import freqtrade.vendor.qtpylib.indicators as qtpylib import numpy as np import talib.abstract as ta from freqtrade.strategy import IStrategy, informative from freqtrade.strategy import (merge_informative_pair, DecimalParameter, IntParameter, BooleanParameter, CategoricalParameter, stoploss_from_open) from pandas import DataFrame, Series from typing import Dict, List, Optional, Tuple from functools import reduce from freqtrade.persistence import Trade from datetime import datetime, timedelta, timezone from freqtrade.exchange import timeframe_to_prev_date from technical.indicators import zema, ichimoku import talib.abstract as ta import math import pandas_ta as pta from finta import TA as fta import logging from logging import FATAL import time import requests logger = logging.getLogger(__name__) ########################################################################################################### ## ## ## Strategy for Freqtrade https://github.com/freqtrade/freqtrade ## ## ## ## ## ########################################################################################################### ## DONATIONS for stash86 ## ## ## ## Real-life money : https://patreon.com/stash86 ## ## BTC: 1FghqtgGLpD9F21BNDMje4iyj4cSzVPZPb ## ## ETH (ERC20): 0x689c16451889824d3d3a79ad6fc867909dc8874d ## ## BEP20/BSC (USDT): 0x689c16451889824d3d3a79ad6fc867909dc8874d ## ## TRC20/TRON (USDT): TKMuRHJppPok3ik2siZp2SYRdBdfdSWxrt ## ## ## ## REFERRAL LINKS ## ## ## ## Binance: https://accounts.binance.com/en/register?ref=143744527 ## ## Kucoin: https://www.kucoin.com/ucenter/signup?rcode=r3BWY2T ## ## Vultr (you get $100 credit that expires in 14 days) : https://www.vultr.com/?ref=8944192-8H ## ########################################################################################################### def tv_wma(df, length = 9) -> DataFrame: """ Source: Tradingview "Moving Average Weighted" Pinescript Author: Unknown Args : dataframe : Pandas Dataframe length : WMA length field : Field to use for the calculation Returns : dataframe : Pandas DataFrame with new columns 'tv_wma' """ norm = 0 sum = 0 for i in range(1, length - 1): weight = (length - i) * length norm = norm + weight sum = sum + df.shift(i) * weight tv_wma = (sum / norm) if norm > 0 else 0 return tv_wma def tv_hma(dataframe, length = 9) -> DataFrame: """ Source: Tradingview "Hull Moving Average" Pinescript Author: Unknown Args : dataframe : Pandas Dataframe length : HMA length field : Field to use for the calculation Returns : dataframe : Pandas DataFrame with new columns 'tv_hma' """ h = 2 * tv_wma(dataframe['close'], math.floor(length / 2)) - tv_wma(dataframe['close'], length) tv_hma = tv_wma(h, math.floor(math.sqrt(length))) # dataframe.drop("h", inplace=True, axis=1) return tv_hma def rvol(dataframe, window=24): av = ta.SMA(dataframe['volume'], timeperiod=int(window)) rvol = dataframe['volume'] / av return rvol class Cenderawasih_2 (IStrategy): def version(self) -> str: return "v2" INTERFACE_VERSION = 3 # ROI table: minimal_roi = { "0": 100.0 } # Buy hyperspace params: buy_params = { "base_nb_candles_buy_hma": 37, "low_offset_hma": 0.915, "base_nb_candles_buy_ema": 32, "low_offset_ema": 1.01, "buy_length_volatility": 10, "buy_max_volatility": 1.62, "base_nb_candles_buy_ema2": 36, "low_offset_ema2": 0.999, "base_nb_candles_buy_vwma": 54, "low_offset_vwma": 0.988, "buy_rsi_1": 65, "buy_rsi_fast_1": 39, "rsi_buy_ema": 56, "buy_length_volume": 26, "buy_volume_volatility": 2.73, } # Sell hyperspace params: sell_params = { "base_nb_candles_sell_hma": 87, "high_offset_hma": 0.933, "base_nb_candles_sell_ema": 16, "high_offset_ema": 0.97, "base_nb_candles_sell_ema2": 70, "high_offset_ema2": 0.989, "base_nb_candles_sell_ema3": 82, "high_offset_ema3": 0.927, } # Protection hyperspace params: protection_params = { "cooldown_lookback": 2, # value loaded from strategy } cooldown_lookback = IntParameter(2, 48, default=2, space="protection", optimize=False) @property def protections(self): prot = [] prot.append({ "method": "CooldownPeriod", "stop_duration_candles": self.cooldown_lookback.value }) return prot dummy = IntParameter(20, 70, default=61, space='buy', optimize=False) rsi_buy_ema = IntParameter(20, 70, default=61, space='buy', optimize=False) buy_rsi_1 = IntParameter(0, 70, default=50, space='buy', optimize=False) buy_rsi_fast_1 = IntParameter(0, 70, default=50, space='buy', optimize=False) optimize_buy_hma = False base_nb_candles_buy_hma = IntParameter(5, 100, default=6, space='buy', optimize=optimize_buy_hma) low_offset_hma = DecimalParameter(0.9, 0.99, default=0.95, space='buy', optimize=optimize_buy_hma) optimize_buy_ema = False base_nb_candles_buy_ema = IntParameter(5, 100, default=6, space='buy', optimize=optimize_buy_ema) low_offset_ema = DecimalParameter(0.9, 1.1, default=1, space='buy', optimize=optimize_buy_ema) optimize_buy_vwma = False base_nb_candles_buy_vwma = IntParameter(5, 80, default=6, space='buy', optimize=optimize_buy_vwma) low_offset_vwma = DecimalParameter(0.9, 0.99, default=0.9, space='buy', optimize=optimize_buy_vwma) optimize_buy_volatility = False buy_length_volatility = IntParameter(10, 200, default=72, space='buy', optimize=optimize_buy_volatility) buy_min_volatility = DecimalParameter(0, 0.5, default=0, decimals = 2, space='buy', optimize=False) buy_max_volatility = DecimalParameter(0.5, 2, default=1, decimals = 2, space='buy', optimize=optimize_buy_volatility) optimize_buy_volume = False buy_length_volume = IntParameter(5, 100, default=6, optimize=optimize_buy_volume) buy_volume_volatility = DecimalParameter(0.5, 3, default=1, decimals=2, optimize=optimize_buy_volume) # Sell optimize_sell_hma = False base_nb_candles_sell_hma = IntParameter(5, 100, default=6, space='sell', optimize=optimize_sell_hma) high_offset_hma = DecimalParameter(0.9, 1.1, default=0.95, space='sell', optimize=optimize_sell_hma) optimize_sell_ema = False base_nb_candles_sell_ema = IntParameter(5, 100, default=6, space='sell', optimize=optimize_sell_ema) high_offset_ema = DecimalParameter(0.9, 1.1, default=0.95, space='sell', optimize=optimize_sell_ema) optimize_sell_ema2 = False base_nb_candles_sell_ema2 = IntParameter(5, 100, default=6, space='sell', optimize=optimize_sell_ema2) high_offset_ema2 = DecimalParameter(0.9, 1.1, default=0.95, space='sell', optimize=optimize_sell_ema2) optimize_sell_ema3 = False base_nb_candles_sell_ema3 = IntParameter(5, 100, default=6, space='sell', optimize=optimize_sell_ema3) high_offset_ema3 = DecimalParameter(0.9, 1.1, default=0.95, space='sell', optimize=optimize_sell_ema3) # Stoploss: stoploss = -0.098 # Trailing stop: trailing_stop = False trailing_stop_positive = 0.001 trailing_stop_positive_offset = 0.01 trailing_only_offset_is_reached = True # Sell signal use_exit_signal = True exit_profit_only = False exit_profit_offset = 0.01 ignore_roi_if_entry_signal = False timeframe = '5m' process_only_new_candles = True startup_candle_count = 999 age_filter = 30 @informative('1d') def populate_indicators_1d(self, dataframe: DataFrame, metadata: dict) -> DataFrame: dataframe['age_filter_ok'] = (dataframe['volume'].rolling(window=self.age_filter, min_periods=self.age_filter).min() > 0) return dataframe def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # RSI dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14) dataframe['rsi_fast'] = ta.RSI(dataframe, timeperiod=4) dataframe['sqzmi'] = fta.SQZMI(dataframe) dataframe['live_data_ok'] = (dataframe['volume'].rolling(window=72, min_periods=72).min() > 0) if not self.optimize_buy_hma: dataframe['hma_offset_buy'] = tv_hma(dataframe, int(self.base_nb_candles_buy_hma.value)) *self.low_offset_hma.value if not self.optimize_buy_ema: dataframe['ema_offset_buy'] = ta.EMA(dataframe, int(self.base_nb_candles_buy_ema.value)) *self.low_offset_ema.value if not self.optimize_buy_vwma: dataframe['vwma_offset_buy'] = pta.vwma(dataframe["close"], dataframe["volume"], int(self.base_nb_candles_buy_vwma.value)) *self.low_offset_vwma.value if not self.optimize_buy_volatility: df_std = dataframe['close'].rolling(int(self.buy_length_volatility.value)).std() dataframe["volatility"] = (df_std > self.buy_min_volatility.value) & (df_std < self.buy_max_volatility.value) if not self.optimize_buy_volume: df_rvol = rvol(dataframe, int(self.buy_length_volume.value)) dataframe['volume_volatility'] = (df_rvol < self.buy_volume_volatility.value) if not self.optimize_sell_hma: dataframe['hma_offset_sell'] = tv_hma(dataframe, int(self.base_nb_candles_sell_hma.value)) *self.high_offset_hma.value if not self.optimize_sell_ema: dataframe['ema_offset_sell'] = ta.EMA(dataframe, int(self.base_nb_candles_sell_ema.value)) *self.high_offset_ema.value if not self.optimize_sell_ema2: dataframe['ema_offset_sell2'] = ta.EMA(dataframe, int(self.base_nb_candles_sell_ema2.value)) *self.high_offset_ema2.value if not self.optimize_sell_ema3: dataframe['ema_offset_sell3'] = ta.EMA(dataframe, int(self.base_nb_candles_sell_ema3.value)) *self.high_offset_ema3.value return dataframe def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: conditions = [] if self.optimize_buy_hma: dataframe['hma_offset_buy'] = tv_hma(dataframe, int(self.base_nb_candles_buy_hma.value)) *self.low_offset_hma.value if self.optimize_buy_ema: dataframe['ema_offset_buy'] = ta.EMA(dataframe, int(self.base_nb_candles_buy_ema.value)) *self.low_offset_ema.value if self.optimize_buy_vwma: dataframe['vwma_offset_buy'] = pta.vwma(dataframe["close"], dataframe["volume"], int(self.base_nb_candles_buy_vwma.value)) *self.low_offset_vwma.value if self.optimize_buy_volatility: df_std = dataframe['close'].rolling(int(self.buy_length_volatility.value)).std() dataframe["volatility"] = (df_std > self.buy_min_volatility.value) & (df_std < self.buy_max_volatility.value) if self.optimize_buy_volume: df_rvol = rvol(dataframe, int(self.buy_length_volume.value)) dataframe['volume_volatility'] = (df_rvol < self.buy_volume_volatility.value) dataframe.loc[:, 'enter_tag'] = '' dataframe.loc[:, 'buy'] = 0 add_check = ( dataframe['live_data_ok'] & dataframe['age_filter_ok_1d'] & dataframe["volatility"] & dataframe['volume_volatility'] & (dataframe['close'] < dataframe['ema_offset_buy']) & (dataframe['volume'] > 0) & (dataframe['sqzmi'] == False) & (dataframe['rsi_fast'] < self.buy_rsi_fast_1.value) & (dataframe['rsi'] < self.buy_rsi_1.value) ) buy_offset_hma = ( ((dataframe['close'] < dataframe['hma_offset_buy'])) ) dataframe.loc[buy_offset_hma, 'enter_tag'] += 'hma ' conditions.append(buy_offset_hma) buy_offset_vwma = ( ((dataframe['close'] < dataframe['vwma_offset_buy'])) ) dataframe.loc[buy_offset_vwma, 'enter_tag'] += 'vwma ' conditions.append(buy_offset_vwma) if conditions: dataframe.loc[ reduce(lambda x, y: x | y, conditions) & add_check, 'buy', ]= 1 return dataframe def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: if self.optimize_sell_hma: dataframe['hma_offset_sell'] = tv_hma(dataframe, int(self.base_nb_candles_sell_hma.value)) *self.high_offset_hma.value if self.optimize_sell_ema: dataframe['ema_offset_sell'] = ta.EMA(dataframe, int(self.base_nb_candles_sell_ema.value)) *self.high_offset_ema.value if self.optimize_sell_ema2: dataframe['ema_offset_sell2'] = ta.EMA(dataframe, int(self.base_nb_candles_sell_ema2.value)) *self.high_offset_ema2.value if self.optimize_sell_ema3: dataframe['ema_offset_sell3'] = ta.EMA(dataframe, int(self.base_nb_candles_sell_ema3.value)) *self.high_offset_ema3.value dataframe.loc[:, 'exit_tag'] = '' conditions = [] sell_cond_1 = ( (dataframe['close'] > dataframe['hma_offset_sell']) ) conditions.append(sell_cond_1) dataframe.loc[sell_cond_1, 'exit_tag'] += 'HMA_1 ' sell_cond_3 = ( ((dataframe['close'] < dataframe['ema_offset_sell3']).rolling(2).sum() == 2) ) conditions.append(sell_cond_3) dataframe.loc[sell_cond_3, 'exit_tag'] += 'EMA_3 ' sell_cond_2 = ( (dataframe['close'] > dataframe['ema_offset_sell']) ) conditions.append(sell_cond_2) dataframe.loc[sell_cond_2, 'exit_tag'] += 'EMA_1 ' sell_cond_4 = ( (dataframe['close'] < dataframe['ema_offset_sell2']) ) conditions.append(sell_cond_4) dataframe.loc[sell_cond_4, 'exit_tag'] += 'EMA_2 ' add_check = ( (dataframe['volume'] > 0) ) if conditions: dataframe.loc[ reduce(lambda x, y: x | y, conditions) & add_check, 'sell' ] = 1 return dataframe