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1 Estimating Value Distribution from Equilibrium Bids

We will look at the case of a single-item First Price Auction. Our goal will be to estimate the distribution
of valuations of the players, by observing samples of bid vectors of players from multiple first price
auctions.

In particular, we consider the case where we have a data set of m First Price Auctions, each among
n bidders. The value vti of each bidder i in each first price auction t, is drawn i.i.d. from the same
distribution with CDF F (·) and density f(·) and support [0, v̄].

We will not observe these values vti , but we will instead be observing the bid of each player bti.
Moreover, we will be assuming that player’s play according to a symmetric Bayes-Nash equilibrium
that corresponds to the value distribution F . In other words, the players know the distribution F and
they have computed a symmetric Bayes-Nash equilibrium of a single item first price auction for that
distribution. Such a Bayes-Nash equilibrium (BNE) is mapping from a value v ∈ [0, v̄] to a bid b(v),
such that for all b′i ∈ [0, v̄]:

Ev−i
[ui(b(v1), . . . , b(vn); vi)] ≥ Ev−i

[ui(b
′
i, b−i(v−i); vi)] (1)

Thus what we observe is bti = b(vti) for each player i and auction t. Our goal is to compute estimates

F̂ and f̂ of F and f from observations of such bid vectors.

2 Identification: Infinite Data Limit

We first show that if we had an infinite amount of data, then we can reverse engineer and compute the
distribution of values from simply observing the distribution of bids. This task is called the identification
problem, where we ignore sampling errors in the data and simply look at the infinite data limit, typically
referred to as the population limit. This problem is sort of a sanity check, that at least if you didn’t
have a sampling error, the problem of computing the quantity of interest (here the value distribution)
is feasible.

To address this problem we will make some regularity assumptions about our distribution of values:

Assumption 1. The CDF function F is strictly increasing, continuous and differentiable in the support
[0, v̄]. Hence, the density is always lower bounded by some strictly positive constant in the support.

We first refer to a recent result of [4] that shows that in a single item first price auction with a
random tie-breaking rule, there only exist symmetric Bayes-Nash equilibria, and moreover there is only
a unique Bayes-Nash equilibrium, under which the bid of a player is a strictly increasing function of his
value.

Lemma 1 ([4]). Under assumption 1, the equilibrium of the first price auction is unique, symmetric
and b(·) is strictly increasing, continuous and differentiable. Moreover, b(0) = 0 and b(v̄) = b̄ for some
b̄ ≤ v̄, and b(v) is defined by Myerson’s payment identity:

b(v) = v − 1

F (v)n−1

∫ v

0

F (z)n−1dz (2)
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Given this basic theorem, we will now try to understand the relation between bids and values, by
analyzing the first order conditions of a symmetric BNE. Let b(·) be the BNE bidding function. Moreover,
let G(·) be the CDF of the bid distribution generated by drawing a value v from F and then mapping
it to b(v). Also let g(·) be the density of G. Observe that by the properties of b(·), G is continuous and
admits a density.

Since a player is playing according to an equilibrium we can connect his bid with his value by the
best-response condition. If a player submits a bid b, his probability of winning is the probability that all
other players submit a value below b. The latter happens with probability G(b)n−1. Thus his expected
utility is:

u(b; v) = (v − b) ·G(b)n−1 (3)

Since a player’s bid b(v) maximizes his utility, it must be that the derivative of the above expression is
zero at b = b(v). The derivative of the latter with respect to b is:

∂u(b; v)

∂b
= −G(b)n−1 + (v − b)(n− 1)G(b)n−2g(b) (4)

Since it must be equal to zero at b = b(v), we get:

v − b(v) =
G(b(v))

(n− 1)g(b(v))
(5)

Alternatively, if we denote with ξ(·) = b−1(·), then by doing a change of variables in the above equation,
we have:

ξ(b) = b+
G(b)

(n− 1)g(b)
(6)

Moreover, since b(·) is strictly increasing, continuous and differentiable, we have that ξ(·) is also strictly
increasing, continuous and differentiable.

Thus if we knew the distribution of bids, i.e. G(·) and g(·), then given the bid of a player b we can
reverse engineer his value ξ(b). Thus we can conclude, that we can identify the distribution of values,
since:

F (v) = Pr[V ≤ v] = Pr[b(V ) ≤ b(v)] = G(b(v)) = G(ξ−1(v)) (7)

In other words, if we want to estimate the probability mass that falls below a number v, we can do it by
first computing the equilibrium bid ξ−1(v), that corresponds to this value. This is computable when one
has access to G and g, by Equation (6). Then we compute how much mass does G put below ξ−1(v).
The latter is also computable if we are given access to G.

The key property that enabled us to do the latter identification, was that the best response condition
of a player only depends on his underlying value and on the behavior of other bidders, where the latter
behavior is also observable to the econometrician. This enables us to estimate the value of the player,
given access to the behavior of other players. This is a property that is useful in estimation in many other
games of incomplete information and not only auctions (see for instance [2] for a survey on identification
and estimation in games of incomplete information).

3 Estimation: Finite Data

We now turn to the finite data case and show how we can estimate the distribution of values. The
identification strategy of the previous section reveals an easy two-stage approach for estimating the
distribution of values. In what we do below we don’t really use the auction from which the bid of a
player came from, just the fact that it was an equilibrium bid from an n-bidder auction. Thus for
simplicity we assume we have access to m samples of bids b1, . . . , bm drawn i.i.d. from the equilibrium
bid distribution G, and we want to estimate F and f .

If we knew the true G and g, then given samples bt of bids of each player, we can compute samples vt

of values, drawn from F (using Equation (6)). Then we would be back to the simple setting of estimating
the CDF and PDF of a distribution when having access to i.i.d. samples from that distribution. Since
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we have i.i.d. samples from G we can estimate G and g up to a reasonable accuracy. Thus we can
compute values v̂t that are almost equal to vt, by using an estimated version of Equation (6). Hence,
this leads to the following two-stage strategy:

1. (First stage.) Compute estimates Ĝ and ĝ of the distribution of bids.

2. (Second stage.) Invert each bid to compute the corresponding value, from an estimated analogue
of Equation (6), i.e. :

v̂t = ξ̂(bt) ≡ bt +
Ĝ(bt)

(n− 1)ĝ(bt)
(8)

Estimate F̂ and f̂ , based on values v̂t, treating them as if they were the true values, hence, i.i.d.
samples from F .

For the estimation of CDFs, Ĝ and F̂ , we will use the empirical CDF, i.e.:

Ĝ(b) =
1

m

m∑
t=1

1{bt ≤ b} (9)

F̂ (v) =
1

m

m∑
t=1

1{v̂t ≤ v} (10)

For the estimation of the densities ĝ and f̂ we will use Kernel density estimation:

ĝ(b) =
1

m

m∑
t=1

1

hg
Kg

(
bt − b
hg

)
(11)

f̂(b) =
1

m

m∑
t=1

1

hf
Kf

(
v̂t − v
hf

)
(12)

where Kf and Kg is some Kernel function. This could be for instance the uniform Kernel: Ku(z) =
1
21{|z| ≤ 1} or the Epanechnikov Kernel Ke(z) = 3

4 (1−z2)1{|z| ≤ 1}. Since we will be using Kernel den-
sity estimation we will need to make some Lipschitzness assumptions about our densities. In particular,
we will assume:

Assumption 2. The density of the value distribution f(·) is λ-Lipschitz.

For the remainder of the section we will only be using the very simple uniform Kernel and give finite
sample uniform error bounds of our estimate f̂ of the PDF of values. Similar analysis can give bounds
on the estimate F̂ , which is an easier case. Our goal will be to show the following guarantee: 1

Theorem 1. Under assumptions 1 and 2, and with Kf ,Kg being the uniform Kernel, and hg =
O(m−1/4) and hf = O(m−1/8), for any fixed interior sub-interval Cv(ε) = [ε, v̄ − ε] of the support
of F , we have: if m is larger than some constant, with probability 1− δ

sup
v∈Cv(ε)

|f̂(v)− f(v)| ≤ O

((
log(1/δ)

m

)1/8
)

(13)

3.1 Analyzing First Stage Errors

We start by analyzing the uniform errors of our first stage estimates, Ĝ and ĝ. Since we are using the
empirical CDF for Ĝ, by the DKW in equality that we show in Lecture 17 we have:

1If one makes the stronger assumption that f(·) has R + 1 continuous bounded derivatives, then a faster convergence

rate of O

((
log(m)

m

)R/(2R+3)
)
, can be achieved, via a tighter analysis (see [5]). For instance, for R = 1 (which is a slightly

stronger condition than our Lipschitzness condition), the latter gives a rate with 1/5 in the exponent rather than 1/8.
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Lemma 2. With probability 1− δ:

sup
b∈B
|Ĝ(b)−G(b)| ≤ O

(√
log(1/δ)

m

)
(14)

Thus it remains to show the properties of ĝ. We start by stating that under assumptions 1 and 2, the
PDF ĝ must also be Lipschitz continuous and must also be bounded away from 0 in any fixed interior
subset of the support of distribution G.

Lemma 3. Under Assumptions 1 and 2, the CDF G is λG-Lipschitz in [0, b̄] and the density g is bounded
away from 0 in its support and is λg-Lipschitz for any fixed interior subset Cb(ε) = [ε, b̄−ε] of its support.

Proof. We give a sketch of the proof. Since the equilibrium is symmetric and strictly increasing,
we know that the expected allocation of a player with value v is x(v) = F (v)n−1. Thus by Myerson’s
payment identity:

b(v) · x(v) = p(v) = v · x(v)−
∫ v

0

x(z)dz ⇔ b(v) = v − 1

F (v)n−1

∫ v

0

F (z)n−1dz (15)

Observe that since F is differentiable b(·) is also differentiable. Hence, its inverse ξ(·) is also differentiable
and ξ′(b) = 1

b′(ξ(b)) . Moreover, since it is strictly increasing, b′(v) ≥ δ, hence, it’s inverse is Lipschitz

(since ξ′(b) ≤ 1/δ). Since G(b) = F (ξ(b)), and both F and ξ are Lipschitz, G is also Lipschitz. Moreover,
since F and ξ are both strictly increasing we also get that G is strictly increasing, and hence g is bounded

away from 0. Now by re-arranging equation (6), we can write: g(b) = G(b)
(n−1)(ξ(b)−b) . Since G is Lipschitz,

ξ is Lipschitz and ξ(b)− b = 1
F (ξ(b))n−1

∫ ξ(b)
0

F (z)n−1dz is bounded away from zero in Cb(ε), we also get

that g is Lipschitz. �
We are now ready to show that for any interior of the support [0, b̄], the Kernel density estimator,

with the uniform Kernel has small error.

Lemma 4. For any interior Cb(2ε), and for the uniform Kernel, with bandwidth hg ≤ ε, we have that:
with probability 1− δ

sup
b∈Cb(2ε)

|ĝ(b)− g(b)| ≤ λghg +
1

hg

O(
√

log(1/δ))√
m

(16)

Hence, for hg = O(m−1/4) and for m ≥ 1/ε4, we have that the latter bound is at most O

((
log(1/δ)

m

)1/4
)

.

Proof. Since the Kernel density estimator at any point in Cb(2ε) uses only estimates from a region
that is in Cb(ε) and since g is λg-Lipschitz in Cb(ε), we get the Theorem by the analysis of the uniform
Kernel for Lipschitz densities that we did in Lecture 19. �

3.2 Value Inversion and Inversion Error

Based on the first stage errors, we can now upper bound the error in our second stage estimation of the
value of each bidder, i.e. bounding |v̂t − vt|. We first provide a uniform error bound between ξ and ξ̂.

Lemma 5. For any fixed interior Cb(2ε), for ε > 0, and for m larger than some constant, we have that:

sup
b∈Cb(2ε)

|ξ̂(b)− ξ(b)| ≤ O

((
log(1/δ)

m

)1/4
)

(17)
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Proof. By expanding ξ̂ and ξ, we have that for any v ∈ Cb(2ε):

|ξ̂(b)− ξ(b)| =

∣∣∣∣∣b+
Ĝ(b)

(n− 1)ĝ(b)
− b− G(b)

(n− 1)g(b)

∣∣∣∣∣ =

∣∣∣∣∣ Ĝ(b)

(n− 1)ĝ(b)
− G(b)

(n− 1)g(b)

∣∣∣∣∣
=

1

ĝ(b) · g(b)

∣∣∣Ĝ(b)g(b)−G(b)ĝ(b)
∣∣∣

=
1

ĝ(b) · g(b)

∣∣∣(Ĝ(b)−G(b))g(b) +G(b)(g(b)− ĝ(b))
∣∣∣

≤ 1

ĝ(b) · g(b)

(∣∣∣Ĝ(b)−G(b)
∣∣∣ g(b) +G(b) |g(b)− ĝ(b))|

)
Since, g(b) is bounded away from 0 in Cb(2ε), and since ĝ(b) converges to g(b), for m larger than some con-
stant, we have that ĝ is also bounded away from 0. Thus the multiplier of the above quantity is bounded

above by some constant. Then the quantity in the parenthesis is at mostO
(
|Ĝ(b)−G(b)|+ |ĝ(b)− g(b)|

)
.

By Lemmas 3 and 4, we then get the result. �

Value Trimming. Since, Cb(2ε) is the map of an interior set Cv(ζ), for some constant ζ (with the
property that ζ → 0 as ε→ 0), we get that for any fixed interior Cv(ζ), if m is larger than some constant,
then with probability 1− δ:

sup
vt∈Cv(ζ)

|v̂t − vt| ≤ O

((
log(1/δ)

m

)1/4
)

(18)

However, there is a small problem, if we apply the inversion formula on all the bids, then we are also
applying it to bids that do not fall in the interior Cb(2ε). Since, we have no guarantees about the behavior

of ξ̂ in that region, it might be that the inversion formula for these bids, will create inverted values v̂t
that are falsely inside the interior Cv(ζ). Thus we will then falsely count those values in our second stage
PDF and CDF estimation. To avoid such spurious insertions of values from such pathological bids that
are close to the upper and lower bound of the distribution, we will simply ignore these bids and throw
them away.

For the lower end, we simply throw away bids that are smaller than some constant 2ε. For the upper
bound region, there is the technicality, that we don’t know the upper bound b̄ of the distribution G. We
will approximate b̄ with the maximum observed bid in the data. Observe, that since g(·) is bounded
away from zero, for any small interval [v̄−κ, v̄], the probability that a bid falls in that interval is bounded
away from 0 by some constant p. Thus the probability that none of the m bids fall in that region is at

most (1− p)m ≤ e−pm. For m ≥ log(1/δ)
p , the latter bad event probability is at most δ. Thus with high

probability we will have approximated b̄ to within an accuracy κ.
Hence, if we use the inversion formula:

v̂t =

{
ξ̂(bt) if bt ∈

[
2ε,maxτ∈[m]{bτ} − 2ε

]
∞ o.w.

(19)

Then we have the guarantee, that for some small ζ(which goes to 0 as ε and κ go to zero), all bounded
inferred values v̂t are close to their true values and bounded inferred values correspond to all true values
in Cv(ζ).

3.3 Value CDF and PDF Estimation from Inverted Values

Finally, we are ready to show that the small error in the value inversion, cannot lead to a too large of
an error in our estimate of the CDF and PDF based on these inverted values v̂t.

We show this for the case of the PDF estimation, f̂ . We will bound the error by showing that the
estimated PDF is close to the un-implementable ideal PDF we would have created if we had the true
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values vt. Then the result will follow by triangle inequality and the fact that the ideal PDF is uniformly
close to the true PDF, since f(·) is Lipschitz, by assumption.

More formally, let:

f̃h(v) =
1

m

m∑
t=1

1

h
Ku

(
v − vt
h

)
(20)

be the ideal PDF Kernel estimator, where we are using the true values vt rather than the estimated
values v̂t, and we use the uniform Kernel with some bandwidth h. We start with a simple Lemma, whose
proof is identical to the proof of Lemma 4.

Lemma 6. Under Assumption 2, for any interior subset Cv(ζ) of the support and for any h ≤ ζ with
probability 1− δ:

sup
v∈Cv(ζ)

|f̃h(v)− f(v)| ≤ λfh+
1

h

O(log(1/δ))√
m

(21)

Now we are ready to prove our main result.

Lemma 7. For any fixed interior set Cv(2ζ), where ζ is as defined in the previous section, and if we
use the uniform Kernel with hf ≤ ζ and hf = O(m−1/8) and hg = O(m−1/4), then for m larger than
some constant, with probability at least 1− δ:

sup
v∈Cv(2ζ)

|f̂(v)− f(v)| ≤ O

((
log(1/δ)

m

)1/8
)

(22)

Proof. Consider, any value v ∈ Cv(2ζ). We compare f̂(v) with f̃h(v) for some h and then apply
Lemma 6. We deal with the upper and lower bound on the error separately.

Upper bound on error. By trimming, we know that all the finite values that we estimated are within

a ∆ = O

((
log(1/δ)

m

)1/4
)

error from their true values. Thus with probability 1− δ for any v ∈ Cv(2ζ):

f̂(v) =
1

m

m∑
t=1

1

hf
1{|v − v̂t| ≤ hf} ≤

1

m

m∑
t=1

1

hf
1{|v − vt| ≤ hf + ∆}

Since v̂t is in a region of hf around v only if vt is in a region hf + ∆ around v. By multiplying and
dividing by hf + ∆, and applying Lemma 6 we have, with probability 1− δ for any v ∈ Cv(2ζ):

f̂(v) ≤ hf + ∆

hf

1

m

m∑
t=1

1

hf + ∆
1{|v − vt| ≤ hf + ∆}

=
hf + ∆

hf
f̃hf+∆(v) (by definition of f̃h(v))

≤ hf + ∆

hf

(
f(v) + λf (hf + ∆) +

1

hf + ∆

O(log(1/δ))√
m

)
(by Lemma 6)

≤
(

1 +
∆

hf

)
·
(
f(v) + λf (hf + ∆) +

1

hf + ∆

O(log(1/δ))√
m

)
By picking hf = m−1/8, we have, that ∆

hf
= O

((
log(1/δ
m

)1/8
)

and that:

λf (hf + ∆) +
1

hf + ∆

O(log(1/δ))√
m

≤ O

((
log(1/δ

m

)1/8
)

(23)

Since f(v) is also upper bounded by a constant, we get that:

f̂(v) ≤ f(v) +O

((
log(1/δ

m

)1/8
)

(24)
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Lower bound on error. We will use the same setting of hf = m−1/8 and we will show that the
density at any point v ∈ Cv(2ζ) is lower bounded by the true density, less an error rate of O(m−1/8). By
definition of ζ, we know that all values vt ∈ C(ζ), are estimated to within an accuracy of ∆. Moreover,
since ζ ≥ hf ≥ ∆, for any v ∈ Cv(2ζ), and for any vt, such that |v − vt| ≤ hf −∆, it must also be that
|v− v̂t| ≤ hf . The reason is that such a vt must fall in Cv(ζ) and therefore, it must be approximated to
within a ∆ accuracy with probability 1− δ.

Thus with probability 1− δ for any v ∈ Cv(2ζ):

f̂(v) =
1

m

m∑
t=1

1

hf
1{|v − v̂t| ≤ hf} ≥

1

m

m∑
t=1

1

hf
1{|v − vt| ≤ hf −∆}

=
hf −∆

hf

1

m

m∑
t=1

1

hf −∆
1{|v − vt| ≤ hf −∆}

=
hf −∆

hf
f̃hf−∆(v) (by definition of f̃h(v))

≥ hf −∆

hf

(
f(v)− λf (hf −∆)− 1

hf −∆

O(log(1/δ))√
m

)
(by Lemma 6)

≥
(

1− ∆

hf

)
·
(
f(v)− λf (hf −∆)− 1

hf −∆

O(log(1/δ))√
m

)
For hf = O(m−1/8, we get that:

f̂(v) ≥ f(v)−O

((
log(1/δ

m

)1/8
)

(25)

�

4 Historical Remarks

The result presented in this note, is based on the seminal work of [5] who proposed the two-stage
estimation approach for non-parametric inference in first price auctions. A plethora of work has built on
top of this work, generalizing to many settings beyond independent valuations and first price auctions.
We refer to the recent survey book of [6].

More generally estimation in games has been a vibrant line of work in the past two decades. We refer
the reader to the following recent surveys: [3, 1, 2]. You can also find many references and an overview
of the literature in the following three-part presentation of a mini-course in Econometric Theory for
Games [7, 8, 9].
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