(j_{i}(b)+1\right)}\right)
$$

Generalized Second Price (GSP) Auction

Google

- The auction of choice in current sponsored search systems
- Even though still not truthful

About 6,620,000,000 results (0.44 seconds)

Advertise on Reddit
Reach over 100 K communities - Connect with passionate communities that deliver results for brands across all industries. Create impact \& own top communities in your target category for 24 hours. Try Reddit ads.

Sponsored
Microsoft
https://about
0.5

Microsoft Advertising ${ }^{\circledR}$ | Get a \$500 Advertising Credit
We'll Help You Find Your Customers and Reach Searchers Across The Microsoft Network. Plus,
Receive a $\$ 500$ Microsoft Advertising Credit When You Spend Just $\$ 250$! Free Sign Up.
$u_{1}^{\prime}=.5 \cdot(7-2)=2.5$

Generalized First Price（GFP）Auction with Many Bells and Whistles

－Bidders submit a bid－per－click b_{i}
－Each bidder assigned a quality score s_{i}
－Slots allocated in decreasing order of quality weighted bids $s_{i} \cdot b_{i}$
－Bidder i is allocated slot $j_{i}(b)$
－Slots have bidder－specific probability of click $a_{i, j_{i}(b)}$
－Each bidder pays，per－click，the highest bid that still gives them the same slot

$$
p_{i}(b)=\frac{s_{\left(j_{i}(b)+1\right)} \cdot b_{\left(j_{i}(b)+1\right)}}{s_{i}}
$$

About $6,620,000,000$ results（ 0.44 seconds）

Sponsored

（3） $\begin{aligned} & \text { Reddit } \\ & \text { https：／／w }\end{aligned}$

Advertise on Reddit
Reach over 100 K communities－Connect with passionate communities that deliver results for brands across all industries．Create impact \＆own top communities in your target category for 24 hours．Try Reddit ads．

```
Sponsored
```

```
*) Microsoft
```

*) Microsoft
Microsoft Advertising® | Get a \$500 Advertising Credit
We'll Help You Find Your Customers and Reach Searchers Across The Microsoft Network. Plus,
Receive a \$500 Microsoft Advertising Credit When You Spend Just \$250! Free Sign Up.

```

Sponsored
```

(c) coseom
Pay Per Click Company
COSEOM }\mp@subsup{}{}{TM}\mathrm{ - Generate Leads For Your Business Using Advanced PPC Strategies. Request A
Proposal Today!

```

Sponsored

\section*{（\＄3） \(\begin{aligned} & \text { Simpli．fi } \\ & \text { https：／／www．simpli．fi }\end{aligned}\)}

Simpli．fi｜Advertising Success Platform

Bid on some


keyword

\section*{Simple learning dynamics are good predictors}

(b) Stepahead Predictions```

