
Report on the

Programming Language

Haskell

A Non-strict, Purely Functional Language

Version 1.2

1st March 1992

Paul Hudak

1

[editor]

Simon Peyton Jones

2

[editor]

Philip Wadler

2

[editor]

Brian Boutel

3

Jon Fairbairn

4

Joseph Fasel

5

Mar��a M. Guzm�an

1

Kevin Hammond

2

John Hughes

2

Thomas Johnsson

6

Dick Kieburtz

7

Rishiyur Nikhil

8

Will Partain

2

John Peterson

1

Authors' a�liations: (1) Yale University, (2) University of Glasgow, (3) Vic-

toria University of Wellington, (4) Cambridge University, (5) Los Alamos

National Laboratory, (6) Chalmers University of Technology, (7) Oregon

Graduate Institute of Science and Technology, (8) Massachusetts Institute

of Technology.

CONTENTS i

Contents

1 Introduction 1

1.1 Program Structure : 1

1.2 The Haskell Kernel : 2

1.3 Values and Types : 2

1.4 Namespaces : 3

1.5 Layout : 3

2 Lexical Structure 6

2.1 Notational Conventions : 6

2.2 Lexical Program Structure : 6

2.3 Identi�ers and Operators : 7

2.4 Numeric Literals : 8

2.5 Character and String Literals : 8

3 Expressions 10

3.1 Variables, Constructors, and Operators : 12

3.2 Curried Applications and Lambda Abstractions : : : : : : : : : : : : : : : : 12

3.3 Operator Applications : 13

3.4 Sections : 13

3.5 Conditionals : 14

3.6 Lists : 14

3.7 Tuples : 14

3.8 Unit Expressions and Parenthesised Expressions : : : : : : : : : : : : : : : 15

3.9 Arithmetic Sequences : 15

3.10 List Comprehensions : 16

3.11 Let Expressions : 16

3.12 Case Expressions : 17

3.13 Expression Type-Signatures : 18

3.14 Pattern-Matching : 18

4 Declarations and Bindings 24

4.1 Overview of Types and Classes : 24

4.2 User-De�ned Datatypes : 27

4.3 Type Classes and Overloading : 29

4.4 Nested Declarations : 35

4.5 Static semantics of function and pattern bindings : : : : : : : : : : : : : : : 37

5 Modules 42

5.1 Overview : 42

5.2 Module Implementations : 44

5.3 Module Interfaces : 47

5.4 Standard Prelude : 50

5.5 Example : 52

5.6 Abstract Datatypes : 53

ii CONTENTS

5.7 Fixity Declarations : 53

6 Basic Types 56

6.1 Booleans : 56

6.2 Characters and Strings : 56

6.3 Functions : 57

6.4 Lists : 57

6.5 Tuples : 57

6.6 Unit Datatype : 57

6.7 Binary Datatype : 57

6.8 Numbers : 58

6.9 Arrays : 64

6.10 Errors : 68

7 Input/Output 69

7.1 I/O Modes : 71

7.2 File System Requests : 74

7.3 Channel System Requests : 75

7.4 Environment Requests : 76

7.5 Continuation-based I/O : 77

7.6 A Small Example : 80

7.7 An Example Involving Synchronisation : 81

A Standard Prelude 82

A.1 Prelude PreludeBuiltin : 86

A.2 Prelude PreludeCore : 89

A.3 Prelude PreludeRatio : 101

A.4 Prelude PreludeComplex : 103

A.5 Prelude PreludeList : 106

A.6 Prelude PreludeArray : 115

A.7 Prelude PreludeText : 117

A.8 Prelude PreludeIO : 124

B Syntax 128

B.1 Notational Conventions : 128

B.2 Syntax Changes : 128

B.3 Lexical Syntax : 129

B.4 Layout : 131

B.5 Context-Free Syntax : 132

B.6 Interface Syntax : 135

C Literate comments 137

D Input/Output Semantics 139

D.1 Optional Requests : 143

CONTENTS iii

E Speci�cation of Derived Instances 145

E.1 Speci�cation of showsPrec : 148

E.2 Speci�cation of readsPrec : 149

E.3 An example : 151

References 153

Index 155

iv CONTENTS

CONTENTS v

Preface to Version 1.0

(April 1990; revised August 1991)

\Some half dozen persons have written technically on combinatory logic, and

most of these, including ourselves, have published something erroneous. Since

some of our fellow sinners are among the most careful and competent logicians

on the contemporary scene, we regard this as evidence that the subject is re-

fractory. Thus fullness of exposition is necessary for accuracy; and excessive

condensation would be false economy here, even more than it is ordinarily."

Haskell B. Curry and Robert Feys

in the Preface to Combinatory Logic [3], May 31, 1956

In September of 1987 a meeting was held at the conference on Functional Programming

Languages and Computer Architecture in Portland, Oregon, to discuss an unfortunate sit-

uation in the functional programming community: there had come into being more than a

dozen non-strict, purely functional programming languages, all similar in expressive power

and semantic underpinnings. There was a strong consensus at this meeting that more

widespread use of this class of functional languages was being hampered by the lack of a

common language. It was decided that a committee should be formed to design such a

language, providing faster communication of new ideas, a stable foundation for real ap-

plications development, and a vehicle through which others would be encouraged to use

functional languages. This document describes the result of that committee's e�orts: a

purely functional programming language called Haskell, named after the logician Haskell

B. Curry whose work provides the logical basis for much of ours.

Goals

The committee's primary goal was to design a language that satis�ed these constraints:

1. It should be suitable for teaching, research, and applications, including building large

systems.

2. It should be completely described via the publication of a formal syntax and semantics.

3. It should be freely available. Anyone should be permitted to implement the language

and distribute it to whomever they please.

4. It should be based on ideas that enjoy a wide consensus.

5. It should reduce unnecessary diversity in functional programming languages.

The committee hopes that Haskell can serve as a basis for future research in language

design. We hope that extensions or variants of the language may appear, incorporating

experimental features.

vi CONTENTS

This Report

This report is the o�cial speci�cation of the Haskell language and should be suitable for

writing programs and building implementations. It is not a tutorial on programming in

Haskell, so some familiarity with functional languages is assumed. As this is the �rst

edition of the speci�cation, there may be some errors and inconsistencies; beware.

The Next Stage

Haskell is a large and complex language, designed for a wide spectrum of purposes. It

also introduces a major new technical innovation, namely using type classes to handle

overloading in a systematic way. This innovation permeates every aspect of the language.

Haskell is bound to contain infelicities and errors of judgement. We welcome your

comments, suggestions, and criticisms on the language or its presentation in the report.

Together with your input and our own experience of using the language, we plan to meet

at some future time to resolve di�culties and further stabilise the design.

A common mailing list for technical discussion of Haskell can be reached at either

haskell@cs.yale.edu or haskell@dcs.glasgow.ac.uk. Errata sheets for this report will

be posted there. To subscribe, send a request to haskell-request@dcs.glasgow.ac.uk

(European residents) or haskell-request@cs.yale.edu (residents elsewhere).

We thought it would be helpful to identify the aspects of the language design that

seem to be most �nely balanced, and hence are the most likely candidates for change when

we review the language. The following list summarises these areas. It will only be fully

comprehensible after you have read the report.

Mutually recursive modules. Mutual recursion among modules is unrestricted at pre-

sent, which is obviously desirable from the programmer's point of view, but which poses

signi�cant challenges to the compilation system. In particular, it is not su�cient to start

with trivial interfaces for each module and iterate to a �xpoint, as this example shows:

module F(f) where

import G

f [x] = g x

module G(g) where

import F

g = f

If a compilation system starts o� by giving F and G interfaces that give the type signatures

f::a and g::b respectively, then compiling the two modules alternately will not reach a

�xed point. (This only happens if there is a type error, but it is obviously undesirable

behaviour.) In general, a compiler may need to analyse a set of mutually recursive modules

as a whole, rather than separately.

CONTENTS vii

Generalising type classes. A number of restrictions are placed on the class system

in Haskell. Currently, instances are attached to the top level type of an object and are

exported implicitly with classes and types. A number of proposals for generalising the

class system have been discussed, among them attaching instances to more complex types,

parameterising classes over type constructors, allowing rede�nition of instances, and making

instances explicit in import and export lists. Some of these proposals have been implemented

and are part of the available Haskell systems. As we gain more experience with the class

system we hope to improve it in the future.

Default methods. Section 4.3.1 describes how a class declaration may include default

methods for some of its operations. We considered extending this so that a class declaration

could include default methods for operations of its superclasses, which override the super-

class's default method. This looks like an attractive idea, which will certainly be considered

for a future revision.

Defaults for ambiguous types. Section 4.3.4 describes how ambiguous typings, which

arise due to the type-class system, are resolved. Ideally, the choice made should not matter.

For example, consider the expression if round x > 0 then E1 else E2. It should not

matter whether round returns Int or Integer; a bad choice could result in overow, or a

less e�cient program, but if a result is produced it will be correct.

Our resolution rules strive only to resolve ambiguous types where the type chosen does

not \matter" in this sense, but we have not been entirely successful, for example where

oating point is concerned. Further research and practical experience may suggest a better

set of rules.

Static semantics of let and where bindings. The rules at the end of Section 4.4.2

comprise the \monomorphism restriction" in Haskell. The restriction solves two problems,

which are summarised below, but at the cost of restricting expressiveness. Only experience

will tell how much of a problem this is for the programmer.

These are the two problems. First, the expression let x = factorial 1000 in (x,x)

looks as though x should only be computed once. If x were used at di�erent overloadings,

however, factorial 1000 would be computed twice, once at each type. We have found

examples where the loss of e�ciency is exponential in the size of the program. Modest

compiler optimisations can often eliminate the problem, but we have found no simple scheme

that can guarantee to do so. The restriction solves the problem by ensuring that all uses of

x are at the same overloading, and hence that its evaluation can be shared as usual.

Second, a rather subtle form of type ambiguity (Section 4.3.4) is eliminated by the

restriction to non-overloaded pattern bindings. An example is:

readNum s r = (n*r,s') where [(n,s')] = reads s

Here n::(Num a, Text a) => a, s'::Text a => String. If the de�nition of [(n,s')] is

polymorphic, the a's may be resolved as di�erent types.

viii CONTENTS

(Note: As of the version 1.1 report, the monomorphism restriction is relaxed, provided

that the programmer gives an explicit type signature. See Section 4.5.4 for precise details.)

Overloaded constants. Overloaded constants (e.g. 1, which has type Num a => a) are

extraordinarily convenient when programming, but are the source of several serious tech-

nical problems, including both of those mentioned in the two preceding items. One could

eliminate overloaded constants altogether; we considered this at length, and we are sure to

reconsider it when we review the language.

Polymorphism in case expressions. The type of a variable bound by a Standard ML

case-expression is monomorphic; we have made the same decision in Haskell (Section 3.14.3).

The question of whether such types can be made polymorphic interacts with the restrictions

on polymorphism for pattern-bound variables, mentioned above. For the present, we have

erred on the side of conservatism, but this decision should be reviewed.

Acknowledgements

We heartily thank these people for their useful contributions to this report: Lennart Au-

gustsson, Richard Bird, Stephen Blott, Tom Blenko, Duke Briscoe, Chris Clack, Guy

Cousineau, Tony Davie, Chris Fasel, Pat Fasel, Bob Hiromoto, Nic Holt, Simon B. Jones,

Stef Joosten, Mike Joy, Richard Kelsey, Siau-Cheng Khoo, Amir Kishon, John Launchbury,

Olaf Lubeck, Randy Michelsen, Rick Mohr, Arthur Norman, Paul Otto, Larne Pekowsky,

John Peterson, Rinus Plasmeijer, John Robson, Colin Runciman, Lauren Smith, Raman

Sundaresh, Tom Thomson, Pradeep Varma, Tony Warnock, Stuart Wray, and Bonnie Yan-

tis. We also thank those who participated in the lively discussions about Haskell on the FP

mailing list during an interim period of the design.

Finally, aside from the important foundational work laid by Church, Rosser, Curry, and

others on the lambda calculus, we wish to acknowledge the inuence of many noteworthy

programming languages developed over the years. Although it is di�cult to pinpoint the

origin of many ideas, we particularly wish to acknowledge the inuence of McCarthy's Lisp

[11] (and its modern-day incarnation, Scheme [16]); Landin's ISWIM [9]; Backus's FP [1];

Gordon, Milner, and Wadsworth's ML [5]; Burstall, MacQueen, and Sannella's Hope [2];

and Turner's series of languages culminating in Miranda [19].

1

Without these forerunners

Haskell would not have been possible.

1

Miranda is a trademark of Research Software Ltd.

CONTENTS ix

Preface to Version 1.1 (19 August 1991)

Following the Version 1.0 Haskell report, several sites have implemented Haskell (or a subset

thereof) and people have started to use these implementations. Based on this experience of

implementation and use, it became apparent that a modest revision of the language would

be desirable, in which some improvements in syntax could be made and certain features

generalised. This Version 1.1 report is the result.

This revision was speci�cally not intended to add any substantial new features to the

language, but rather to \tidy up" the existing language. Despite this narrow focus, a wide

debate ensued, conducted on the Haskell mailing list (see page vi) rather than just among

members of the original committee.

In this minor revision, the tricky issues identi�ed in the preface to Version 1.0 remain,

so that preface should be read in conjunction with this one.

Summary of changes

The main changes (other than concrete syntax) are as follows.

� Class methods may be polymorphic and overloaded in type variables other than the

class variable (Section 4.3.1).

� The \monomorphism restriction" has been made more precise, and relaxed in the case

where the programmer supplies a type signature (Section 4.4.2).

� The meaning of contexts in data declarations has been clari�ed (Section 4.2.1), and

type synonym declarations are no longer permitted to have contexts (Section 4.2.2).

� If the deriving clause on a data declaration is omitted, no instances are automatically

derived (Section 4.3.3).

� A module m may refer to all of its own local de�nitions in an export list using m..

(Section 5.2.1).

The main syntactic changes are as follows:

� A new form of expression, a let-expression, has been added, which replaces and has

the same semantics as a where expression. (In particular, the bindings it introduces

are mutually recursive; Haskell has no non-recursive let construct.) Bindings may

also be introduced by a where clause, but such where clauses are now attached to a

group of guarded right-hand sides, and scope over the guards. The previous inability

to scope de�nitions over guards was a signi�cant shortcoming of the language.

� Sections have been introduced for binary operators. For example, the expression

(/ 2) is the function which divides its argument by 2, and (2 /) is the function

which divides 2 by its argument.

x CONTENTS

� The standard prelude has been debugged and revised.

A few other nontrivial changes to the syntax are listed in Appendix B.2.

Implementations

Several groups are working on implementations of Haskell, including those at Chalmers

(contact: hbc@cs.chalmers.se), Glasgow (haskell-request@dcs.glasgow.ac.uk), Syra-

cuse (polar@top.cis.syr.edu), and Yale (haskell-request@cs.yale.edu). O�cial an-

nouncements about these implementations will appear on the Haskell technical mailing list

(see page vi).

Formal Semantics

Work has also been undertaken at Glasgow on a formal static and dynamic semantics for

Haskell [6, 15]. These e�orts are well advanced but as yet incomplete.

Acknowledgements

Language design is an evolutionary process, and the group of people involved undergoes

evolution as well. We wish to thank past members of the Haskell Committee|Arvind, Mike

Reeve, David Wise, and Jonathan Young|for their previous contributions and continued

support. We also thank those who braved the storm of electronic mail on the Haskell mailing

list, and responded with constructive suggestions for the revised language. The following

were especially helpful and active: Lennart Augustsson, Cordelia Hall, Kent Karlsson, Mark

Jones, Mark Lillibridge, and Satish Thatte.

Numerous others contributed to the debate, and we thank them also.

CONTENTS xi

Preface to Version 1.2 (1st March 1992)

Version 1.2 of the report was prepared for publication in SIGPLAN Notices. It corrects

some typographical errors in the 1.1 report, and clari�es the presentation in places, some-

times by giving new examples. A few minor changes have also been made to the syntax

and standard prelude.

Syntax Changes

This is the list of all syntax changes made between versions 1.1 and 1.2. See Section 3 for

full details.

� Left-hand sides of de�nitions have been simpli�ed.

� The precedence of let, case, lambda and conditional expressions has been changed

to lie between in�x operator application and normal function application.

� The right-hand operand of an in�x operator application may now be an (unparenthe-

sised) let, case, lambda, or conditional expression.

� Precedences in in�x operator applications have been clari�ed.

� Types in expression type signatures are now types rather than atypes. Expression

type signatures cannot occur at the top level in case expression guards.

� The in�x type operator (->) is now explicitly right-associative.

� Some problems with optional semicolons have been eliminated.

� Empty interfaces and class bodies are now permitted in interface �les.

� The rules for quoting names to form operators, or quoting operators to form names,

have been relaxed slightly.

� Successor patterns have been limited to variables and wildcards.

� Negative literals in patterns have been corrected.

Standard Prelude

Several changes have been made to the standard prelude, mainly to I/O and numeric func-

tions.

� New Prelude functions have been introduced: $, id, const, minChar, maxChar, unzip,

unzip3, : : : , unzip7.

xii CONTENTS

� Functions approximants and partialQuotients have been deleted.

� The functions truncate, round, floor and ceiling are now operations of class

RealFrac.

� A new operation recip has been introduced in class Fractional.

� Some functions have been renamed: floatingToRational to realFloatToRational;

rationalToFloating to rationalToRealFloat and floatProperFraction to floatApproxRational.

� Several changes have been made to class Integral. Operation divRem has been

deleted. New operations quot, quotRem, divMod have been introduced. quot has the

same semantics as the previous div operation.

� The incremental array update operator // now takes a list of independent index-value

associations as its right argument, rather than a single association (Section 6.9.4).

� The function exit now writes to stderr rather than stdout. All prelude functions

which previously used abort now use exit.

� A new request GetProgName has been introduced.

� Some changes have been made to Text instances.

� Class Text has moved to PreludeCore.

� Function error has moved to PreludeBuiltin.

� PreludeComplex now exports all de�nitions.

� Some bugs in the de�nitions of cos, tan and tanh for Complex numbers have been

corrected.

Other Changes

The other main changes are as follows.

� The standard class hierarchy has been changed slightly. Enum is now a superclass of

Real and Ix is a superclass of Integral.

� The smallest �xed-precision Int, minInt must be -maxInt. It may no longer be

-maxInt-1.

� Certainly silly cases in export/hiding lists have been eliminated; for example, attempt-

ing to hide a data type without hiding its constructors (Section 5.2.2). The form for

a type synonym in an export list is now T(..) (Section 5.2.1).

1

1 Introduction

Haskell is a general purpose, purely functional programming language incorporating many

recent innovations in programming language research, including higher-order functions,

non-strict semantics, static polymorphic typing, user-de�ned algebraic datatypes, pattern-

matching, list comprehensions, a module system, and a rich set of primitive datatypes,

including lists, arrays, arbitrary and �xed precision integers, and oating-point numbers.

Haskell is both the culmination and solidi�cation of many years of research on functional

languages|the design has been inuenced by languages as old as ISWIM and as new as

Miranda.

Although the initial emphasis was on standardisation, Haskell also has several new

features that both simplify and generalise the design. For example,

1. Rather than using ad hoc techniques for overloading, Haskell provides an explicit

overloading facility, integrated with the polymorphic type system, that allows the

precise de�nition of overloading behaviour for any operator or function.

2. The conventional notion of \abstract data type" has been unbundled into two orthog-

onal components: data abstraction and information hiding.

3. Haskell has a exible I/O facility that uni�es two popular styles of purely functional

I/O|the stream model and the continuation model|and both styles can be mixed

within the same program. The system supports most of the standard operations

provided by conventional operating systems while retaining referential transparency

within a program.

4. Recognising the importance of arrays, Haskell has a family of multidimensional non-

strict immutable arrays whose special interaction with list comprehensions provides a

convenient \array comprehension" syntax for de�ning arrays monolithically.

This report de�nes the syntax for Haskell programs and an informal abstract semantics

for the meaning of such programs; the formal abstract semantics is in preparation. We leave

as implementation dependent the ways in which Haskell programs are to be manipulated,

interpreted, compiled, etc. This includes such issues as the nature of batch versus interac-

tive programming environments, and the nature of error messages returned for unde�ned

programs (i.e. programs that formally evaluate to ?).

1.1 Program Structure

In this section, we describe the abstract syntactic and semantic structure of Haskell, as well

as how it relates to the organisation of the rest of the report.

1. At the topmost level a Haskell program is a set of modules (described in Section 5).

Modules provide a way to control namespaces and to re-use software in large programs.

2 1 INTRODUCTION

2. The top level of a module consists of a collection of declarations, of which there are

several kinds, all described in Section 4. Declarations de�ne things such as ordinary

values, datatypes, type classes, and �xity information.

3. At the next lower level are expressions, described in Section 3. An expression denotes

a value and has a static type; expressions are at the heart of Haskell programming \in

the small."

4. At the bottom level is Haskell's lexical structure, de�ned in Section 2. The lexical

structure captures the concrete representation of Haskell programs in text �les.

This report proceeds bottom-up with respect to Haskell's syntactic structure.

The sections not mentioned above are Section 6, which describes the standard built-in

datatypes in Haskell, and Section 7, which discusses the I/O facility in Haskell (i.e. how

Haskell programs communicate with the outside world). Also, there are several appen-

dices describing the standard prelude, the concrete syntax, the semantics of I/O, and the

speci�cation of derived instances.

Examples of Haskell program fragments in running text are given in typewriter font:

let x = 1

z = x+y

in z+1

\Holes" in program fragments representing arbitrary pieces of Haskell code are written in

italics, as in if e

1

then e

2

else e

3

. Generally the italicised names will be mnemonic, such

as e for expressions, d for declarations, t for types, etc.

1.2 The Haskell Kernel

Haskell has adopted many of the convenient syntactic structures that have become popular

in functional programming. In all cases, their formal semantics can be given via translation

into a proper subset of Haskell called the Haskell kernel. It is essentially a slightly sugared

variant of the lambda calculus with a straightforward denotational semantics. The trans-

lation of each syntactic structure into the kernel is given as the syntax is introduced. This

modular design facilitates reasoning about Haskell programs and provides useful guidelines

for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a static type. Values and types are not mixed in

Haskell. However, the type system allows user-de�ned datatypes of various sorts, and per-

mits not only parametric polymorphism (using a traditional Hindley-Milner type structure)

but also ad hoc polymorphism, or overloading (using type classes).

Errors in Haskell are semantically equivalent to ?. Technically, they are not distinguish-

able from nontermination, so the language includes no mechanism for detecting or acting

upon errors. Of course, implementations will probably try to provide useful information

about errors.

1.4 Namespaces 3

1.4 Namespaces

There are six kinds of names in Haskell: those for variables and constructors denote values;

those for type variables, type constructors, and type classes refer to entities related to the

type system; and module names refer to modules. There are three constraints on naming:

1. Names for variables and type variables are identi�ers beginning with small letters; the

other four kinds of names are identi�ers beginning with capitals.

2. Constructor operators are operators beginning with \:"; variable operators are oper-

ators not beginning with \:".

3. An identi�er must not be used as the name of a type constructor and a class in the

same scope.

These are the only constraints; for example, Int may simultaneously be the name of a

module, class, and constructor within a single scope.

Haskell provides a lexical syntax for in�x operators (either functions or constructors). To

emphasise that operators are bound to the same things as identi�ers, and to allow the two

to be used interchangeably, there is a simple way to convert between the two: any function

or constructor identi�er may be converted into an operator by enclosing it in grave accents,

and any operator may be converted into an identi�er by enclosing it in parentheses. For

example, x + y is equivalent to (+) x y, and f x y is the same as x �f� y. These lexical

matters are discussed further in Section 2.

1.5 Layout

In the syntax given in the rest of the report, declaration lists are always preceded by the

keyword where, let or of, and are enclosed within curly braces ({ }) with the individual

declarations separated by semicolons (;). For example, the syntax of a let expression is:

let { decl

1

; decl

2

; ::: ; decl

n

[;] } in exp

Haskell permits the omission of the braces and semicolons by using layout to convey the

same information. This allows both layout-sensitive and -insensitive styles of coding, which

can be freely mixed within one program. Because layout is not required, Haskell programs

can be straightforwardly produced by other programs.

The layout (or \o�-side") rule takes e�ect whenever the open brace is omitted after the

keyword where, let or of. When this happens, the indentation of the next lexeme (whether

or not on a new line) is remembered and the omitted open brace is inserted (the whitespace

preceding the lexeme may include comments). For each subsequent line, if it contains only

whitespace or is indented more, then the previous item is continued (nothing is inserted);

if it is indented the same amount, then a new item begins (a semicolon is inserted); and if

it is indented less, then the declaration list ends (a close brace is inserted). A close brace

4 1 INTRODUCTION

is also inserted whenever the syntactic category containing the declaration list ends; that

is, if an illegal lexeme is encountered at a point where a close brace would be legal, a close

brace is inserted. The layout rule will match only those open braces that it has inserted;

an open brace that the user has inserted must be matched by a close brace inserted by the

user.

Given these rules, a single newline may actually terminate several declaration lists. Also,

these rules permit:

f x = let a = 1; b = 2

g y = exp2 in exp1

making a, b and g all part of the same declaration list.

To facilitate the use of layout at the top level of a module (several modules may reside

in one �le), the keywords module and interface and the end-of-�le token are assumed

to occur in column 0 (whereas normally the �rst column is 1). Otherwise, all top-level

declarations would have to be indented.

See also Section B.4.

As an example, Figure 1 shows a (somewhat contrived) module and Figure 2 shows the

result of applying the layout rule to it. Note in particular: (a) the line beginning }};pop,

where the termination of the previous line invokes three applications of the layout rule,

corresponding to the depth (3) of the nested where clauses, (b) the close braces in the

where clause nested within the tuple and case expression, inserted because the end of the

tuple was detected, and (c) the close brace at the very end, inserted because of the column

0 indentation of the end-of-�le token.

When comparing indentations for standard Haskell programs, a �xed-width font with

this tab convention is assumed: tab stops are 8 characters apart (with the �rst tab stop in

column 9), and a tab character causes the insertion of enough spaces (always � 1) to align

the current position with the next tab stop. Particular implementations may alter this rule

to accommodate variable-width fonts and alternate tab conventions, but standard Haskell

(i.e., portable) programs must observe this rule.

1.5 Layout 5

module AStack(Stack, push, pop, top, size) where

data Stack a = Empty

| MkStack a (Stack a)

push :: a -> Stack a -> Stack a

push x s = MkStack x s

size :: Stack a -> Integer

size s = length (stkToLst s) where

stkToLst Empty = []

stkToLst (MkStack x s) = x:xs where xs = stkToLst s

pop :: Stack a -> (a, Stack a)

pop (MkStack x s)

= (x, case s of r -> i r where i x = x) -- (pop Empty) is an error

top :: Stack a -> a

top (MkStack x s) = x -- (top Empty) is an error

Figure 1: A sample program

module AStack(Stack, push, pop, top, size) where

{data Stack a = Empty

| MkStack a (Stack a)

;push :: a -> Stack a -> Stack a

;push x s = MkStack x s

;size :: Stack a -> Integer

;size s = length (stkToLst s) where

{stkToLst Empty = []

;stkToLst (MkStack x s) = x:xs where {xs = stkToLst s

}};pop :: Stack a -> (a, Stack a)

;pop (MkStack x s)

= (x, case s of {r -> i r where {i x = x}}) -- (pop Empty) is an error

;top :: Stack a -> a

;top (MkStack x s) = x -- (top Empty) is an error

}

Figure 2: Sample program with layout expanded

6 2 LEXICAL STRUCTURE

2 Lexical Structure

In this section, we describe the low-level lexical structure of Haskell. Most of the details

may be skipped in a �rst reading of the report.

2.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2

choice

pat

hpat

0

i

di�erence|elements generated by pat

except those generated by pat

0

fibonacci terminal syntax in typewriter font

Because the syntax in this section describes lexical syntax, all whitespace is expressed

explicitly; there is no implicit space between juxtaposed symbols. BNF-like syntax is used

throughout, with productions having the form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

Care must be taken in distinguishing metalogical syntax such as j and [: : :] from concrete

terminal syntax (given in typewriter font) such as | and [...], although usually the context

makes the distinction clear.

Haskell source programs are currently biased toward the ASCII character set, although

future Haskell standardisation e�orts will likely address broader character standards.

2.2 Lexical Program Structure

program ! f lexeme j whitespace g

lexeme ! varid j conid j varsym j consym j literal j special j reservedop j reservedid

literal ! integer j oat j char j string

special ! (j) j , j ; j [j] j _ j � j { j }

whitespace! whitestu� fwhitestu� g

whitestu� ! whitechar j comment j ncomment

whitechar ! newline j space j tab j vertab j formfeed

newline ! a newline (system dependent)

space ! a space

tab ! a horizontal tab

vertab ! a vertical tab

2.3 Identi�ers and Operators 7

formfeed ! a form feed

comment ! -- fanyg newline

ncomment! {- ANYseq fncomment ANYseqg -}

ANYseq ! fANY g

hfANY g ({- j -}) fANY gi

ANY ! any j newline j vertab j formfeed

any ! graphic j space j tab

graphic ! large j small j digit

j ! j " j # j $ j % j & j � j (j) j * j +

j , j - j . j / j : j ; j < j = j > j ? j @

j [j \ j] j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9

Characters not in the category graphic or whitestu� are not valid in Haskell programs

and should result in a lexing error.

Comments are valid whitespace. An ordinary comment begins with two consecutive

dashes (--) and extends to the following newline. A nested comment begins with {- and

ends with -}; it can be between any two lexemes. All character sequences not containing {-

nor -} are ignored within a nested comment. Nested comments may be nested to any depth:

any occurrence of {- within the nested comment starts a new nested comment, terminated

by -}. Within a nested comment, each {- is matched by a corresponding occurrence of -}.

In an ordinary comment, the character sequences {- and -} have no special signi�cance,

and, in a nested comment, the sequence -- has no special signi�cance.

If some code is commented out using a nested comment, then any occurrence of {- or

-} within a string or within an end-of-line comment in that code will interfere with the

nesting of the nested comments.

2.3 Identi�ers and Operators

varid ! (small fsmall j large j digit j � j _g)

hreservedidi

conid ! large fsmall j large j digit j � j _g

reservedid! case j class j data j default j deriving j else j hiding

j if j import j in j infix j infixl j infixr j instance j interface

j let j module j of j renaming j then j to j type j where

An identi�er consists of a letter followed by zero or more letters, digits, underscores, and

acute accents. Identi�ers are lexically distinguished into two classes: those that begin

with a lower-case letter (variable identi�ers) and those that begin with an upper-case letter

(constructor identi�ers). Identi�ers are case sensitive: name, naMe, and Name are three

distinct identi�ers (the �rst two are variable identi�ers, the last is a constructor identi�er).

8 2 LEXICAL STRUCTURE

varsym ! ((symbol j presymbol) fsymbol j :g)

hreservedopi

consym ! (: fsymbol j :g)

hreservedopi

presymbol ! - j ~

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j @ j \ j ^ j |

reservedop! .. j :: j => j = j @ j \ j | j ~ j <- j ->

Operator symbols are formed from one or more symbol characters, as de�ned above, and

are lexically distinguished into two classes: those that start with a colon (constructors) and

those that do not (functions).

Other than the special syntax for pre�x negation, all operators are in�x, although each

in�x operator can be used in a section to yield partially applied operators (see Section 3.4).

All of the standard in�x operators are just prede�ned symbols and may be rebound.

Although case is a reserved word, cases is not. Similarly, although = is reserved, == and

~= are not. At each point, the longest possible lexeme is read, using a context-independent

deterministic lexical analysis (i.e. no lookahead beyond the current character is required).

Any kind of whitespace is also a proper delimiter for lexemes.

In the remainder of the report six di�erent kinds of names will be used:

varid (variables)

conid (constructors)

tyvar ! varid (type variables)

tycon ! conid (type constructors)

tycls ! conid (type classes)

modid ! conid (modules)

Variables and type variables are represented by identi�ers beginning with small letters, and

the other four by identi�ers beginning with capitals; also, variables and constructors have

in�x forms, the other four do not. Namespaces are also discussed in Section 1.4.

2.4 Numeric Literals

integer ! digitfdigitg

oat ! integer.integer [(e j E)[- j +]integer]

There are two distinct kinds of numeric literals: integer and oating. A oating literal

must contain digits both before and after the decimal point; this ensures that a decimal

point cannot be mistaken for another use of the dot character. Negative numeric literals

are discussed in Section 3.3. The typing of numeric literals is discussed in Section 6.8.2.

2.5 Character and String Literals

char ! � (graphic

h� j \i

j space j escape

h\&i

) �

2.5 Character and String Literals 9

string ! " fgraphic

h" j \i

j space j escape j gapg "

escape ! \ (charesc j ascii j integer j o octitfoctitg j x hexitfhexitg)

charesc ! a j b j f j n j r j t j v j \ j " j � j &

ascii ! ^cntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL

cntrl ! large j @ j [j \ j] j ^ j _

gap ! \ whitechar fwhitecharg \

hexit ! digit j A j B j C j D j E j F j a j b j c j d j e j f

octit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

Character literals are written between acute accents, as in �a�, and strings between

double quotes, as in "Hello".

Escape codes may be used in characters and strings to represent special characters. Note

that � may be used in a string, but must be escaped in a character; similarly, " may be used

in a character, but must be escaped in a string. \ must always be escaped. The category

charesc also includes portable representations for the characters \alert" (\a), \backspace"

(\b), \form feed" (\f), \new line" (\n), \carriage return" (\r), \horizontal tab" (\t), and

\vertical tab" (\v).

Escape characters for the ASCII character set, including control characters such as \^X,

are also provided. Numeric escapes such as \137 are used to designate the character with

(implementation dependent) decimal representation 137; octal (e.g. \o137) and hexadecimal

(e.g. \x137) representations are also allowed. Numeric escapes that are out-of-range of the

ASCII standard are unde�ned and thus non-portable.

Consistent with the \consume longest lexeme" rule, numeric escape characters in strings

consist of all consecutive digits and may be of arbitrary length. Similarly, the one ambiguous

ASCII escape code, "\SOH", is parsed as a string of length 1. The escape character \& is

provided as a \null character" to allow strings such as "\137\&9" and "\SO\&H" to be

constructed (both of length two). Thus "\&" is equivalent to "" and the character �\&� is

disallowed. Further equivalences of characters are de�ned in Section 6.2.

A string may include a \gap"|two backslants enclosing white characters|which is

ignored. This allows one to write long strings on more than one line by writing a backslant

at the end of one line and at the start of the next. For example,

"Here is a backslant \\ as well as \137, \

\a numeric escape character, and \^X, a control character."

String literals are actually abbreviations for lists of characters (see Section 3.6).

10 3 EXPRESSIONS

3 Expressions

In this section, we describe the syntax and informal semantics of Haskell expressions, in-

cluding their translations into the Haskell kernel, where appropriate.

In the syntax that follows, there are some families of nonterminals indexed by precedence

levels (written as a superscript). Similarly, the nonterminals op, varop, and conop may have

a double index: a letter l , r , or n for left-, right- or nonassociativity and a precedence level.

A precedence-level variable i ranges from 0 to 9; an associativity variable a varies over

fl ; r ; ng. Thus, for example

aexp ! (exp

i+1

op

(a;i)

)

actually stands for 30 productions, with 10 substitutions for i and 3 for a .

exp ! exp

0

:: [context =>] type (expression type signature)

j exp

0

exp

i

! exp

i+1

[op

(n;i)

exp

i+1

]

j lexp

i

j rexp

i

lexp

i

! (lexp

i

j exp

i+1

) op

(l;i)

exp

i+1

lexp

6

! - exp

7

rexp

i

! exp

i+1

op

(r;i)

(rexp

i

j exp

i+1

)

exp

10

! \ apat

1

: : : apat

n

-> exp (lambda abstraction; n � 1)

j let { decls [;] } in exp (let expression)

j if exp then exp else exp (conditional)

j case exp of { alts [;] } (case expression)

j fexp

fexp ! fexp aexp (function application)

j aexp

aexp ! var (variable)

j con (constructor)

j literal

j () (unit)

j (exp) (parenthesised expression)

j (exp

1

, : : : , exp

k

) (tuple; k � 2)

j [exp

1

, : : : , exp

k

] (list; k � 0)

j [exp

1

[, exp

2

] .. [exp

3

]] (arithmetic sequence)

j [exp | qual

1

, : : : , qual

n

] (list comprehension; n � 1)

j (exp

i+1

op

(a;i)

) (left section)

j (op

(a;i)

exp

i+1

) (right section)

As an aid to understanding this grammar, Table 1 shows the relative precedence of

expressions, patterns and de�nitions, plus an extended associativity. �� indicates that the

item is non-associative.

11

Item Associativity

(

simple terms, parenthesised terms

irrefutable- (~), as- (@) patterns

{

right

function application left

if, let, lambda(\), case (leftwards) right

case (rightwards) right

in�x operators, prec. 9 as de�ned

: : : : : :

in�x operators, prec. 0 as de�ned

function types (->) right

contexts (=>) {

type constraints (::) {

if, let, lambda(\) (rightwards) right

sequences (..) {

generators (<-) {

grouping (,) n-ary

guards (|) {

case alternatives (->) {

de�nitions (=) {

separation (;) n-ary

Table 1: Precedence of expressions, patterns, de�nitions (highest to lowest)

The grammar is ambiguous regarding the extent of lambda abstractions, let expressions,

and conditionals. The ambiguity is resolved by the metarule that each of these constructs

extends as far to the right as possible. As a consequence, each of these constructs has two

precedences, one to its left, which is the precedence used in the grammar; and one to its

right which is obtained via the metarule. See the sample parses below.

Expressions involving in�x operators are disambiguated by the operator's �xity (see

Section 5.7). Consecutive unparenthesised operators with the same precedence must both

be either left or right associative to avoid a syntax error. Given an unparenthesised ex-

pression \x op

(a;i)

y op

(b;j)

z", parentheses must be added around either \x op

(a;i)

y" or

\y op

(b;j)

z" when i = j unless a = b = l or a = b = r.

Negation is the only pre�x operator in Haskell; it has the same precedence as the in�x

- operator de�ned in the standard prelude (see Figure 2, page 54).

The separation of function arrows from case alternatives solves the ambiguity which

otherwise arises when an unparenthesised function type is used in an expression, such as

the guard in a case expression.

12 3 EXPRESSIONS

Sample parses are shown below.

This Parses as

f x + g y (f x) + (g y)

- f x + y (- (f x)) + y

let { ... } in x + y let { ... } in (x + y)

z + let { ... } in x + y z + (let { ... } in (x + y))

f x y :: Int (f x y) :: Int

\ x -> a+b :: Int \ x -> ((a+b) :: Int)

For the sake of clarity, the rest of this section shows the syntax of expressions without

their precedences.

3.1 Variables, Constructors, and Operators

var ! varid j (varsym) (variable)

con ! conid j (consym) (constructor)

varop ! varsym j �varid� (variable operator)

conop ! consym j �conid� (constructor operator)

op ! varop j conop (operator)

Alphanumeric operators are formed by enclosing an identi�er between grave accents

(backquotes). Any variable or constructor may be used as an operator in this way. If fun

is an identi�er (either variable or constructor), then an expression of the form fun x y is

equivalent to x �fun� y . If no �xity declaration is given for �fun� then it defaults to highest

precedence and left associativity (see Section 5.7).

Similarly, any symbolic operator may be used as a (curried) variable or constructor by

enclosing it in parentheses. If op is an in�x operator, then an expression or pattern of the

form x op y is equivalent to (op) x y .

3.2 Curried Applications and Lambda Abstractions

exp ! exp aexp

exp ! \ apat

1

: : : apat

n

-> exp

Function application is written e

1

e

2

. Application associates to the left, so the parenthe-

ses may be omitted in (f x) y, for example. Because e

1

could be a constructor, partial

applications of constructors are allowed.

Lambda abstractions are written \ p

1

: : : p

n

-> e, where the p

i

are patterns. An ex-

pression such as \x:xs->x is syntactically incorrect, and must be rewritten as \(x:xs)->x.

The set of patterns must be linear|no variable may appear more than once in the set.

3.3 Operator Applications 13

Translation: The lambda abstraction \ p

1

: : : p

n

-> e is equivalent to

\ x

1

: : : x

n

-> case (x

1

, : : :, x

n

) of (p

1

, : : :, p

n

) -> e

where the x

i

are new identi�ers. Given this translation combined with the semantics of

case expressions and pattern-matching described in Section 3.14.3, if the pattern fails

to match, then the result is ?.

The type of a variable bound by a lambda abstraction is monomorphic, as is always the

case in the Hindley-Milner type system.

3.3 Operator Applications

exp ! exp

1

op exp

2

j - exp (pre�x negation)

The form e

1

op e

2

is the in�x application of binary operator op to expressions e

1

and e

2

.

The special form -e denotes pre�x negation, the one and only pre�x operator in Haskell,

and is simply syntax for negate (e), where negate is as de�ned in the standard prelude

(see Figure 8, page 60). Pre�x negation has the same precedence as the in�x operator

- (see Figure 2, page 54). Because e1-e2 parses as an in�x application of the binary

operator -, one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for

(\ x y -> x-y), as with any in�x operator, and does not denote (\ x -> -x)|one must

use negate for that.

Translation: e

1

op e

2

is equivalent to (op) e

1

e

2

. -e is equivalent to negate (e)

where negate, an operator in the class Num, is as de�ned in the standard prelude.

3.4 Sections

aexp ! (exp op)

j (op exp)

Sections are written as (op e) or (e op), where op is a binary operator and e is an

expression. Sections are a convenient syntax for partial application of binary operators.

The normal rules of syntactic precedence apply to sections; for example, (*a+b) is

syntactically invalid, but (+a*b) and (*(a+b)) are valid. Syntactic associativity, however,

is not taken into account in sections; thus, (a+b+) must be written ((a+b)+).

Because - is treated specially in the grammar, (- exp) is not a section, but an applica-

tion of pre�x negation, as described in the preceding section. However, there is a subtract

function de�ned in the standard prelude such that (subtract exp) is equivalent to the

disallowed section. The expression (+ (- exp)) can serve the same purpose.

14 3 EXPRESSIONS

Translation: For binary operator op and expression e, if x is a variable that does

not occur free in e, the section (op e) is equivalent to \ x -> x op e , and the section

(e op) is equivalent to \ x -> e op x .

3.5 Conditionals

exp ! if exp

1

then exp

2

else exp

3

A conditional expression has the form if e

1

then e

2

else e

3

and returns the value of e

2

if

the value of e

1

is True, e

3

if e

1

is False, and ? otherwise.

Translation: if e

1

then e

2

else e

3

is equivalent to:

case e

1

of { True -> e

2

; False -> e

3

}

where True and False are the two nullary constructors from the type Bool, as de�ned

in the standard prelude.

3.6 Lists

aexp ! [exp

1

, : : : , exp

k

] (k � 0)

Lists are written [e

1

, : : :, e

k

], where k � 0 ; the empty list is written []. Standard

operations on lists are given in the standard prelude (see Appendix A, notably Section A.5).

Translation: [e

1

, : : :, e

k

] is equivalent to

e

1

: (e

2

: (: : : (e

k

: [])))

where : and [] are constructors for lists, as de�ned in the standard prelude (see Sec-

tion 6.4). The types of e

1

through e

k

must all be the same (call it t), and the type of

the overall expression is [t] (see Section 4.1.1).

3.7 Tuples

aexp ! (exp

1

, : : : , exp

k

) (k � 2)

Tuples are written (e

1

, : : :, e

k

), and may be of arbitrary length k � 2 . Standard opera-

tions on tuples are given in the standard prelude (see Appendix A).

3.8 Unit Expressions and Parenthesised Expressions 15

Translation: (e

1

, : : :, e

k

) for k � 2 is an instance of a k -tuple as de�ned in the

standard prelude, and requires no translation. If t

1

through t

k

are the types of e

1

through e

k

, respectively, then the type of the resulting tuple is (t

1

, : : :, t

k

) (see Sec-

tion 4.1.1).

3.8 Unit Expressions and Parenthesised Expressions

aexp ! ()

j (exp)

The form (e) is simply a parenthesised expression, and is equivalent to e. The unit ex-

pression () has type () (see Section 4.1.1); it is the only member of that type (it can be

thought of as the \nullary tuple")|see Section 6.6.

Translation: (e) is equivalent to e.

3.9 Arithmetic Sequences

aexp ! [exp

1

[, exp

2

] .. [exp

3

]]

The form [e

1

, e

2

.. e

3

] denotes an arithmetic sequence from e

1

in increments of e

2

� e

1

of values not greater than e

3

(if the increment is nonnegative) or not less than e

3

(if the

increment is negative). Thus, the resulting list is empty if the increment is nonnegative and

e

3

is less than e

1

or if the increment is negative and e

3

is greater than e

1

. If the increment

is zero, an in�nite list of e

1

s results if e

3

is not less than e

1

. If e

3

is omitted, the result is

an in�nite list, unless the element type is an enumeration, in which case the implied limit is

the greatest value of the type if the increment is nonnegative, or the least value, otherwise.

The forms [e

1

.. e

3

] and [e

1

..] are similar to those above, but with an implied incre-

ment of one.

Arithmetic sequences may be de�ned over any type in class Enum, including Char, Int,

and Integer (see Figure 5 and Section 4.3.3). For example, ['a'..'z'] denotes the list of

lower-case letters in alphabetical order.

Translation: Arithmetic sequences satisfy these identities:

[e

1

..] = enumFrom e

1

[e

1

,e

2

..] = enumFromThen e

1

e

2

[e

1

..e

3

] = enumFromTo e

1

e

3

[e

1

,e

2

..e

3

] = enumFromThenTo e

1

e

2

e

3

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are operations in

the class Enum as de�ned in the standard prelude (see Figure 5).

16 3 EXPRESSIONS

3.10 List Comprehensions

aexp ! [exp | qual

1

, : : : , qual

n

] (list comprehension; n � 1)

qual ! pat <- exp

j exp

A list comprehension has the form [e | q

1

, : : :, q

n

]; n � 1 ; where the q

i

quali�ers are

either generators of the form p <- e, where p is a pattern (see Section 3.14) of type t and

e is an expression of type [t]; or guards, which are arbitrary expressions of type Bool.

Such a list comprehension returns the list of elements produced by evaluating e in the

successive environments created by the nested, depth-�rst evaluation of the generators in

the quali�er list. Binding of variables occurs according to the normal pattern-matching

rules (see Section 3.14), and if a match fails then that element of the list is simply skipped

over. Thus:

[x | xs <- [[(1,2),(3,4)], [(5,4),(3,2)]],

(3,x) <- xs]

yields the list [4,2]. If a quali�er is a guard, it must evaluate to True for the previous

pattern-match to succeed. As usual, bindings in list comprehensions can shadow those in

outer scopes; for example:

[x | x <- x, x <- x] = [z | y <- x, z <- y]

Translation: List comprehensions satisfy these identities, which may be used as a

translation into the kernel:

[e | b] = if b then [e] else []

[e | q

1

, q

2

] = concat [[e | q

2

] | q

1

]

[e | p <- l] = let ok p = True

ok _ = False

in

map (\p -> e) (filter ok l)

where e ranges over expressions, p ranges over patterns, l ranges over list-valued ex-

pressions, b ranges over boolean expressions, q

1

and q

2

range over non-empty lists of

quali�ers, and ok is a new identi�er not appearing in e , p, or l . These three equations

uniquely de�ne list comprehensions. True, False, map, concat and filter are all as

de�ned in the standard prelude.

3.11 Let Expressions

Let expressions have the general form let { d

1

; : : : ; d

n

} in e , and introduce a nested,

lexically-scoped, mutually-recursive list of declarations (let is often called letrec in other

languages). The scope of the declarations is the expression e and the right hand side of the

declarations. Declarations are described in Section 4. Pattern bindings are matched lazily

as irrefutable patterns.

3.12 Case Expressions 17

Translation: The dynamic semantics of the expression let { d

1

; : : : ; d

n

} in e

0

is captured by this translation: After removing all type signatures, each declaration

d

i

is translated into an equation of the form p

i

= e

i

, where p

i

and e

i

are patterns

and expressions respectively, using the translation in Section 4.4.2. Once done, these

identities hold, which may be used as a translation into the kernel:

let {p

1

= e

1

; ...; p

n

= e

n

} in e

0

= let (~p

1

,...,~p

n

) = (e

1

,...,e

n

) in e

0

let p = e

1

in e

0

= case e

1

of ~p -> e

0

where no variable in p appears free in e

1

let p = e

1

in e

0

= let p = fix (\ ~p -> e

1

) in e

0

where fix is the least �xpoint operator. Note the use of the irrefutable patterns in

the second and third rules. The static semantics of the bindings in a let expression is

described in Section 4.4.2.

3.12 Case Expressions

exp ! case exp of { alts [;] }

alts ! alt

1

; : : : ; alt

n

(n � 1)

alt ! pat -> exp [where { decls [;] }]

j pat gdpat [where { decls [;] }]

gdpat ! gd -> exp [gdpat]

gd ! | exp

0

A case expression has the general form

case e of { p

1

match

1

; : : : ; p

n

match

n

}

where each match

i

is of the general form

| g

i1

-> e

i1

;

: : :

| g

im

i

-> e

im

i

where { decls

i

}

Each alternative p

i

matches

i

consists of a pattern p

i

and its matches

i

, which consists of

pairs of optional guards g

ij

and bodies e

ij

(expressions), as well as optional bindings (decls

i

)

that scope over all of the guards and expressions of the alternative. An alternative of the

form

pat -> expr where { decls }

is treated as shorthand for:

pat | True -> expr

where { decls }

18 3 EXPRESSIONS

A case expression must have at least one alternative and each alternative must have at

least one body. Each body must have the same type, and the type of the whole expression

is that type.

A case expression is evaluated by pattern-matching the expression e against the in-

dividual alternatives. The matches are tried sequentially, from top to bottom. The �rst

successful match causes evaluation of the corresponding alternative body, in the environ-

ment of the case expression extended by the bindings created during the matching of that

alternative and by the decls

i

associated with that alternative. If no match succeeds, the

result is ?. Pattern matching is described in Section 3.14, with the formal semantics of

case expressions in Section 3.14.3.

3.13 Expression Type-Signatures

exp ! exp :: [context =>] type

Expression type-signatures have the form e :: t , where e is an expression and t is a type

(Section 4.1.1); they are used to type an expression explicitly and may be used to resolve

ambiguous typings due to overloading (see Section 4.3.4). The value of the expression is

just that of exp. As with normal type signatures (see Section 4.4.1), the declared type may

be more speci�c than the principal type derivable from exp, but it is an error to give a type

that is more general than, or not comparable to, the principal type.

3.14 Pattern-Matching

Patterns appear in lambda abstractions, function de�nitions, pattern bindings, list compre-

hensions, and case expressions. However, the �rst four of these ultimately translate into case

expressions, so de�ning the semantics of pattern-matching for case expressions is su�cient.

3.14.1 Patterns

Patterns have this syntax:

pat ! pat

0

pat

i

! pat

i+1

[conop

(n;i)

pat

i+1

]

j lpat

i

j rpat

i

lpat

i

! (lpat

i

j pat

i+1

) conop

(l;i)

pat

i+1

lpat

6

! (var j _) + integer (successor pattern)

j - (integer j oat) (negative literal)

rpat

i

! pat

i+1

conop

(r;i)

(rpat

i

j pat

i+1

)

pat

10

! apat

j con apat

1

: : : apat

k

(arity con = k ; k � 1)

3.14 Pattern-Matching 19

apat ! var [@ apat] (as pattern)

j con (arity con = 0)

j literal

j _ (wildcard)

j () (unit pattern)

j (pat) (parenthesised pattern)

j (pat

1

, : : : , pat

k

) (tuple pattern; k � 2)

j [pat

1

, : : : , pat

k

] (list pattern; k � 0)

j ~ apat (irrefutable pattern)

The arity of a constructor must match the number of sub-patterns associated with it; one

cannot match against a partially-applied constructor.

All patterns must be linear|no variable may appear more than once.

Patterns of the form var@pat are called as-patterns, and allow one to use var as a name

for the value being matched by pat . For example,

case e of { xs@(x:rest) -> if x==0 then rest else xs }

is equivalent to:

let { xs = e } in

case xs of { (x:rest) -> if x == 0 then rest else xs }

Patterns of the form _ are wildcards and are useful when some part of a pattern is not

referenced on the right-hand-side. It is as if an identi�er not used elsewhere were put in its

place. For example,

case e of { [x,_,_] -> if x==0 then True else False }

is equivalent to:

case e of { [x,y,z] -> if x==0 then True else False }

In the pattern-matching rules given below we distinguish two kinds of patterns: an

irrefutable pattern is: a variable, a wildcard, of the form var@apat where apat is irrefutable,

or of the form ~apat (whether or not apat is irrefutable). All other patterns are refutable.

3.14.2 Informal semantics of pattern-matching

Patterns are matched against values. Attempting to match a pattern can have one of three

results: it may fail ; it may succeed, returning a binding for each variable in the pattern; or

it may diverge (i.e. return ?). Pattern-matching proceeds from left to right, and outside in,

according to these rules:

1. Matching a value v against the irrefutable pattern var always succeeds and binds var

to v . Similarly, matching v against the irrefutable pattern ~apat always succeeds.

20 3 EXPRESSIONS

The free variables in apat are bound to the appropriate values if matching v against

apat would otherwise succeed, and to ? if matching v against apat fails or diverges.

(Binding does not imply evaluation.)

Operationally, this means that no matching is done on an irrefutable pattern until one

of the variables in the pattern is used. At that point the entire pattern is matched

against the value, and if the match fails or diverges, so does the overall computation.

2. Matching ? against a refutable pattern always diverges.

3. Matching a non-? value can occur against two kinds of refutable patterns:

(a) Matching a non-? value against a constructed pattern fails if the outermost

constructors are di�erent. If the constructors are the same, the result of the

match is the result of matching the sub-patterns left-to-right: if all matches

succeed, the overall match succeeds; the �rst to fail or diverge causes the overall

match to fail or diverge, respectively.

Constructed values consist of those created by pre�x or in�x constructors, tu-

ple or list patterns, and strings (which are lists of characters). Characters and

() are treated as nullary constructors. Numeric literals are matched using the

overloaded == function.

(b) Matching a non-? value n against a pattern of the form x+k (where x is a variable

and k is a positive integer literal) succeeds if n � k , resulting in the binding of x

to n � k , and fails if n < k . For example, the Fibonacci function may be de�ned

as follows:

fib n = case n of {

0 -> 1 ;

1 -> 1 ;

n+2 -> fib n + fib (n+1) }

Since n must be bound to a positive value, fib diverges for a negative argument,

and exactly one of the equations matches any non-negative argument.

4. The result of matching a value v against an as-pattern var@apat is the result of

matching v against pat augmented with the binding of var to v . If the match of v

against pat fails or diverges, then so does the overall match.

Aside from the obvious static type constraints (for example, it is a static error to match

a character against a boolean), these static class constraints hold: an integer literal pattern

can only be matched against a value in the class Num; a oating literal pattern can only be

matched against a value in the class Fractional; and a n+k pattern can only be matched

against a value in the class Integral.

Here are some examples:

1. If the pattern [1,2] is matched against [0,?], then 1 fails to match against 0, and

the result is a failed match. But if [1,2] is matched against [?,0], then attempting

to match 1 against ? causes the match to diverge.

3.14 Pattern-Matching 21

2. These examples demonstrate refutable vs. irrefutable matching:

(\ ~(x,y) -> 0) ?) 0

(\ (x,y) -> 0) ?) ?

(\ ~[x] -> 0) []) 0

(\ ~[x] -> x) []) ?

(\ ~[x,~(a,b)] -> x) [(0,1),?]) (0,1)

(\ ~[x, (a,b)] -> x) [(0,1),?]) ?

(\ (x:xs) -> x:x:xs) ?) ?

(\ ~(x:xs) -> x:x:xs) ?) ?:?:?

Top level patterns in case expressions, and the set of top level patterns in function or

pattern bindings, may have zero or more associated guards. A guard is a boolean expression

that is evaluated only after all of the arguments have been successfully matched, and it must

be true for the overall pattern-match to succeed. The environment of the guard is the same

as the right-hand-side of the case-expression alternative, function de�nition, or pattern

binding to which it is attached.

The guard semantics has an obvious inuence on the strictness characteristics of a

function or case expression. In particular, an otherwise irrefutable pattern may be evaluated

because of a guard. For example, in

f ~(x,y,z) [a] | a==y = 1

both a and y will be evaluated.

3.14.3 Formal semantics of pattern-matching

The semantics of all pattern-matching constructs other than case expressions is de�ned

by giving identities that relate those constructs to case expressions. The semantics of

case expressions themselves is in turn given as a series of identities, in Figures 3{4. Any

implementation should behave so that these identities hold; it is not expected that it will

use them directly, since that would generate rather ine�cient code.

In Figures 3{4: e, e

0

and e

i

are expressions; g and g

i

are boolean-valued expressions;

p and p

i

are patterns; x and x

i

are variables; K and K

0

are constructors (including tuple

constructors); a match

i

is a form as shown in rule (a); and k is a character, string, or

numeric literal.

For clarity, several rules are expressed using let (used only in a non-recursive way); their

usual purpose is to prevent name capture (e.g., in rule (b)). The rules may be re-expressed

entirely with cases by applying this identity:

let x = y in e = case y of { x -> e }

22 3 EXPRESSIONS

(a) case e

0

of { p

1

match

1

; : : : ; p

n

match

n

}

= case e

0

of { p

1

match

1

;

_ -> : : : case e

0

of {

p

n

match

n

_ -> error "No match" }: : :}

where each match

i

has the form:

| g

i;1

-> e

i;1

; : : : ; | g

i;m

i

-> e

i;m

i

where { decls

i

}

(b) case e

0

of { p | g

1

-> e

1

; : : :

| g

n

-> e

n

where { decls }

_ -> e

0

}

= let { y = e

0

} (where y is a completely new variable)

in case e

0

of {

p -> let { decls } in

if g

1

then e

1

: : : else if g

n

then e

n

else y

_ -> y }

(c) case e

0

of { ~p -> e; _ -> e

0

}

= let { y = e

0

} in

let { x

0

1

= case y of { p -> x

1

}} in : : :

let { x

0

n

= case y of { p -> x

n

}} in e [x

0

1

=x

1

; : : : ; x

0

n

=x

n

]

x

1

; : : : ; x

n

are all the variables in p; y; x

0

1

; : : : ; x

0

n

are completely new variables

(d) case e

0

of { x@p -> e; _ -> e

0

}

= let { y = e

0

} (where y is a completely new variable)

in case y of { p -> (\ x -> e) y ; _ -> e

0

}

(e) case e

0

of { _ -> e; _ -> e

0

} = e

Figure 3: Semantics of Case Expressions, Part 1

Using all but the last two identities (rules (k) and (l)) in Figure 4 in a left-to-right

manner yields a translation into a subset of general case expressions called simple case

expressions. Rule (a) matches a general source-language case expression, regardless of

whether it actually includes guards|if no guards are written, then True is substituted for

the guards g

i;j

in the match

i

forms. Subsequent identities manipulate the resulting case

expression into simpler and simpler forms. The semantics of simple case expressions is

given by the last two identities ((k) and (l)).

Rules (g) and (h) in Figure 4 involve the overloaded operators == and >=; it is these

rules that de�ne the meaning of pattern-matching against overloaded constants.

These identities all preserve the static semantics. Rules (d) and (j) use a lambda rather

than a let; this indicates that variables bound by case are monomorphically typed (Sec-

tion 4.1.3).

3.14 Pattern-Matching 23

(f) case e

0

of { K p

1

: : :p

n

-> e; _ -> e

0

}

= let { y = e

0

}

in case e

0

of {

K x

1

: : : x

n

-> case x

1

of {

p

1

-> : : : case x

n

of { p

n

-> e ; _ -> y } : : :

_ -> y }

_ -> y }

at least one of p

1

; : : : ; p

n

is not a variable; y; x

1

; : : : ; x

n

are new variables

(g) case e

0

of { k -> e; _ -> e

0

} = if (e

0

== k) then e else e

0

(h) case e

0

of { x+k -> e; _ -> e

0

}

= if e

0

>= k then let {x

0

= e

0

-k} in e[x

0

=x] else e

0

(x

0

is a new variable)

(i) case e

0

of { x -> e; _ -> e

0

} = case e

0

of { x -> e }

(j) case e

0

of { x -> e } = (\ x -> e) e

0

(k) case (K

0

e

1

: : : e

m

) of { K x

1

: : : x

n

-> e; _ -> e

0

} = e

0

where K and K

0

are distinct constructors of arity n and m, respectively

(l) case (K e

1

: : : e

n

) of { K x

1

: : : x

n

-> e; _ -> e

0

}

= case e

1

of { x

0

1

-> : : : case e

n

of { x

0

n

-> e[x

0

1

=x

1

: : : x

0

n

=x

n

] }: : :}

where K is a constructor of arity n; x

0

1

: : :x

0

n

are completely new variables

Figure 4: Semantics of Case Expressions, Part 2

24 4 DECLARATIONS AND BINDINGS

4 Declarations and Bindings

In this section, we describe the syntax and informal semantics of Haskell declarations.

module ! module modid [exports] where body

j body

body ! { [impdecls ;] [[�xdecls ;] topdecls [;]] }

j { impdecls [;] }

topdecls ! topdecl

1

; : : : ; topdecl

n

(n � 1)

topdecl ! type simple = type

j data [context =>] simple = constrs [deriving (tycls j (tyclses))]

j class [context =>] class [where { cbody [;] }]

j instance [context =>] tycls inst [where { valdefs [;] }]

j default (type j (type

1

, : : : , type

n

)) (n � 0)

j decl

decls ! decl

1

; : : : ; decl

n

(n � 0)

decl ! vars :: [context =>] type

j valdef

The declarations in the syntactic category topdecls are only allowed at the top level of

a Haskell module (see Section 5), whereas decls may be used either at the top level or in

nested scopes (i.e. those within a let or where construct).

For exposition, we divide the declarations into three groups: user-de�ned datatypes,

consisting of type and data declarations (Section 4.2); type classes and overloading, con-

sisting of class, instance, and default declarations (Section 4.3); and nested declarations,

consisting of value bindings and type signatures (Section 4.4).

Haskell has several primitive datatypes that are \hard-wired" (such as integers and

arrays), but most \built-in" datatypes are de�ned in the standard prelude with normal

Haskell code, using type and data declarations. These \built-in" datatypes are described

in detail in Section 6.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphic type system to provide a static type

semantics [4, 7], but the type system has been extended with type classes (or just classes)

that provide a structured way to introduce overloaded functions. This is the major technical

innovation in Haskell.

A class declaration (Section 4.3.1) introduces a new type class and the overloaded

operations that must be supported by any type that is an instance of that class. An

instance declaration (Section 4.3.2) declares that a type is an instance of a class and

4.1 Overview of Types and Classes 25

includes the de�nitions of the overloaded operations|called methods|instantiated on the

named type.

For example, suppose we wish to overload the operations (+) and negate on types Int

and Float. We introduce a new type class called Num:

class Num a where -- simplified class declaration for Num

(+) :: a -> a -> a

negate :: a -> a

This declaration may be read \a type a is an instance of the class Num if there are (over-

loaded) operations (+) and negate, of the appropriate types, de�ned on it."

We may then declare Int and Float to be instances of this class:

instance Num Int where -- simplified instance of Num Int

x + y = addInt x y

negate x = negateInt x

instance Num Float where -- simplified instance of Num Float

x + y = addFloat x y

negate x = negateFloat x

where addInt, negateInt, addFloat, and negateFloat are assumed in this case to be

primitive functions, but in general could be any user-de�ned function. The �rst declaration

above may be read \Int is an instance of the class Num as witnessed by these de�nitions

(i.e. methods) for (+) and negate."

More examples can be found in Wadler and Blott's paper [21].

4.1.1 Syntax of Types

type ! btype [-> type]

btype ! tycon atype

1

: : : atype

k

(arity tycon = k ; k � 1)

j atype

atype ! tyvar

j tycon (arity tycon = 0)

j () (unit type)

j (type) (parenthesised type)

j (type

1

, : : : , type

k

) (tuple type; k � 2)

j [type]

The syntax for Haskell type expressions is given above. They are built in the usual way from

type variables, function types, type constructors, tuple types, and list types. Type vari-

ables are identi�ers beginning with a lower-case letter and type constructors are identi�ers

beginning with an upper-case letter. A type is one of:

1. A function type having form t

1

-> t

2

. Function arrows associate to the right.

26 4 DECLARATIONS AND BINDINGS

2. A constructed type having form T t

1

: : : t

k

, where T is a type constructor of arity k .

3. A tuple type having form (t

1

, : : :, t

k

) where k � 2 . It denotes the type of k -tuples

with the �rst component of type t

1

, the second component of type t

2

, and so on (see

Sections 3.7 and 6.5).

4. A list type has the form [t]. It denotes the type of lists with elements of type t (see

Sections 3.6 and 6.4).

5. The trivial type having form (). It denotes the \nullary tuple" type, and has exactly

one value, also written () (see Sections 3.8 and 6.6).

6. A parenthesised type, having form (t), is identical to the type t .

Although the tuple, list, and trivial types have special syntax, they are not di�erent

from user-de�ned types with equivalent functionality.

Expressions and types have a consistent syntax. If t

i

is the type of expression or pattern

e

i

, then the expressions (\ e

1

-> e

2

), [e

1

], and (e

1

; e

2

) have the types (t

1

-> t

2

), [t

1

],

and (t

1

; t

2

), respectively.

With one exception, the type variables in a Haskell type expression are all assumed to

be universally quanti�ed; there is no explicit syntax for universal quanti�cation [4, 17]. For

example, the type expression a -> a denotes the type 8a: a! a. For clarity, however, we

will often write quanti�cation explicitly when discussing the types of Haskell programs.

The exception referred to is that of the distinguished type variable in a class declaration

(Section 4.3.1).

4.1.2 Syntax of Class Assertions and Contexts

context ! class

j (class

1

, : : : , class

n

) (n � 1)

class ! tycls tyvar

tycls ! conid

tyvar ! varid

A class assertion has form tycls tyvar , and indicates the membership of the parameterised

type tyvar in the class tycls. A class identi�er begins with a capital letter.

A context consists of one or more class assertions, and has the general form

(C

1

u

1

; : : : ; C

n

u

n

)

where C

1

; : : : ; C

n

are class identi�ers, and u

1

; : : : ; u

n

are type variables; the parentheses

may be omitted when n = 1 . In general, we use c to denote a context and we write c => t

to indicate the type t restricted by the context c. The context c must only contain type

variables referenced in t . For convenience, we write c => t even if the context c is empty,

although in this case the concrete syntax contains no =>.

4.2 User-De�ned Datatypes 27

4.1.3 Semantics of Types and Classes

In this subsection, we provide informal details of the type system. (Wadler and Blott [21]

discuss type classes further.)

The Haskell type system attributes a type to each expression in the program. In general,

a type is of the form 8u: c) t, where u is a set of type variables u

1

; : : : ; u

n

. In any such

type, any of the universally-quanti�ed type variables u

i

which are free in c must also be

free in t . Furthermore, the context c must be of the form given above in Section 4.1.2; that

is, it must have the form (C

1

u

1

; : : : ; C

n

u

n

) where C

1

; : : : ; C

n

are class identi�ers, and

u

1

; : : : ; u

n

are type variables.

The type of an expression e depends on a type environment that gives types for the

free variables in e, and a class environment that declares which types are instances of

which classes (a type becomes an instance of a class only via the presence of an instance

declaration or a deriving clause).

Types are related by a generalisation order (speci�ed below); the most general type that

can be assigned to a particular expression (in a given environment) is called its principal

type. Haskell's extended Hindley-Milner type system can infer the principal type of all

expressions, including the proper use of overloaded operations (although certain ambiguous

overloadings could arise, as described in Section 4.3.4). Therefore, explicit typings (called

type signatures) are optional (see Sections 3.13 and 4.4.1).

The type 8u: c

1

) t

1

is more general than the type 8w: c

2

) t

2

if and only if there is a

substitution S whose domain is u such that:

� t

2

is identical to S(t

1

).

� Whenever c

2

holds in the class environment, S(c

1

) also holds.

The main point about contexts above is that, given the type 8u: c) t, the presence of

C u

i

in the context c expresses the constraint that the type variable u

i

may be instantiated

as t

0

within the type expression t only if t

0

is a member of the class C . For example, consider

the function double:

double x = x + x

The most general type of double is 8a: Num a) a ! a. double may be applied to values

of type Int (instantiating a to Int), since Int is an instance of the class Num. However,

double may not be applies to values of type Char, because Char is not an instance of class

Num.

4.2 User-De�ned Datatypes

In this section, we describe algebraic datatypes (data declarations) and type synonyms

(type declarations). These declarations may only appear at the top level of a module.

28 4 DECLARATIONS AND BINDINGS

4.2.1 Algebraic Datatype Declarations

topdecl ! data [context =>] simple = constrs [deriving (tycls j (tyclses))]

simple ! tycon tyvar

1

: : : tyvar

k

(arity tycon = k ; k � 0)

constrs ! constr

1

| : : : | constr

n

(n � 1)

constr ! con atype

1

: : : atype

k

(arity con = k ; k � 0)

j btype

1

conop btype

2

(in�x conop)

tyclses ! tycls

1

, : : :, tycls

n

(n � 0)

The precedence for constr is the same as that for expressions|normal constructor appli-

cation has higher precedence than in�x constructor application (thus a : Foo a parses as

a : (Foo a)).

An algebraic datatype declaration introduces a new type and constructors over that

type and has the form:

data c => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

where c is a context. This declaration introduces a new type constructor T with constituent

data constructors K

1

; : : : ; K

n

whose types are given by:

K

i

:: 8 u

1

: : : u

k

: c

i

) t

i1

! � � � ! t

ik

i

! (T u

1

: : : u

k

)

where c

i

is the largest subset of c that constrains only those type variables free in the types

t

i1

; : : : ; t

ik

i

. The type variables u

1

through u

k

must be distinct and may appear in c and

the t

ij

; it is a static error for any other type variable to appear in c or on the right-hand-side.

For example, the declaration

data Eq a => Set a = NilSet | ConsSet a (Set a)

introduces a type constructor Set, and constructors NilSet and ConsSet with types

NilSet :: 8 a: Set a

ConsSet :: 8 a: Eq a) a ! Set a ! Set a

In the example given, the overloaded type for ConsSet ensures that ConsSet can only

be applied to values whose type is an instance of the class Eq. The context in the data

declaration has no other e�ect whatsoever. In particular, pattern matching is una�ected.

The visibility of a datatype's constructors (i.e. the \abstractness" of the datatype) out-

side of the module in which the datatype is de�ned is controlled by the form of the datatype's

name in the export list as described in Section 5.6.

The optional deriving part of a data declaration has to do with derived instances, and

is described in Section 4.3.3.

4.3 Type Classes and Overloading 29

4.2.2 Type Synonym Declarations

topdecl ! type simple = type

simple ! tycon tyvar

1

: : : tyvar

k

(arity tycon = k ; k � 0)

A type synonym declaration introduces a new type that is equivalent to an old type and

has the form

type T u

1

: : : u

k

= t

which introduces a new type constructor, T . The type (T t

1

: : : t

k

) is equivalent to the

type t [t

1

=u

1

; : : : ; t

k

=u

k

]. The type variables u

1

through u

k

must be distinct and are scoped

only over t ; it is a static error for any other type variable to appear in t .

Although recursive and mutually recursive datatypes are allowed, this is not so for type

synonyms, unless an algebraic datatype intervenes. For example,

type Rec a = [Circ a]

data Circ a = Tag [Rec a]

is allowed, whereas

type Rec a = [Circ a] -- ILLEGAL

type Circ a = [Rec a] --

is not. Similarly, type Rec a = [Rec a] is not allowed.

4.3 Type Classes and Overloading

4.3.1 Class Declarations

topdecl ! class [context =>] class [where { cbody [;] }]

cbody ! csigns [; valdef [; valdefs]]

j valdefs

csigns ! csign

1

; : : : ; csign

n

(n � 1)

csign ! vars :: [context =>] type

vars ! var

1

, : : :, var

n

(n � 1)

A class declaration introduces a new class and the operations on it. A class declaration has

the general form:

class c => C u where { v

1

:: c

1

=> t

1

; : : : ; v

n

:: c

n

=> t

n

;

valdef

1

; : : : ; valdef

m

}

This introduces a new class name C ; the type variable u is scoped only over the method

signatures in the class body. The context c speci�es the superclasses of C , as described

below; the only type variable that may be referred to in c is u . The class declaration intro-

duces new class methods v

1

; : : : ; v

n

, whose scope extends outside the class declaration,

with types:

v

i

:: 8u; w: (Cu; c

i

)) t

i

30 4 DECLARATIONS AND BINDINGS

The t

i

must mention u; they may mention type variables w other than u , and the type of

v

i

is polymorphic in both u and w. The c

i

may constrain only w; in particular, the c

i

may

not constrain u . For example:

class Foo a where

op :: Num b => a -> b -> a

Here the type of op is 8a; b: (Foo a; Num b)) a! b! a.

Default methods for any of the v

i

may be included in the class declaration as a normal

valdef ; no other de�nitions are permitted. The default method for v

i

is used if no binding

for it is given in a particular instance declaration (see Section 4.3.2).

Two classes in scope at the same time may not share any of the same methods.

Figure 5 shows some standard Haskell classes, including the use of superclasses; note

the class inclusion diagram on the right. For example, Eq is a superclass of Ord, and thus

in any context Ord a is equivalent to (Eq a, Ord a).

A class declaration with no where part may be useful for combining a collection of

classes into a larger one that inherits all of the operations in the original ones. For example:

class (Ord a, Text a, Binary a) => Data a

In such a case, if a type is an instance of all superclasses, it is not automatically an instance

of the subclass, even though the subclass has no immediate operations. The instance

declaration must be given explicitly, and it must have an empty where part as well.

The superclass relation must not be cyclic; i.e. it must form a directed acyclic graph.

4.3.2 Instance Declarations

topdecl ! instance [context =>] tycls inst [where { valdefs [;] }]

inst ! tycon (arity tycon = 0)

j (tycon tyvar

1

: : : tyvar

k

) (k � 1 ; tyvars distinct)

j (tyvar

1

, : : : , tyvar

k

) (k � 2 ; tyvars distinct)

j ()

j [tyvar]

j (tyvar

1

-> tyvar

2

) tyvar

1

and tyvar

2

distinct

valdefs ! valdef

1

; : : : ; valdef

n

(n � 0)

An instance declaration introduces an instance of a class. Let

class c => C u where { cbody }

be a class declaration. The general form of the corresponding instance declaration is:

instance c

0

=> C (T u

1

: : : u

k

) where { d }

4.3 Type Classes and Overloading 31

class Eq a where -- Eq

(==), (/=) :: a -> a -> Bool -- |

-- Ord

x /= y = not (x == y) -- / \

-- Ix Enum

class (Eq a) => Ord a where

(<), (<=), (>=), (>) :: a -> a -> Bool

max, min :: a -> a -> a

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

max x y | x >= y = x

| y >= x = y

min x y | x <= y = x

| y <= x = y

class Text a where

showsPrec :: Int -> a -> String -> String

readsPrec :: Int -> String -> [(a,String)]

showList :: [a] -> String -> String

readList :: String -> [([a],String)]

showList = ... -- see Appendix A

readList = ... -- see Appendix A

class Binary a where

showBin :: a -> Bin -> Bin

readBin :: Bin -> (a,Bin)

class (Ord a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

class (Ord a) => Enum a where

enumFrom :: a -> [a] -- [n..]

enumFromThen :: a -> a -> [a] -- [n,n'..]

enumFromTo :: a -> a -> [a] -- [n..m]

enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]

enumFromTo n m = takeWhile ((>=) m) (enumFrom n)

enumFromThenTo n n' m = takeWhile

((if n' >= n then (>=) else (<=)) m)

(enumFromThen n n')

Figure 5: Standard Classes and Associated Functions

32 4 DECLARATIONS AND BINDINGS

where k � 0 and T is not a type synonym. The type being instanced, (T u

1

: : : u

k

), is a

type constructor applied to simple type variables u

1

; : : : u

k

, which must be distinct. This

prohibits instance declarations such as:

instance C (a,a) where ...

instance C (Int,a) where ...

instance C [[a]] where ...

The declarations d may contain bindings only for the class methods of C , and may not

contain any type signatures since the method signatures have already been given in the

class declaration.

If no binding is given for some class method then the corresponding default method in

the class declaration is used (if present); if such a default does not exist then the class

method at this instance is implicitly bound to the completely unde�ned function (of the

appropriate type) and no static error results.

An instance declaration that makes the type T to be an instance of class C is called

a C-T instance declaration and is subject to these static restrictions:

� A C-T instance declaration may only appear either in the module in which C is

declared or in the module in which T is declared, and only where both C and T are

in scope.

� A type may not be declared as an instance of a particular class more than once in the

same scope.

� Assume that the type variables in the instance type (T u

1

: : : u

k

) satisfy the con-

straints in the instance context c

0

. Under this assumption, the following two conditions

must also be satis�ed:

1. The constraints expressed by the superclass context c[(T u1 : : : uk)=u] of C

must be satis�ed. In other words, T must be an instance of each of C's super-

classes.

2. Any constraints on the type variables in the instance type that are required for

the method declarations in d to be well-typed must also be satis�ed.

In fact, except in pathological cases it is possible to infer from the instance declaration

the most general instance context c

0

satisfying the above two constraints, but it is

nevertheless mandatory to write an explicit instance context.

The last of these restrictions has quite subtle implications. Consider, for example, the

following declarations:

class Foo a => Bar a where ...

instance (Eq a, Text a) => Foo [a] where ...

instance Num a => Bar [a] where ...

4.3 Type Classes and Overloading 33

This is perfectly legal. Since Foo is a superclass of Bar, the second instance declaration

is only legal if [a] is an instance of Foo under the assumption Num a. The �rst instance

declaration does indeed say that [a] is an instance of Foo under this assumption, because

Eq and Text are superclasses of Num.

If the two instance declarations instead read like this:

instance Num a => Foo [a] where ...

instance (Eq a, Text a) => Bar [a] where ...

then the program would be illegal. The second instance declaration is legal only if [a] is

an instance of Foo under the assumptions (Eq a, Text a). But this does not hold, since

[a] is only an instance of Foo under the stronger assumption Num a.

Further examples of instance declarations may be found in Appendix A.2.

4.3.3 Derived Instances

As mentioned in Section 4.2.1, data declarations contain an optional deriving form. If

the form is included, then derived instance declarations are automatically generated for the

datatype in each of the named classes. If a derived instance of a subclass is asked for, then

each of the superclasses must either be asked for or an explicit instance declaration must

be given for it.

Derived instances provide convenient commonly-used operations for user-de�ned data-

types. For example, derived instances for datatypes in the class Eq de�ne the operations ==

and /=, freeing the programmer from the need to de�ne them.

The only classes for which derived instances are allowed are Eq, Ord, Ix, Enum, Text, and

Binary, all de�ned in Figure 5, page 31. The precise details of how the derived instances

are generated for each of these classes are provided in Appendix E, including a speci�cation

of when such derived instances are possible.

If it is not possible to derive an instance declaration over a class named in a deriving

form, then a static error results. For example, not all datatypes can properly support

operations in Enum. It is also a static error to give an explicit instance declaration for one

that is also derived.

If the deriving form is omitted from a data declaration, then no instance declarations

will be derived for that datatype; that is, omitting a deriving form is equivalent to including

an empty deriving form: deriving ().

4.3.4 Defaults for Overloaded Operations

topdecl ! default (type j (type

1

, : : : , type

n

)) (n � 0)

34 4 DECLARATIONS AND BINDINGS

A problem inherent with overloading is the possibility of an ambiguous type. For example,

using the read and show functions de�ned in Appendix E, and supposing that just Int and

Bool are members of Text, then the expression

let x = read "..." in show x -- ILLEGAL

is ambiguous, because the types for show and read,

show :: 8 a: Text a) a ! String

read :: 8 a: Text a) String ! a

could be satis�ed by instantiating a as either Int in both cases, or Bool. Such expressions

are considered ill-typed, a static error.

We say that an expression e is ambiguously overloaded if, in its type 8 u : c) t , there

is a type variable u in u which occurs in c but not in t . Such types are illegal.

For example, the earlier expression involving show and read is ambiguously overloaded

since its type is 8a: Text a) String.

Overloading ambiguity, although rare, can only be circumvented by input from the user.

One way is through the use of expression type-signatures as described in Section 3.13. For

example, for the ambiguous expression given earlier, one could write:

let x = read "..." in show (x::Bool)

which disambiguates the type.

Occasionally, an otherwise ambiguous expression needs to be made the same type as

some variable, rather than being given a �xed type with an expression type-signature. This

is the purpose of the function asTypeOf (Appendix A): x asTypeOf y has the value of x ,

but x and y are forced to have the same type. For example,

approxSqrt x = encodeFloat 1 (exponent x `div` 2) `asTypeOf` x

(See Section 6.8.8.)

Ambiguities in the class Num are most common, so Haskell provides another way to

resolve them|with a default declaration:

default (t

1

, : : : , t

n

)

where n � 0 (the parentheses may be omitted when n = 1), and each t

i

must be a monotype

for which Num t

i

holds. In situations where an ambiguous type is discovered, an ambiguous

type variable is defaultable if at least one of its classes is a numeric class and if all of its

classes are either numeric classes or standard classes. (Figures 8{10, pages 60{62, show

the numeric classes, and Figure 5, page 31, shows the standard classes.) Each defaultable

variable is replaced by the �rst type in the default list that is an instance of all the ambiguous

variable's classes. It is a static error if no such type is found.

Only one default declaration is permitted per module, and its e�ect is limited to that

module. If no default declaration is given in a module then it defaults to:

default (Int, Double)

The empty default declaration default ()must be given to turn o� all defaults in a module.

4.4 Nested Declarations 35

4.4 Nested Declarations

The following declarations may be used in any declaration list, including the top level of a

module.

4.4.1 Type Signatures

decl ! vars :: [context =>] type

vars ! var

1

, : : :, var

n

(n � 1)

A type signature speci�es types for variables, possibly with respect to a context. A type

signature has the form:

x

1

; : : : ; x

n

:: c => t

which is equivalent to asserting x

i

:: c => t for each i from 1 to n. Each x

i

must have a

value binding in the same declaration list that contains the type signature; i.e. it is illegal

to give a type signature for a variable bound in an outer scope. Moreover, it is illegal to

give more than one type signature for one variable.

As mentioned in Section 4.1.1, every type variable appearing in a signature is universally

quanti�ed over that signature, and hence the scope of a type variable is limited to the type

signature that contains it. For example, in the following declarations

f :: a -> a

f x = x::a -- ILLEGAL

the a's in the two type signatures are quite distinct. Indeed, these declarations contain a

static error, since x does not have type 8a: a.

A type signature for x may be more speci�c than the principal type derivable from

the value binding of x (see Section 4.1.3), but it is an error to give a type that is more

general than, or incomparable to, the principal type. If a more speci�c type is given then

all occurrences of the variable must be used at the more speci�c type or at a more speci�c

type still. For example, if we de�ne

sqr x = x*x

then the principal type is sqr :: 8a: Num a) a ! a, which allows applications such as

sqr 5 or sqr 0.1. It is also legal to declare a more speci�c type, such as

sqr :: Int -> Int

but now applications such as sqr 0.1 are illegal. Type signatures such as

sqr :: (Num a, Num b) => a -> b -- ILLEGAL

sqr :: a -> a -- ILLEGAL

are illegal, as they are more general than the principal type of sqr.

36 4 DECLARATIONS AND BINDINGS

4.4.2 Function and Pattern Bindings

decl ! valdef

valdef ! lhs = exp [where { decls [;] }]

j lhs gdrhs [where { decls [;] }]

lhs ! pat

h(var j _) + integer i

j funlhs

funlhs ! var apat f apat g

j pat

i+1

varop

(a;i)

pat

i+1

j lpat

i

varop

(l;i)

pat

i+1

j pat

i+1

varop

(r;i)

rpat

i

gdrhs ! gd = exp [gdrhs]

gd ! | exp

0

We distinguish two cases within this syntax: a pattern binding occurs when lhs is pat ;

otherwise, the binding is called a function binding. Either binding may appear at the top-

level of a module or within a where or let construct. Top level n+k pattern bindings are

explicitly disallowed; otherwise, programs such as x + 2 = 3 could be parsed either as a

de�nition of + or as a pattern binding.

Function bindings. A function binding binds a variable to a function value. The general

form of a function binding for variable x is:

x p

11

: : : p

1k

match

1

: : :

x p

n1

: : : p

nk

match

n

where each p

ij

is a pattern, and where each match

i

is of the general form:

= e where { decls }

or

| g

i1

= e

i1

: : :

| g

im

i

= e

im

i

where { decls

i

}

and where n � 1 , 1 � i � n, m

i

� 1 . The former is treated as shorthand for a particular

case of the latter, namely:

| True = e where { decls }

The set of patterns corresponding to each match must be linear|no variable is allowed

to appear more than once in the entire set.

4.5 Static semantics of function and pattern bindings 37

Alternative syntax is provided for binding functional values to in�x operators. For

example, these two function de�nitions are equivalent:

plus x y z = x+y+z

x �plus� y = \ z -> x+y+z

Translation: The general binding form for functions is semantically equivalent to the

equation (i.e. simple pattern binding):

x x

1

x

2

::: x

k

= case (x

1

, :::, x

k

) of (p

11

; : : : ; p

1k

) match

1

: : :

(p

m1

; : : : ; p

mk

) match

m

where the x

i

are new identi�ers.

Pattern bindings. A pattern binding binds variables to values. A simple pattern binding

has form p = e. In both a where or let clause and at the top level of a module, the pattern

p is matched \lazily" as an irrefutable pattern by default (as if there were an implicit ~ in

front of it). See the translation in Section 3.11.

The general form of a pattern binding is p match , where a match is the same structure

as for function bindings above; in other words, a pattern binding is:

p | g

1

= e

1

| g

2

= e

2

: : :

| g

m

= e

m

where { decls }

Translation: The pattern binding above is semantically equivalent to this simple

pattern binding:

p = let decls in

if g

1

then e

1

else

if g

2

then e

2

else

:::

if g

m

then e

m

else error "Unmatched pattern"

4.5 Static semantics of function and pattern bindings

The static semantics of the function and pattern bindings of a let expression or where

clause is discussed in this section.

38 4 DECLARATIONS AND BINDINGS

4.5.1 Dependency analysis

In general the static semantics is given by the normal Hindley-Milner inference rules, except

that a dependency analysis transformation is �rst performed to enhance polymorphism, as

follows. Two variables bound by value declarations are in the same declaration group if

either

1. they are bound by the same pattern binding, or

2. their bindings are mutually recursive (perhaps via some other declarations which are

also part of the group).

Careful application of the following rules causes each let or where construct to bind only the

variables of a single declaration group, thus capturing the required dependency analysis:

2

(1) The order of declarations in where/let constructs is irrelevant.

(2) let {d

1

; d

2

} in e = let {d

1

} in (let {d

2

} in e)

(when no identi�er bound in d

2

appears free in d

1

)

4.5.2 Generalisation

The Hindley-Milner type system assigns types to a let-expression in two stages. First, the

right-hand side of the declaration is typed, giving a type with no universal quanti�cation.

Second, all type variables which occur in this type are universally quanti�ed unless they

are associated with bound variables in the type environment; this is called generalisation.

Finally, the body of the let-expression is typed.

For example, consider the declaration

f x = let g y = (y,y)

in ...

The type of g's de�nition is a ! (a; a). The generalisation step attributes to g the poly-

morphic type 8a: a! (a; a), after which the typing of the \..." part can proceed.

When typing overloaded de�nitions, all the overloading constraints from a single dec-

laration group are collected together, to form the context for the type of each variable

declared in the group. For example, in the de�nition:

f x = let g1 x y = if x>y then show x else g2 y x

g2 p q = g1 q p

in ...

The types of the de�nitions of g1 and g2 are both a! a ! String, and the accumulated

constraints are Ord a (arising from the use of >), and Text a (arising from the use of show).

The type variables appearing in this collection of constraints are called the constrained type

variables.

2

A similar transformation is described in Peyton Jones' book [14].

4.5 Static semantics of function and pattern bindings 39

The generalisation step attributes to both g1 and g2 the type 8a: (Ord a; Text a))

a ! a ! String. Notice that g2 is overloaded in the same way as g1 even though the

occurrences of > and show are in the de�nition of g1.

If the programmer supplies explicit type signatures for more than one variable in a

declaration group, the contexts of these signatures must be identical up to renaming of the

type variables.

As mentioned in Section 4.1.3, the context of a type may constrain only type variables.

Consider, for example, the de�nition:

f xs y = xs == [y]

Its type is given by

f :: Eq a => [a] -> a -> Bool

and not

f :: Eq [a] => [a] -> a -> Bool

Even though the equality is taken at the list type, the context must be simpli�ed, using the

instance declaration for Eq on lists, before generalisation. If no such instance is in scope,

an error is signalled.

4.5.3 Monomorphism

Sometimes it is not possible to generalise over all the type variables used in the type of the

de�nition. For example, consider the declaration

f x = let g y z = ([x,y], z)

in ...

In an environment where x has type a, the type of g's de�nition is a ! b ! ([a]; b).

The generalisation step attributes to g the type 8b: a ! b ! ([a]; b); only b can be

universally quanti�ed because a occurs in the type environment. We say that the type of g

is monomorphic in the type variable a.

The e�ect of such monomorphism is that the �rst argument of all applications of g must

be of a single type. For example, it would be legal for the \..." to be

(g True, g False)

(which would, incidentally, force x to have type Bool) but illegal for it to be

(g True, g 'c')

In general, a type 8u: c) t is said to be monomorphic in the type variable a if a is free in

8u: c) t.

It is worth noting that the explicit type signatures provided by Haskell are not powerful

enough to express types which include monomorphic type variables. For example, we cannot

write

40 4 DECLARATIONS AND BINDINGS

f x = let

g :: a -> b -> ([a],b)

g y z = ([x,y], z)

in ...

because that would claim that g was polymorphic in both a and b (Section 4.4.1). In this

program, g can only be given a type signature if its �rst argument is restricted to a type

not involving type variables; for example

g :: Int -> b -> ([Int],b)

This signature would also cause x to have type Int.

4.5.4 The monomorphism restriction

Haskell places certain extra restrictions on the generalisation step, beyond the standard

Hindley-Milner restriction described above, which further reduce polymorphism in particu-

lar cases.

The monomorphism restriction uses the binding syntax of a variable. Recall that a

variable is bound by either a function binding or a pattern binding, and that a simple

pattern binding is a pattern binding in which the pattern consists of only a single variable

(Section 4.4.2).

Two rules de�ne the monomorphism restriction:

Rule 1. We say that a given declaration group is unrestricted if and only if:

(a): every variable in the group is bound by a function binding or a simple pattern

binding, and

(b): an explicit type signature is given for every variable in the group which is bound

by simple pattern binding.

The usual Hindley-Milner restriction on polymorphism is that only type variables free

in the environment may be generalised. In addition, the constrained type variables of

a a restricted declaration group may not be generalised in the generalisation step for

that group. (Recall that a type variable is constrained if it must belong to some type

class; see Section 4.5.2.)

Rule 2. The type of a variable exported from a module must be completely polymorphic;

that is, it must not have any free type variables. It follows from Rule 1 that if all

top-level declaration groups are unrestricted, then Rule 2 is automatically satis�ed.

Rule 1 is required for two reasons, both of which are fairly subtle. First, it prevents

computations from being unexpectedly repeated. For example, recall that genericLength

is a standard function whose type is given by

genericLength :: Num a => [b] -> a

Now consider the following expression:

4.5 Static semantics of function and pattern bindings 41

let { len = genericLength xs } in (len, len)

It looks as if len should be computed only once, but without Rule 1 it might be computed

twice, once at each of two di�erent overloadings. If the programmer does actually wish the

computation to be repeated, an explicit type signature may be added:

let { len :: Num a => a; len = genericLength xs } in (len, len)

When non-simple pattern bindings are used, the types inferred are always monomorphic in

their constrained type variables, irrespective of whether a type signature is provided. For

example, in

(f,g) = ((+),(-))

both f and g will be monomorphic regardless of any type signatures supplied for f or g.

Rule 1 also prevents ambiguity. For example, consider the declaration group

[(n,s)] = reads t

Recall that reads is a standard function whose type is given by the signature

reads :: (Text a) => String -> [(a,String)]

Without Rule 1, n would be assigned the type 8a: Text a) a and s the type 8a: Text a)

String. The latter is an illegal type, because it is inherently ambiguous. It is not possible

to determine at what overloading to use s. Rule 1 makes n and s monomorphic in a.

Lastly, Rule 2 is required because there is no way to enforce monomorphic use of an

exported binding, except by performing type inference on the entire program at once.

The monomorphism rule has a number of consequences for the programmer. Anything

de�ned with function syntax will usually generalize as a function is expected to. Thus in

f x y = x+y

the function f may be used at any overloading in class Num. There is no danger of recom-

putation here. However, the same function de�ned with pattern syntax

f = \x -> \y -> x+y

requires a type signature if f is to be fully overloaded. Many functions are most naturally

de�ned using simple pattern bindings; the user must be careful to a�x these with type

signatures to retain full overloading. The standard prelude contains many examples of this:

indices :: (Ix a) => Array a b -> [a]

indices = range . bounds

42 5 MODULES

5 Modules

A module de�nes a collection of values, datatypes, type synonyms, classes, etc. (see Sec-

tion 4), and exports some of these resources, making them available to other modules. We

use the term entity to refer to the values, types, and classes de�ned in and perhaps exported

from a module.

A Haskell program is a collection of modules, one of which, by convention, must be

called Main and must export the value main. The value of the program is the value of the

identi�er main in module Main, and main must have type Dialogue (see Section 7).

Modules may reference other modules via explicit import declarations, each giving the

name of a module to be imported, specifying its entities to be imported, and optionally

renaming some or all of them. Modules may be mutually recursive.

The name-space for modules is at, with each module being associated with a unique

module name (which are Haskell identi�ers beginning with a capital letter; i.e. conid). There

are two distinguished modules, PreludeCore and Prelude, both discussed in Section 5.4.

5.1 Overview

5.1.1 Interfaces and Implementations

A module consists of an interface and an implementation of that interface.

The interface of a module provides complete information about the static semantics of

that module, including type signatures, class de�nitions, and type declarations for the var-

ious entities made available by the module. This information is complete in this sense: If

a module M imports modules M

1

; : : : ;M

n

, then only the interfaces of M

1

; : : : ;M

n

need be

examined in order to perform static checking on the implementation of M. No implementa-

tions of M

1

; : : : ;M

n

need to exist, nor need any further interfaces be consulted. Interfaces

are discussed in Section 5.3.

An implementation \�lls in" the information about a module missing from the interface.

For example, for each value given a type signature in the interface the implementation either

imports a module that de�nes the value or de�nes the value itself. Implementations are

discussed in Section 5.2.

5.1.2 Original Names

It may be that a particular entity is imported into a module by more than one route|for

example, because it is exported by two modules both of which are imported by a third mod-

ule. It is important that benign name-clashes of this form are allowed, but that accidental

name-clashes are detected and reported as errors. This is done as follows:

Each entity (class, type constructor, value, etc.) has an original name that is a pair

consisting of the name of the module in which it was originally declared, and the name

5.1 Overview 43

it was given in that declaration. The original name is carried with the entity wherever it

is exported. Two types, classes or values are the same if and only if they have the same

original name.

Renaming does not a�ect the original name; it is a purely syntactic operation that

a�ects only the name by which the entity is currently known. For example, if a class is

renamed and a type is declared to be an instance of the newly-named class, then it is also

an instance of the original class|there is just one class, which happens to be known by

di�erent names in di�erent parts of the program. Also, �xity is a property of the original

name of an identi�er or operator and is not a�ected by renaming; the new name has the

same �xity as the old one.

A given entity may be known by at most one name in any scope. So, for example, a

module may not import an entity twice and rename it di�erently on each occasion. Either it

must be renamed in the same way on each import or else not imported twice (for example,

by using a hiding clause).

As there are several name spaces, a single name may identify more than one entity. In

a renaming clause, such as renaming(: : : ; n

1

to n

2

; : : :), all the entities to which n

1

refers

are renamed to n

2

.

5.1.3 Closure

The implementation together with the interfaces of the modules it imports must be stat-

ically closed according to this rule: every value, type, or class referred to in the text of

an implementation together with the declarations that it imports, must be declared in the

implementation or in one of the imported declarations.

It is an error for a module to export a collection of entities that cannot possibly become

closed. For example, if a module A declares both the type T and a value t of type T, it may

not export t without also exporting T. But if another module B imported T from module

A, and declared another value s of type T, it may export s without exporting T|but any

module importing B must also import the type T by some other route, for example by also

importing A.

5.1.4 The Compilation System

The task of checking consistency between interfaces and implementations must be done by

the compilation system.

Haskell does not specify any particular association between implementations and inter-

faces on the one hand, and �les on the other; nor does it specify how implementations and

interfaces are produced. These matters are determined by the compilation system, and

many variations are possible, depending on the programming environment. For example, a

compilation system could insist that each implementation and each interface reside alone

in a �le, and that the module name is the same as that of the �le, with the implementation

and interface distinguished by a su�x.

44 5 MODULES

Similarly, a compilation system may require the programmer to write the interface, or

it may derive the interface from examination of the implementation, or some hybrid of the

two. Haskell is de�ned so that, given the interfaces of all imported modules, it is always

possible to perform a complete static check on the implementation, and, if it is well-typed,

to derive its unique interface automatically. However, given a set of mutually recursive

implementations, the compilation system may have to examine several modules at once to

derive the interfaces, which will still be unique with one exception: because of the shorthand

for exporting all entities from an imported module, the set of exports may not be unique.

Any set satisfying the consistency constraints is a valid solution for a well-typed Haskell

program, but if an implementation automatically derives the interface it must derive the

smallest set of exports.

For optimisation across module boundaries, a compilation system may need more in-

formation (e.g., information about strictness, inlining, uncurrying, etc.) than is provided

by the standard interface as de�ned in this report. Draft proposals exist for including such

information as comments in interfaces; for details, contact the implementors listed in the

preface (page x).

5.2 Module Implementations

A module implementation de�nes a mutually recursive scope containing declarations for

value bindings, data types, type synonyms, classes, etc. (see Section 4).

module ! module modid [exports] where body

j body

body ! { [impdecls ;] [[�xdecls ;] topdecls [;]] }

j { impdecls [;] }

modid ! conid

impdecls ! impdecl

1

; : : : ; impdecl

n

(n � 1)

topdecls ! topdecl

1

; : : : ; topdecl

n

(n � 0)

A module implementation begins with a header: the keyword module, the module name,

and a list of entities (enclosed in round parentheses) to be exported. The header is followed

by an optional list of import declarations that specify modules to be imported, optionally

restricting and renaming the imported bindings. This is followed by an optional list of

�xity declarations and the module body. The module body is simply a list of top-level

declarations (topdecls), as described in Section 4.

An abbreviated form of module is permitted, which consists only of the module body.

If this is used, the header is assumed to be module Main where. If the �rst lexeme in the

abbreviated module is not a {, then the layout rule applies for the top level of the module.

It is inadvisable for a compilation system to permit an abbreviated module to appear in

the same �le as some unabbreviated modules.

5.2 Module Implementations 45

5.2.1 Export Lists

exports ! (export

1

, : : : , export

n

) (n � 1)

export ! entity

j modid ..

entity ! var

j tycon

j tycon (..)

j tycon (con

1

, : : : , con

n

) (n � 1)

j tycls (..)

j tycls (var

1

, : : : , var

n

) (n � 0)

An export list identi�es the entities to be exported by a module declaration. A module

implementation may only export an entity that it declares, or that it imports from some

other module. If the export list is omitted, all values, types and classes de�ned in the

module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. Ordinary values, whether declared in the implementation body or imported, may be

named by giving the name of the value as a varid. Operators should be enclosed in

parentheses to turn them into varid's.

2. An algebraic datatype T with constructors K

1

; : : : ; K

n

declared by a data declaration

may be named in one of three ways:

� The form T names the type but not the constructors. The ability to export a

type without its constructors allows the construction of abstract datatypes (see

Section 5.6).

� The form T(K

1

, : : :,K

n

), where all and only the constructors are listed without

duplications, names the type and all its constructors.

� The abbreviated form T(..) also names the type and all its constructors.

Data constructors cannot be named in export lists in any other way.

3. A type synonym T declared by a type declaration may be named by the form T(..).

(The (..) is a syntactic reminder that a type synonym can only be exported along

with its de�nition.)

4. A class C with operations f

1

; : : : ; f

n

declared in a class declaration may be named

in one of two ways, both of which name the class together with all its operations:

� The form C(f

1

, : : :,f

n

), where all and only the operations in that class are

listed without duplications.

� The abbreviated form C(..).

46 5 MODULES

Operators in a class may not be named in export lists in any other way.

5. The set of all entities brought into scope (after renaming) from a module m by one

or more import declarations may be named by the form m.., which is equivalent to

listing all of the entities imported from the module. For example,

module Queue(Stack.., enqueue, dequeue) where

import Stack

...

Here the module Queue uses the module name Stack in its export list to abbreviate

all the entities imported from Stack.

6. A module can name its own local de�nitions in its export list using its own name in

the m.. syntax. For example,

module Mod1(Mod1.., Mod2..)

import Mod2

import Mod3

Here module Mod1 exports all local de�nitions as well as those from Mod2 but not

Mod3.

5.2.2 Import Declarations

impdecl ! import modid [impspec] [renaming renamings]

impspec ! (import

1

, : : : , import

n

) (n � 0)

j hiding (import

1

, : : : , import

n

) (n � 1)

import ! entity

renamings! (renaming

1

, : : : , renaming

n

) (n � 1)

renaming ! var

1

to var

2

j con

1

to con

2

The entities exported by a module may be brought into scope in another module with

an import declaration at the beginning of the module. The import declaration names

the module to be imported, optionally speci�es the entities to be imported, and optionally

provides renamings for imported entities. A single module may be imported by more than

one import declaration.

Exactly which entities are to be imported can be speci�ed in one of three ways:

1. The set of entities to be imported can be speci�ed explicitly by listing them in paren-

theses. Items in the list have the same form as those in export lists, except that the

modid abbreviation is not permitted.

The list must name a subset of the entities exported by the imported module. The

list may be empty, in which case nothing is imported; this is only useful in the case

of the module Prelude (see Section 5.4.3).

5.3 Module Interfaces 47

2. Speci�c entities can be excluded by using the form hiding(import

1

,:::,import

n

),

which speci�es that all entities exported by the named module should be imported

apart from those named in the list. Only the forms T(..), C(..) and varid are

permitted in hiding lists.

3. Finally, if impspec is omitted then all the entities exported by the speci�ed module

are imported.

As instance declarations do not have names, their import cannot be controlled by the

impspec list. Instead, the following rule is used: A C-T instance declaration is imported

from an interface if and only if C is imported or T is imported from that interface.

Some or all of the imported entities may be renamed, thus allowing them to be known

by a new name in the importing scope (see Section 5.1.2). This is done using the renaming

keyword, with a renaming of the form oldname to newname. No oldname can be given

more than one renaming.

5.3 Module Interfaces

Every module has an interface containing all the information needed to do static checks

on any importing module. All static checks on a module implementation can be done by

inspecting its text and the interfaces of the modules it imports.

interface ! interface modid where ibody

ibody ! { [iimpdecls ;] [[�xdecls ;] itopdecls [;]] }

j { iimpdecls [;] }

iimpdecls ! iimpdecl

1

; : : : ; iimpdecl

n

(n � 1)

iimpdecl ! import modid (import

1

, : : : , import

n

)

[renaming renamings] (n � 1)

itopdecls ! itopdecl

1

; : : : ; itopdecl

n

(n � 1)

itopdecl ! type simple = type

j data [context =>] simple [= constrs [deriving (tycls j (tyclses))]]

j class [context =>] class [where { icdecls [;] }]

j instance [context =>] tycls inst

j vars :: [context =>] type

icdecls ! icdecl

1

; : : : ; icdecl

n

(n � 0)

icdecl ! vars :: type

The syntax of interface is similar to that of module, except:

� There is no export list: everything in the interface is exported.

� import declarations have a slightly di�erent purpose from those in implementations

(see Section 5.3.2). The list of entities to be imported is always speci�ed explicitly.

48 5 MODULES

� data declarations appear without their constructors if these are not exported.

� There is no implementation part to instance declarations.

� Value declarations do not appear at all; for exported values, type signatures take their

place.

5.3.1 Consistency

The interface and implementation of a module must obey certain constraints. In the fol-

lowing, a declaration described as \in the implementation" is either a declaration in the

module body itself, or one imported from an interface after any renaming speci�ed by the

import statement has been applied.

1. Every entity given a declaration in an interface must either have an import declaration

for the entity in the interface (the import speci�es the module that de�nes it) or have a

de�nition of the entity in the implementation. Furthermore, if an interface A imports

an entity X from module B (perhaps renaming it), then the interface for B must de�ne

X but not import it.

2. A class, type synonym, algebraic datatype, or value appears in the interface exactly

when its name appears in the implementation's export list or, if the export list is

omitted, when it is declared in the implementation.

3. A type signature appears in the interface for every value that the implementation ex-

ports. The type expressed by this signature must be the same as the most general type

inferred from the declaration of the value in the implementation (see Section 4.1.3),

after any constraints expressed by explicit type signatures in the implementation have

been applied.

The type signature in the interface may (but need not) use type synonyms; if any such

synonyms are used, then the closure rule (Section 5.1.3) implies that these synonyms

must be in scope wherever this value is imported. To maximise portability it is

recommended that types in automatically-generated interfaces have all type synonyms

expanded.

4. A type declaration in an interface must be identical to that in the implementation.

5. A class declaration in an interface must be identical to that in the implementation,

except that default-method declarations are omitted.

6. If the constructors of a data declaration are not exported, then the data declaration

in the interface di�ers from that in the implementation by omitting everything after

(and including) the = sign. If the data declaration in the implementation uses the

derivingmechanism to derive instance declarations for the type, a separate instance

declaration must appear in the interface for each class of which the type is made an

instance. Hence, the information that certain instances are derived is hidden when

the constructors are hidden, since in this case the type is abstract (see Section 5.6).

5.3 Module Interfaces 49

7. If the constructors of a data declaration are to be exported, then the data declaration

in the interface is identical to that in the implementation including the deriving part.

3

8. If a C-T instance is declared in a module or imported by it, then the instance decla-

ration appears in the interface (omitting the where part) if either C is exported or T

is exported. Instance declarations are not named explicitly in export or import lists.

This rule ensures that, if C and T are both in scope, then the (unique) C-T instance

declaration will also be in scope.

4

No explicit instance declaration should appear in the interface for instances that are

speci�ed by the deriving part of a data declaration in the interface.

9. A �xity declaration for a value or constructor appears in an interface exactly when

(a) the value or constructor is declared by the interface, and (b) the identical �xity

declaration appears either in the implementation or in an imported interface.

5.3.2 Imports and Original Names

The original-name information is carried in the interface �le using import declarations in

a special way.

Suppose that a module A exports an entity x; the interface for A will contain static

information about x. If x was originally de�ned in A, then this is all that appears. But,

suppose that x was imported by A from some other module B and that x was originally

de�ned in module C with name y; this declaration must appear in the interface for A:

import C(y) renaming (y to x)

No reference to B remains in the interface. The import declaration in the interface serves

only to convey to the importing module the original name of x, and does not imply that

module C's interface must be consulted when reading module A's interface. Multiple imports

from a single original module may optionally be grouped in a single import declaration in

the interface.

A module may export a value whose typing involves a type and/or class that is not

exported. (Any importing module would have to import the type or class by some other

route.) Nevertheless, it is still required that the interface contain the import declaration

required to give the original name of the type or class.

In summary, for every entity e1 mentioned in the interface of a module M whose original

name is e2 in module N, M's interface must contain the import declaration

import N(e2) renaming (e2 to e1)

The word \mentioned" includes mention in the type signature of an exported value, as

discussed above.

3

It is important to retain the information about which instances are derived and which are not, because

the importing module \knows" more about derived instances.

4

The reverse also applies. For example, suppose that a new type T is declared and made an instance

of an imported class C. The instance declaration will be exported along with T , and so the closure rule

(Section 5.1.3) will require that C is also in scope in every importing scope.

50 5 MODULES

This example illustrates most of these constraints; �rst, the interface:

interface A where

import PreludeList(sum) renaming (sum to oldSum)

infixr 4 �sameShape�

data BinTree a = Empty | Branch a (BinTree a) (BinTree a)

class Tree a where

sameShape :: a -> a -> Bool

instance Tree (BinTree a)

sum :: Num a => BinTree a -> a

oldSum :: Num a => [a] -> a

Now the implementation:

module A(BinTree(..), Tree(..), sum, oldSum) where

import Prelude renaming (sum to oldSum)

infixr 4 �sameShape�

-- �sameShape� is an operation of class C below

data BinTree a = Empty | Branch a (BinTree a) (BinTree a)

class Tree a where

sameShape :: a -> a -> Bool

t1 �sameShape� t2 = False -- Default method

instance Tree (BinTree a) where

Empty �sameShape� Empty = True

(Branch _ t1 t2) �sameShape� (Branch _ t1' t2')

= (t1 �sameShape� t1') && (t2 �sameShape� t2')

t1 �sameShape� t2 = False

sum Empty = 0

sum (Branch n t1 t2) = n + sum t1 + sum t2

5.4 Standard Prelude

Many of the features of Haskell are de�ned in Haskell itself, as a library of standard data-

types, classes and functions, called the \standard prelude." In Haskell, the standard prelude

is speci�ed as two distinct modules (in the technical sense of this chapter), PreludeCore

and Prelude.

PreludeCore and Prelude di�er from other modules in that their interfaces, and the

semantics of the entities de�ned by those interfaces, are part of the Haskell language def-

inition. This means, for example, that a compiler may optimise calls to functions in the

standard prelude, because it knows their semantics as well as their interface.

Each of these modules is structured into submodules. To avoid name-clashes with these

sub-modules, user-de�ned module names must not begin with the pre�x Prelude.

5.4 Standard Prelude 51

5.4.1 The PreludeCore Module

The PreludeCoremodule contains certain of the algebraic datatypes, type synonyms, classes

and instance declarations speci�ed by the standard prelude.

PreludeCore is always implicitly imported into both interfaces and implementations, so

it is not possible to import only part of it or to rename any of the entities that it de�nes.

PreludeCore thereby ensures consistent naming across all Haskell programs for the entities

it exports.

The semantics of the entities de�ned by PreludeCore is speci�ed by an implementation

written in Haskell, in Appendix A.2. A Haskell system need not implement PreludeCore

in this way. The interface for PreludeCore may be inferred from the implementation in

Appendix A.2.

Some datatypes (such as Int) and functions (such as addition of Ints) cannot be speci-

�ed directly in Haskell. This is expressed in the PreludeCore implementation by importing

these built-in types and values from PreludeBuiltin. The semantics of the built-in data-

types and functions is given as English text in Appendix A.1.

The implementation for PreludeCore is incomplete in its treatment of tuples: there

should be an in�nite family of instance declarations for tuples, but the implementation only

gives a scheme.

The alert reader may notice that the implementation of PreludeCore given in Ap-

pendix A.2 uses some functions de�ned in Prelude (see next section). There is no conict;

PreludeCore and Prelude are mutually recursive.

5.4.2 The Prelude Module

The Prelude module contains all the value declarations in the standard prelude.

The Prelude module is imported automatically into both interfaces and implementa-

tions, if and only if it is not imported with an explicit import declaration. This provision for

explicit import allows values de�ned in the standard prelude to be renamed or not imported

at all.

The semantics of the entities in Prelude is speci�ed by an implementation of Prelude

written in Haskell, given in Appendix A. As for PreludeCore, a Haskell system may imple-

ment the Prelude module as it pleases, provided it maintains the semantics in Appendix A.

The interface for the Prelude and each of its submodules may be inferred from their im-

plementations in Appendix A. All references to type synonyms are fully expanded in these

interfaces.

5.4.3 Shadowing Prelude Names and Non-Standard Preludes

The rules about the standard prelude have been cast so that it is possible to use standard

prelude names for nonstandard purposes; however, every module that does so will have an

import declaration that makes this nonstandard usage explicit. For example:

52 5 MODULES

module A where

import Prelude hiding (map)

map f x = x f

Module A rede�nes map, but it must indicate this by importing Prelude without map.

Furthermore, A exports map, but every module that imports map from A must also hide map

from Prelude just as A does. Thus there is little danger of accidentally shadowing standard

prelude names.

It is possible to construct and use a di�erent Prelude module:

module B where

import Prelude()

import MyPrelude

...

B imports nothing from Prelude, but the explicit import Prelude declaration prevents the

automatic import of Prelude. import MyPrelude brings the non-standard prelude into

scope. As before, the standard prelude names are hidden explicitly.

5.5 Example

As an example, here are two small modules:

module A(Tree(..), depth) where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

depth (Leaf a) = 0

depth (Branch xt yt) = (depth xt �max� depth yt) + 1

interface A where

data Tree a = Leaf a | Branch (Tree a) (Tree a)

depth :: Num a => Tree b -> a

module B(leaves) where

import A

leaves (Leaf a) = [a]

leaves (Branch xt yt) = leaves xt ++ leaves yt

interface B where

import A(Tree)

leaves :: Tree a -> [a]

Module A must export Tree because it exports depth, and Tree could not be made visible

in any other way. However, B is not required to export Tree, since a module importing B

could import A in order to satisfy the closure constraints.

Modules may be used to combine the resources of other modules. For example, one

might use renaming to make trees available to French speakers:

module C(Arbre(..), fond, feuilles) where

import A renaming (Tree to Arbre, Leaf to Feuille, Branch to Branche,

depth to fond)

import B renaming (leaves to feuilles)

5.6 Abstract Datatypes 53

The interface for module C is:

interface C where

import A(Tree(Leaf,Branch), depth)

renaming (Tree to Arbre,

Leaf to Feuille,

Branch to Branche,

depth to fond)

import B(leaves) renaming (leaves to feuilles)

data Arbre a = Feuille a | Branche (Arbre a) (Arbre a)

fond :: Num a => Arbre b -> a

feuilles :: Arbre a -> [a]

5.6 Abstract Datatypes

The ability to export a datatype without its constructors allows the construction of abstract

datatypes (ADTs). For example, an ADT for stacks could be de�ned as:

module Stack(StkType, push, pop, empty) where

data StkType a = EmptyStk | Stk a (StkType a)

push x s = Stk x s

pop (Stk _ s) = s

empty = EmptyStk

Modules importing Stack cannot construct values of type StkType because they do not

have access to the constructors of the type.

It is also possible to build an ADT on top of an existing type by using a data declaration

with a single constructor with only one �eld. For example, stacks can be de�ned with lists:

module Stack(StkType, push, pop, empty) where

data StkType a = Stk [a]

push x (Stk s) = Stk (x:s)

pop (Stk (x:s)) = Stk s

empty = Stk []

Note 1. Every ADT must be a module (but a Haskell compilation system may allow

multiple modules in a single �le).

Note 2. Using a single-constructor single-�eld data declaration to create an isomorphic

type introduces an unwanted extra element to the new type, namely (Stk ?), with the

risk of an accompanying small ine�ciency in the implementation.

5.7 Fixity Declarations

�xdecls ! �x

1

; : : : ; �x

n

(n � 1)

�x ! infixl [digit] ops

j infixr [digit] ops

54 5 MODULES

Prec- Left associative Non-associative Right associative

edence operators operators operators

9 !, !!, // .

8 **, ^, ^^

7 * %, /, `div`,

`mod`, `rem`, `quot`

6 +, - :+

5 \\ :, ++

4 /=, <, <=, ==, >, >=,

`elem`, `notElem`

3 &&

2 ||

1 :=

0 $

Table 2: Precedences and �xities of prelude-de�ned operators

j infix [digit] ops

ops ! op

1

, : : : , op

n

(n � 1)

op ! varop j conop

A �xity declaration gives the �xity and binding precedence of a set of operators. Fixity

declarations must appear only at the start of a module and may only be given for identi�ers

de�ned in that module. Fixity declarations cannot subsequently be overridden, and an

identi�er can only have one �xity de�nition.

There are three kinds of �xity, non-, left- and right-associativity (infix, infixl, and

infixr, respectively), and ten precedence levels, 0 through 9 (level 0 binds least tightly,

and level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operator

lacking a �xity declaration is assumed to be infixl 9 (See Section 3 for more on the use of

�xities). Table 2 lists the �xities and precedences of the operators de�ned in the standard

prelude.

Fixity is a property of the original name of an identi�er or operator (see Section 5.1.2).

Fixity is not a�ected by renaming; the new name has the same �xity as the old one. The

same �xity attaches to every occurrence of an operator name in a module, whether at the

top level or rebound at an inner level. For example:

module Foo

import Bar

infix 3 `op`

f x = ... where p `op` q = ...

Here `op` has �xity 3 wherever it is in scope, provided Bar does not export the identi�er

5.7 Fixity Declarations 55

op. If Bar does export op, then the example becomes illegal, because the �xity (or lack

thereof) of op is de�ned in Bar (or wherever Bar imported op from).

56 6 BASIC TYPES

6 Basic Types

6.1 Booleans

The boolean type Bool is an enumeration; Figure 6 shows its de�nition and standard

functions &&, ||, not, and otherwise.

data Bool = False | True

(&&), (||) :: Bool -> Bool -> Bool

True && x = x

False && x = False

True || x = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

otherwise :: Bool

otherwise = True

Figure 6: Standard functions on booleans

6.2 Characters and Strings

The character type Char is an enumeration, and consists of 256 values, of which the �rst

128 are the ASCII character set. The lexical syntax for characters is de�ned in Section 2.5;

character literals are nullary constructors in the datatype Char. The standard prelude

provides an instance declaration for Char in classes Enum and Ix and two functions relating

characters to Ints in the range [0; 255]:

ord :: Char -> Int

chr :: Int -> Char

Note that ASCII control characters each have several representations in character liter-

als: numeric escapes, ASCII mnemonic escapes, and the \^X notation. In addition, there

are the following equivalences: \a and \BEL, \b and \BS, \f and \FF, \r and \CR, \t and

\HT, \v and \VT, and \n and \LF.

A string is a list of characters:

type String = [Char]

Strings may be abbreviated using the lexical syntax described in Section 2.5. For example,

"A string" abbreviates

[�A�,� �,�s�,�t�,�r�, �i�,�n�,�g�]

6.3 Functions 57

6.3 Functions

Functions are de�ned via lambda abstractions and function de�nitions. Besides application,

an in�x composition operator is de�ned:

(.) :: (b -> c) -> (a -> b) -> a -> c

(f . g) x = f (g x)

The function until applies a function to an initial value zero or more times until the result

satis�es a given predicate:

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x | p x = x

| otherwise = until p f (f x)

The function flip, applied to a binary function, reverses the order of the arguments:

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

6.4 Lists

Lists are an algebraic datatype of two constructors, although with special syntax, as de-

scribed in Section 3.6. The �rst constructor is the null list, written [], and the second is

: (\cons"). See the standard prelude (Appendix A.5) for the de�nitions of the standard

list functions. Arithmetic sequences and list comprehensions, two convenient syntaxes for

special kinds of lists, are described in Sections 3.9 and 3.10, respectively.

6.5 Tuples

Tuples are also algebraic datatypes with special syntax, as de�ned in Section 3.7. Each

tuple type has a single constructor. Six functions, named zip, zip3, : : :, zip7, are provided

by the standard prelude (Appendix A.5). These produce lists of n-tuples from n lists, for

2 � n � 7. The resulting lists are as long as the shortest argument list; excess elements of

other argument lists are ignored.

6.6 Unit Datatype

The unit datatype () has one member, the nullary constructor () (and thus an overloading

of syntax)|see also Section 3.8.

6.7 Binary Datatype

The Bin datatype is a primitive abstract datatype including the value nullBin (the empty or

nullary binary value), the function appendBin, and the predicate isNullBin (which returns

True when applied to nullBin and False when applied to all other values of type Bin).

58 6 BASIC TYPES

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

�

�

�

�

�

�

S

S

RealFloat

Integral FloatingRealFrac

Fractional

Ix

Real

NumEnum

Ord

Eq

Text Binary

Figure 7: Hierarchy of standard classes (cf. Figure 5, page 31)

Also, derived instances of the Binary class generate de�nitions for showBin and readBin, as

described in Section 4.3.3 and Appendix E. The Bin datatype is used primarily for e�cient

and transparent I/O, as described in Section 7.

6.8 Numbers

6.8.1 Introduction

Haskell provides several kinds of numbers; the numeric types and the operations upon them

have been heavily inuenced by Common Lisp [18] and Scheme [16]. Numeric function

names and operators are usually overloaded, using several type classes with an inclusion

relation shown in Figure 7 (cf. Figure 5, page 31). (Some classes are immediate subclasses

of two other classes; there are pairs of classes with a nontrivial intersection.) The class Num

of numeric types is a subclass of Eq, since all numbers may be compared for equality; its

subclass Real is also a subclass of Ord, since the other comparison operations apply to all but

complex numbers. The class Integral contains both �xed- and arbitrary-precision integers;

the class Fractional contains all nonintegral types; and the class Floating contains all

oating-point types, both real and complex.

Table 3 lists the standard numeric types. The type Int is a �xed-precision type, cov-

ering at least the range [�2

29

+ 1; 2

29

� 1] and closed under negation. The constants

minInt = -maxInt and maxInt (Figure 9, page 61) de�ne the limits of Int in each im-

plementation. Float is a oating-point type, also implementation-de�ned; it is desirable

6.8 Numbers 59

Type Class Description

Integer Integral Arbitrary-precision integers

Int Integral Fixed-precision integers

(Integral a) => Ratio a RealFrac Rational numbers

Float RealFloat Real oating-point, single precision

Double RealFloat Real oating-point, double precision

(RealFloat a) => Complex a Floating Complex oating-point

Table 3: Standard numeric types

that this type be at least equal in range and precision to the IEEE single-precision type.

Similarly, Double should cover IEEE double-precision. An implementation may provide

other numeric types, such as additional precisions of integer and oating-point. The results

of exceptional conditions (such as overow or underow) on the �xed-precision numeric

types are unde�ned; an implementation may choose error (?, semantically), a truncated

value, or a special value such as in�nity, inde�nite, etc.

The interface text (Section 5.3) associated with the standard numeric classes, types, and

operations is shown in Figures 8{10.

6.8.2 Numeric Literals

The syntax of numeric literals is given in Section 2.4. An integer literal represents the ap-

plication of the function fromInteger to the appropriate value of type Integer. Similarly,

a oating literal stands for an application of fromRational to a value of type Rational

(that is, Ratio Integer). Given the typings:

fromInteger :: (Num a) => Integer -> a

fromRational :: (Fractional a) => Rational -> a

integer and oating literals have the typings (Num a) => a and (Fractional a) => a,

respectively. Numeric literals are de�ned in this indirect way so that they may be interpreted

as values of any appropriate numeric type. For example, fromInteger for complex numbers

is de�ned as follows:

fromInteger n = fromInteger n :+ 0

See Section 4.3.4 for a discussion of overloading ambiguity.

6.8.3 Constructed Numbers

There are two kinds of numeric types formed by data constructors: namely, Ratio and

Complex. For each Integral type t, there is a type Ratio t of rational pairs with components

of type t. (The type name Rational is a synonym for Ratio Integer.) Similarly, for each

60 6 BASIC TYPES

class (Eq a, Text a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

class (Num a, Enum a) => Real a where

toRational :: a -> Rational

class (Real a, Ix a) => Integral a where

quot, rem, div, mod :: a -> a -> a

quotRem, divMod :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

class (Num a) => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

class (Fractional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, cos, tan :: a -> a

asin, acos, atan :: a -> a

sinh, cosh, tanh :: a -> a

asinh, acosh, atanh :: a -> a

Figure 8: Numeric classes and related operations

real oating-point type t, Complex t is a type of complex numbers with real and imaginary

components of type t.

The operator (%) forms the ratio of two integral numbers. The functions numerator and

denominator extract the components of a ratio; these are in reduced form with a positive

denominator.

Complex numbers are an algebraic type:

data (RealFloat a) => Floating (Complex a) = a :+ a

The constructor (:+) forms a complex number from its real and imaginary rectangular

components. A complex number may also be formed from polar components of magnitude

and phase by the function mkPolar. The function cis produces a complex number from an

angle t :

cis t = cos t :+ sin t

6.8 Numbers 61

class (Real a, Fractional a) => RealFrac a where

properFraction :: (Integral b) => a -> (b,a)

truncate, round :: (Integral b) => a -> b

ceiling, floor :: (Integral b) => a -> b

class (RealFrac a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

decodeFloat :: a -> (Integer,Int)

encodeFloat :: Integer -> Int -> a

exponent :: a -> Int

significand :: a -> a

scaleFloat :: Int -> a -> a

instance Integral Int

instance Integral Integer

minInt, maxInt :: Int

fromIntegral :: (Integral a, Num b) => a -> b

gcd, lcm :: (Integral a) => a -> a-> a

(^) :: (Num a, Integral b) => a -> b -> a

(^^) :: (Fractional a, Integral b) => a -> b -> a

data (Integral a) => Ratio a

type Rational = Ratio Integer

instance (Integral a) => RealFrac (Ratio a)

(%) :: (Integral a) => a -> a -> Ratio a

numerator, denominator :: (Integral a) => Ratio a -> a

instance RealFloat Float

instance RealFloat Double

fromRealFrac :: (RealFrac a, Fractional b) => a -> b

atan2 :: (RealFloat a) => a -> a -> a

Figure 9: Numeric classes and related operations (continued)

Put another way, cis t is a complex value with magnitude 1 and phase t (modulo 2�).

The function polar takes a complex number and returns a (magnitude, phase) pair

in canonical form: The magnitude is nonnegative, and the phase, in the range (��; �]; if

the magnitude is zero, then so is the phase. Several component-extraction functions are

provided:

62 6 BASIC TYPES

data (RealFloat a) => Complex a = a :+ a deriving (Eq, Binary, Text)

instance (RealFloat a) => Floating (Complex a)

realPart, imagPart :: (RealFloat a) => Complex a -> a

conjugate :: (RealFloat a) => Complex a -> Complex a

mkPolar :: (RealFloat a) => a -> a -> Complex a

cis :: (RealFloat a) => a -> Complex a

polar :: (RealFloat a) => Complex a -> (a,a)

magnitude, phase :: (RealFloat a) => Complex a -> a

Figure 10: Numeric classes and related operations (continued)

realPart (x:+y) = x

imagPart (x:+y) = y

magnitude z = r where (r,t) = polar z

phase z = t where (r,t) = polar z

Also de�ned on complex numbers is the conjugate function:

conjugate (x:+y) = x:+(-y)

6.8.4 Arithmetic and Number-Theoretic Operations

The in�x operations (+), (*), (-) and the unary function negate (which can also be

written as a pre�x minus sign; see section 3.3) apply to all numbers. The operations quot,

rem, div, and mod apply only to integral numbers, while the operations (/) apply only to

fractional ones. The quot, rem, div, and mod operations satisfy these laws:

(x �quot� y)*y + (x �rem� y) == x(x �div� y)*y + (x �mod� y) == x

\bkqBquot\bkqA is integer division truncated toward zero, while the result of \bkqBdiv\bkqA

is truncated toward negative in�nity. The quotRem operation takes a dividend and a divisor

as arguments and returns a (quotient, remainder) pair; divMod is de�ned similarly:

quotRem x y = (x �quot� y, x �rem� y)

divMod x y = (x �div� y, x �mod� y)

Also available on integers are the even and odd predicates:

even x = x �rem� 2 == 0

odd = not . even

Finally, there are the greatest common divisor and least common multiple functions: gcd

x y is the greatest integer that divides both x and y. lcm x y is the smallest positive integer

that both x and y divide.

6.8 Numbers 63

6.8.5 Exponentiation and Logarithms

The one-argument exponential function exp and the logarithm function log act on oating-

point numbers and use base e. logBase a x returns the logarithm of x in base a. sqrt

returns the principal square root of a oating-point number. There are three two-argument

exponentiation operations: (^) raises any number to a nonnegative integer power, (^^)

raises a fractional number to any integer power, and (**) takes two oating-point argu-

ments. The value of x^0 or x^^0 is 1 for any x, including zero; 0**y is unde�ned.

6.8.6 Magnitude and Sign

A number has a magnitude and a sign. The functions abs and signum apply to any number

and satisfy the law:

abs x * signum x == x

For real numbers, these functions are de�ned by:

abs x | x >= 0 = x

| x < 0 = -x

signum x | x > 0 = 1

| x == 0 = 0

| x < 0 = -1

For complex numbers, the de�nitions are di�erent:

abs z = magnitude z :+ 0

signum 0 = 0

signum z@(x:+y) = x/r :+ y/r where r = magnitude z

That is, abs z is a number with the magnitude of z, but oriented in the positive real

direction, whereas signum z has the phase of z, but unit magnitude. (abs for a complex

number di�ers from magnitude only in type. See Section 6.8.3.)

6.8.7 Trigonometric Functions

The circular and hyperbolic sine, cosine, and tangent functions and their inverses are pro-

vided for oating-point numbers. A version of arctangent taking two real oating-point

arguments is also provided: For real oating x and y, atan2 y x di�ers from atan (y/x)

in that its range is (��; �] rather than (��=2; �=2) (because the signs of the arguments

provide quadrant information), and that it is de�ned when x is zero.

The precise de�nition of the above functions is as in Common Lisp [18], which in turn

follows Pen�eld's proposal for APL [13]. See these references for discussions of branch cuts,

discontinuities, and implementation.

64 6 BASIC TYPES

6.8.8 Coercions and Component Extraction

The ceiling, floor, truncate, and round functions each take a real fractional argument

and return an integral result. ceiling x returns the least integer not less than x, and

floor x, the greatest integer not greater than x. truncate x yields the integer nearest x

between 0 and x, inclusive. round x returns the nearest integer to x, the even integer if x

is equidistant between two integers.

The function properFraction takes a real fractional number x and returns a pair com-

prising x as a proper fraction: an integral number with the same sign as x and a fraction

with the same type and sign as x and with absolute value less than 1. The ceiling, floor,

truncate, and round functions can be de�ned in terms of this one.

Two functions convert numbers to type Rational: toRational returns the rational

equivalent of its real argument with full precision; approxRational takes two real fractional

arguments x and � and returns the simplest rational number within � of x, where a rational

p=q in reduced form is simpler than another p

0

=q

0

if jpj <= jp

0

j and q <= q

0

. Every real

interval contains a unique simplest rational; in particular, note that 0=1 is the simplest

rational of all[16, Section 6.5.5].

The operations of class RealFloat allow e�cient, machine-independent access to the

components of a oating-point number. The functions floatRadix, floatDigits, and

floatRange give the parameters of a oating-point type: the radix of the representation,

the number of digits of this radix in the signi�cand, and the lowest and highest values the

exponent may assume, respectively. The function decodeFloat applied to a real oating-

point number returns the signi�cand expressed as an Integer and an appropriately scaled

exponent (an Int). If decodeFloat x yields (m,n), then x is equal in value to mb

n

,

where b is the oating-point radix, and furthermore, either m and n are both zero or else

b

d�1

� m < b

d

, where d is the value of floatDigits x. encodeFloat performs the inverse

of this transformation. The functions significand and exponent together provide the

same information as decodeFloat, but rather than an Integer, significand x yields a

value of the same type as x, scaled to lie in the open interval (�1 ; 1). exponent 0 is zero.

scaleFloat multiplies a oating-point number by an integer power of the radix.

Also available are the following coercion functions:

fromIntegral :: (Integral a, Num b) => a -> b

fromRealFrac :: (RealFrac a, Fractional b) => a -> b

6.9 Arrays

Haskell provides indexable arrays, which may be thought of as functions whose domains are

isomorphic to contiguous subsets of the integers. Functions restricted in this way can be

implemented e�ciently; in particular, a programmer may reasonably expect rapid access to

the components. To ensure the possibility of such an implementation, arrays are treated as

data, not as general functions.

6.9 Arrays 65

6.9.1 The Class Ix

Arrays may be subscripted by any type in the class Ix, which is de�ned as follows (de�nition

repeated from Section 4.3.2)

class (Ord a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

The index operation maps the lower and upper bounds of the array, and a subscript, to

an integer. Typically, this integer is used to index a linear representation of the array.

The range operation enumerates all subscripts, and the inRange operation tells whether a

particular subscript lies in the domain of the array.

An implementation is entitled to assume the following laws about these operations:

range (l,u) !! index (l,u) i == i

inRange (l,u) i == i `elem` range (l,u)

The �rst law allows the implementation to allocate a suitably-sized array representation

given only the array bounds. The second law is an obvious consistency condition on

inRange.

6.9.2 Array Construction

If a is an index type and b is any type, the type of arrays with indices in a and elements in

b is written Array a b. An array may be created by the function array:

array :: (Ix a) => (a,a) -> [Assoc a b] -> Array a b

data Assoc a b = a := b

The �rst argument of array is a pair of bounds, each of the index type of the array. These

bounds are the lowest and highest indices in the array, in that order. For example, a one-

origin vector of length 10 has bounds (1,10), and a one-origin 10 by 10 matrix has bounds

((1,1),(10,10)).

The second argument of array is a list of associations of the form index := value.

Typically, this list will be expressed as a comprehension. An association i := x de�nes

the value of the array at index i to be x. The array is unde�ned if any index in the list is

out of bounds. If any two associations in the list have the same index, the value at that

index is unde�ned. Because the indices must be checked for these errors, array is strict in

the bounds argument and in the indices of the association list, but nonstrict in the values.

Thus, recurrences such as the following are possible:

a = array (1,100) ((1 := 1) : [i := i * a!(i-1) | i <- [2..100]])

66 6 BASIC TYPES

-- Scaling an array of numbers by a given number:

scale :: (Num a, Ix b) => a -> Array b a -> Array b a

scale x a = array b [i := a!i * x | i <- range b]

where b = bounds a

-- Inverting an array that holds a permutation of its indices

invPerm :: (Ix a) => Array a a -> Array a a

invPerm a = array b [a!i := i | i <- range b]

where b = bounds a

-- The inner product of two vectors

inner :: (Ix a, Num b) => Array a b -> Array a b -> b

inner v w = if b == bounds w

then sum [v!i * w!i | i <- range b]

else error "inconformable arrays for inner product"

where b = bounds v

Figure 11: Array examples

Not every index within the bounds of the array need appear in the association list, but the

values associated with indices that do not appear will be unde�ned. Figure 11 shows some

examples that use the array constructor.

(!) denotes array subscripting. The bounds function applied to an array returns its

bounds:

(!) :: (Ix a) => Array a b -> a -> b

bounds :: (Ix a) => Array a b -> (a,a)

The functions indices, elems, and assocs, when applied to an array, return lists of the

indices, elements, or associations, respectively, in index order:

indices:: (Ix a) => Array a b -> [a]

indices = range . bounds

elems:: (Ix a) => Array a b -> [b]

elems a = [a!i | i <- indices a]

assocs:: (Ix a) => Array a b -> [Assoc a b]

assocs a = [i := a!i | i <- indices a]

An array may be constructed from a pair of bounds and a list of values in index order using

the function listArray:

listArray:: (Ix a) => (a,a) -> [b] -> Array a b

listArray bnds xs = array bnds (zipWith (:=) (range bnds) xs)

6.9 Arrays 67

6.9.3 Accumulated Arrays

Another array creation function, accumArray, relaxes the restriction that a given index may

appear at most once in the association list, using an accumulating function which combines

the values of associations with the same index [12, 20]:

accumArray::(Ix a) => (b->c->b) -> b -> (a,a) -> [Assoc a c] -> Array a b

The �rst argument of accumArray is the accumulating function; the second is an initial

value; the remaining two arguments are a bounds pair and an association list, as for the

array function. For example, given a list of values of some index type, hist produces a

histogram of the number of occurrences of each index within a speci�ed range:

hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b

hist bnds is = accumArray (+) 0 bnds [i := 1 | i<-is, inRange bnds i]

If the accumulating function is strict, then accumArray is strict in the values, as well as the

indices, in the association list. Thus, unlike ordinary arrays, accumulated arrays should not

in general be recursive.

6.9.4 Incremental Array Updates

(//) :: (Ix a) => Array a b -> [Assoc a b] -> Array a b

accum :: (Ix a) => (b -> c -> b) -> Array a b -> [Assoc a c] -> Array a b

The operator (//) takes an array and a list of Assoc pairs and returns an array identical

to the left argument except that it has been updated by the associations in the right

argument. (As with the array function, the indices in the association list must be unique

for the updated elements to be de�ned.) For example, if m is a 1-origin, n by n matrix, then

m//[(i,i) := 0 | i <- [1..n]] is the same matrix, except with the diagonal zeroed.

accum f takes an array and an association list and accumulates pairs from the list into

the array with the accumulating function f . Thus accumArray can be de�ned using accum:

accumArray f z b = accum f (array b [i := z | i <- range b])

6.9.5 Derived Arrays

The two functions amap and ixmap derive new arrays from existing ones; they may be

thought of as providing function composition on the left and right, respectively, with the

mapping that the original array embodies:

amap :: (Ix a) => (b -> c) -> Array a b -> Array a c

amap f a = array b [i := f (a!i) | i <- range b]

where b = bounds a

ixmap :: (Ix a, Ix a') => (a',a') -> (a'->a) -> Array a b -> Array a' b

ixmap bnds f a = array bnds [i := a ! f i | i <- range bnds]

amap is the array analogue of the map function on lists, while ixmap allows for transforma-

tions on array indices. Figure 12 shows some examples.

68 6 BASIC TYPES

-- A rectangular subarray

subArray :: (Ix a) => (a,a) -> Array a b -> Array a b

subArray bnds = ixmap bnds (\i->i)

-- A row of a matrix

row :: (Ix a, Ix b) => a -> Array (a,b) c -> Array b c

row i x = ixmap (l',u') (\j->(i,j)) x where ((l,l'),(u,u')) = bounds x

-- Diagonal of a square matrix

diag :: (Ix a) => Array (a,a) b -> Array a b

diag x = ixmap (l,u) (\i->(i,i)) x

where ((l,l'),(u,u')) | l == l' && u == u' = bounds x

-- Projection of first components of an array of pairs

firstArray :: (Ix a) => Array a (b,c) -> Array a b

firstArray = amap (\(x,y)->x)

Figure 12: Derived array examples

6.10 Errors

All errors in Haskell are semantically equivalent to ?. error:: String -> a takes a string

argument and returns ?. An application of error terminates evaluation of the program

and displays the string as appropriate.

69

7 Input/Output

Haskell's I/O system is based on the view that a program communicates to the outside world

via streams of messages: a program issues a stream of requests to the operating system and

in return receives a stream of responses. Since a stream in Haskell is only a lazy list, a

Haskell program has the type:

type Dialogue = [Response] -> [Request]

The datatypes Response and Request are de�ned below. Intuitively, [Response] is an

ordered list of responses and [Request] is an ordered list of requests; the nth response is

the operating system's reply to the nth request.

With this view of I/O, there is no need for any special-purpose syntax or constructs for

I/O; the I/O system is de�ned entirely in terms of how the operating system responds to

a program with the above type|i.e. what response it issues for each request. An abstract

speci�cation of this behaviour is de�ned by giving a de�nition of the operating system as a

function that takes as input an initial state and a collection of Haskell programs, each with

the above type. This speci�cation appears in Appendix D, using standard Haskell syntax

augmented with a single non-deterministic merge operator.

One can de�ne a continuation-based version of I/O in terms of a stream-based version.

Such a de�nition is provided in Section 7.5. The speci�c I/O requests available in each

style are identical; what di�ers is the way they are expressed. This means that programs

in either style may be combined with a well-de�ned semantics. In both cases arbitrary I/O

requests within conventional operating systems may be induced while retaining referential

transparency within a Haskell program.

The required requests for a valid implementation are:

data Request =

-- file system requests:

ReadFile String

| WriteFile String String

| AppendFile String String

| ReadBinFile String

| WriteBinFile String Bin

| AppendBinFile String Bin

| DeleteFile String

| StatusFile String

-- channel system requests:

| ReadChan String

| AppendChan String String

| ReadBinChan String

| AppendBinChan String Bin

| StatusChan String

70 7 INPUT/OUTPUT

-- environment requests:

| Echo Bool

| GetArgs

| GetProgName

| GetEnv String

| SetEnv String String

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stdecho = "stdecho"

Conceptually the above requests can be organised into three groups: those relating to the

�le system component of the operating system (the �rst eight), those relating to the channel

system (the next �ve), and those relating to the environment (the last four).

The �le system is fairly conventional: a mapping of �le names to contents. The chan-

nel system consists of a collection of channels, examples of which include standard input

(stdin), standard output (stdout), standard error (stderr), and standard echo (stdecho)

channels. A channel is a one-way communication medium|it either consumes values from

the program (via AppendChan or AppendBinChan) or produces values for the program (by

responding to ReadChan or ReadBinChan). Channels communicate to and from agents (a

concept made more precise in Appendix D). Examples of agents include line printers, disk

controllers, networks, and human beings. As an example of the latter, the user is normally

the consumer of standard output and the producer of standard input. Channels cannot be

deleted, nor is there a notion of creating a channel.

Apart from these required requests, several optional requests are described in Ap-

pendix D.1. Although not required for a valid Haskell implementation, they may be useful

in particular implementations.

Requests to the �le system are in general order-dependent; if i > j then the response

to the ith request may depend on the jth request. In the case of the channel system the

nature of the dependencies is dictated by the agents. In all cases external e�ects may also

be felt \between" internal e�ects.

Responses are de�ned by:

data Response = Success

| Str String

| StrList [String]

| Bn Bin

| Failure IOError

data IOError = WriteError String

| ReadError String

| SearchError String

| FormatError String

| OtherError String

The response to a request is either Success, when no value is returned; Str s [Bn b], when

7.1 I/O Modes 71

a string [binary] value s [b] is returned; or Failure e, indicating failure with I/O error e.

The nature of a failure is de�ned by the IOError datatype, which captures the most

common kinds of errors. The String components of these errors are implementation depen-

dent, and may be used to re�ne the description of the error (for example, for ReadError, the

string might be "file locked", "access rights violation", etc.). An implementation

is free to extend IOError as required.

7.1 I/O Modes

The I/O requests ReadFile, WriteFile, AppendFile, ReadChan, and AppendChan all work

with text values|i.e. strings. Any value whose type is an instance of the class Text may be

written to a �le (or communicated on a channel) by using the appropriate output request

if it is �rst converted to a string, using shows (see Section 4.3.3). Similarly, reads can be

used with the appropriate input request to read such a value from a �le (or a channel). This

is text mode I/O.

For both e�ciency and transparency, Haskell also supports a corresponding set of

binary I/O requests|ReadBinFile, WriteBinFile, AppendBinFile, ReadBinChan, and

AppendBinChan. showBin and readBin are using analogously to shows and reads (see

Section 4.3.3) for values whose types are instances of the class Binary (see Section 6.7).

Binary mode I/O ensures transparency within an implementation|i.e. \what is read

is what was written." Implementations on conventional machines will probably be able to

realise binary mode more e�ciently than text mode. On the other hand, the Bin datatype

itself is implementation dependent, and thus binary mode should not be used as a method

to ensure transparency between implementations.

In the remainder of this section, various aspects of text mode will be discussed, including

the behaviour of standard channels such as stdin and stdout.

7.1.1 Transparent Character Set

The transparent character set is de�ned by:

the 52 uppercase and lowercase alphabetic characters

the 10 decimal digits

the 32 graphic characters:

! " # $ % & � () * + , - . / : ; < = > ? @ [\] ^ _ � { | } ~

the space character

(This is identical to the any syntactic category de�ned in Section 2.2, with tab excluded.)

A transparent line is a list of no more than 254 transparent characters followed by a

\n character (i.e. no more than 255 characters in total). A transparent string is the �nite

concatenation of zero or more transparent lines.

Haskell's text mode for �les is transparent whenever the string being used is transparent.

An implementation must ensure that a transparent string written to a �le in text mode is

72 7 INPUT/OUTPUT

identical to the string read back from the same �le in text mode (assuming there were no

intervening external e�ects).

The transparent character set is restricted because of the inconsistent treatment of text

�les by operating systems. For example, some systems translate the newline character

\n into CR/LF, and others into just CR or just LF|so none of these characters can be in

the transparent character set. Similarly, some systems truncate lines exceeding a certain

length, others do not. Haskell's transparent string is intended to provide a useful degree

of portability of text �le manipulating programs. Of course, an implementation is free to

guarantee a higher degree of transparency than that de�ned here (such as longer lines or

more character types).

Besides this de�nition of text mode transparency, the standard input and output chan-

nels carry with them notions of standard presentation and acceptance, as de�ned below.

7.1.2 Presentation

Standard text mode presentation guarantees a minimum kind of presentable output on stan-

dard output devices; thus it is only de�ned for AppendChan using the channels stdout,

stderr, and stdecho. Abstractly, these channels are assumed to be attached to a sequence

of rectangular grids of characters called pages; each page consists of a number of lines and

columns, with the �rst line presented at the \top" and the �rst column presented to the

\left." The width of a column is assumed to be constant. (On a paper printing device,

we expect an abstract page to correspond to a physical page; on a terminal display, it will

correspond to whatever abstraction is presented by the terminal, but at a minimum the

terminal should support display of at least one full page.)

Characters obtained from AppendChan requests are written sequentially into these pages

starting at the top left hand corner of the �rst page. The characters are written in order

horizontally across the page until a newline character (\n) is processed, at which point the

subsequent characters are written starting in column one of line two, and so on. If a form

feed character (\f) is processed, writing starts at the top left hand corner of the second

page, and so on.

Maximum line length and page length for the output channels stdout, stdecho, and

stderr may be obtained via the StatusChan request as described in Section 7.3. These

are implementation-dependent constants, but must be at least 40 characters and 20 lines,

respectively. AppendChan may induce a FormatError if either of these limits is exceeded.

Presentation of the transparent character set may be in any readable font. Presentation

of \n and \f is as de�ned above. Presentation of any other character is not de�ned|

presentation of such a character may invalidate standard presentation of all subsequent

characters. An implementation, of course, may guarantee other forms of useful presentation

beyond what is speci�ed here.

To facilitate processing of text to and from standard input/output channels, the auxiliary

functions shown in Figures 13{14 are provided in the standard prelude.

7.1 I/O Modes 73

span, break :: (a -> Bool) -> [a] -> ([a],[a])

span p xs = (takeWhile p xs, dropWhile p xs)

break p = span (not . p)

lines :: String -> [String]

lines "" = []

lines s = l : (if null s' then [] else lines (tail s'))

where (l, s') = break ((==) '\n') s

words :: String -> [String]

words s = case dropWhile isSpace s of

"" -> []

s' -> w : words s''

where (w, s'') = break isSpace s'

Figure 13: Auxiliary Functions for Text Processing of Standard Output, Part 1

unlines :: [String] -> String

unlines ls = concat (map (\l -> l ++ "\n") ls)

unwords :: [String] -> String

unwords [] = ""

unwords [w] = w

unwords (w:ws) = w ++ concat (map (' ' :) ws)

Figure 14: Auxiliary Functions for Text Processing of Standard Output, Part 2

7.1.3 Acceptance

Standard text mode acceptance guarantees a minimum kind of character input from standard

input devices; thus it is only de�ned for ReadChan using the channel stdin. Abstractly,

stdin is assumed to be attached to a keyboard. The only requirement of the keyboard is

that it have keys to support the transparent character set plus the newline (\n) character.

7.1.4 Echoing

The channel stdecho is assumed connected to the display associated with the device to

which stdin is connected. It may be possible for stdout and stdecho to be connected to

the same device, but this is not required. It may be possible in some operating systems to

redirect stdout to a �le while still displaying information to the user on stdecho.

The Echo request (described in Section 7.4) controls echoing of stdin on stdecho. When

echoing is enabled, characters typed at the terminal connected to stdin are echoed onto

74 7 INPUT/OUTPUT

stdecho, with optional implementation-speci�c line-editing functions available. The list of

characters returned by a read request to stdin should be the result of this processing. As

an entire line may be erased by the user, a program will not see any of the line until a \n

character is typed.

A display may receive data from four di�erent sources: echoing from stdin, and explicit

output to stdecho, stdout, and stderr. The result is an interleaving of these character

streams, but it is not an arbitrary one, because of two constraints: (1) explicit output (via

AppendChan) must appear as the concatenation of the individual streams; i.e. they cannot

be interleaved (this is consistent with the hyperstrict nature of AppendChan), and (2) if

echoing is on, characters from stdin that a program depends on for some I/O request must

appear on the display before that I/O occurs. These constraints permit a user to type

ahead, but prevent a system from printing a reply before echoing the user's request.

7.2 File System Requests

In this section, each request is described using the stream model|the corresponding be-

haviour using the continuation model should be obvious. Optional requests, not required

of a valid Haskell implementation, are described in Appendix D.1.

� ReadFile name

ReadBinFile name

Returns the contents of �le name treated as a text [binary] �le. If successful, the

response will be of the form Str s [Bn b], where s [b] is a string [binary] value. If

the �le is not found, the response Failure (SearchError string) is induced; if

it is unreadable for some other reason, the Failure (ReadError string) error is

induced.

� WriteFile name string

WriteBinFile name bin

Writes string [bin] to �le name. If the �le does not exist, it is created. If it already

exists, it is overwritten. A successful response has form Success; the only failure

possible has the form Failure (WriteError string).

Both of these requests are \hyperstrict" in their second argument: no response is

returned until the entire list of values is completely evaluated.

� AppendFile name string

AppendBinFile name bin

Identical to WriteFile [WriteBinFile], except that (1) the string [bin] argument is

appended to the current contents of the �le named name; (2) if the I/O mode does not

match the previous mode with which name was written, the behaviour is not speci�ed;

and (3) if the �le does not exist, the response Failure (SearchError string) is in-

duced. All other errors have form Failure (WriteError string), and both requests

are hyperstrict in their second argument.

7.3 Channel System Requests 75

� DeleteFile name

Deletes �le name, with successful response Success. If the �le does not exist, the

response Failure (SearchError string) is induced. If it cannot be deleted for some

other reason, a response of the form Failure (WriteError string) is induced.

� StatusFile name

Induces Failure (SearchError string) if an object name does not exist, otherwise

induces Str status where status is a string containing, in this order: (1) either �t�,

�b�, �d�, or �u� depending on whether the object is a text �le, binary �le, directory,

or something else, respectively (if text and binary �les cannot be distinguished, �f�

indicates either text or binary �le); (2) �r� if the object is readable by this program,

�-� if not; and (3) �w� if the object is writable by this program, �-� if not. For example

"dr-" denotes a directory that can be read but not written. An implementation is

free to append more status information to this string.

Note 1. A proper implementation of ReadFile or ReadBinFilemay have to make copies

of �les in order to preserve referential transparency|a successful read of a �le returns a

lazy list whose contents should be preserved, despite future writes to or deletions of that

�le, even if the lazy list has not yet been completely evaluated.

Note 2. Given the two juxtaposed requests:

[..., WriteFile name contents1, ReadFile name, ...]

with the corresponding responses:

[..., Success, Str contents2, ...]

then contents1 == contents2 if contents1 is a transparent string, assuming that there

were no external e�ects. A similar result would hold if the binary versions were used.

7.3 Channel System Requests

Channels are inherently di�erent from �les|they contain ephemeral streams of data as

opposed to persistent stationary values. The most common channels are standard input

(stdin), standard output (stdout), standard error (stderr), and standard echo (stdecho);

these four are the only required channels in a valid implementation.

� ReadChan name

ReadBinChan name

Opens channel name for input. A successful response returns the contents of the

channel as a lazy stream of characters [a binary value]. If the channel does not exist

the response Failure (SearchError string) is induced; all other errors have form

Failure (ReadError string).

Unlike �les, once a ReadChan or ReadBinChan request has been issued for a particular

channel, it cannot be issued again for the same channel in that program. This reects

the ephemeral nature of its contents and prevents a serious space leak.

76 7 INPUT/OUTPUT

� AppendChan name string

AppendBinChan name bin

Writes string [bin] to channel name. The semantics is as for AppendFile, except:

(1) the second argument is appended to whatever was previously written (if any-

thing); (2) if AppendChan and AppendBinChan are both issued to the same channel,

the resulting behaviour is not speci�ed; (3) if the channel does not exist, the re-

sponse Failure (SearchError string) is induced; and (4) if the maximum line

or page length of stdout, stderr, or stdecho is exceeded, the response Failure

(FormatError string) is induced (see Section 7.1.2). All other errors have form

Failure (WriteError string). Both requests are hyperstrict in their second argu-

ment.

� StatusChan name

Induces Failure (SearchError string) if channel name does not exist, otherwise

induces Str status where status is a string containing implementation-dependent

information about the named channel. The only information required of a valid im-

plementation is that for the output channels stdout, stdecho, and stderr: the be-

ginning of the status string must contain two integers separated by a space, the �rst

integer indicating the maximum line length (in characters) allowed on the channel,

the second indicating the maximum page length (in lines) allowed (see Section 7.1.2).

A zero length implies that there is no bound.

7.4 Environment Requests

� Echo bool

Echo True enables echoing of stdin on stdecho; Echo False disables it (see Sec-

tion 7.1.4). Either Success or Failure (OtherError string) is induced.

The echo mode can only be set once by a particular program, and it must be done

before any I/O operation involving stdin. If no Echo request is made, a valid imple-

mentation is expected to use the echoing mode of the OS at the time the program is

run.

� GetArgs

Induces the response StrList str_list, where str_list is a list of the program's

explicit command line arguments.

� GetProgName

Returns the short name of the current program, not including search path information.

If successful, the response will be of the form Str s, where s is a string. If the operat-

ing system is unable to provide the program name, Failure (OtherError string)

is induced.

7.5 Continuation-based I/O 77

� GetEnv name

Returns the value of environment variable name. If successful, the response will be

of the form Str s, where s is a string. If the environment variable does not exist, a

SearchError is induced.

� SetEnv name string

Sets environment variable name to value string, with response Success. If the envi-

ronment variable does not exist, it is created.

7.5 Continuation-based I/O

Haskell supports an alternative style of I/O called continuation-based I/O. Under this model,

a Haskell program still has type [Response]->[Request], but instead of the user manipu-

lating the requests and responses directly, a collection of transactions de�ned in a continu-

ation style, captures the e�ect of each request/response pair.

Transactions are functions. For each request Req there corresponds a transaction req,

as shown in Figures 15{16. For example, ReadFile induces either a failure response

Failure msg or success response Str contents. In contrast the transaction readFile

would be used in continuation-based I/O, as for example,

readFile name (\ msg -> errorTransaction)

(\ contents -> successTransaction)

where the second and third arguments are the failure continuation and success continuation,

respectively. If the transaction fails then the error continuation is applied to the error

message; if it succeeds then the success continuation is applied to the contents of the �le.

The following type synonyms and auxiliary functions are de�ned for continuation-based

I/O:

type Dialogue = [Response] -> [Request]

type SuccCont = Dialogue

type StrCont = String -> Dialogue

type StrListCont = [String] -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

78 7 INPUT/OUTPUT

done :: Dialogue

readFile :: String -> FailCont -> StrCont -> Dialogue

writeFile :: String -> String -> FailCont -> SuccCont -> Dialogue

appendFile :: String -> String -> FailCont -> SuccCont -> Dialogue

readBinFile :: String -> FailCont -> BinCont -> Dialogue

writeBinFile :: String -> Bin -> FailCont -> SuccCont -> Dialogue

appendBinFile :: String -> Bin -> FailCont -> SuccCont -> Dialogue

deleteFile :: String -> FailCont -> SuccCont -> Dialogue

statusFile :: String -> FailCont -> StrCont -> Dialogue

readChan :: String -> FailCont -> StrCont -> Dialogue

appendChan :: String -> String -> FailCont -> SuccCont -> Dialogue

readBinChan :: String -> FailCont -> BinCont -> Dialogue

appendBinChan :: String -> Bin -> FailCont -> SuccCont -> Dialogue

statusChan :: String -> FailCont -> StrCont -> Dialogue

echo :: Bool -> FailCont -> SuccCont -> Dialogue

getArgs :: FailCont -> StrListCont -> Dialogue

getProgName :: FailCont -> StrCont -> Dialogue

getEnv :: String -> FailCont -> StrCont -> Dialogue

setEnv :: String -> String -> FailCont -> SuccCont -> Dialogue

Figure 15: Transactions of continuation-based I/O { signatures.

strDispatch fail succ (resp:resps) =

case resp of Str val -> succ val resps

Failure msg -> fail msg resps

strListDispatch fail succ (resp:resps) =

case resp of StrList val -> succ val resps

Failure msg -> fail msg resps

binDispatch fail succ (resp:resps) =

case resp of Bn val -> succ val resps

Failure msg -> fail msg resps

succDispatch fail succ (resp:resps) =

case resp of Success -> succ resps

Failure msg -> fail msg resps

7.5 Continuation-based I/O 79

done resps = []

readFile name fail succ resps = --similarly for readBinFile

(ReadFile name) : strDispatch fail succ resps

writeFile name contents fail succ resps = --similarly for writeBinFile

(WriteFile name contents) : succDispatch fail succ resps

appendFile name contents fail succ resps = --similarly for appendBinFile

(AppendFile name contents) : succDispatch fail succ resps

deleteFile name fail succ resps =

(DeleteFile name) : succDispatch fail succ resps

statusFile name fail succ resps = --similarly for statusChan

(StatusFile name) : strDispatch fail succ resps

readChan name fail succ resps = --similarly for readBinChan

(ReadChan name) : strDispatch fail succ resps

appendChan name contents fail succ resps = --similarly for appendBinChan

(AppendChan name contents) : succDispatch fail succ resps

echo bool fail succ resps =

(Echo bool) : succDispatch fail succ resps

getArgs fail succ resps =

GetArgs : strListDispatch fail succ resps

getProgName fail succ resps =

GetProgName : strDispatch fail succ resps

getEnv name fail succ resps =

(GetEnv name) : strDispatch fail succ resps

setEnv name contents fail succ resps =

(SetEnv name contents) : succDispatch fail succ resps

Figure 16: Transactions of continuation-based I/O { de�nitions.

80 7 INPUT/OUTPUT

abort :: FailCont

abort err = done

exit :: FailCont

exit err = appendChan stderr msg abort done

where msg = case err of ReadError s -> s

WriteError s -> s

SearchError s -> s

FormatError s -> s

OtherError s -> s

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) exit done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) exit done

interact :: (String -> String) -> Dialogue

interact f = readChan stdin exit

(\x -> appendChan stdout (f x) exit done)

7.6 A Small Example

Both of the following programs prompt the user for the name of a �le, and then look up and

display the contents of the �le on standard-output. The �lename as typed by the user is

also echoed. The �rst program uses the stream-based style (note the irrefutable patterns):

main ~(Success : ~((Str userInput) : ~(Success : ~(r4 : _)))) =

[AppendChan stdout "please type a filename\n",

ReadChan stdin,

AppendChan stdout name,

ReadFile name,

AppendChan stdout (case r4 of Str contents -> contents

Failure ioerror -> "can't open file")

] where (name : _) = lines userInput

The second program uses the continuation-based style:

main = appendChan stdout "please type a filename\n" exit (

readChan stdin exit (\ userInput ->

let (name : _) = lines userInput in

appendChan stdout name exit (

readFile name (\ ioerror -> appendChan stdout

"can't open file" exit done)

(\ contents ->

appendChan stdout contents exit done))))

More examples and a general discussion of both forms of I/O may be found in a report

by Hudak and Sundaresh [8].

7.7 An Example Involving Synchronisation 81

7.7 An Example Involving Synchronisation

The following program reads two numbers and prints their sum. After the initial readChan

request, the value of the input stream must be passed in and out of the functions which

actually obtain the user input. The programmer must control the synchronisation between

the appendChan requests and when the program stops to read input. The readChan request

does not actually cause the program to stop and wait for the user to enter the entire input

stream; only at demands for actual input characters will execution pause for input. This

program assures that this demand is properly synchronised with the appendChan requests

by verifying input values in the readInt function.

main :: Dialogue

main = readChan stdin exit (\ userInput -> readNums (lines userInput))

readNums :: [String] -> Dialogue

readNums inputLines =

readInt "Enter first number: " inputLines

(\ num1 inputLines1 ->

readInt "Enter second number: " inputLines1

(\ num2 _ -> reportResult num1 num2))

reportResult :: Int -> Int -> Dialogue

reportResult num1 num2 =

appendChan stdout ("Their sum is: " ++ show (num1 + num2)) exit done

-- readInt prints a prompt and then reads a line of input. If the

-- line contains an integer, the value of the integer is passed to the

-- success continuation. If a line cannot be parsed as an integer,

-- an error message is printed and the user is asked to try again.

-- If EOF is detected, the program is aborted.

readInt :: String -> [String] -> (Int -> [String] -> Dialogue) -> Dialogue

readInt prompt inputLines succ =

appendChan stdout prompt exit

(case inputLines of

(l1 : rest) -> case (reads l1) of

[(x,"")] -> succ x rest

_ -> appendChan stdout

"Error - retype the number\n" exit

(readInt prompt rest succ)

_ -> appendChan stdout "Early EOF" exit done)

82 A STANDARD PRELUDE

A Standard Prelude

In this appendix the entire Haskell prelude is given. It is organised into a root module and

eight sub-modules.

-- Standard value bindings

module Prelude (

PreludeCore.., PreludeRatio.., PreludeComplex.., PreludeList..,

PreludeArray.., PreludeText.., PreludeIO..,

nullBin, isNullBin, appendBin,

(&&), (||), not, otherwise,

minChar, maxChar, ord, chr,

isAscii, isControl, isPrint, isSpace,

isUpper, isLower, isAlpha, isDigit, isAlphanum,

toUpper, toLower,

minInt, maxInt, subtract, gcd, lcm, (^), (^^),

fromIntegral, fromRealFrac, atan2,

fst, snd, id, const, (.), flip, ($), until, asTypeOf, error) where

import PreludeBuiltin

import PreludeCore

import PreludeList

import PreludeArray

import PreludeRatio

import PreludeComplex

import PreludeText

import PreludeIO

infixr 9 .

infixr 8 ^, ^^

infixr 3 &&

infixr 2 ||

infixr 0 $

-- Binary functions

nullBin :: Bin

nullBin = primNullBin

isNullBin :: Bin -> Bool

isNullBin = primIsNullBin

appendBin :: Bin -> Bin -> Bin

appendBin = primAppendBin

83

-- Boolean functions

(&&), (||) :: Bool -> Bool -> Bool

True && x = x

False && _ = False

True || _ = True

False || x = x

not :: Bool -> Bool

not True = False

not False = True

otherwise :: Bool

otherwise = True

-- Character functions

minChar, maxChar :: Char

minChar = '\0'

maxChar = '\255'

ord :: Char -> Int

ord = primCharToInt

chr :: Int -> Char

chr = primIntToChar

isAscii, isControl, isPrint, isSpace :: Char -> Bool

isUpper, isLower, isAlpha, isDigit, isAlphanum :: Char -> Bool

isAscii c = ord c < 128

isControl c = c < ' ' || c == '\DEL'

isPrint c = c >= ' ' && c <= '~'

isSpace c = c == ' ' || c == '\t' || c == '\n' ||

c == '\r' || c == '\f' || c == '\v'

isUpper c = c >= 'A' && c <= 'Z'

isLower c = c >= 'a' && c <= 'z'

isAlpha c = isUpper c || isLower c

isDigit c = c >= '0' && c <= '9'

isAlphanum c = isAlpha c || isDigit c

toUpper, toLower :: Char -> Char

toUpper c | isLower c = chr ((ord c - ord 'a') + ord 'A')

| otherwise = c

toLower c | isUpper c = chr ((ord c - ord 'A') + ord 'a')

| otherwise = c

84 A STANDARD PRELUDE

-- Numeric functions

minInt, maxInt :: Int

minInt = primMinInt

maxInt = primMaxInt

subtract :: (Num a) => a -> a -> a

subtract = flip (-)

gcd :: (Integral a) => a -> a -> a

gcd 0 0 = error "gcd{Prelude}: gcd 0 0 is undefined"

gcd x y = gcd' (abs x) (abs y)

where gcd' x 0 = x

gcd' x y = gcd' y (x `rem` y)

lcm :: (Integral a) => a -> a -> a

lcm _ 0 = 0

lcm 0 _ = 0

lcm x y = abs ((x `quot` (gcd x y)) * y)

(^) :: (Num a, Integral b) => a -> b -> a

x ^ 0 = 1

x ^ (n+1) = f x n x

where f _ 0 y = y

f x n y = g x n where

g x n | even n = g (x*x) (n `quot` 2)

| otherwise = f x (n-1) (x*y)

_ ^ _ = error "(^){Prelude}: negative exponent"

(^^) :: (Fractional a, Integral b) => a -> b -> a

x ^^ n = if n >= 0 then x^n else recip (x^(-n))

fromIntegral :: (Integral a, Num b) => a -> b

fromIntegral = fromInteger . toInteger

fromRealFrac :: (RealFrac a, Fractional b) => a -> b

fromRealFrac = fromRational . toRational

atan2 :: (RealFloat a) => a -> a -> a

atan2 y x = case (signum y, signum x) of

(0, 1) -> 0

(1, 0) -> pi/2

(0,-1) -> pi

(-1, 0) -> -pi/2

(_, 1) -> atan (y/x)

(_,-1) -> atan (y/x) + pi

(0, 0) -> error "atan2{Prelude}: atan2 of origin"

85

-- Some standard functions:

-- component projections for pairs:

fst :: (a,b) -> a

fst (x,y) = x

snd :: (a,b) -> b

snd (x,y) = y

-- identity function

id :: a -> a

id x = x

-- constant function

const :: a -> b -> a

const x _ = x

-- function composition

(.) :: (b -> c) -> (a -> b) -> a -> c

f . g = \ x -> f (g x)

-- flip f takes its (first) two arguments in the reverse order of f.

flip :: (a -> b -> c) -> b -> a -> c

flip f x y = f y x

-- right-associating infix application operator (useful in continuation-

-- passing style)

($) :: (a -> b) -> a -> b

f $ x = f x

-- until p f yields the result of applying f until p holds.

until :: (a -> Bool) -> (a -> a) -> a -> a

until p f x | p x = x

| otherwise = until p f (f x)

-- asTypeOf is a type-restricted version of const. It is usually used

-- as an infix operator, and its typing forces its first argument

-- (which is usually overloaded) to have the same type as the second.

asTypeOf :: a -> a -> a

asTypeOf = const

86 A STANDARD PRELUDE

A.1 Prelude PreludeBuiltin

interface PreludeBuiltin where

infixr 5 :

-- The following are algebraic types with special syntax. All of their

-- standard instances are derived here, except for class Text, for

-- which the special syntax must be taken into account. See PreludeText

-- for the Text instances of lists and the trivial type and a scheme

-- for Tuple Text instances.

--

-- data [a] = [] | a : [a] deriving (Eq, Ord, Binary) Lists

-- data () = () deriving (Eq, Ord, Ix, Enum, Binary) Trivial Type

-- data (a,b) = (a,b) deriving (Eq, Ord, Ix, Binary) Pairs

-- data (a,b,c) = (a,b,c) deriving (Eq, Ord, Ix, Binary) Triples

-- et cetera Other Tuples

-- The primitive types:

data Char

data Int

data Integer

data Float

data Double

data Bin

instance Binary Char

instance Binary Int

instance Binary Integer

instance Binary Float

instance Binary Double

primMinInt, primMaxInt :: Int

primCharToInt :: Char -> Int

primIntToChar :: Int -> Char

primIntToInteger :: Int -> Integer

primIntegerToInt :: Integer -> Int

primEqInt, primLeInt :: Int -> Int -> Bool

primPlusInt, primMulInt :: Int -> Int -> Int

primNegInt :: Int -> Int

primQuotRemInt :: Int -> Int -> (Int,Int)

primEqInteger, primLeInteger :: Integer -> Integer -> Bool

primPlusInteger, primMulInteger :: Integer -> Integer -> Integer

primNegInteger :: Integer -> Integer

primQuotRemInteger :: Integer -> Integer -> (Integer,Integer)

A.1 Prelude PreludeBuiltin 87

primFloatRadix :: Integer

primFloatDigits, primFloatMinExp,

primFloatMaxExp :: Int

primDecodeFloat :: Float -> (Integer,Int)

primEncodeFloat :: Integer -> Int -> Float

primEqFloat, primLeFloat :: Float -> Float -> Bool

primPlusFloat, primMulFloat,

primDivFloat :: Float -> Float -> Float

primNegFloat :: Float -> Float

primPiFloat :: Float

primExpFloat, primLogFloat,

primSqrtFloat, primSinFloat,

primCosFloat, primTanFloat,

primAsinFloat, primAcosFloat,

primAtanFloat, primSinhFloat,

primCoshFloat, primTanhFloat,

primAsinhFloat, primAcoshFloat,

primAtanhFloat :: Float -> Float

primDoubleRadix :: Integer

primDoubleDigits, primDoubleMinExp,

primDoubleMaxExp :: Int

primDecodeDouble :: Double -> (Integer,Int)

primEncodeDouble :: Integer -> Int -> Double

primEqDouble, primLeDouble :: Double -> Double -> Bool

primPlusDouble, primMulDouble,

primDivDouble :: Double -> Double -> Double

primNegDouble :: Double -> Double

primPiDouble :: Double

primExpDouble, primLogDouble,

primSqrtDouble, primSinDouble,

primCosDouble, primTanDouble,

primAsinDouble, primAcosDouble,

primAtanDouble, primSinhDouble,

primCoshDouble, primTanhDouble,

primAsinhDouble, primAcoshDouble,

primAtanhDouble :: Double -> Double

primNullBin :: Bin

primIsNullBin :: Bin -> Bool

primAppendBin :: Bin -> Bin -> Bin

88 A STANDARD PRELUDE

-- error is applied to a string, returns any type, and is everywhere

-- undefined. Operationally, the intent is that its application

-- terminate execution of the program and display the argument string

-- in some appropriate way.

error :: String -> a

A.2 Prelude PreludeCore 89

A.2 Prelude PreludeCore

-- Standard types, classes, and instances

module PreludeCore (

Eq((==), (/=)),

Ord((<), (<=), (>=), (>), max, min),

Num((+), (-), (*), negate, abs, signum, fromInteger),

Integral(quot, rem, div, mod, quotRem, divMod, even, odd, toInteger),

Fractional((/), fromRational),

Floating(pi, exp, log, sqrt, (**), logBase,

sin, cos, tan, asin, acos, atan,

sinh, cosh, tanh, asinh, acosh, atanh),

Real(toRational),

RealFrac(properFraction, truncate, round, ceiling, floor),

RealFloat(floatRadix, floatDigits, floatRange,

encodeFloat, decodeFloat, exponent, significand, scaleFloat),

Ix(range, index, inRange),

Enum(enumFrom, enumFromThen, enumFromTo, enumFromThenTo),

Text(readsPrec, showsPrec, readList, showList), ReadS(..), ShowS(..),

Binary(readBin, showBin),

-- List type: [_]((:), [])

-- Tuple types: (_,_), (_,_,_), etc.

-- Trivial type: ()

Bool(True, False),

Char, Int, Integer, Float, Double, Bin,

Ratio, Complex((:+)), Assoc((:=)), Array,

String(..), Rational(..)) where

import PreludeBuiltin

import Prelude(iterate)

import PreludeText(Text(readsPrec, showsPrec, readList, showList))

import PreludeRatio(Ratio, Rational(..))

import PreludeComplex(Complex((:+)))

import PreludeArray(Assoc((:=)), Array)

import PreludeIO(Request, Response, IOError,

Dialogue(..), SuccCont(..), StrCont(..),

StrListCont(..), BinCont(..), FailCont(..))

infixr 8 **

infixl 7 *, /, `quot`, `rem`, `div`, `mod`

infixl 6 +, -

infix 4 ==, /=, <, <=, >=, >

90 A STANDARD PRELUDE

-- Equality and Ordered classes

class Eq a where

(==), (/=) :: a -> a -> Bool

x /= y = not (x == y)

class (Eq a) => Ord a where

(<), (<=), (>=), (>):: a -> a -> Bool

max, min :: a -> a -> a

x < y = x <= y && x /= y

x >= y = y <= x

x > y = y < x

-- The following default methods are appropriate for partial orders.

-- Note that the second guards in each function can be replaced

-- by "otherwise" and the error cases, eliminated for total orders.

max x y | x >= y = x

| y >= x = y

|otherwise = error "max{PreludeCore}: no ordering relation"

min x y | x <= y = x

| y <= x = y

|otherwise = error "min{PreludeCore}: no ordering relation"

-- Numeric classes

class (Eq a, Text a) => Num a where

(+), (-), (*) :: a -> a -> a

negate :: a -> a

abs, signum :: a -> a

fromInteger :: Integer -> a

x - y = x + negate y

class (Num a, Enum a) => Real a where

toRational :: a -> Rational

A.2 Prelude PreludeCore 91

class (Real a, Ix a) => Integral a where

quot, rem, div, mod :: a -> a -> a

quotRem, divMod :: a -> a -> (a,a)

even, odd :: a -> Bool

toInteger :: a -> Integer

n `quot` d = q where (q,r) = quotRem n d

n `rem` d = r where (q,r) = quotRem n d

n `div` d = q where (q,r) = divMod n d

n `mod` d = r where (q,r) = divMod n d

divMod n d = if signum r == - signum d then (q-1, r+d) else qr

where qr@(q,r) = quotRem n d

even n = n `rem` 2 == 0

odd = not . even

class (Num a) => Fractional a where

(/) :: a -> a -> a

recip :: a -> a

fromRational :: Rational -> a

recip x = 1 / x

class (Fractional a) => Floating a where

pi :: a

exp, log, sqrt :: a -> a

(**), logBase :: a -> a -> a

sin, cos, tan :: a -> a

asin, acos, atan :: a -> a

sinh, cosh, tanh :: a -> a

asinh, acosh, atanh :: a -> a

x ** y = exp (log x * y)

logBase x y = log y / log x

sqrt x = x ** 0.5

tan x = sin x / cos x

tanh x = sinh x / cosh x

92 A STANDARD PRELUDE

class (Real a, Fractional a) => RealFrac a where

properFraction :: (Integral b) => a -> (b,a)

truncate, round :: (Integral b) => a -> b

ceiling, floor :: (Integral b) => a -> b

truncate x = m where (m,_) = properFraction x

round x = let (n,r) = properFraction x

m = if r < 0 then n - 1 else n + 1

in case signum (abs r - 0.5) of

-1 -> n

0 -> if even n then n else m

1 -> m

ceiling x = if r > 0 then n + 1 else n

where (n,r) = properFraction x

floor x = if r < 0 then n - 1 else n

where (n,r) = properFraction x

class (RealFrac a, Floating a) => RealFloat a where

floatRadix :: a -> Integer

floatDigits :: a -> Int

floatRange :: a -> (Int,Int)

decodeFloat :: a -> (Integer,Int)

encodeFloat :: Integer -> Int -> a

exponent :: a -> Int

significand :: a -> a

scaleFloat :: Int -> a -> a

exponent x = if m == 0 then 0 else n + floatDigits x

where (m,n) = decodeFloat x

significand x = encodeFloat m (- floatDigits x)

where (m,_) = decodeFloat x

scaleFloat k x = encodeFloat m (n+k)

where (m,n) = decodeFloat x

-- Index and Enumeration classes

class (Ord a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

A.2 Prelude PreludeCore 93

class (Ord a) => Enum a where

enumFrom :: a -> [a] -- [n..]

enumFromThen :: a -> a -> [a] -- [n,n'..]

enumFromTo :: a -> a -> [a] -- [n..m]

enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]

enumFromTo n m = takeWhile (<= m) (enumFrom n)

enumFromThenTo n n' m

= takeWhile (if n' >= n then (<= m) else (>= m))

(enumFromThen n n')

-- Text class

type ReadS a = String -> [(a,String)]

type ShowS = String -> String

class Text a where

readsPrec :: Int -> ReadS a

showsPrec :: Int -> a -> ShowS

readList :: ReadS [a]

showList :: [a] -> ShowS

readList = readParen False (\r -> [pr | ("[",s) <- lex r,

pr <- readl s])

where readl s = [([],t) | ("]",t) <- lex s] ++

[(x:xs,u) | (x,t) <- reads s,

(xs,u) <- readl' t]

readl' s = [([],t) | ("]",t) <- lex s] ++

[(x:xs,v) | (",",t) <- lex s,

(x,u) <- read t,

(xs,v) <- readl' u]

showList [] = showString "[]"

showList (x:xs)

= showChar '[' . shows x . showl xs

where showl [] = showChar ']'

showl (x:xs) = showString ", " . shows x . showl xs

-- Binary class

class Binary a where

readBin :: Bin -> (a,Bin)

showBin :: a -> Bin -> Bin

94 A STANDARD PRELUDE

-- Trivial type

-- data () = () deriving (Eq, Ord, Ix, Enum, Binary)

instance Text () where

readsPrec p = readParen False

(\r -> [((),t) | ("(",s) <- lex r,

(")",t) <- lex s])

showsPrec p () = showString "()"

-- Binary type

instance Text Bin where

readsPrec p s = error "readsPrec{PreludeText}: Cannot read Bin."

showsPrec p b = showString "<<Bin>>"

-- Boolean type

data Bool = False | True deriving (Eq, Ord, Ix, Enum, Text, Binary)

-- Character type

instance Eq Char where

c == c' = ord c == ord c'

instance Ord Char where

c <= c' = ord c <= ord c'

instance Ix Char where

range (c,c') = [c..c']

index b@(c,c') ci

| inRange b ci = ord ci - ord c

| otherwise = error "index{PreludeCore}: Index out of range."

inRange (c,c') ci = ord c <= i && i <= ord c'

where i = ord ci

instance Enum Char where

enumFrom c = map chr [ord c .. ord maxChar]

enumFromThen c c' = map chr [ord c, ord c' .. ord lastChar]

where lastChar = if c' < c then minChar else maxChar

A.2 Prelude PreludeCore 95

instance Text Char where

readsPrec p = readParen False

(\r -> [(c,t) | ('\'':s,t)<- lex r,

(c,_) <- readLitChar s])

showsPrec p '\'' = showString "'\\''"

showsPrec p c = showChar '\'' . showLitChar c . showChar '\''

readList = readParen False (\r -> [(l,t) | ('"':s, t) <- lex r,

(l,_) <- readl s])

where readl ('"':s) = [("",s)]

readl ('\\':'&':s) = readl s

readl s = [(c:cs,u) | (c ,t) <- readLitChar s,

(cs,u) <- readl t]

showList cs = showChar '"' . showl cs

where showl "" = showChar '"'

showl ('"':cs) = showString "\\\"" . showl cs

showl (c:cs) = showLitChar c . showl cs

type String = [Char]

-- Standard Integral types

instance Eq Int where

(==) = primEqInt

instance Eq Integer where

(==) = primEqInteger

instance Ord Int where

(<=) = primLeInt

instance Ord Integer where

(<=) = primLeInteger

instance Num Int where

(+) = primPlusInt

negate = primNegInt

(*) = primMulInt

abs = absReal

signum = signumReal

fromInteger = primIntegerToInt

96 A STANDARD PRELUDE

instance Num Integer where

(+) = primPlusInteger

negate = primNegInteger

(*) = primMulInteger

abs = absReal

signum = signumReal

fromInteger x = x

absReal x | x >= 0 = x

| otherwise = - x

signumReal x | x == 0 = 0

| x > 0 = 1

| otherwise = -1

instance Real Int where

toRational x = toInteger x % 1

instance Real Integer where

toRational x = x % 1

instance Integral Int where

quotRem = primQuotRemInt

toInteger = primIntToInteger

instance Integral Integer where

quotRem = primQuotRemInteger

toInteger x = x

instance Ix Int where

range (m,n) = [m..n]

index b@(m,n) i

| inRange b i = i - m

| otherwise = error "index{PreludeCore}: Index out of range."

inRange (m,n) i = m <= i && i <= n

instance Ix Integer where

range (m,n) = [m..n]

index b@(m,n) i

| inRange b i = fromInteger (i - m)

| otherwise = error "index{PreludeCore}: Index out of range."

inRange (m,n) i = m <= i && i <= n

instance Enum Int where

enumFrom = numericEnumFrom

enumFromThen = numericEnumFromThen

A.2 Prelude PreludeCore 97

instance Enum Integer where

enumFrom = numericEnumFrom

enumFromThen = numericEnumFromThen

numericEnumFrom :: (Real a) => a -> [a]

numericEnumFromThen :: (Real a) => a -> a -> [a]

numericEnumFrom = iterate (+1)

numericEnumFromThen n m = iterate (+(m-n)) n

instance Text Int where

readsPrec p = readSigned readDec

showsPrec = showSigned showInt

instance Text Integer where

readsPrec p = readSigned readDec

showsPrec = showSigned showInt

-- Standard Floating types

instance Eq Float where

(==) = primEqFloat

instance Eq Double where

(==) = primEqDouble

instance Ord Float where

(<=) = primLeFloat

instance Ord Double where

(<=) = primLeDouble

instance Num Float where

(+) = primPlusFloat

negate = primNegFloat

(*) = primMulFloat

abs = absReal

signum = signumReal

fromInteger n = encodeFloat n 0

instance Num Double where

(+) = primPlusDouble

negate = primNegDouble

(*) = primMulDouble

abs = absReal

signum = signumReal

fromInteger n = encodeFloat n 0

instance Real Float where

toRational = realFloatToRational

98 A STANDARD PRELUDE

instance Real Double where

toRational = realFloatToRational

realFloatToRational x = (m%1)*(b%1)^^n

where (m,n) = decodeFloat x

b = floatRadix x

instance Fractional Float where

(/) = primDivFloat

fromRational = rationalToRealFloat

instance Fractional Double where

(/) = primDivDouble

fromRational = rationalToRealFloat

rationalToRealFloat x = x'

where x' = f e

f e = if e' == e then y else f e'

where y = encodeFloat (round (x * (1%b)^^e) e

(_,e') = decodeFloat y

(_,e) = decodeFloat (fromInteger (numerator x) `asTypeOf` x'

/ fromInteger (denominator x))

b = floatRadix x'

instance Floating Float where

pi = primPiFloat

exp = primExpFloat

log = primLogFloat

sqrt = primSqrtFloat

sin = primSinFloat

cos = primCosFloat

tan = primTanFloat

asin = primAsinFloat

acos = primAcosFloat

atan = primAtanFloat

sinh = primSinhFloat

cosh = primCoshFloat

tanh = primTanhFloat

asinh = primAsinhFloat

acosh = primAcoshFloat

atanh = primAtanhFloat

A.2 Prelude PreludeCore 99

instance Floating Double where

pi = primPiDouble

exp = primExpDouble

log = primLogDouble

sqrt = primSqrtDouble

sin = primSinDouble

cos = primCosDouble

tan = primTanDouble

asin = primAsinDouble

acos = primAcosDouble

atan = primAtanDouble

sinh = primSinhDouble

cosh = primCoshDouble

tanh = primTanhDouble

asinh = primAsinhDouble

acosh = primAcoshDouble

atanh = primAtanhDouble

instance RealFrac Float where

properFraction = floatProperFraction

instance RealFrac Double where

properFraction = floatProperFraction

floatProperFraction x

| n >= 0 = (fromInteger m * fromInteger b ^ n, 0)

| otherwise = (fromInteger w, encodeFloat r n)

where (m,n) = decodeFloat x

b = floatRadix x

(w,r) = quotRem m (b^(-n))

instance RealFloat Float where

floatRadix _ = primFloatRadix

floatDigits _ = primFloatDigits

floatRange _ = (primFloatMinExp,primFloatMaxExp)

decodeFloat = primDecodeFloat

encodeFloat = primEncodeFloat

instance RealFloat Double where

floatRadix _ = primDoubleRadix

floatDigits _ = primDoubleDigits

floatRange _ = (primDoubleMinExp,primDoubleMaxExp)

decodeFloat = primDecodeDouble

encodeFloat = primEncodeDouble

100 A STANDARD PRELUDE

instance Enum Float where

enumFrom = numericEnumFrom

enumFromThen = numericEnumFromThen

instance Enum Double where

enumFrom = numericEnumFrom

enumFromThen = numericEnumFromThen

instance Text Float where

readsPrec p = readSigned readFloat

showsPrec = showSigned showFloat

instance Text Double where

readsPrec p = readSigned readFloat

showsPrec = showSigned showFloat

-- Lists

-- data [a] = [] | a : [a] deriving (Eq, Ord, Binary)

instance (Text a) => Text [a] where

readsPrec p = readList

showsPrec p = showList

-- Tuples

-- data (a,b) = (a,b) deriving (Eq, Ord, Ix, Binary)

instance (Text a, Text b) => Text (a,b) where

readsPrec p = readParen False

(\r -> [((x,y), w) | ("(",s) <- lex r,

(x,t) <- reads s,

(",",u) <- lex t,

(y,v) <- reads u,

(")",w) <- lex v])

showsPrec p (x,y) = showChar '(' . shows x . showChar ',' .

shows y . showChar ')'

-- et cetera

-- Functions

instance Text (a -> b) where

readsPrec p s = error "readsPrec{PreludeCore}: Cannot read functions."

showsPrec p f = showString "<<function>>"

A.3 Prelude PreludeRatio 101

A.3 Prelude PreludeRatio

-- Standard functions on rational numbers

module PreludeRatio (

Ratio, Rational(..), (%), numerator, denominator, approxRational) where

infixl 7 %, :%

prec = 7

data (Integral a) => Ratio a = a :% a deriving (Eq, Binary)

type Rational = Ratio Integer

(%) :: (Integral a) => a -> a -> Ratio a

numerator, denominator :: (Integral a) => Ratio a -> a

approxRational :: (RealFrac a) -> a -> a -> Rational

reduce _ 0 = error "(%){PreludeRatio}: zero denominator"

reduce x y = (x `quot` d) :% (y `quot` d)

where d = gcd x y

x % y = reduce (x * signum y) (abs y)

numerator (x:%y) = x

denominator (x:%y) = y

instance (Integral a) => Ord (Ratio a) where

(x:%y) <= (x':%y') = x * y' <= x' * y

(x:%y) < (x':%y') = x * y' < x' * y

instance (Integral a) => Num (Ratio a) where

(x:%y) + (x':%y') = reduce (x*y' + x'*y) (y*y')

(x:%y) * (x':%y') = reduce (x * x') (y * y')

negate (x:%y) = (-x) :% y

abs (x:%y) = abs x :% y

signum (x:%y) = signum x :% 1

fromInteger x = fromInteger x :% 1

instance (Integral a) => Real (Ratio a) where

toRational (x:%y) = toInteger x :% toInteger y

instance (Integral a) => Fractional (Ratio a) where

(x:%y) / (x':%y') = (x*y') % (y*x')

recip (x:%y) = if x < 0 then (-y) :% (-x) else y :% x

fromRational (x:%y) = fromInteger x :% fromInteger y

102 A STANDARD PRELUDE

instance (Integral a) => RealFrac (Ratio a) where

properFraction (x:%y) = (fromIntegral q, r:%y)

where (q,r) = quotRem x y

instance (Integral a) => Enum (Ratio a) where

enumFrom = iterate ((+)1)

enumFromThen n m = iterate ((+)(m-n)) n

instance (Integral a) => Text (Ratio a) where

readsPrec p = readParen (p > prec)

(\r -> [(x%y,u) | (x,s) <- reads r,

("%",t) <- lex s,

(y,u) <- reads t])

showsPrec p (x:%y) = showParen (p > prec)

(shows x . showString " % " . shows y)

-- approxRational, applied to two real fractional numbers x and epsilon,

-- returns the simplest rational number within epsilon of x. A rational

-- number n%d in reduced form is said to be simpler than another n'%d' if

-- abs n <= abs n' && d <= d'. Any real interval contains a unique

-- simplest rational; here, for simplicity, we assume a closed rational

-- interval. If such an interval includes at least one whole number, then

-- the simplest rational is the absolutely least whole number. Otherwise,

-- the bounds are of the form q%1 + r%d and q%1 + r'%d', where abs r < d

-- and abs r' < d', and the simplest rational is q%1 + the reciprocal of

-- the simplest rational between d'%r' and d%r.

approxRational x eps = simplest (x-eps) (x+eps)

where simplest x y | y < x = simplest y x

| x == y = xr

| x > 0 = simplest' n d n' d'

| y < 0 = - simplest' (-n') d' (-n) d

| otherwise = 0 :% 1

where xr@(n:%d) = toRational x

(n':%d') = toRational y

simplest' n d n' d' -- assumes 0 < n%d < n'%d'

| r == 0 = q :% 1

| q /= q' = (q+1) :% 1

| otherwise = (q*n''+d'') :% n''

where (q,r) = quotRem n d

(q',r') = quotRem n' d'

(n'':%d'') = simplest' d' r' d r

A.4 Prelude PreludeComplex 103

A.4 Prelude PreludeComplex

-- Complex Numbers

module PreludeComplex where

infix 6 :+

data (RealFloat a) => Complex a = a :+ a deriving (Eq,Binary,Text)

instance (RealFloat a) => Num (Complex a) where

(x:+y) + (x':+y') = (x+x') :+ (y+y')

(x:+y) - (x':+y') = (x-x') :+ (y-y')

(x:+y) * (x':+y') = (x*x'-y*y') :+ (x*y'+y*x')

negate (x:+y) = negate x :+ negate y

abs z = magnitude z :+ 0

signum 0 = 0

signum z@(x:+y) = x/r :+ y/r where r = magnitude z

fromInteger n = fromInteger n :+ 0

instance (RealFloat a) => Fractional (Complex a) where

(x:+y) / (x':+y') = (x*x''+y*y'') / d :+ (y*x''-x*y'') / d

where x'' = scaleFloat k x'

y'' = scaleFloat k y'

k = - max (exponent x') (exponent y')

d = x'*x'' + y'*y''

fromRational a = fromRational a :+ 0

104 A STANDARD PRELUDE

instance (RealFloat a) => Floating (Complex a) where

pi = pi :+ 0

exp (x:+y) = expx * cos y :+ expx * sin y

where expx = exp x

log z = log (magnitude z) :+ phase z

sqrt 0 = 0

sqrt z@(x:+y) = u :+ (if y < 0 then -v else v)

where (u,v) = if x < 0 then (v',u') else (u',v')

v' = abs y / (u'*2)

u' = sqrt ((magnitude z + abs x) / 2)

sin (x:+y) = sin x * cosh y :+ cos x * sinh y

cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)

tan (x:+y) = (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))

where sinx = sin x

cosx = cos x

sinhy = sinh y

coshy = cosh y

sinh (x:+y) = cos y * sinh x :+ sin y * cosh x

cosh (x:+y) = cos y * cosh x :+ sin y * sinh x

tanh (x:+y) = (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)

where siny = sin y

cosy = cos y

sinhx = sinh x

coshx = cosh x

asin z@(x:+y) = y':+(-x')

where (x':+y') = log ((-y:+x) + sqrt (1 - z*z))

acos z@(x:+y) = y'':+(-x'')

where (x'':+y'') = log (z + ((-y'):+x'))

(x':+y') = sqrt (1 - z*z)

atan z@(x:+y) = y':+(-x')

where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))

asinh z = log (z + sqrt (1+z*z))

acosh z = log (z + (z+1) * sqrt ((z-1)/(z+1)))

atanh z = log ((1+z) / sqrt (1-z*z))

realPart, imagPart :: (RealFloat a) => Complex a -> a

realPart (x:+y) = x

imagPart (x:+y) = y

conjugate :: (RealFloat a) => Complex a -> Complex a

conjugate (x:+y) = x :+ (-y)

mkPolar :: (RealFloat a) => a -> a -> Complex a

mkPolar r theta = r * cos theta :+ r * sin theta

A.4 Prelude PreludeComplex 105

cis :: (RealFloat a) => a -> Complex a

cis theta = cos theta :+ sin theta

polar :: (RealFloat a) => Complex a -> (a,a)

polar z = (magnitude z, phase z)

magnitude, phase :: (RealFloat a) => Complex a -> a

magnitude (x:+y) = scaleFloat k

(sqrt ((scaleFloat mk x)^2 + (scaleFloat mk y)^2))

where k = max (exponent x) (exponent y)

mk = - k

phase (x:+y) = atan2 y x

106 A STANDARD PRELUDE

A.5 Prelude PreludeList

-- Standard list functions

module PreludeList where

infixl 9 !!

infix 5 \\

infixr 5 ++

infix 4 `elem`, `notElem`

-- head and tail extract the first element and remaining elements,

-- respectively, of a list, which must be non-empty. last and init

-- are the dual functions working from the end of a finite list,

-- rather than the beginning.

head :: [a] -> a

head (x:_) = x

head [] = error "head{PreludeList}: head []"

last :: [a] -> a

last [x] = x

last (_:xs) = last xs

last [] = error "last{PreludeList}: last []"

tail :: [a] -> [a]

tail (_:xs) = xs

tail [] = error "tail{PreludeList}: tail []"

init :: [a] -> [a]

init [x] = []

init (x:xs) = x : init xs

init [] = error "init{PreludeList}: init []"

-- null determines if a list is empty.

null :: [a] -> Bool

null [] = True

null (_:_) = False

-- list concatenation (right-associative)

(++) :: [a] -> [a] -> [a]

xs ++ ys = foldr (:) ys xs

A.5 Prelude PreludeList 107

-- list difference (non-associative). In the result of xs \\ ys,

-- the first occurrence of each element of ys in turn (if any)

-- has been removed from xs. Thus, (xs ++ ys) \\ xs == ys.

(\\) :: (Eq a) => [a] -> [a] -> [a]

(\\) = foldl del

where [] `del` _ = []

(x:xs) `del` y

| x == y = xs

| otherwise = x : xs `del` y

-- length returns the length of a finite list as an Int; it is an instance

-- of the more general genericLength, the result type of which may be

-- any kind of number.

genericLength :: (Num a) => [b] -> a

genericLength = foldl (\n _ -> n+1) 0

length :: [a] -> Int

length = genericLength

-- List index (subscript) operator, 0-origin

(!!) :: (Integral a) => [b] -> a -> b

(x:_) !! 0 = x

(_:xs) !! (n+1) = xs !! n

(_:_) !! _ = error "(!!){PreludeList}: negative index"

[] !! (_+1) = error "(!!){PreludeList}: index too large"

-- map f xs applies f to each element of xs; i.e., map f xs == [f x | x <- xs].

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

-- filter, applied to a predicate and a list, returns the list of those

-- elements that satisfy the predicate; i.e.,

-- filter p xs == [x | x <- xs, p x].

filter :: (a -> Bool) -> [a] -> [a]

filter p = foldr (\x xs -> if p x then x:xs else xs) []

-- partition takes a predicate and a list and returns a pair of lists:

-- those elements of the argument list that do and do not satisfy the

-- predicate, respectively; i.e.,

-- partition p xs == (filter p xs, filter (not . p) xs).

partition :: (a -> Bool) -> [a] -> ([a],[a])

partition p = foldr select ([],[])

where select x (ts,fs) | p x = (x:ts,fs)

| otherwise = (ts,x:fs)

108 A STANDARD PRELUDE

-- foldl, applied to a binary operator, a starting value (typically the

-- left-identity of the operator), and a list, reduces the list using

-- the binary operator, from left to right:

-- foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn

-- foldl1 is a variant that has no starting value argument, and thus must

-- be applied to non-empty lists. scanl is similar to foldl, but returns

-- a list of successive reduced values from the left:

-- scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]

-- Note that last (scanl f z xs) == foldl f z xs.

-- scanl1 is similar, again without the starting element:

-- scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

foldl1 :: (a -> a -> a) -> [a] -> a

foldl1 f (x:xs) = foldl f x xs

foldl1 _ [] = error "foldl1{PreludeList}: empty list"

scanl :: (a -> b -> a) -> a -> [b] -> [a]

scanl f q xs = q : (case xs of

[] -> []

x:xs -> scanl f (f q x) xs)

scanl1 :: (a -> a -> a) -> [a] -> [a]

scanl1 f (x:xs) = scanl f x xs

scanl1 _ [] = error "scanl1{PreludeList}: empty list"

-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the

-- above functions.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z

foldr f z (x:xs) = f x (foldr f z xs)

foldr1 :: (a -> a -> a) -> [a] -> a

foldr1 f [x] = x

foldr1 f (x:xs) = f x (foldr1 f xs)

foldr1 _ [] = error "foldr1{PreludeList}: empty list"

scanr :: (a -> b -> b) -> b -> [a] -> [b]

scanr f q0 [] = [q0]

scanr f q0 (x:xs) = f x q : qs

where qs@(q:_) = scanr f q0 xs

A.5 Prelude PreludeList 109

scanr1 :: (a -> a -> a) -> [a] -> [a]

scanr1 f [x] = [x]

scanr1 f (x:xs) = f x q : qs

where qs@(q:_) = scanr1 f xs

scanr1 _ [] = error "scanr1{PreludeList}: empty list"

-- iterate f x returns an infinite list of repeated applications of f to x:

-- iterate f x == [x, f x, f (f x), ...]

iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

-- repeat x is an infinite list, with x the value of every element.

repeat :: a -> [a]

repeat x = xs where xs = x:xs

-- cycle ties a finite list into a circular one, or equivalently,

-- the infinite repetition of the original list. It is the identity

-- on infinite lists.

cycle :: [a] -> [a]

cycle xs = xs' where xs' = xs ++ xs'

-- take n, applied to a list xs, returns the prefix of xs of length n,

-- or xs itself if n > length xs. drop n xs returns the suffix of xs

-- after the first n elements, or [] if n > length xs. splitAt n xs

-- is equivalent to (take n xs, drop n xs).

take :: (Integral a) => a -> [b] -> [b]

take 0 _ = []

take _ [] = []

take (n+1) (x:xs) = x : take n xs

drop :: (Integral a) => a -> [b] -> [b]

drop 0 xs = xs

drop _ [] = []

drop (n+1) (_:xs) = drop n xs

splitAt :: (Integral a) => a -> [b] -> ([b],[b])

splitAt 0 xs = ([],xs)

splitAt _ [] = ([],[])

splitAt (n+1) (x:xs) = (x:xs',xs'') where (xs',xs'') = splitAt n xs

110 A STANDARD PRELUDE

-- takeWhile, applied to a predicate p and a list xs, returns the longest

-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs

-- returns the remaining suffix. Span p xs is equivalent to

-- (takeWhile p xs, dropWhile p xs), while break p uses the negation of p.

takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

| p x = x : takeWhile p xs

| otherwise = []

dropWhile :: (a -> Bool) -> [a] -> [a]

dropWhile p [] = []

dropWhile p xs@(x:xs')

| p x = dropWhile p xs'

| otherwise = xs

span, break :: (a -> Bool) -> [a] -> ([a],[a])

span p [] = ([],[])

span p xs@(x:xs')

| p x = let (ys,zs) = span p xs' in (x:ys,zs)

| otherwise = ([],xs)

break p = span (not . p)

-- lines breaks a string up into a list of strings at newline characters.

-- The resulting strings do not contain newlines. Similary, words

-- breaks a string up into a list of words, which were delimited by

-- white space. unlines and unwords are the inverse operations.

-- unlines joins lines with terminating newlines, and unwords joins

-- words with separating spaces.

lines :: String -> [String]

lines "" = []

lines s = let (l, s') = break (== '\n') s

in l : case s' of

[] -> []

(_:s'') -> lines s''

words :: String -> [String]

words s = case dropWhile isSpace s of

"" -> []

s' -> w : words s''

where (w, s'') = break isSpace s'

unlines :: [String] -> String

unlines = concat . map (++ "\n")

A.5 Prelude PreludeList 111

unwords :: [String] -> String

unwords [] = ""

unwords ws = foldr1 (\w s -> w ++ ' ':s) ws

-- nub (meaning "essence") removes duplicate elements from its list argument.

nub :: (Eq a) => [a] -> [a]

nub [] = []

nub (x:xs) = x : nub (filter (/= x) xs)

-- reverse xs returns the elements of xs in reverse order. xs must be finite.

reverse :: [a] -> [a]

reverse = foldl (flip (:)) []

-- and returns the conjunction of a Boolean list. For the result to be

-- True, the list must be finite; False, however, results from a False

-- value at a finite index of a finite or infinite list. or is the

-- disjunctive dual of and.

and, or :: [Bool] -> Bool

and = foldr (&&) True

or = foldr (||) False

-- Applied to a predicate and a list, any determines if any element

-- of the list satisfies the predicate. Similarly, for all.

any, all :: (a -> Bool) -> [a] -> Bool

any p = or . map p

all p = and . map p

-- elem is the list membership predicate, usually written in infix form,

-- e.g., x `elem` xs. notElem is the negation.

elem, notElem :: (Eq a) => a -> [a] -> Bool

elem = any . (==)

notElem = all . (/=)

-- sum and product compute the sum or product of a finite list of numbers.

sum, product :: (Num a) => [a] -> a

sum = foldl (+) 0

product = foldl (*) 1

-- sums and products give a list of running sums or products from

-- a list of numbers. For example, sums [1,2,3] == [0,1,3,6].

sums, products :: (Num a) => [a] -> [a]

sums = scanl (+) 0

products = scanl (*) 1

112 A STANDARD PRELUDE

-- maximum and minimum return the maximum or minimum value from a list,

-- which must be non-empty, finite, and of an ordered type.

maximum, minimum :: (Ord a) => [a] -> a

maximum = foldl1 max

minimum = foldl1 min

-- concat, applied to a list of lists, returns their flattened concatenation.

concat :: [[a]] -> [a]

concat = foldr (++) []

-- transpose, applied to a list of lists, returns that list with the

-- "rows" and "columns" interchanged. The input need not be rectangular

-- (a list of equal-length lists) to be completely transposable, but can

-- be "triangular": Each successive component list must be not longer

-- than the previous one; any elements outside of the "triangular"

-- transposable region are lost. The input can be infinite in either

-- dimension or both.

transpose :: [[a]] -> [[a]]

transpose = foldr

(\xs xss -> zipWith (:) xs (xss ++ repeat []))

[]

-- zip takes two lists and returns a list of corresponding pairs. If one

-- input list is short, excess elements of the longer list are discarded.

-- zip3 takes three lists and returns a list of triples, etc. Versions

-- of zip producing up to septuplets are defined here.

zip :: [a] -> [b] -> [(a,b)]

zip = zipWith (\a b -> (a,b))

zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]

zip3 = zipWith3 (\a b c -> (a,b,c))

zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]

zip4 = zipWith4 (\a b c d -> (a,b,c,d))

zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]

zip5 = zipWith5 (\a b c d e -> (a,b,c,d,e))

zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f]

-> [(a,b,c,d,e,f)]

zip6 = zipWith6 (\a b c d e f -> (a,b,c,d,e,f))

zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]

-> [(a,b,c,d,e,f,g)]

zip7 = zipWith7 (\a b c d e f g -> (a,b,c,d,e,f,g))

A.5 Prelude PreludeList 113

-- The zipWith family generalises the zip family by zipping with the

-- function given as the first argument, instead of a tupling function.

-- For example, zipWith (+) is applied to two lists to produce the list

-- of corresponding sums.

zipWith :: (a->b->c) -> [a]->[b]->[c]

zipWith z (a:as) (b:bs) = z a b : zipWith z as bs

zipWith _ _ _ = []

zipWith3 :: (a->b->c->d) -> [a]->[b]->[c]->[d]

zipWith3 z (a:as) (b:bs) (c:cs)

= z a b c : zipWith3 z as bs cs

zipWith3 _ _ _ _ = []

zipWith4 :: (a->b->c->d->e) -> [a]->[b]->[c]->[d]->[e]

zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)

= z a b c d : zipWith4 z as bs cs ds

zipWith4 _ _ _ _ _ = []

zipWith5 :: (a->b->c->d->e->f)

-> [a]->[b]->[c]->[d]->[e]->[f]

zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)

= z a b c d e : zipWith5 z as bs cs ds es

zipWith5 _ _ _ _ _ _ = []

zipWith6 :: (a->b->c->d->e->f->g)

-> [a]->[b]->[c]->[d]->[e]->[f]->[g]

zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)

= z a b c d e f : zipWith6 z as bs cs ds es fs

zipWith6 _ _ _ _ _ _ _ = []

zipWith7 :: (a->b->c->d->e->f->g->h)

-> [a]->[b]->[c]->[d]->[e]->[f]->[g]->[h]

zipWith7 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs)

= z a b c d e f g : zipWith7 z as bs cs ds es fs gs

zipWith7 _ _ _ _ _ _ _ _ = []

-- unzip transforms a list of pairs into a pair of lists. As with zip,

-- a family of such functions up to septuplets is provided.

unzip :: [(a,b)] -> ([a],[b])

unzip = foldr (\(a,b) ~(as,bs) -> (a:as,b:bs)) ([],[])

unzip3 :: [(a,b,c)] -> ([a],[b],[c])

unzip3 = foldr (\(a,b,c) ~(as,bs,cs) -> (a:as,b:bs,c:cs))

([],[],[])

114 A STANDARD PRELUDE

unzip4 :: [(a,b,c,d)] -> ([a],[b],[c],[d])

unzip4 = foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->

(a:as,b:bs,c:cs,d:ds))

([],[],[],[])

unzip5 :: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])

unzip5 = foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->

(a:as,b:bs,c:cs,d:ds,e:es))

([],[],[],[],[])

unzip6 :: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])

unzip6 = foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->

(a:as,b:bs,c:cs,d:ds,e:es,f:fs))

([],[],[],[],[],[])

unzip7 :: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])

unzip7 = foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->

(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))

([],[],[],[],[],[],[])

A.6 Prelude PreludeArray 115

A.6 Prelude PreludeArray

module PreludeArray (Array, Assoc((:=)), array, listArray, (!), bounds,

indices, elems, assocs, accumArray, (//), accum, amap,

ixmap

) where

-- This module specifies the semantics of arrays only: it is not

-- intended as an efficient implementation.

infixl 9 !

infixl 9 //

infix 1 :=

data Assoc a b = a := b deriving (Eq, Ord, Ix, Text, Binary)

data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()

array :: (Ix a) => (a,a) -> [Assoc a b] -> Array a b

listArray :: (Ix a) => (a,a) -> [b] -> Array a b

(!) :: (Ix a) => Array a b -> a -> b

bounds :: (Ix a) => Array a b -> (a,a)

indices :: (Ix a) => Array a b -> [a]

elems :: (Ix a) => Array a b -> [b]

assocs :: (Ix a) => Array a b -> [Assoc a b]

accumArray :: (Ix a) => (b -> c -> b) -> b -> (a,a) -> [Assoc a c]

-> Array a b

(//) :: (Ix a) => Array a b -> [Assoc a b] -> Array a b

accum :: (Ix a) => (b -> c -> b) -> Array a b -> [Assoc a c]

-> Array a b

amap :: (Ix a) => (b -> c) -> Array a b -> Array a c

ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b c

-> Array a c

array b ivs =

if and [inRange b i | i:=_ <- ivs]

then MkArray b

(\j -> case [v | (i := v) <- ivs, i == j] of

[v] -> v

[] -> error "(!){PreludeArray}: \

\undefined array element"

_ -> error "(!){PreludeArray}: \

\multiply defined array element")

else error "array{PreludeArray}: out-of-range array association"

listArray b vs = array b (zipWith (:=) (range b) vs)

(!) (MkArray _ f) = f

116 A STANDARD PRELUDE

bounds (MkArray b _) = b

indices = range . bounds

elems a = [a!i | i <- indices a]

assocs a = [i := a!i | i <- indices a]

a // us = array (bounds a)

([i := a!i | i <- indices a \\ [i | i:=_ <- us]]

++ us)

accum f = foldl (\a (i := v) -> a // [i := f (a!i) v])

accumArray f z b = accum f (array b [i := z | i <- range b])

amap f a = array b [i := f (a!i) | i <- range b]

where b = bounds a

ixmap b f a = array b [i := a ! f i | i <- range b]

instance (Ix a, Eq b) => Eq (Array a b) where

a == a' = assocs a == assocs a'

instance (Ix a, Ord b) => Ord (Array a b) where

a <= a' = assocs a <= assocs a'

instance (Ix a, Text a, Text b) => Text (Array a b) where

showsPrec p a = showParen (p > 9) (

showString "array " .

shows (bounds a) . showChar ' ' .

shows (assocs a))

readsPrec p = readParen (p > 9)

(\r -> [(array b as, u) | ("array",s) <- lex r,

(b,t) <- reads s,

(as,u) <- reads t]

++

[(listArray b xs, u) | ("listArray",s) <- lex r,

(b,t) <- reads s,

(xs,u) <- reads t])

instance (Ix a, Binary a, Binary b) => Binary (Array a b) where

showBin a = showBin (bounds a) . showBin (elems a)

readBin bin = (listArray b vs, bin'')

where (b,bin') = readBin bin

(vs,bin'') = readBin bin'

A.7 Prelude PreludeText 117

A.7 Prelude PreludeText

module PreludeText (

reads, shows, show, read, lex,

showChar, showString, readParen, showParen, readLitChar, showLitChar,

readSigned, showSigned, readDec, showInt, readFloat, showFloat) where

reads :: (Text a) => ReadS a

reads = readsPrec 0

shows :: (Text a) => a -> ShowS

shows = showsPrec 0

read :: (Text a) => String -> a

read s = case [x | (x,t) <- reads s, ("","") <- lex t] of

[x] -> x

[] -> error "read{PreludeText}: no parse"

_ -> error "read{PreludeText}: ambiguous parse"

show :: (Text a) => a -> String

show x = shows x ""

showChar :: Char -> ShowS

showChar = (:)

showString :: String -> ShowS

showString = (++)

showParen :: Bool -> ShowS -> ShowS

showParen b p = if b then showChar '(' . p . showChar ')' else p

readParen :: Bool -> ReadS a -> ReadS a

readParen b g = if b then mandatory else optional

where optional r = g r ++ mandatory r

mandatory r = [(x,u) | ("(",s) <- lex r,

(x,t) <- optional s,

(")",u) <- lex t]

lex :: ReadS String

lex "" = [("","")]

lex (c:s) | isSpace c = lex (dropWhile isSpace s)

lex ('-':'-':s) = case dropWhile (/= '\n') s of

'\n':t -> lex t

_ -> [] -- unterminated end-of-line

-- comment

118 A STANDARD PRELUDE

lex ('{':'-':s) = lexNest lex s

where

lexNest f ('-':'}':s) = f s

lexNest f ('{':'-':s) = lexNest (lexNest f) s

lexNest f (c:s) = lexNest f s

lexNest _ "" = [] -- unterminated

-- nested comment

lex ('<':'-':s) = [("<-",s)]

lex ('\'':s) = [('\'':ch++"'", t) | (ch,'\'':t) <- lexLitChar s,

ch /= "'"]

lex ('"':s) = [('"':str, t) | (str,t) <- lexString s]

where

lexString ('"':s) = [("\"",s)]

lexString s = [(ch++str, u)

| (ch,t) <- lexStrItem s,

(str,u) <- lexString t]

lexStrItem ('\\':'&':s) = [("\\&",s)]

lexStrItem ('\\':c:s) | isSpace c

= [("\\&",t) | '\\':t <- [dropWhile isSpace s]]

lexStrItem s = lexLitChar s

lex (c:s) | isSingle c = [([c],s)]

| isSym1 c = [(c:sym,t) | (sym,t) <- [span isSym s]]

| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]

| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],

(fe,t) <- lexFracExp s]

| otherwise = [] -- bad character

where

isSingle c = c `elem` ",;()[]{}_"

isSym1 c = c `elem` "-~" || isSym c

isSym c = c `elem` "!@#$%&*+./<=>?\\^|:"

isIdChar c = isAlphanum c || c `elem` "_'"

lexFracExp ('.':s) = [('.':ds++e,u) | (ds,t) <- lexDigits s,

(e,u) <- lexExp t]

lexFracExp s = [("",s)]

lexExp (e:s) | e `elem` "eE"

= [(e:c:ds,u) | (c:t) <- [s], c `elem` "+-",

(ds,u) <- lexDigits t] ++

[(e:ds,t) | (ds,t) <- lexDigits s]

lexExp s = [("",s)]

lexDigits :: ReadS String

lexDigits = nonnull isDigit

A.7 Prelude PreludeText 119

nonnull :: (Char -> Bool) -> ReadS String

nonnull p s = [(cs,t) | (cs@(_:_),t) <- [span p s]]

lexLitChar :: ReadS String

lexLitChar ('\\':s) = [('\\':esc, t) | (esc,t) <- lexEsc s]

where

lexEsc (c:s) | c `elem` "abfnrtv\\\"'" = [([c],s)]

lexEsc ('^':c:s) | c >= '@' && c <= '_' = [(['^',c],s)]

lexEsc s@(d:_) | isDigit d = lexDigits s

lexEsc ('o':s) = [('o':os, t) | (os,t) <- nonnull isOctDigit s]

lexEsc ('x':s) = [('x':xs, t) | (xs,t) <- nonnull isHexDigit s]

lexEsc s@(c:_) | isUpper c

= case [(mne,s') | mne <- "DEL" : elems asciiTab,

([],s') <- [match mne s]]

of (pr:_) -> [pr]

[] -> []

lexEsc _ = []

lexLitChar (c:s) = [([c],s)]

lexLitChar "" = []

isOctDigit c = c >= '0' && c <= '7'

isHexDigit c = isDigit c || c >= 'A' && c <= 'F'

|| c >= 'a' && c <= 'f'

match :: (Eq a) => [a] -> [a] -> ([a],[a])

match (x:xs) (y:ys) | x == y = match xs ys

match xs ys = (xs,ys)

asciiTab = listArray ('\NUL', ' ')

["NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",

"BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI",

"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",

"CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US",

"SP"]

120 A STANDARD PRELUDE

readLitChar :: ReadS Char

readLitChar ('\\':s) = readEsc s

where

readEsc ('a':s) = [('\a',s)]

readEsc ('b':s) = [('\b',s)]

readEsc ('f':s) = [('\f',s)]

readEsc ('n':s) = [('\n',s)]

readEsc ('r':s) = [('\r',s)]

readEsc ('t':s) = [('\t',s)]

readEsc ('v':s) = [('\v',s)]

readEsc ('\\':s) = [('\\',s)]

readEsc ('"':s) = [('"',s)]

readEsc ('\'':s) = [('\'',s)]

readEsc ('^':c:s) | c >= '@' && c <= '_'

= [(chr (ord c - ord '@'), s)]

readEsc s@(d:_) | isDigit d

= [(chr n, t) | (n,t) <- readDec s]

readEsc ('o':s) = [(chr n, t) | (n,t) <- readOct s]

readEsc ('x':s) = [(chr n, t) | (n,t) <- readHex s]

readEsc s@(c:_) | isUpper c

= let table = ('\DEL' := "DEL") : assocs asciiTab

in case [(c,s') | (c := mne) <- table,

([],s') <- [match mne s]]

of (pr:_) -> [pr]

[] -> []

readEsc _ = []

readLitChar (c:s) = [(c,s)]

showLitChar :: Char -> ShowS

showLitChar c | c > '\DEL' = showChar '\\' . protectEsc isDigit (shows (ord c))

showLitChar '\DEL' = showString "\\DEL"

showLitChar '\\' = showString "\\\\"

showLitChar c | c >= ' ' = showChar c

showLitChar '\a' = showString "\\a"

showLitChar '\b' = showString "\\b"

showLitChar '\f' = showString "\\f"

showLitChar '\n' = showString "\\n"

showLitChar '\r' = showString "\\r"

showLitChar '\t' = showString "\\t"

showLitChar '\v' = showString "\\v"

showLitChar '\SO' = protectEsc (== 'H') (showString "\\SO")

showLitChar c = showString ('\\' : asciiTab!c)

protectEsc p f = f . cont

where cont s@(c:_) | p c = "\\&" ++ s

cont s = s

A.7 Prelude PreludeText 121

readDec, readOct, readHex :: (Integral a) => ReadS a

readDec = readInt 10 isDigit (\d -> ord d - ord '0')

readOct = readInt 8 isOctDigit (\d -> ord d - ord '0')

readHex = readInt 16 isHexDigit hex

where hex d = ord d - (if isDigit d then ord '0'

else ord (if isUpper d then 'A' else 'a')

- 10)

readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a

readInt radix isDig digToInt s =

[(foldl1 (\n d -> n * radix + d) (map (fromIntegral . digToInt) ds), r)

| (ds,r) <- nonnull isDig s]

showInt :: (Integral a) => a -> ShowS

showInt n r = let (n',d) = quotRem n 10

r' = chr (ord '0' + fromIntegral d) : r

in if n' == 0 then r' else showInt n' r'

readSigned:: (Real a) => ReadS a -> ReadS a

readSigned readPos = readParen False read'

where read' r = read'' r ++

[(-x,t) | ("-",s) <- lex r,

(x,t) <- read'' s]

read'' r = [(n,s) | (str,s) <- lex r,

(n,"") <- readPos str]

showSigned:: (Real a) => (a -> ShowS) -> Int -> a -> ShowS

showSigned showPos p x = if x < 0 then showParen (p > 6)

(showChar '-' . showPos (-x))

else showPos x

122 A STANDARD PRELUDE

-- The functions readFloat and showFloat below use rational arithmetic

-- to insure correct conversion between the floating-point radix and

-- decimal. It is often possible to use a higher-precision floating-

-- point type to obtain the same results.

readFloat:: (RealFloat a) => ReadS a

readFloat r = [(fromRational ((n%1)*10^^(k-d)), t) | (n,d,s) <- readFix r,

(k,t) <- readExp s]

where readFix r = [(read (ds++ds'), length ds', t)

| (ds,'.':s) <- lexDigits r,

(ds',t) <- lexDigits s]

readExp (e:s) | e `elem` "eE" = readExp' s

readExp s = [(0,s)]

readExp' ('-':s) = [(-k,t) | (k,t) <- readDec s]

readExp' ('+':s) = readDec s

readExp' s = readDec s

A.7 Prelude PreludeText 123

-- The number of decimal digits m below is chosen to guarantee

-- read (show x) == x. See

-- Matula, D. W. A formalization of floating-point numeric base

-- conversion. IEEE Transactions on Computers C-19, 8 (1970 August),

-- 681-692.

showFloat:: (RealFloat a) => a -> ShowS

showFloat x =

if x == 0 then showString ("0." ++ take (m-1) (repeat '0'))

else if e >= m-1 || e < 0 then showSci else showFix

where

showFix = showString whole . showChar '.' . showString frac

where (whole,frac) = splitAt (e+1) (show sig)

showSci = showChar d . showChar '.' . showString frac

. showChar 'e' . shows e

where (d:frac) = show sig

(m, sig, e) = if b == 10 then (w, s, n+w-1)

else (m', sig', e')

m' = ceiling

(fromIntegral w * log (fromInteger b) / log 10 :: Double)

+ 1

(sig', e') = if sig1 >= 10^m' then (round (t/10), e1+1)

else if sig1 < 10^(m'-1) then (round (t*10), e1-1)

else (sig1, e1)

sig1 = round t

t = s%1 * (b%1)^^n * 10^^(m'-e1-1)

e1 = floor (logBase 10 x)

(s, n) = decodeFloat x

b = floatRadix x

w = floatDigits x

124 A STANDARD PRELUDE

A.8 Prelude PreludeIO

-- I/O functions and definitions

module PreludeIO where

-- File and channel names:

stdin = "stdin"

stdout = "stdout"

stderr = "stderr"

stdecho = "stdecho"

-- Requests and responses:

data Request = -- file system requests:

ReadFile String

| WriteFile String String

| AppendFile String String

| ReadBinFile String

| WriteBinFile String Bin

| AppendBinFile String Bin

| DeleteFile String

| StatusFile String

-- channel system requests:

| ReadChan String

| AppendChan String String

| ReadBinChan String

| AppendBinChan String Bin

| StatusChan String

-- environment requests:

| Echo Bool

| GetArgs

| GetProgName

| GetEnv String

| SetEnv String String

deriving Text

data Response = Success

| Str String

| StrList [String]

| Bn Bin

| Failure IOError

deriving Text

A.8 Prelude PreludeIO 125

data IOError = WriteError String

| ReadError String

| SearchError String

| FormatError String

| OtherError String

deriving Text

-- Continuation-based I/O:

type Dialogue = [Response] -> [Request]

type SuccCont = Dialogue

type StrCont = String -> Dialogue

type StrListCont = [String] -> Dialogue

type BinCont = Bin -> Dialogue

type FailCont = IOError -> Dialogue

done :: Dialogue

readFile :: String -> FailCont -> StrCont -> Dialogue

writeFile :: String -> String -> FailCont -> SuccCont -> Dialogue

appendFile :: String -> String -> FailCont -> SuccCont -> Dialogue

readBinFile :: String -> FailCont -> BinCont -> Dialogue

writeBinFile :: String -> Bin -> FailCont -> SuccCont -> Dialogue

appendBinFile :: String -> Bin -> FailCont -> SuccCont -> Dialogue

deleteFile :: String -> FailCont -> SuccCont -> Dialogue

statusFile :: String -> FailCont -> StrCont -> Dialogue

readChan :: String -> FailCont -> StrCont -> Dialogue

appendChan :: String -> String -> FailCont -> SuccCont -> Dialogue

readBinChan :: String -> FailCont -> BinCont -> Dialogue

appendBinChan :: String -> Bin -> FailCont -> SuccCont -> Dialogue

statusChan :: String -> FailCont -> StrCont -> Dialogue

echo :: Bool -> FailCont -> SuccCont -> Dialogue

getArgs :: FailCont -> StrListCont -> Dialogue

getProgName :: FailCont -> StrCont -> Dialogue

getEnv :: String -> FailCont -> StrCont -> Dialogue

setEnv :: String -> String -> FailCont -> SuccCont -> Dialogue

done resps = []

readFile name fail succ resps =

(ReadFile name) : strDispatch fail succ resps

writeFile name contents fail succ resps =

(WriteFile name contents) : succDispatch fail succ resps

appendFile name contents fail succ resps =

(AppendFile name contents) : succDispatch fail succ resps

126 A STANDARD PRELUDE

readBinFile name fail succ resps =

(ReadBinFile name) : binDispatch fail succ resps

writeBinFile name contents fail succ resps =

(WriteBinFile name contents) : succDispatch fail succ resps

appendBinFile name contents fail succ resps =

(AppendBinFile name contents) : succDispatch fail succ resps

deleteFile name fail succ resps =

(DeleteFile name) : succDispatch fail succ resps

statusFile name fail succ resps =

(StatusFile name) : strDispatch fail succ resps

readChan name fail succ resps =

(ReadChan name) : strDispatch fail succ resps

appendChan name contents fail succ resps =

(AppendChan name contents) : succDispatch fail succ resps

readBinChan name fail succ resps =

(ReadBinChan name) : binDispatch fail succ resps

appendBinChan name contents fail succ resps =

(AppendBinChan name contents) : succDispatch fail succ resps

statusChan name fail succ resps =

(StatusChan name) : strDispatch fail succ resps

echo bool fail succ resps =

(Echo bool) : succDispatch fail succ resps

getArgs fail succ resps =

GetArgs : strListDispatch fail succ resps

getProgName fail succ resps =

GetProgName : strDispatch fail succ resps

getEnv name fail succ resps =

(GetEnv name) : strDispatch fail succ resps

setEnv name val fail succ resps =

(SetEnv name val) : succDispatch fail succ resps

strDispatch fail succ (resp:resps) =

case resp of Str val -> succ val resps

Failure msg -> fail msg resps

A.8 Prelude PreludeIO 127

strListDispatch fail succ (resp:resps) =

case resp of StrList val -> succ val resps

Failure msg -> fail msg resps

binDispatch fail succ (resp:resps) =

case resp of Bn val -> succ val resps

Failure msg -> fail msg resps

succDispatch fail succ (resp:resps) =

case resp of Success -> succ resps

Failure msg -> fail msg resps

abort :: FailCont

abort err = done

exit :: FailCont

exit err = appendChan stderr (msg ++ "\n") abort done

where msg = case err of ReadError s -> s

WriteError s -> s

SearchError s -> s

FormatError s -> s

OtherError s -> s

print :: (Text a) => a -> Dialogue

print x = appendChan stdout (show x) exit done

prints :: (Text a) => a -> String -> Dialogue

prints x s = appendChan stdout (shows x s) exit done

interact :: (String -> String) -> Dialogue

interact f = readChan stdin exit

(\x -> appendChan stdout (f x) exit done)

128 B SYNTAX

B Syntax

B.1 Notational Conventions

These notational conventions are used for presenting syntax:

[pattern] optional

fpatterng zero or more repetitions

(pattern) grouping

pat

1

j pat

2

choice

pat

hpat

0

i

di�erence|elements generated by pat

except those generated by pat

0

fibonacci terminal syntax in typewriter font

BNF-like syntax is used throughout, with productions having form:

nonterm ! alt

1

j alt

2

j : : : j alt

n

There are some families of nonterminals indexed by precedence levels (written as a

superscript). Similarly, the nonterminals op, varop , and conop may have a double index: a

letter l , r , or n for left-, right- or nonassociativity and a precedence level. A precedence-

level variable i ranges from 0 to 9; an associativity variable a varies over fl ; r ; ng. Thus,

for example

aexp ! (exp

i+1

op

(a;i)

)

actually stands for 30 productions, with 10 substitutions for i and 3 for a .

In both the lexical and the context-free syntax, there are some ambiguities that are to

be resolved by making grammatical phrases as long as possible, proceeding from left to

right (in shift-reduce parsing, resolving shift/reduce conicts by shifting). In the lexical

syntax, this is the \consume longest lexeme" rule. In the context-free syntax, this means

that conditionals, let-expressions, and lambda abstractions extend to the right as far as

possible.

B.2 Syntax Changes

B.2.1 Minor Syntax Changes in Version 1.1

This section is a list of the non-trivial changes to the Haskell syntax between versions 1.0 and

1.1 of this report, excluding those mentioned in the 1.1 preface (page ix). Other clari�cations

and corrections are reected in the full syntax in the following sections.

1. Empty declarations and declaration lists ending with ; have been added, to aid auto-

matic program generation.

B.3 Lexical Syntax 129

2. Guards have been eliminated from lambda expressions.

3. List comprehensions must have at least one quali�er.

4. Case expressions may have more than one guard per clause.

5. Instance declarations can only have valdefs in their body; in particular, they cannot

have type signatures in their body.

B.2.2 Changes from Version 1.1 to Version 1.2

A few changes have been made for Version 1.2. These are mainly clari�cations or corrections

of the Version 1.1 syntax. A full list of changes is contained in the 1.2 preface (page xi).

The principal changes are repeated below.

1. The precedence of type applications has been made explicit.

2. Successor patterns are restricted to variable/wildcard patterns.

3. The precedence of pre�x minus has been made explicit.

4. The syntax of left-hand sides has been simpli�ed.

5. Some changes have been made to the precedences of let, case, if and lambda(\)

expressions.

B.3 Lexical Syntax

program ! f lexeme j whitespace g

lexeme ! varid j conid j varsym j consym j literal j special j reservedop j reservedid

literal ! integer j oat j char j string

special ! (j) j , j ; j [j] j _ j � j { j }

whitespace! whitestu� fwhitestu� g

whitestu� ! whitechar j comment j ncomment

whitechar ! newline j space j tab j vertab j formfeed

newline ! a newline (system dependent)

space ! a space

tab ! a horizontal tab

vertab ! a vertical tab

formfeed ! a form feed

comment ! -- fanyg newline

ncomment! {- ANYseq fncomment ANYseqg -}

ANYseq ! fANY g

hfANY g ({- j -}) fANY gi

ANY ! any j newline j vertab j formfeed

any ! graphic j space j tab

130 B SYNTAX

graphic ! large j small j digit

j ! j " j # j $ j % j & j � j (j) j * j +

j , j - j . j / j : j ; j < j = j > j ? j @

j [j \ j] j ^ j _ j � j { j | j } j ~

small ! a j b j : : : j z

large ! A j B j : : : j Z

digit ! 0 j 1 j : : : j 9

varid ! (small fsmall j large j digit j � j _g)

hreservedidi

conid ! large fsmall j large j digit j � j _g

reservedid! case j class j data j default j deriving j else j hiding

j if j import j in j infix j infixl j infixr j instance j interface

j let j module j of j renaming j then j to j type j where

varsym ! ((symbol j presymbol) fsymbol j :g)

hreservedopi

consym ! (: fsymbol j :g)

hreservedopi

presymbol ! - j ~

symbol ! ! j # j $ j % j & j * j + j . j / j < j = j > j ? j @ j \ j ^ j |

reservedop! .. j :: j => j = j @ j \ j | j ~ j <- j ->

tyvar ! varid (type variables)

tycon ! conid (type constructors)

tycls ! conid (type classes)

modid ! conid (modules)

integer ! digitfdigitg

oat ! integer.integer [(e j E)[- j +]integer]

char ! � (graphic

h� j \i

j space j escape

h\&i

) �

string ! " fgraphic

h" j \i

j space j escape j gapg "

escape ! \ (charesc j ascii j integer j o octitfoctitg j x hexitfhexitg)

charesc ! a j b j f j n j r j t j v j \ j " j � j &

ascii ! ^cntrl j NUL j SOH j STX j ETX j EOT j ENQ j ACK

j BEL j BS j HT j LF j VT j FF j CR j SO j SI j DLE

j DC1 j DC2 j DC3 j DC4 j NAK j SYN j ETB j CAN

j EM j SUB j ESC j FS j GS j RS j US j SP j DEL

cntrl ! large j @ j [j \ j] j ^ j _

gap ! \ whitechar fwhitecharg \

hexit ! digit j A j B j C j D j E j F j a j b j c j d j e j f

octit ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7

B.4 Layout 131

B.4 Layout

De�nitions: The indentation of a lexeme is the column number indicating the start of that

lexeme; the indentation of a line is the indentation of its leftmost lexeme. To determine

the column number, assume a �xed-width font with this tab convention: tab stops are 8

characters apart, and a tab character causes the insertion of enough spaces to align the

current position with the next tab stop.

In the syntax given in the rest of the report, declaration lists are always preceded by the

keyword where, let or of, and are enclosed within curly braces ({ }) with the individual

declarations separated by semicolons (;). For example, the syntax of a let expression is:

let { decl

1

; decl

2

; ::: ; decl

n

[;] } in exp

Haskell permits the omission of the braces and semicolons by using layout to convey the

same information. This allows both layout-sensitive and -insensitive styles of coding, which

can be freely mixed within one program. Because layout is not required, Haskell programs

can be straightforwardly produced by other programs.

The layout (or \o�-side") rule takes e�ect whenever the open brace is omitted after the

keyword where, let or of. When this happens, the indentation of the next lexeme (whether

or not on a new line) is remembered and the omitted open brace is inserted (the whitespace

preceding the lexeme may include comments). For each subsequent line, if it contains only

whitespace or is indented more, then the previous item is continued (nothing is inserted);

if it is indented the same amount, then a new item begins (a semicolon is inserted); and if

it is indented less, then the declaration list ends (a close brace is inserted). A close brace

is also inserted whenever the syntactic category containing the declaration list ends; that

is, if an illegal lexeme is encountered at a point where a close brace would be legal, a close

brace is inserted. The layout rule will match only those open braces that it has inserted;

an open brace that the user has inserted must be matched by a close brace inserted by the

user.

Given these rules, a single newline may actually terminate several declaration lists. Also,

these rules permit:

f x = let a = 1; b = 2

g y = exp2 in exp1

making a, b and g all part of the same declaration list.

To facilitate the use of layout at the top level of a module (several modules may reside

in one �le), the keywords module and interface and the end-of-�le token are assumed

to occur in column 0 (whereas normally the �rst column is 1). Otherwise, all top-level

declarations would have to be indented.

Section 1.5 gives an example which uses the layout rule.

132 B SYNTAX

B.5 Context-Free Syntax

module ! module modid [exports] where body

j body

body ! { [impdecls ;] [[�xdecls ;] topdecls [;]] }

j { impdecls [;] }

impdecls ! impdecl

1

; : : : ; impdecl

n

(n � 1)

exports ! (export

1

, : : : , export

n

) (n � 1)

export ! entity

j modid ..

impdecl ! import modid [impspec] [renaming renamings]

impspec ! (import

1

, : : : , import

n

) (n � 0)

j hiding (import

1

, : : : , import

n

) (n � 1)

import ! entity

renamings! (renaming

1

, : : : , renaming

n

) (n � 1)

renaming ! var

1

to var

2

j con

1

to con

2

entity ! var

j tycon

j tycon (..)

j tycon (con

1

, : : : , con

n

) (n � 1)

j tycls (..)

j tycls (var

1

, : : : , var

n

) (n � 0)

�xdecls ! �x

1

; : : : ; �x

n

(n � 1)

�x ! infixl [digit] ops

j infixr [digit] ops

j infix [digit] ops

ops ! op

1

, : : : , op

n

(n � 1)

topdecls ! topdecl

1

; : : : ; topdecl

n

(n � 1)

topdecl ! type simple = type

j data [context =>] simple = constrs [deriving (tycls j (tyclses))]

j class [context =>] class [where { cbody [;] }]

j instance [context =>] tycls inst [where { valdefs [;] }]

j default (type j (type

1

, : : : , type

n

)) (n � 0)

B.5 Context-Free Syntax 133

j decl

decls ! decl

1

; : : : ; decl

n

(n � 0)

decl ! vars :: [context =>] type

j valdef

type ! btype [-> type]

btype ! tycon atype

1

: : : atype

k

(arity tycon = k ; k � 1)

j atype

atype ! tyvar

j tycon (arity tycon = 0)

j () (unit type)

j (type) (parenthesised type)

j (type

1

, : : : , type

k

) (tuple type; k � 2)

j [type]

context ! class

j (class

1

, : : : , class

n

) (n � 1)

class ! tycls tyvar

cbody ! csigns [; valdef [; valdefs]]

j valdefs

csigns ! csign

1

; : : : ; csign

n

(n � 1)

csign ! vars :: [context =>] type

vars ! var

1

, : : :, var

n

(n � 1)

simple ! tycon tyvar

1

: : : tyvar

k

(arity tycon = k ; k � 0)

constrs ! constr

1

| : : : | constr

n

(n � 1)

constr ! con atype

1

: : : atype

k

(arity con = k ; k � 0)

j btype

1

conop btype

2

(in�x conop)

tyclses ! tycls

1

, : : :, tycls

n

(n � 0)

inst ! tycon (arity tycon = 0)

j (tycon tyvar

1

: : : tyvar

k

) (k � 1 ; tyvars distinct)

j (tyvar

1

, : : : , tyvar

k

) (k � 2 ; tyvars distinct)

j ()

j [tyvar]

j (tyvar

1

-> tyvar

2

) tyvar

1

and tyvar

2

distinct

134 B SYNTAX

valdefs ! valdef

1

; : : : ; valdef

n

(n � 0)

valdef ! lhs = exp [where { decls [;] }]

j lhs gdrhs [where { decls [;] }]

lhs ! pat

h(var j _) + integer i

j funlhs

funlhs ! var apat f apat g

j pat

i+1

varop

(a;i)

pat

i+1

j lpat

i

varop

(l;i)

pat

i+1

j pat

i+1

varop

(r;i)

rpat

i

gdrhs ! gd = exp [gdrhs]

gd ! | exp

0

exp ! exp

0

:: [context =>] type (expression type signature)

j exp

0

exp

i

! exp

i+1

[op

(n;i)

exp

i+1

]

j lexp

i

j rexp

i

lexp

i

! (lexp

i

j exp

i+1

) op

(l;i)

exp

i+1

lexp

6

! - exp

7

rexp

i

! exp

i+1

op

(r;i)

(rexp

i

j exp

i+1

)

exp

10

! \ apat

1

: : : apat

n

-> exp (lambda abstraction; n � 1)

j let { decls [;] } in exp (let expression)

j if exp then exp else exp (conditional)

j case exp of { alts [;] } (case expression)

j fexp

fexp ! fexp aexp (function application)

j aexp

aexp ! var (variable)

j con (constructor)

j literal

j () (unit)

j (exp) (parenthesised expression)

j (exp

1

, : : : , exp

k

) (tuple; k � 2)

j [exp

1

, : : : , exp

k

] (list; k � 0)

j [exp

1

[, exp

2

] .. [exp

3

]] (arithmetic sequence)

j [exp | qual

1

, : : : , qual

n

] (list comprehension; n � 1)

j (exp

i+1

op

(a;i)

) (left section)

j (op

(a;i)

exp

i+1

) (right section)

B.6 Interface Syntax 135

qual ! pat <- exp

j exp

alts ! alt

1

; : : : ; alt

n

(n � 1)

alt ! pat -> exp [where { decls [;] }]

j pat gdpat [where { decls [;] }]

gdpat ! gd -> exp [gdpat]

pat ! pat

0

pat

i

! pat

i+1

[conop

(n;i)

pat

i+1

]

j lpat

i

j rpat

i

lpat

i

! (lpat

i

j pat

i+1

) conop

(l;i)

pat

i+1

lpat

6

! (var j _) + integer (successor pattern)

j - (integer j oat) (negative literal)

rpat

i

! pat

i+1

conop

(r;i)

(rpat

i

j pat

i+1

)

pat

10

! apat

j con apat

1

: : : apat

k

(arity con = k ; k � 1)

apat ! var [@ apat] (as pattern)

j con (arity con = 0)

j literal

j _ (wildcard)

j () (unit pattern)

j (pat) (parenthesised pattern)

j (pat

1

, : : : , pat

k

) (tuple pattern; k � 2)

j [pat

1

, : : : , pat

k

] (list pattern; k � 0)

j ~ apat (irrefutable pattern)

var ! varid j (varsym) (variable)

con ! conid j (consym) (constructor)

varop ! varsym j �varid� (variable operator)

conop ! consym j �conid� (constructor operator)

op ! varop j conop (operator)

B.6 Interface Syntax

interface ! interface modid where ibody

ibody ! { [iimpdecls ;] [[�xdecls ;] itopdecls [;]] }

136 B SYNTAX

j { iimpdecls [;] }

iimpdecls ! iimpdecl

1

; : : : ; iimpdecl

n

(n � 1)

iimpdecl ! import modid (import

1

, : : : , import

n

)

[renaming renamings] (n � 1)

itopdecls ! itopdecl

1

; : : : ; itopdecl

n

(n � 1)

itopdecl ! type simple = type

j data [context =>] simple [= constrs [deriving (tycls j (tyclses))]]

j class [context =>] class [where { icdecls [;] }]

j instance [context =>] tycls inst

j vars :: [context =>] type

icdecls ! icdecl

1

; : : : ; icdecl

n

(n � 0)

icdecl ! vars :: type

137

C Literate comments

Many Haskell implementations support the \literate comment" convention, �rst developed

by Richard Bird and Philip Wadler for Orwell, and inspired in turn by Donald Knuth's

\literate programming". The convention is not part of the Haskell language, but it is

supported by the implementations known to us (Chalmers, Glasgow, and Yale).

The literate style encourages comments by making them the default. A line in which

\>" is the �rst character is treated as part of the program; all other lines are comment.

Within the program part, the usual \--" and \{- -}" comment conventions may still be

used. To capture some cases where one omits an \>" by mistake, it is an error for a program

line to appear adjacent to a non-blank comment line, where a line is taken as blank if it

consists only of whitespace.

By convention, the style of comment is indicated by the �le extension, with \.hs"

indicating a usual Haskell �le, and \.lhs" indicating a literate Haskell �le.

To make this precise, Figures 17 and 18 present a literate Haskell program to convert

literate programs. The program expects a single name file on the command line, reads

file.lhs, and either writes the corresponding program to file.hs or prints error messages

to stderr.

Each of the lines in a literate script is a program line, a blank line, or a comment line.

In the �rst case, the text is kept with the line.

> data Classified = Program String | Blank | Comment

In a literate program, program lines begins with a `>' character, blank lines contain only

whitespace, and all other lines are comment lines.

> classify :: String -> Classified

> classify ('>':s) = Program s

> classify s | all isSpace s = Blank

> classify s | otherwise = Comment

In the corresponding program, program lines have the leading `>' replaced by a leading

space, to preserve tab alignments.

> unclassify :: Classified -> String

> unclassify (Program s) = " " ++ s

> unclassify Blank = ""

> unclassify Comment = ""

Figure 17: Literate program converter (Part 1)

138 C LITERATE COMMENTS

Process a literate program into error messages (if any) and the corresponding non-

literate program.

> process :: String -> (String, String)

> process lhs = (es, hs)

> where cs = map classify (lines lhs)

> es = unlines (errors cs)

> hs = unlines (map unclassify cs)

Check that each program line is not adjacent to a comment line.

> errors :: [Classified] -> [String]

> errors cs = concat (zipWith3 adjacent [1..] cs (tail cs))

Given a line number and a pair of adjacent lines, generate a list of error messages, which

will contain either one entry or none.

> adjacent :: Int -> Classified -> Classified -> [String]

> adjacent n (Program _) Comment = [message n "program" "comment"]

> adjacent n Comment (Program _) = [message n "comment" "program"]

> adjacent n this next = []

> message n p c = "Line "++show n++": "++p++" line before "++c++" line."

Get one argument from the command line; complain if too many or too few.

> getArg :: FailCont -> StrCont -> Dialogue

> getArg fail succ

> = getArgs fail (\strs ->

> case strs of

> [str] -> succ str

> _ -> fail (OtherError "Too many or too few args"))

The main program gets name file, reads file.lhs, and either writes the corresponding

program to file.hs or appends error messages to stderr.

> main :: Dialogue

> main = getArg exit (\file ->

> readFile (file ++ ".lhs") exit (\lhs ->

> case (process lhs) of

> ([],hs) -> writeFile (file ++ ".hs") hs exit done

> (es,_) -> appendChan stderr es exit done))

Figure 18: Literate program converter (Part 2)

139

D Input/Output Semantics

The behaviour of a Haskell program performing I/O is given within the environment in which

it is running. That environment will be described using standard Haskell code augmented

with a non-deterministic merge operator.

The state of the operating system (OS state) that is relevant to Haskell programs is

completely described by the �le system and the channel system. The channel system is

split into two subsystems, the input channel system and the output channel system.

type State = (FileSystem, ChannelSystem)

type FileSystem = String -> Response

type ChannelSystem = (ICs, OCs)

type ICs = String -> (Agent, Open)

type OCs = String -> Response

type Agent = (FileSystem, OCs) -> Response

type Open = PId -> Bool

type PId = Int

type PList = [(PId,[Request->Response])]

An agent maps a list of OS states to responses. Those responses will be used as the contents

of input channels, and thus can depend on output channels, other input channels, �les, or

any combination thereof. For example, a valid implementation must allow the user to act

as agent between the standard output channel and standard input channel.

Each running process (i.e. program) has a unique PId. Elements of PList are lists of

running programs.

os :: TagReqList -> State -> (TagRespList, State)

type TagRespList = [(PId,Response)]

type TagReqList = [(PId,Request)]

The operating system is modeled as a (non-deterministic) function os. The os takes a

tagged request list and an initial state, and returns a tagged response list and a �nal state.

Given a list of programs pList, os must exhibit this behaviour:

(tagRespList, state') = os tagReqList state

tagReqList = merge [zip [pId,pId..] (proc (untag pId tagRespList))

| (pId, proc) <- pList]

where merge is a non-deterministic merge of a list of lists, and untag is:

untag n [] = []

untag n ((m,resp):resps) = if n==m then resp:(untag n resps)

else untag n resps

This relationship can be generalised to include requests such as CreateProcess.

A valid implementation must ensure that the input channel system is de�ned at stdin

and the output channel system is de�ned at stdout, stderr, and stdecho. If the agent

attached to standard input is called user (i.e. ics stdin has form (user, open)), then

user must depend at least on standard output. In other words, this constraint must hold:

140 D INPUT/OUTPUT SEMANTICS

user [..., (fs,(ics,ocs)), ...] = ... user' (ocs stdout) ...

where user' is a strict, but otherwise arbitrary, function modelling the user. Its strictness

corresponds to the user's consumption of standard output whilst determining standard

input.

The rest of this section speci�es the required behaviour of os in response to each kind

of request. This semantics is relatively abstract and omits any reference to hardware errors

(e.g. \bad sector on disk") and system dependent errors (e.g. \access rights violation").

Implementation-speci�c requests (for example the environment requests) are not shown

here. We describe only the text version of the requests: the binary version di�ers trivially.

os is de�ned by:

os :: TagReqList -> State -> (TagRespList,State)

os [] state = ([], state)

os ((n, ReadChan name):es) state@(fs,(ics,ocs)) =

(alist',state') where

(agent,open) = ics name

alist' = (n, (if open n

then fail

else (agent (fs,ocs)))) : alist

fail = Failure (OtherError "Channel already open\n")

(alist,state') = os es (fs, (update ics name

(agent, update open n true),

ocs))

where the auxiliary function update is de�ned by:

update f x v x' = if x==x' then v else f x

If an attempt is made to read a non-existent channel, ics returns an agent that gives

the appropriate error message when applied to its arguments. This de�nition is generalised

in the obvious way for the behaviour of ReadChannels. In particular, ack must be created

by non-deterministically merging the result of applying each agent to the stream of future

states.

141

os ((n, AppendChan name contents):es) state@(fs,(ics,ocs)) =

(alist',state') where

alist' = ack:alist

ack =

(n,

case (ocs name) of

Failure msg -> Failure (SearchError "Nonexistent Channel")

Str ochan -> Success

Bn ochan -> Failure (FormatError "format error")

)

(alist,state') = os es (fs,(ics,

case (ocs name) of

Failure msg -> ocs

Str ochan -> update ocs name

(Str (ochan ++ contents))

Bn ochan -> ocs

))

os ((n, ReadFile name):es) state@(fs,(ics,ocs)) =

(alist',state') where

alist' = ack : alist

ack = (n,

case (fs name) of

Failure msg -> Failure (SearchError "File not found")

Str string -> Str string

Bn binary -> Failure (FormatError "")

)

(alist,state') = os es state

os ((n, WriteFile name contents):es) state@(fs,(ics,ocs)) =

(alist',state') where

alist' = (n, Success):alist

(alist,state') = os es (update fs name (Str contents),

(ics,ocs))

142 D INPUT/OUTPUT SEMANTICS

os ((n, AppendFile name contents):es) state@(fs,(ics,ocs)) =

(alist',state') where

alist' = ack:alist

ack = (n,

case (fs name) of

Failure msg -> Failure (SearchError "file not found")

Str s -> Success

Bn b -> Failure (FormatError "")

)

(alist,state') = os es (newfs, (ics,ocs)) where

newfs = case (fs name) of

Failure msg -> fs

Str s ->

update fs name (Str (s++contents))

Bn b -> fs

os ((n, DeleteFile name):es) state@(fs,(ics,ocs)) =

(alist',state') where

alist' = ack : alist

ack = (n,

case (fs name) of

Failure msg -> Failure (SearchError "file not found")

Str s -> Success

Bn b -> Success

)

(alist,state') = os es (case (fs name) of

Failure msg -> fs

Str s -> update fs name fail

Bn b -> update fs name fail,

(ics,ocs))

fail = Failure (SearchError "file not found")

os ((n,StatusFile name):es) state@(fs,(ics,ocs)) = (alist',state') where

alist' = ack : alist

ack = (n,

case (fs name) of

Failure msg -> Failure (SearchError "File not found")

Str string -> Str "t"++(rw n fs name)

Bn binary -> Str "b"++(rw n fs name)

)

(alist, state') = os es state

where rw is a function that determines the read and write status of a �le for this particular

process.

D.1 Optional Requests 143

D.1 Optional Requests

These optional I/O requests may be useful in a Haskell implementation.

� ReadChannels [cname1, ..., cnamek]

ReadBinChannels [cname1, ..., cnamek]

Opens cname1 through cnamek for input. A successful response has form Tag vals

[BinTag vals] where vals is a list of values tagged with the name of the channel.

These responses require an extension to the Response datatype:

data Response = ...

| Tag [(String,Char)]

| BinTag [(String,Bin)]

The tagged list of values is the non-deterministic merge of the values read from the

individual channels. If an element of this list has form (cnamei,val), then it came

from channel cnamei.

If any cnamei does not exist then the response Failure (SearchError string) is

induced; all other errors induce Failure (ReadError string).

� CreateProcess prog

Introduces a new program prog into the operating system. prog must have type

[Response] -> [Request]. Either Success or Failure (OtherError string) is

induced.

� CreateDirectory name string

DeleteDirectory name

Create or delete directory name. The string argument to CreateDirectory is an

implementation-dependent speci�cation of the initial state of the directory.

� OpenFile name inout

OpenBinFile name inout

CloseFile file

ReadVal file

ReadBinVal file

WriteVal file char

WriteBinVal file bin

These requests emulate traditional �le I/O in which characters are read and written

one at a time.

data Response = ...

| Fil File

data File

type Bins = [Bin]

OpenFile name inout [OpenBinFile name inout] opens the �le name in text [binary]

mode with direction inout (True for input, False for output). The response Fil file

144 D INPUT/OUTPUT SEMANTICS

is induced, where file has type File, a primitive type that represents a handle to a

�le. Subsequent use of that �le by other requests is via this handle.

CloseFile file closes file. Failure (OtherError string) is induced if file can-

not be closed.

ReadVal [ReadBinVal] file reads file, inducing the response Str val [Bins val]

or Failure (ReadError string).

WriteVal file char [WriteBinVal file bin] writes char [bin] to file. The re-

sponse Success or Failure (WriteError string) is induced.

Failure (SearchError string) is induced for ReadVal, ReadBinVal, WriteVal,

and WriteBinVal if file is not a text or binary �le, as appropriate.

145

E Speci�cation of Derived Instances

If T is an algebraic datatype declared by:

data c => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| � � � | K

n

t

n1

: : : t

nk

n

deriving (C

1

, : : :, C

m

)

(where m � 0 and the parentheses may be omitted if m = 1) then a derived instance dec-

laration is possible for a class C if and only if these conditions hold:

1. C is one of Eq, Ord, Enum, Ix, Text, or Binary.

2. There is a context c

0

such that c

0

) C t

ij

holds for each of the constituent types t

ij

.

3. If C is either Ix or Enum, then further constraints must be satis�ed as described under

the paragraphs for Ix and Enum later in this section.

4. There must be no explicit instance declaration elsewhere in the module which makes

T u

1

: : : u

k

an instance of C .

If the deriving form is present (as in the above general data declaration), an instance

declaration is automatically generated for T u

1

: : : u

k

over each class C

i

and each of C

i

's

superclasses. If the derived instance declaration is impossible for any of the C

i

then a static

error results. If no derived instances are required, the deriving form may be omitted or

the form deriving () may be used.

Each derived instance declaration will have the form:

instance (c, C

0

1

u

0

1

, : : :, C

0

j

u

0

j

) => C

i

(T u

1

: : : u

k

) where { d }

where d is derived automatically depending on C

i

and the data type declaration for T (as

will be described in the remainder of this section), and u

0

1

through u

0

j

form a subset of u

1

through u

k

. When inferring the context for the derived instances, type synonyms must be

expanded out �rst. The free variables of the declarations d are all functions de�ned in the

standard prelude. The remaining details of the derived instances for each of the six classes

are now given.

Derived instances of Eq and Ord. The operations automatically introduced by de-

rived instances of Eq and Ord are (==), (/=), (<), (<=), (>), (>=), max, and min. The

latter six operators are de�ned so as to compare their arguments lexicographically with

respect to the constructor set given, with earlier constructors in the datatype declaration

counting as smaller than later ones. For example, for the Bool datatype, we have that

(True > False) == True.

146 E SPECIFICATION OF DERIVED INSTANCES

Derived instances of Ix. The derived instance declarations for the class Ix introduce

the overloaded functions range, index, and inRange. The operation range takes a (lower,

upper) bound pair, and returns a list of all indices in this range, in ascending order. The

operation inRange is a predicate taking a (lower, upper) bound pair and an index and

returning True if the index is contained within the speci�ed range. The operation index

takes a (lower, upper) bound pair and an index and returns an integer, the position of the

index within the range.

Derived instance declarations for the class Ix are only possible for enumerations (i.e. da-

tatypes having only nullary constructors) and single-constructor datatypes (including tu-

ples) whose constituent types are instances of Ix.

� For an enumeration, the nullary constructors are assumed to be numbered left-to-right

with the indices 0 through n � 1. For example, given the datatype:

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:

range (Yellow,Blue) == [Yellow,Green,Blue]

index (Yellow,Blue) Green == 1

inRange (Yellow,Blue) Red == False

� For single-constructor datatypes, the derived instance declarations are created as

shown for tuples in Figure 19.

Derived instances of Enum. Derived instance declarations for the class Enum are only

possible for enumerations, using the same ordering assumptions made for Ix. They intro-

duce the operations enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, which

are used to de�ne arithmetic sequences as described in Section 3.9.

enumFrom n returns a list corresponding to the complete enumeration of n's type starting

at the value n. Similarly, enumFromThen n n' is the enumeration starting at n, but with

second element n', and with subsequent elements generated at a spacing equal to the

di�erence between n and n'. enumFromTo and enumFromThenTo are as de�ned by the default

methods for Enum (see Figure 5, page 31).

Derived instances of Binary. The Binary class is used primarily for transparent I/O

(see Section 7.1). The operations automatically introduced by derived instances of Binary

are readBin and showBin. They coerce values to and from the primitive abstract type Bin

(see Section 6.7). An implementation must be able to create derived instances of Binary

for any type t not containing a function type.

showBin is analogous to shows, taking two arguments: the �rst is the value to be

coerced, and the second is a Bin value to which the result is to be concatenated. readBin is

analogous to reads, \parsing" its argument and returning a pair consisting of the coerced

value and any remaining Bin value.

147

class (Ord a) => Ix a where

range :: (a,a) -> [a]

index :: (a,a) -> a -> Int

inRange :: (a,a) -> a -> Bool

rangeSize :: (Ix a) => (a,a) -> Int

rangeSize (l,u) = index (l,u) u + 1

instance (Ix a, Ix b) => Ix (a,b) where

range ((l,l'),(u,u'))

= [(i,i') | i <- range (l,u), i' <- range (l',u')]

index ((l,l'),(u,u')) (i,i')

= index (l,u) i * rangeSize (l',u') + index (l',u') i'

inRange ((l,l'),(u,u')) (i,i')

= inRange (l,u) i && inRange (l',u') i'

-- Instances for other tuples are obtained from this scheme:

--

-- instance (Ix a1, Ix a2, ... , Ix ak) => Ix (a1,a2,...,ak) where

-- range ((l1,l2,...,lk),(u1,u2,...,uk)) =

-- [(i1,i2,...,ik) | i1 <- range (l1,u1),

-- i2 <- range (l2,u2),

-- ...

-- ik <- range (lk,uk)]

--

-- index ((l1,l2,...,lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- index (lk,uk) ik + rangeSize (lk,uk) * (

-- index (lk-1,uk-1) ik-1 + rangeSize (lk-1,uk-1) * (

-- ...

-- index (l1,u1)))

--

-- inRange ((l1,l2,...lk),(u1,u2,...,uk)) (i1,i2,...,ik) =

-- inRange (l1,u1) i1 && inRange (l2,u2) i2 &&

-- ... && inRange (lk,uk) ik

Figure 19: Index classes and instances

Derived versions of showBin and readBin must obey this property:

readBin (showBin v b) == (v,b)

for any Bin value b and value v whose type is an instance of the class Binary.

Derived instances of Text. The operations automatically introduced by derived in-

stances of Text are showsPrec, readsPrec, showList and readList. They are used to

148 E SPECIFICATION OF DERIVED INSTANCES

coerce values into strings and parse strings into values.

The function showsPrec d x r accepts a precedence level d (a number from 0 to 10),

a value x, and a string r. It returns a string representing x concatenated to r. showsPrec

satis�es the law:

showsPrec d x r ++ s == showsPrec d x (r ++ s)

The representation will be enclosed in parentheses if the precedence of the top-level con-

structor operator in x is less than d. Thus, if d is 0 then the result is never surrounded in

parentheses; if d is 10 it is always surrounded in parentheses, unless it is an atomic expres-

sion. The extra parameter r is essential if tree-like structures are to be printed in linear

time rather than time quadratic in the size of the tree.

The function readsPrec d s accepts a precedence level d (a number from 0 to 10) and

a string s, and returns a list of pairs (x,r) such that showsPrec d x r == s. readsPrec

is a parse function, returning a list of (parsed value, remaining string) pairs. If there is no

successful parse, the returned list is empty.

showList and readList allow lists of objects to be represented using non-standard

denotations. This is especially useful for strings (lists of Char).

For convenience, the standard prelude provides the following auxiliary functions:

shows = showsPrec 0

reads = readsPrec 0

show x = shows x ""

read s = x where [(x,"")] = reads s

shows and reads use a default precedence of 0, and show and read assume that the result

is not being appended to an initial string.

The instances of Text for the standard types Int, Integer, Float, Double, Char, lists,

tuples, and rational and complex numbers are de�ned in the standard prelude (see Ap-

pendix A). For characters and strings, the control characters that have special represen-

tations (\n etc.) are shown as such by showsPrec; otherwise, ASCII mnemonics are used.

Non-ASCII characters are shown by decimal escapes. Floating point numbers are repre-

sented by decimal numbers of su�cient precision to guarantee read . show is an identity

function. If b is the oating-point radix and there are w base-b digits in the oating-point

signi�cand, the number of decimal digits required is d = dw log

10

be+ 1 [10]. Numbers are

shown in non-exponential format if this requires only d digits; otherwise, they are shown in

exponential format, with one digit before the decimal point. readsPrec allows an exponent

to be unsigned or signed with + or -; showsPrec shows a positive exponent without a sign.

readsPrec will parse any valid representation of the standard types apart from lists, for

which only the bracketed form [: : :] is accepted. See Appendix A for full details.

E.1 Speci�cation of showsPrec

As described in Section 4.3.3, showsPrec has the type

(Text a) => Int -> a -> String -> String

E.2 Speci�cation of readsPrec 149

showsPrec d (e1 `Con` e2) = showParen (d > p) showStr

where

p = `the precedence of Con'

lp = if `Con is left associative' then p else p+1

rp = if `Con is right associative' then p else p+1

cn = `the original name of Con'

showStr = showsPrec lp e1 .

showChar ' ' . showString cn . showChar ' ' .

showsPrec rp e2

Figure 20: Speci�cation of showsPrec for Constructors Declared in the In�x Style

showsPrec d (Con e1 ... en) = showParen (d >= 10) showStr

where

showStr = showString cn . showChar ' ' .

showsPrec 10 e1 . showChar ' ' .

...

showsPrec 10 en

cn = `the original name of Con'

Figure 21: General Speci�cation of showsPrec for User-De�ned Constructors

The �rst parameter is a precedence in the range 0 to 10, the second is the value to be

converted into a string, and the third is the string to append to the end of the result.

For all constructors Con de�ned by some data declaration such as:

data c => T u

1

: : : u

k

= : : : | Con t

1

: : : t

n

| : : :

the corresponding de�nition of showsPrec for Con is shown in Figure 20 for constructors

declared in the in�x style and Figure 21 for all other constructors. See Appendix A for

details of showParen, showChar, etc.

E.2 Speci�cation of readsPrec

A lexeme is exactly as in Section 2. lex :: String -> [(String,String)] reads the �rst

lexeme from a string. If the string begins with a valid lexeme, the lexeme (with leading

whitespace removed) and the remainder of the string are returned in a singleton list. If no

lexeme is present or the lexeme is not syntactically correct, [] is returned. A full de�nition

is provided in Appendix A.7.

150 E SPECIFICATION OF DERIVED INSTANCES

readsPrec d r = readCon K1 k1 `the original name of K1' r ++

...

readCon Kn kn `the original name of Kn' r

where

readCon con n cn = -- if con is infix

readParen (d > p) readVal

where

readVal r = [(u `con` v, s2) |

(u,s0) <- readsPrec lp r,

(tok,s1) <- lex s0, tok == cn,

(v,s2) <- readsPrec rp s1]

p = `the precedence of con'

lp = if `con is left associative' then p else p+1

rp = if `con is right associative' then p else p+1

readCon con n cn = -- if con is not infix

readParen (d > 9) readVal

where

readVal r = [(con t1 ... tn, sn) |

(t0,s0) <- lex r, t0 == cn,

(t1,s1) <- readsPrec 10 s0,

...

(tn,sn) <- readsPrec 10 s(n-1)]

Figure 22: De�nition of readsPrec for User-De�ned Types

As described in Section 4.3.3, readsPrec has the type

Text a => Int -> String -> [(a,String)]

Its �rst parameter is a precedence in the range 0 to 10, its second is the string to be parsed.

Figure 22 shows the speci�cation of readsPrec for user-de�ned datatypes of the form:

data c => T u

1

: : : u

k

= K

1

t

11

: : : t

1k

1

| : : : | K

n

t

n1

: : : t

nk

n

E.3 An example 151

E.3 An example

As a complete example, consider a tree datatype:

data Tree a = Leaf a | Tree a :^: Tree a

deriving (Eq, Ord, Text, Binary)

instance (Eq a) => Eq (Tree a)

where ...

instance (Ord a) => Ord (Tree a)

where ...

instance (Text a) => Text (Tree a)

where ...

instance (Binary a) => Binary (Tree a)

where ...

Note the recursive context; the components of the datatype must themselves be instances of

the class. Automatic derivation of instance declarations for Ix and Enum are not possible, as

Tree is not an enumeration or single-constructor datatype. Except for Binary, the complete

instance declarations for Tree are shown in Figure 23, Note the implicit use of default-

method de�nitions|for example, only <= is de�ned for Ord, with the other operations (<,

>, >=, max, and min) being de�ned by the defaults given in the class declaration shown in

Figure 5 (page 31).

152 E SPECIFICATION OF DERIVED INSTANCES

infix 4 :^:

data Tree a = Leaf a | Tree a :^: Tree a

instance (Eq a) => Eq (Tree a) where

Leaf m == Leaf n = m==n

u:^:v == x:^:y = u==x && v==y

_ == _ = False

instance (Ord a) => Ord (Tree a) where

Leaf m <= Leaf n = m<=n

Leaf m <= x:^:y = True

u:^:v <= Leaf n = False

u:^:v <= x:^:y = u<x || u==x && v<=y

instance (Text a) => Text (Tree a) where

showsPrec d (Leaf m) = showParen (d >= 10) showStr

where

showStr = showString "Leaf" . showChar ' ' . showsPrec 10 m

showsPrec d (u :^: v) = showParen (d > 4) showStr

where

showStr = showsPrec 5 u .

showChar ' ' . showString ":^:" . showChar ' ' .

showsPrec 5 v

readsPrec d r = readParen (d > 4)

(\r -> [(u:^:v,w) |

(u,s) <- readsPrec 5 r,

(":^:",t) <- lex s,

(v,w) <- readsPrec 5 t]) r

++ readParen (d > 9)

(\r -> [(Leaf m,t) |

("Leaf",t) <- lex r,

(m,t) <- readsPrec 10 t]) r

Figure 23: Example of Derived Instances

REFERENCES 153

References

[1] J. Backus. Can programming be liberated from the von Neumann style? A functional

style and its algebra of programs. CACM, 21(8):613{641, August 1978.

[2] R.M. Burstall, D.B. MacQueen, and D.T. Sannella. HOPE: An experimental applica-

tive language. In The 1980 LISP Conference, pages 136{143, Stanford University,

August 1980.

[3] H.B. Curry and R. Feys. Combinatory Logic. North-Holland Pub. Co., Amsterdam,

1958.

[4] L. Damas and R. Milner. Principal type schemes for functional programs. In Proceed-

ings of 9th ACM Symposium on Principles of Programming Languages, pages 207{212,

Albuquerque, N.M., January 1982.

[5] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A metalanguage

for interactive proof in LCF. In Proceedings of 5th ACM Symposium on Principles of

Programming Languages, pages 119{130, 1978.

[6] K. Hammond and C. Hall. A natural dynamic semantics for Haskell (draft). Depart-

ment of Computing Science, Glasgow University, February 1991.

[7] R. Hindley. The principal type scheme of an object in combinatory logic. Transactions

of the American Mathematical Society, 146:29{60, December 1969.

[8] P. Hudak and R. Sundaresh. On the expressiveness of purely functional I/O systems.

Technical Report YALEU/DCS/RR665, Yale University, Department of Computer Sci-

ence, December 1988.

[9] P.J. Landin. The next 700 programming languages. CACM, 9(3):157{166, March 1966.

[10] D.W. Matula. A formalization of oating-point numeric base conversion. IEEE Trans-

actions on Computers, C-19(8):681{692, August 1970.

[11] J. McCarthy. Recursive functions of symbolic expressions and their computation by

machine, Part I. CACM, 3(4):184{195, April 1960.

[12] R.S. Nikhil. Id-Nouveau (version 88.0) reference manual. Technical report, MIT Lab-

oratory for Computer Science, Cambridge, Mass., March 1988.

[13] P. Pen�eld, Jr. Principal values and branch cuts in complex APL. In APL '81 Con-

ference Proceedings, pages 248{256, San Francisco, September 1981.

[14] S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-

Hall International, Englewood Cli�s, New Jersey, 1987.

[15] S.L. Peyton Jones and P. Wadler. A static semantics for haskell. Department of

Computing Science, Glasgow University, May 1991.

154 REFERENCES

[16] J. Rees and W. Clinger (eds.). The revised

3

report on the algorithmic language Scheme.

SIGPLAN Notices, 21(12):37{79, December 1986.

[17] J.C. Reynolds. Introduction to part II (polymorphic lambda calculus). In G. Huet,

editor, Logical Foundations of Functional Programming, University of Texas Year of

Programming Series. Addison-Wesley, 1990.

[18] G.L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, Mass., 1984.

[19] D.A. Turner. Miranda: a non-strict functional language with polymorphic types. In

Functional Programming Languages and Computer Architecture, volume 201 of Lecture

Notes in Computer Science, pages 1{16, Nancy, France, September 1985. Springer-

Verlag.

[20] P. Wadler. A new array operation. In J.H. Fasel and R.M. Keller, editors, Graph Re-

duction, volume 279 of Lecture Notes in Computer Science, pages 328{335, Heidelberg,

1987. Springer-Verlag.

[21] P. Wadler and S. Blott. How tomake ad hoc polymorphism less ad hoc. In Proceedings of

16th ACM Symposium on Principles of Programming Languages, pages 60{76, Austin,

Texas, January 1989.

Index

Index entries that refer to nonterminals in the Haskell syntax are shown in an italic font.

Code entities de�ned in the standard prelude (Appendix A) are shown in typewriter font.

Ordinary index entries are shown in a roman font.

!, 54, 115

!!, 54, 106, 107

$, 54, 82, 85

%, 54, 60, 61, 101

&&, 54, 56, 82, 83

(), see trivial type and unit expression

(e

1

; : : : ; e

n

) (tuple), 14

(t

1

; : : : ; t

n

) (tuple type), 89

*, 54, 60, 62, 89, 90

**, 54, 60, 63, 89, 91

+, 54, 60, 62, 89, 90, see also n+k pattern

++, 54, 106

-, 54, 60, 62, 89, 90, see also negation

., 54, 57, 82, 85

/, 54, 60, 62, 89, 91

//, 54, 67, 115

/=, 31, 54, 89, 90, 145

:, 54, 57, 86

:%, 54, 101

:+, 54, 60, 62, 103

::, 18

:=, 54, 65, 115

<, 31, 54, 89, 90, 145

<=, 31, 54, 89, 90, 145

==, 31, 54, 89, 90, 145

>, 31, 54, 89, 90, 145

>=, 31, 54, 89, 90, 145

@, see as-pattern

[] (nil), 57, 89

[e

1

; : : : ; e

n

] (list), 14

[t] (list type), 89

\ pats -> expr , 12

\\, 54, 106, 107

^, 54, 61, 63, 82, 84

^^, 54, 61, 63, 82, 84

_, see wildcard pattern

||, 54, 82, 83

~, see irrefutable pattern

abort, 80, 127

abs, 60, 63, 90

abstract datatype, 1, 53

accum, 67, 115

accumArray, 67, 115

acos, 60, 91

acosh, 60, 91

aexp, 10, 13{16, 134

agent, 70

algebraic datatype, 28, 45, 48, 51, 60, 145

all, 111

alt, 17, 135

alts, 17, 135

amap, 67, 115

ambiguous type, 34

and, 111

ANY, 7, 130

any, 7, 130

any, 111

ANYseq, 7, 130

apat, 19, 135

appendBin, 57, 82

AppendBinChan, 70, 76

appendBinChan, 78, 79, 125

AppendBinFile, 70, 74

appendBinFile, 78, 79, 125

AppendChan, 70, 76

appendChan, 78, 79, 125

AppendFile, 70, 74

appendFile, 78, 79, 125

application, 12

function, see function application

operator, see operator application

approxRational, 61, 64, 101

arctangent, 63

arithmetic, 62

155

156 INDEX

arithmetic sequence, 15, 57

Array (datatype), 65

array, 1, 64

accumulated, 67

derived, 67

array, 65, 115

as-pattern (@), 19, 20

ascii, 9, 130

ASCII character set, 6, 9, 56

asin, 60, 91

asinh, 60, 91

Assoc (datatype), 65, 115

assocs, 66, 115

asTypeOf, 85

atan, 60, 63, 91

atan2, 61, 63, 84

atanh, 60, 91

atype, 25, 133

Bin (datatype), 57, 86

Binary, 31, 93

derived instance, 33, 58, 146

for e�cient I/O, 71

instance for Array, 116

BinCont (type synonym), 77, 125

binding, 24

function, see function binding

pattern, see pattern binding

simple pattern, see simple pattern bind-

ing

binDispatch, 78

Bn, 70

body, 24, 44, 132

Bool (datatype), 56, 94

boolean, 56

bounds, 66, 115

break, 73, 110

C-T instance declaration, 32

case expression, 17

cbody, 29, 133

ceiling, 61, 64, 92

channel, 70

channel system request, 75

Char (datatype), 56, 86

char, 9, 130

character, 56

literal syntax, 8

character set

ASCII, see ASCII character set

transparent, see transparent charac-

ter set

charesc, 9, 130

chr, 56, 83

cis, 62, 105

class, 24, 29

class, 26, 133

class assertion, 26

class declaration, 29, 45, 51

with an empty where part, 30

class environment, 27

class method, ix, 25, 29, 32

cntrl, 9, 130

coercion, 64

comment, 7

end-of-line, 7

nested, 7

comment, 7, 130

compilation system, 43

Complex (datatype), 60, 62

con, 12, 135

concat, 112

conditional expression, 14

conid, 7, 8, 130

conjugate, 62, 104

conop, 12, 135

const, 85

constr, 28, 133

constrs, 28, 133

constructed pattern, 20

constructed type, 26

consym, 8, 130

context, 26

in data declaration, ix, 28

context, 26, 133

cos, 60, 91

cosh, 60, 91

cosine, 63

csign, 29, 133

csigns, 29, 133

Curry, Haskell B., v

INDEX 157

cycle, 109

data abstraction, 1

data declaration, 28

datatype, 27

abstract, see abstract datatype

algebraic, see algebraic datatype

declaration, see data declaration

recursive, see recursive datatype

decl, 24, 35, 36, 133

declaration, 24

C-T instance, see C-T instance decla-

ration

class, see class declaration

datatype, see data declaration

default, see default declaration

�xity, see �xity declaration

import, see import declaration

instance, see instance declaration

within a class declaration, 29

within a let expression, 16

within an instance declaration, 30

declaration group, 38

decls, 24, 133

decodeFloat, 61, 64, 92

default declaration, 33

default method, vii, 30, 32, 48, 146, 151,

see also class method

DeleteFile, 70, 75

deleteFile, 78, 79, 125

denominator, 60, 61, 101

dependency analysis, 38

derived instance, ix, 33, see also instance

declaration

Dialogue (type synonym), 69, 77, 125

digit, 7, 130

div, 54, 60, 62, 89, 91

divMod, 60, 91

done, 78, 79, 125

Double (datatype), 59, 61, 86

drop, 109

dropWhile, 110

Echo, 76

echo, 78, 79, 125

elem, 54, 106, 111

elems, 66, 115

encodeFloat, 61, 64, 92

entity, 42

entity, 45, 132

Enum, 31, 33, 93

derived instance, 33, 146

instance for Char, 94

instance for Double, 100

instance for Float, 100

instance for Integer, 97

instance for Int, 96

instance for Ratio, 102

superclass of Real, 90

enumeration, 146

enumFrom, 31, 93, 146

enumFromThen, 31, 93, 146

enumFromThenTo, 31, 93, 146

enumFromTo, 31, 93, 146

environment

class, see class environment

type, see type environment

environment request, 76

Eq, 31, 58, 90

derived instance, 33, 145

instance for Array, 116

instance for Char, 94

instance for Double, 97

instance for Float, 97

instance for Integer, 95

instance for Int, 95

superclass of Num, 90

superclass of Ord, 90

error, 2, 68

error, 68, 88

escape, 9, 130

even, 60, 62, 91

exit, 80, 127

exp

i

, 10, 134

exp, 10, 12{14, 16{18, 134

exp, 60, 63, 91

exponent, 61, 64, 92

exponentiation, 63

export, 45, 132

export list, ix, 45

exports, 45, 132

158 INDEX

expression, 2, 10

case, see case expression

conditional, see conditional expression

let, see let expression

simple case, see simple case expres-

sion

type, see type expression

unit, see unit expression

expression type-signature, 18, 34

FailCont (type synonym), 77, 125

Failure, 70

False, 56

�le, 70

�le system request, 74

filter, 107

�x, 54, 132

�xdecls, 54, 132

�xity, 12

�xity declaration, 53

flip, 57, 85

Float (datatype), 58, 61, 86

oat, 8, 130

floatDigits, 61, 64, 92

Floating, 58, 60, 62, 91

instance for Complex, 104

instance for Double, 99

instance for Float, 98

superclass of RealFloat, 92

Floating (datatype), 60

oating literal pattern, 20

floatRadix, 61, 64, 92

floatRange, 61, 64, 92

floor, 61, 64, 92

foldl, 108

foldl1, 108

foldr, 108

foldr1, 108

formal semantics, x, 1

FormatError, 70

formfeed, 7, 130

Fractional, 58, 60, 91

instance for Complex, 103

instance for Double, 98

instance for Float, 98

instance for Ratio, 101

superclass of Floating, 91

superclass of RealFrac, 92

fromInteger, 59, 60, 90

fromIntegral, 61, 64, 84

fromRational, 59, 60, 91

fromRealFrac, 61, 64, 84

fst, 85

function, 57

function binding, 36

function type, 25

functional language, v

funlhs, 36, 134

gap, 9, 130

gcd, 61, 62, 84

gd, 17, 36, 134

gdpat, 17, 135

gdrhs, 36, 134

generalisation, 38

generalisation order, 27

generator, 16

genericLength, 107

GetArgs, 70, 76

getArgs, 78, 79, 125

GetEnv, 70, 77

getEnv, 78, 79, 125

GetProgName, 70

getProgName, 78, 79, 125

graphic, 7, 130

guard, 16, 17, 21

Haskell, v, 1

Haskell kernel, 2

Haskell mailing list, vi, ix, x

head, 106

hexit, 9, 130

hiding, 43, 47, 52

Hindley-Milner type system, 2, 24, 38

ibody, 47, 136

icdecl, 47, 136

icdecls, 47, 136

id, 85

identi�er, 7

INDEX 159

if-then-else expression, see conditional ex-

pression

iimpdecl, 47, 136

iimpdecls, 47, 136

imagPart, 62, 104

impdecl, 46, 132

impdecls, 44, 132

implementation, 42, 44

import, 46, 132

import declaration, 46

impspec, 46, 132

index, 31, 92, 146, 147

indices, 66, 115

information hiding, 1

init, 106

input/output, 69

acceptance, 73

echoing, 73

mode, 71

optional request, 143

presentation, 72

semantics, 139

transparency, 71

inRange, 31, 92, 146, 147

inst, 30, 134

instance declaration, 30, 51, see also de-

rived instance

with an empty where part, 30

with respect to modules, 32

Int, 61

Int (datatype), 58, 86

Integer, 61

Integer (datatype), 86

integer, 8, 130

integer literal pattern, 20

Integral, 58, 60, 91

instance for Integer, 96

instance for Int, 96

interact, 80, 127

interface, 42, 47

interface, 47, 136

IOError, 70

IOError (datatype), 125

irrefutable pattern, 16, 19, 21, 37

isAlpha, 83

isAlphanum, 83

isAscii, 83

isControl, 83

isDigit, 83

isLower, 83

isNullBin, 57, 82

isPrint, 83

isSpace, 83

isUpper, 83

iterate, 109

itopdecl, 47, 136

itopdecls, 47, 136

Ix, 31, 65, 92, 147

derived instance, 33, 146

instance for Char, 94

instance for Integer, 96

instance for Int, 96

superclass of Integral, 91

ixmap, 67, 115

lambda abstraction, 12

large, 7, 130

last, 106

layout, 3, 131, see also o�-side rule

lcm, 61, 62, 84

length, 107

let expression, ix, 16

lex, 117, 149

lexDigits, 118

lexeme, 7, 130

lexical structure, 6

lexLitChar, 119

lexp

i

, 10, 134

lhs, 36, 134

linear pattern, 12, 19, 36

linearity, 12, 19, 36

lines, 73, 110

list, 14, 57

list comprehension, 16, 57

list type, 26

listArray, 115

literal, 7, 130

Literate comments, 137

log, 60, 63, 91

logarithm, 63

160 INDEX

logBase, 60, 63, 91

longest lexeme rule, 8, 9

lpat

i

, 19, 135

magnitude, 63

magnitude, 62, 105

Main (module), 42

main, 42

map, 107

match, 119

max, 31, 90, 145

maxChar, 83

maximum, 112

maxInt, 58, 61, 84

method, see class method

min, 31, 90, 145

minChar, 83

minimum, 112

minInt, 58, 61, 84

mkPolar, 60, 62, 104

mod, 54, 60, 62, 89, 91

modid, 8, 44, 130, 132

module, 42

closure, 43

implementation, 44

interface, 47

module, 24, 44, 132

monomorphic type variable, viii, 13, 22,

39

monomorphism restriction, vii, ix, 40

n+k pattern, 20, 36

namespaces, 3, 8

ncomment, 7, 130

negate, 13, 60, 62, 90

negation, 11, 13

newline, 7, 130

nonnull, 119

not, 56, 83

notElem, 54, 106, 111

nub, 111

null, 106

nullBin, 57, 82

Num, 34, 58, 60, 90

instance for Complex, 103

instance for Double, 97

instance for Float, 97

instance for Integer, 96

instance for Int, 95

instance for Ratio, 101

superclass of Fractional, 91

superclass of Real, 90

number, 58

literal syntax, 8

numerator, 60, 61, 101

numeric type, 59

numericEnumFrom, 97

numericEnumFromThen, 97

octit, 9, 130

odd, 60, 62, 91

o�-side rule, 3, 131, see also layout

op, 12, 54, 135

operator, 7, 13

operator application, 13

ops, 54, 132

or, 111

Ord, 31, 58, 90

derived instance, 33, 145

instance for Array, 116

instance for Char, 94

instance for Double, 97

instance for Float, 97

instance for Integer, 95

instance for Int, 95

instance for Ratio, 101

superclass of Enum, 93

superclass of Ix, 92

ord, 56, 83

original name, 42

in an interface, 49

OtherError, 70

otherwise, 56, 83

overloaded pattern, see pattern-matching

overloading, 1, 29

ambiguous, 34

defaults, 33

partition, 107

pat

i

, 19, 135

pat, 19, 135

pattern, 17, 18

INDEX 161

@, see as-pattern

_, see wildcard pattern

constructed, see constructed pattern

oating, see oating literal pattern

integer, see integer literal pattern

irrefutable, see irrefutable pattern

linear, see linear pattern

n+k , see n+k pattern

refutable, see refutable pattern

pattern binding, 36, 37

pattern-matching, 18

overloaded constant, 22

phase, 62, 105

pi, 60, 91

polar, 60{62, 105

polymorphism, 2

precedence, 28, see also �xity

Prelude (module), 50, 51, 82, 89

PreludeArray (module), 82, 89, 115

PreludeBuiltin (module), 51, 82, 86, 89

PreludeComplex (module), 82, 89, 103

PreludeCore (module), 50, 51, 82, 89

PreludeIO (module), 82, 89, 124

PreludeList (module), 82, 106

PreludeRatio (module), 82, 89, 101

PreludeText (module), 82, 89, 117

presymbol, 8, 130

principal type, 27, 35

print, 80, 127

prints, 80, 127

product, 111

products, 111

program, 7, 130

program structure, 1

properFraction, 61, 64, 92

qual, 16, 135

quali�er, 16

quot, 60, 62, 89, 91

quotRem, 60, 91

range, 31, 92, 146, 147

rangeSize, 147

Ratio (datatype), 59, 61

Rational (type synonym), 59, 61, 101

read, 117, 148

readBin, 31, 93, 146

ReadBinChan, 70, 75

readBinChan, 78, 79, 125

ReadBinFile, 70, 74

readBinFile, 78, 79, 125

ReadChan, 70, 75

readChan, 78, 79, 125

readDec, 121

ReadError, 70

ReadFile, 70, 74

readFile, 78, 79, 125

readFloat, 122

readHex, 121

readInt, 121

readList, 31, 93, 147

readLitChar, 120

readOct, 121

readParen, 117

ReadS (type synonym), 93

reads, 117, 146, 148

readSigned, 121

readsPrec, 31, 93, 147, 149

Real, 58, 60, 90

instance for Double, 98

instance for Float, 97

instance for Integer, 96

instance for Int, 96

instance for Ratio, 101

superclass of Integral, 91

superclass of RealFrac, 92

RealFloat, 61, 64, 92

instance for Double, 99

instance for Float, 99

RealFrac, 61, 92

instance for Double, 99

instance for Float, 99

instance for Ratio, 102

superclass of RealFloat, 92

realPart, 62, 104

recip, 60, 91

recursive datatype, 29

refutable pattern, 19, 20

rem, 54, 60, 62, 89, 91

renaming, 42, 47

with respect to original name, 43

162 INDEX

renaming, 46, 132

renamings, 46, 132

repeat, 109

Request (datatype), 69, 70, 124

reservedid, 7, 130

reservedop, 8, 130

Response (datatype), 69, 70, 124

reverse, 111

rexp

i

, 10, 134

round, 61, 64, 92

rpat

i

, 19, 135

scaleFloat, 61, 92

scanl, 108

scanl1, 108

scanr, 108

scanr1, 109

SearchError, 70

section, ix, 8, 13, see also operator appli-

cation

semantics

formal, see formal semantics

input/output, see input/output seman-

tics

SetEnv, 70, 77

setEnv, 78, 79, 125

show, 117, 148

showBin, 31, 93, 146

showChar, 117

showFloat, 123

showInt, 121

showList, 31, 93, 147

showLitChar, 120

showParen, 117

ShowS (type synonym), 93

shows, 117, 146, 148

showSigned, 121

showsPrec, 31, 93, 147, 148

showString, 117

sign, 63

signature, see type signature

significand, 61, 64, 92

signum, 60, 63, 90

simple, 28, 29, 133

simple case expression, 22

simple pattern binding, 37

sin, 60, 91

sine, 63

sinh, 60, 91

small, 7, 130

snd, 85

space, 7, 130

span, 73, 110

special, 7, 130

splitAt, 109

sqrt, 60, 63, 91

standard prelude, 50, see also Prelude

StatusChan, 70, 76

statusChan, 78, 79, 125

StatusFile, 70, 75

statusFile, 78, 79, 125

stdecho, 70

stderr, 70

stdin, 70

stdout, 70

Str, 70

StrCont (type synonym), 77, 125

strDispatch, 78

String (type synonym), 56, 95

string, 56

literal syntax, 8

transparent, see transparent string

string, 9, 130

StrListCont (type synonym), 77, 125

strListDispatch, 78

subtract, 84

SuccCont (type synonym), 77, 125

succDispatch, 78

Success, 70

sum, 111

sums, 111

superclass, 29, 30, 33

symbol, 8, 130

synonym, see type synonym

syntax, 128

tab, 7, 130

tail, 106

take, 109

takeWhile, 110

INDEX 163

tan, 60, 91

tangent, 63

tanh, 60, 91

Text, 31, 93

derived instance, 33, 147

instance for Array, 116

instance for Bin, 94

instance for Char, 95

instance for Double, 100

instance for Float, 100

instance for Integer, 97

instance for Int, 97

instance for Ratio, 102

superclass of Num, 90

toInteger, 91

toLower, 83

topdecl (class), 29

topdecl (data), 28

topdecl (default), 34

topdecl (instance), 30

topdecl (type), 29

topdecl, 24, 133

topdecls, 24, 44, 133

toRational, 60, 64, 90

toUpper, 83

transaction, 77

transparent character set, 71

transparent line, 71

transparent string, 71

transpose, 112

trigonometric function, 63

trivial type, 15, 26, 57

True, 56

truncate, 61, 64, 92

tuple, 14, 57

tuple type, 26

tycls, 8, 26, 130

tyclses, 28, 133

tycon, 8, 130

type, 2, 25, 27

ambiguous, see ambiguous type

constructed, see constructed type

function, see function type

list, see list type

monomorphic, see monomorphic type

numeric, see numeric type

principal, see principal type

trivial, see trivial type

tuple, see tuple type

type, 25, 133

type class, see class

type environment, 27

type expression, 25

type signature, 27, 32, 35

for an expression, see expression type-

signature

type synonym, ix, 29, 32, 45, 48, 51, 145,

see also datatype

recursive, 29

type system, 1

tyvar, 8, 26, 130

unit datatype, see trivial type

unit expression, 15

unlines, 73, 110

until, 57, 85

unwords, 73, 111

unzip, 113

unzip3, 113

unzip4, 114

unzip5, 114

unzip6, 114

unzip7, 114

valdef, 36, 134

valdefs, 30, 134

value, 2

var, 12, 135

varid, 7, 8, 130

varop, 12, 135

vars, 29, 35, 133

varsym, 8, 130

vertab, 7, 130

whitechar, 7, 130

whitespace, 7, 130

whitestu�, 7, 130

wildcard pattern (_), 19

words, 73, 110

WriteBinFile, 70, 74

writeBinFile, 78, 79, 125

164 INDEX

WriteError, 70

WriteFile, 70, 74

writeFile, 78, 79, 125

zip, 57, 112

zip3, 57, 112

zip4, 57, 112

zip5, 57, 112

zip6, 57, 112

zip7, 57, 112

zipWith, 113

zipWith3, 113

zipWith4, 113

zipWith5, 113

zipWith6, 113

zipWith7, 113

