Report on the Programming Language

Haskell

A Non-strict, Purely Functional Language

Version 1.2

1st March 1992

Paul Hudak ${ }^{1}$ [editor] Simon Peyton Jones ${ }^{2}$ [editor]
Philip Wadler ${ }^{2}$ [editor] Brian Boutel ${ }^{3}$
Jon Fairbairn ${ }^{4}$
Joseph Fasel ${ }^{5}$
María M. Guzmán ${ }^{1}$
Kevin Hammond ${ }^{2}$
John Hughes ${ }^{2}$
Thomas Johnsson ${ }^{6}$
Dick Kieburtz ${ }^{7}$
Rishiyur Nikhil ${ }^{8}$
Will Partain ${ }^{2}$
John Peterson ${ }^{1}$

Authors' affiliations: (1) Yale University, (2) University of Glasgow, (3) Victoria University of Wellington, (4) Cambridge University, (5) Los Alamos National Laboratory, (6) Chalmers University of Technology, (7) Oregon Graduate Institute of Science and Technology, (8) Massachusetts Institute of Technology.

Contents

1 Introduction 1
1.1 Program Structure 1
1.2 The Haskell Kernel 2
1.3 Values and Types 2
1.4 Namespaces 3
1.5 Layout 3
2 Lexical Structure 6
2.1 Notational Conventions 6
2.2 Lexical Program Structure 6
2.3 Identifiers and Operators 7
2.4 Numeric Literals 8
2.5 Character and String Literals 8
3 Expressions 10
3.1 Variables, Constructors, and Operators 12
3.2 Curried Applications and Lambda Abstractions 12
3.3 Operator Applications 13
3.4 Sections 13
3.5 Conditionals 14
3.6 Lists 14
3.7 Tuples 14
3.8 Unit Expressions and Parenthesised Expressions 15
3.9 Arithmetic Sequences 15
3.10 List Comprehensions 16
3.11 Let Expressions 16
3.12 Case Expressions 17
3.13 Expression Type-Signatures 18
3.14 Pattern-Matching 18
4 Declarations and Bindings 24
4.1 Overview of Types and Classes 24
4.2 User-Defined Datatypes 27
4.3 Type Classes and Overloading 29
4.4 Nested Declarations 35
4.5 Static semantics of function and pattern bindings 37
5 Modules 42
5.1 Overview 42
5.2 Module Implementations 44
5.3 Module Interfaces 47
5.4 Standard Prelude 50
5.5 Example 52
5.6 Abstract Datatypes 53
5.7 Fixity Declarations 53
6 Basic Types 56
6.1 Booleans 56
6.2 Characters and Strings 56
6.3 Functions 57
6.4 Lists 57
6.5 Tuples 57
6.6 Unit Datatype 57
6.7 Binary Datatype 57
6.8 Numbers 58
6.9 Arrays 64
6.10 Errors 68
7 Input/Output 69
7.1 I/O Modes 71
7.2 File System Requests 74
7.3 Channel System Requests 75
7.4 Environment Requests 76
7.5 Continuation-based I/O 77
7.6 A Small Example 80
7.7 An Example Involving Synchronisation 81
A Standard Prelude 82
A. 1 Prelude PreludeBuiltin 86
A. 2 Prelude PreludeCore 89
A. 3 Prelude PreludeRatio 101
A. 4 Prelude PreludeComplex 103
A. 5 Prelude PreludeList 106
A. 6 Prelude PreludeArray 115
A. 7 Prelude PreludeText 117
A. 8 Prelude PreludeIO 124
B Syntax 128
B. 1 Notational Conventions 128
B. 2 Syntax Changes 128
B. 3 Lexical Syntax 129
B. 4 Layout 131
B. 5 Context-Free Syntax 132
B. 6 Interface Syntax 135
C Literate comments 137
D Input/Output Semantics 139
D. 1 Optional Requests 143
E Specification of Derived Instances 145
E. 1 Specification of showsPrec 148
E. 2 Specification of readsPrec 149
E. 3 An example 151
References 153
Index 155

Preface to Version 1.0 (April 1990; revised August 1991)

Abstract

"Some half dozen persons have written technically on combinatory logic, and most of these, including ourselves, have published something erroneous. Since some of our fellow sinners are among the most careful and competent logicians on the contemporary scene, we regard this as evidence that the subject is refractory. Thus fullness of exposition is necessary for accuracy; and excessive condensation would be false economy here, even more than it is ordinarily."

Haskell B. Curry and Robert Feys
in the Preface to Combinatory Logic [3], May 31, 1956

In September of 1987 a meeting was held at the conference on Functional Programming Languages and Computer Architecture in Portland, Oregon, to discuss an unfortunate situation in the functional programming community: there had come into being more than a dozen non-strict, purely functional programming languages, all similar in expressive power and semantic underpinnings. There was a strong consensus at this meeting that more widespread use of this class of functional languages was being hampered by the lack of a common language. It was decided that a committee should be formed to design such a language, providing faster communication of new ideas, a stable foundation for real applications development, and a vehicle through which others would be encouraged to use functional languages. This document describes the result of that committee's efforts: a purely functional programming language called Haskell, named after the logician Haskell B. Curry whose work provides the logical basis for much of ours.

Goals

The committee's primary goal was to design a language that satisfied these constraints:

1. It should be suitable for teaching, research, and applications, including building large systems.
2. It should be completely described via the publication of a formal syntax and semantics.
3. It should be freely available. Anyone should be permitted to implement the language and distribute it to whomever they please.
4. It should be based on ideas that enjoy a wide consensus.
5. It should reduce unnecessary diversity in functional programming languages.

The committee hopes that Haskell can serve as a basis for future research in language design. We hope that extensions or variants of the language may appear, incorporating experimental features.

This Report

This report is the official specification of the Haskell language and should be suitable for writing programs and building implementations. It is not a tutorial on programming in Haskell, so some familiarity with functional languages is assumed. As this is the first edition of the specification, there may be some errors and inconsistencies; beware.

The Next Stage

Haskell is a large and complex language, designed for a wide spectrum of purposes. It also introduces a major new technical innovation, namely using type classes to handle overloading in a systematic way. This innovation permeates every aspect of the language.

Haskell is bound to contain infelicities and errors of judgement. We welcome your comments, suggestions, and criticisms on the language or its presentation in the report. Together with your input and our own experience of using the language, we plan to meet at some future time to resolve difficulties and further stabilise the design.

A common mailing list for technical discussion of Haskell can be reached at either haskell@cs.yale.edu or haskell@dcs.glasgow.ac.uk. Errata sheets for this report will be posted there. To subscribe, send a request to haskell-request@dcs.glasgow.ac.uk (European residents) or haskell-request@cs.yale.edu (residents elsewhere).

We thought it would be helpful to identify the aspects of the language design that seem to be most finely balanced, and hence are the most likely candidates for change when we review the language. The following list summarises these areas. It will only be fully comprehensible after you have read the report.

Mutually recursive modules. Mutual recursion among modules is unrestricted at present, which is obviously desirable from the programmer's point of view, but which poses significant challenges to the compilation system. In particular, it is not sufficient to start with trivial interfaces for each module and iterate to a fixpoint, as this example shows:

```
module F( f ) where
    import G
    f [x] = g x
module G( g ) where
    import F
    g = f
```

If a compilation system starts off by giving F and G interfaces that give the type signatures $f:: a$ and $g:: b$ respectively, then compiling the two modules alternately will not reach a fixed point. (This only happens if there is a type error, but it is obviously undesirable behaviour.) In general, a compiler may need to analyse a set of mutually recursive modules as a whole, rather than separately.

Generalising type classes. A number of restrictions are placed on the class system in Haskell. Currently, instances are attached to the top level type of an object and are exported implicitly with classes and types. A number of proposals for generalising the class system have been discussed, among them attaching instances to more complex types, parameterising classes over type constructors, allowing redefinition of instances, and making instances explicit in import and export lists. Some of these proposals have been implemented and are part of the available Haskell systems. As we gain more experience with the class system we hope to improve it in the future.

Default methods. Section 4.3.1 describes how a class declaration may include default methods for some of its operations. We considered extending this so that a class declaration could include default methods for operations of its superclasses, which override the superclass's default method. This looks like an attractive idea, which will certainly be considered for a future revision.

Defaults for ambiguous types. Section 4.3.4 describes how ambiguous typings, which arise due to the type-class system, are resolved. Ideally, the choice made should not matter. For example, consider the expression if round $\mathrm{x}>0$ then E1 else E2. It should not matter whether round returns Int or Integer; a bad choice could result in overflow, or a less efficient program, but if a result is produced it will be correct.

Our resolution rules strive only to resolve ambiguous types where the type chosen does not "matter" in this sense, but we have not been entirely successful, for example where floating point is concerned. Further research and practical experience may suggest a better set of rules.

Static semantics of let and where bindings. The rules at the end of Section 4.4.2 comprise the "monomorphism restriction" in Haskell. The restriction solves two problems, which are summarised below, but at the cost of restricting expressiveness. Only experience will tell how much of a problem this is for the programmer.

These are the two problems. First, the expression let $\mathrm{x}=\mathrm{factorial} 1000$ in (x, x) looks as though x should only be computed once. If x were used at different overloadings, however, factorial 1000 would be computed twice, once at each type. We have found examples where the loss of efficiency is exponential in the size of the program. Modest compiler optimisations can often eliminate the problem, but we have found no simple scheme that can guarantee to do so. The restriction solves the problem by ensuring that all uses of x are at the same overloading, and hence that its evaluation can be shared as usual.

Second, a rather subtle form of type ambiguity (Section 4.3.4) is eliminated by the restriction to non-overloaded pattern bindings. An example is:

```
readNum s r = (n*r, s') where [(n,s')] = reads s
```

Here $n::(N u m a, T e x t ~ a) ~=>~ a, ~ s ':: T e x t ~ a ~=>~ S t r i n g . ~ I f ~ t h e ~ d e f i n i t i o n ~ o f ~[~(n, ~ s ')] ~ i s ~$ polymorphic, the a's may be resolved as different types.
(Note: As of the version 1.1 report, the monomorphism restriction is relaxed, provided that the programmer gives an explicit type signature. See Section 4.5.4 for precise details.)

Overloaded constants. Overloaded constants (e.g. 1, which has type Num a \Rightarrow a) are extraordinarily convenient when programming, but are the source of several serious technical problems, including both of those mentioned in the two preceding items. One could eliminate overloaded constants altogether; we considered this at length, and we are sure to reconsider it when we review the language.

Polymorphism in case expressions. The type of a variable bound by a Standard ML case-expression is monomorphic; we have made the same decision in Haskell (Section 3.14.3). The question of whether such types can be made polymorphic interacts with the restrictions on polymorphism for pattern-bound variables, mentioned above. For the present, we have erred on the side of conservatism, but this decision should be reviewed.

Acknowledgements

We heartily thank these people for their useful contributions to this report: Lennart Augustsson, Richard Bird, Stephen Blott, Tom Blenko, Duke Briscoe, Chris Clack, Guy Cousineau, Tony Davie, Chris Fasel, Pat Fasel, Bob Hiromoto, Nic Holt, Simon B. Jones, Stef Joosten, Mike Joy, Richard Kelsey, Siau-Cheng Khoo, Amir Kishon, John Launchbury, Olaf Lubeck, Randy Michelsen, Rick Mohr, Arthur Norman, Paul Otto, Larne Pekowsky, John Peterson, Rinus Plasmeijer, John Robson, Colin Runciman, Lauren Smith, Raman Sundaresh, Tom Thomson, Pradeep Varma, Tony Warnock, Stuart Wray, and Bonnie Yantis. We also thank those who participated in the lively discussions about Haskell on the FP mailing list during an interim period of the design.

Finally, aside from the important foundational work laid by Church, Rosser, Curry, and others on the lambda calculus, we wish to acknowledge the influence of many noteworthy programming languages developed over the years. Although it is difficult to pinpoint the origin of many ideas, we particularly wish to acknowledge the influence of McCarthy's Lisp [11] (and its modern-day incarnation, Scheme [16]); Landin's ISWIM [9]; Backus's FP [1]; Gordon, Milner, and Wadsworth's ML [5]; Burstall, MacQueen, and Sannella's Hope [2]; and Turner's series of languages culminating in Miranda [19]. ${ }^{1}$ Without these forerunners Haskell would not have been possible.

[^0]
Preface to Version 1.1 (19 August 1991)

Following the Version 1.0 Haskell report, several sites have implemented Haskell (or a subset thereof) and people have started to use these implementations. Based on this experience of implementation and use, it became apparent that a modest revision of the language would be desirable, in which some improvements in syntax could be made and certain features generalised. This Version 1.1 report is the result.

This revision was specifically not intended to add any substantial new features to the language, but rather to "tidy up" the existing language. Despite this narrow focus, a wide debate ensued, conducted on the Haskell mailing list (see page vi) rather than just among members of the original committee.

In this minor revision, the tricky issues identified in the preface to Version 1.0 remain, so that preface should be read in conjunction with this one.

Summary of changes

The main changes (other than concrete syntax) are as follows.

- Class methods may be polymorphic and overloaded in type variables other than the class variable (Section 4.3.1).
- The "monomorphism restriction" has been made more precise, and relaxed in the case where the programmer supplies a type signature (Section 4.4.2).
- The meaning of contexts in data declarations has been clarified (Section 4.2.1), and type synonym declarations are no longer permitted to have contexts (Section 4.2.2).
- If the deriving clause on a data declaration is omitted, no instances are automatically derived (Section 4.3.3).
- A module m may refer to all of its own local definitions in an export list using m. . (Section 5.2.1).

The main syntactic changes are as follows:

- A new form of expression, a let-expression, has been added, which replaces and has the same semantics as a where expression. (In particular, the bindings it introduces are mutually recursive; Haskell has no non-recursive let construct.) Bindings may also be introduced by a where clause, but such where clauses are now attached to a group of guarded right-hand sides, and scope over the guards. The previous inability to scope definitions over guards was a significant shortcoming of the language.
- Sections have been introduced for binary operators. For example, the expression (/2) is the function which divides its argument by 2 , and (2 /) is the function which divides 2 by its argument.
- The standard prelude has been debugged and revised.

A few other nontrivial changes to the syntax are listed in Appendix B.2.

Implementations

Several groups are working on implementations of Haskell, including those at Chalmers (contact: hbc@cs.chalmers.se), Glasgow (haskell-request@dcs.glasgow.ac.uk), Syracuse (polar@top.cis.syr.edu), and Yale (haskell-request@cs.yale.edu). Official announcements about these implementations will appear on the Haskell technical mailing list (see page vi).

Formal Semantics

Work has also been undertaken at Glasgow on a formal static and dynamic semantics for Haskell $[6,15]$. These efforts are well advanced but as yet incomplete.

Acknowledgements

Language design is an evolutionary process, and the group of people involved undergoes evolution as well. We wish to thank past members of the Haskell Committee-Arvind, Mike Reeve, David Wise, and Jonathan Young-for their previous contributions and continued support. We also thank those who braved the storm of electronic mail on the Haskell mailing list, and responded with constructive suggestions for the revised language. The following were especially helpful and active: Lennart Augustsson, Cordelia Hall, Kent Karlsson, Mark Jones, Mark Lillibridge, and Satish Thatte.

Numerous others contributed to the debate, and we thank them also.

Preface to Version 1.2 (1st March 1992)

Version 1.2 of the report was prepared for publication in SIGPLAN Notices. It corrects some typographical errors in the 1.1 report, and clarifies the presentation in places, sometimes by giving new examples. A few minor changes have also been made to the syntax and standard prelude.

Syntax Changes

This is the list of all syntax changes made between versions 1.1 and 1.2. See Section 3 for full details.

- Left-hand sides of definitions have been simplified.
- The precedence of let, case, lambda and conditional expressions has been changed to lie between infix operator application and normal function application.
- The right-hand operand of an infix operator application may now be an (unparenthesised) let, case, lambda, or conditional expression.
- Precedences in infix operator applications have been clarified.
- Types in expression type signatures are now types rather than atypes. Expression type signatures cannot occur at the top level in case expression guards.
- The infix type operator ($->$) is now explicitly right-associative.
- Some problems with optional semicolons have been eliminated.
- Empty interfaces and class bodies are now permitted in interface files.
- The rules for quoting names to form operators, or quoting operators to form names, have been relaxed slightly.
- Successor patterns have been limited to variables and wildcards.
- Negative literals in patterns have been corrected.

Standard Prelude

Several changes have been made to the standard prelude, mainly to I/O and numeric functions.

- New Prelude functions have been introduced: $\$$, id, const, minChar, maxChar, unzip, unzip3, ..., unzip7.
- Functions approximants and partialQuotients have been deleted.
- The functions truncate, round, floor and ceiling are now operations of class RealFrac.
- A new operation recip has been introduced in class Fractional.
- Some functions have been renamed: floatingToRational to realFloatToRational; rationalToFloating to rationalToRealFloat and floatProperFraction to floatApproxRational.
- Several changes have been made to class Integral. Operation divRem has been deleted. New operations quot, quotRem, divMod have been introduced. quot has the same semantics as the previous div operation.
- The incremental array update operator // now takes a list of independent index-value associations as its right argument, rather than a single association (Section 6.9.4).
- The function exit now writes to stderr rather than stdout. All prelude functions which previously used abort now use exit.
- A new request GetProgName has been introduced.
- Some changes have been made to Text instances.
- Class Text has moved to PreludeCore.
- Function error has moved to PreludeBuiltin.
- PreludeComplex now exports all definitions.
- Some bugs in the definitions of cos, \tan and \tanh for Complex numbers have been corrected.

Other Changes

The other main changes are as follows.

- The standard class hierarchy has been changed slightly. Enum is now a superclass of Real and Ix is a superclass of Integral.
- The smallest fixed-precision Int, minInt must be -maxInt. It may no longer be -maxInt-1.
- Certainly silly cases in export/hiding lists have been eliminated; for example, attempting to hide a data type without hiding its constructors (Section 5.2.2). The form for a type synonym in an export list is now $T(.$.$) (Section 5.2.1).$

1 Introduction

Haskell is a general purpose, purely functional programming language incorporating many recent innovations in programming language research, including higher-order functions, non-strict semantics, static polymorphic typing, user-defined algebraic datatypes, patternmatching, list comprehensions, a module system, and a rich set of primitive datatypes, including lists, arrays, arbitrary and fixed precision integers, and floating-point numbers. Haskell is both the culmination and solidification of many years of research on functional languages-the design has been influenced by languages as old as ISWIM and as new as Miranda.

Although the initial emphasis was on standardisation, Haskell also has several new features that both simplify and generalise the design. For example,

1. Rather than using ad hoc techniques for overloading, Haskell provides an explicit overloading facility, integrated with the polymorphic type system, that allows the precise definition of overloading behaviour for any operator or function.
2. The conventional notion of "abstract data type" has been unbundled into two orthogonal components: data abstraction and information hiding.
3. Haskell has a flexible I/O facility that unifies two popular styles of purely functional I/O-the stream model and the continuation model-and both styles can be mixed within the same program. The system supports most of the standard operations provided by conventional operating systems while retaining referential transparency within a program.
4. Recognising the importance of arrays, Haskell has a family of multidimensional nonstrict immutable arrays whose special interaction with list comprehensions provides a convenient "array comprehension" syntax for defining arrays monolithically.

This report defines the syntax for Haskell programs and an informal abstract semantics for the meaning of such programs; the formal abstract semantics is in preparation. We leave as implementation dependent the ways in which Haskell programs are to be manipulated, interpreted, compiled, etc. This includes such issues as the nature of batch versus interactive programming environments, and the nature of error messages returned for undefined programs (i.e. programs that formally evaluate to \perp).

1.1 Program Structure

In this section, we describe the abstract syntactic and semantic structure of Haskell, as well as how it relates to the organisation of the rest of the report.

1. At the topmost level a Haskell program is a set of modules (described in Section 5). Modules provide a way to control namespaces and to re-use software in large programs.
2. The top level of a module consists of a collection of declarations, of which there are several kinds, all described in Section 4. Declarations define things such as ordinary values, datatypes, type classes, and fixity information.
3. At the next lower level are expressions, described in Section 3. An expression denotes a value and has a static type; expressions are at the heart of Haskell programming "in the small."
4. At the bottom level is Haskell's lexical structure, defined in Section 2. The lexical structure captures the concrete representation of Haskell programs in text files.

This report proceeds bottom-up with respect to Haskell's syntactic structure.
The sections not mentioned above are Section 6, which describes the standard built-in datatypes in Haskell, and Section 7, which discusses the I/O facility in Haskell (i.e. how Haskell programs communicate with the outside world). Also, there are several appendices describing the standard prelude, the concrete syntax, the semantics of I/O, and the specification of derived instances.

Examples of Haskell program fragments in running text are given in typewriter font:

```
let x = 1
    z = x+y
in z+1
```

"Holes" in program fragments representing arbitrary pieces of Haskell code are written in italics, as in if e_{1} then e_{2} else e_{3}. Generally the italicised names will be mnemonic, such as ℓ for expressions, d for declarations, t for types, etc.

1.2 The Haskell Kernel

Haskell has adopted many of the convenient syntactic structures that have become popular in functional programming. In all cases, their formal semantics can be given via translation into a proper subset of Haskell called the Haskell kernel. It is essentially a slightly sugared variant of the lambda calculus with a straightforward denotational semantics. The translation of each syntactic structure into the kernel is given as the syntax is introduced. This modular design facilitates reasoning about Haskell programs and provides useful guidelines for implementors of the language.

1.3 Values and Types

An expression evaluates to a value and has a static type. Values and types are not mixed in Haskell. However, the type system allows user-defined datatypes of various sorts, and permits not only parametric polymorphism (using a traditional Hindley-Milner type structure) but also ad hoc polymorphism, or overloading (using type classes).

Errors in Haskell are semantically equivalent to \perp. Technically, they are not distinguishable from nontermination, so the language includes no mechanism for detecting or acting upon errors. Of course, implementations will probably try to provide useful information about errors.

1.4 Namespaces

There are six kinds of names in Haskell: those for variables and constructors denote values; those for type variables, type constructors, and type classes refer to entities related to the type system; and module names refer to modules. There are three constraints on naming:

1. Names for variables and type variables are identifiers beginning with small letters; the other four kinds of names are identifiers beginning with capitals.
2. Constructor operators are operators beginning with ":"; variable operators are operators not beginning with ":".
3. An identifier must not be used as the name of a type constructor and a class in the same scope.

These are the only constraints; for example, Int may simultaneously be the name of a module, class, and constructor within a single scope.

Haskell provides a lexical syntax for infix operators (either functions or constructors). To emphasise that operators are bound to the same things as identifiers, and to allow the two to be used interchangeably, there is a simple way to convert between the two: any function or constructor identifier may be converted into an operator by enclosing it in grave accents, and any operator may be converted into an identifier by enclosing it in parentheses. For example, $x+y$ is equivalent to (+) $x y$, and $f x y$ is the same as $x ~ ' ~ f ' y . ~ T h e s e ~ l e x i c a l ~$ matters are discussed further in Section 2.

1.5 Layout

In the syntax given in the rest of the report, declaration lists are always preceded by the keyword where, let or of, and are enclosed within curly braces ($\}$) with the individual declarations separated by semicolons (;). For example, the syntax of a let expression is:

$$
\text { let }\left\{\operatorname{decl_{1}} ; \operatorname{decl}_{2} ; \ldots ; \operatorname{decl_{n}}[;]\right\} \text { in } \exp
$$

Haskell permits the omission of the braces and semicolons by using layout to convey the same information. This allows both layout-sensitive and -insensitive styles of coding, which can be freely mixed within one program. Because layout is not required, Haskell programs can be straightforwardly produced by other programs.

The layout (or "off-side") rule takes effect whenever the open brace is omitted after the keyword where, let or of. When this happens, the indentation of the next lexeme (whether or not on a new line) is remembered and the omitted open brace is inserted (the whitespace preceding the lexeme may include comments). For each subsequent line, if it contains only whitespace or is indented more, then the previous item is continued (nothing is inserted); if it is indented the same amount, then a new item begins (a semicolon is inserted); and if it is indented less, then the declaration list ends (a close brace is inserted). A close brace
is also inserted whenever the syntactic category containing the declaration list ends; that is, if an illegal lexeme is encountered at a point where a close brace would be legal, a close brace is inserted. The layout rule will match only those open braces that it has inserted; an open brace that the user has inserted must be matched by a close brace inserted by the user.

Given these rules, a single newline may actually terminate several declaration lists. Also, these rules permit:

```
f x = let a = 1; b = 2
    g y = exp2 in exp1
```

making a, b and g all part of the same declaration list.
To facilitate the use of layout at the top level of a module (several modules may reside in one file), the keywords module and interface and the end-of-file token are assumed to occur in column 0 (whereas normally the first column is 1). Otherwise, all top-level declarations would have to be indented.

See also Section B.4.
As an example, Figure 1 shows a (somewhat contrived) module and Figure 2 shows the result of applying the layout rule to it. Note in particular: (a) the line beginning \}\};pop, where the termination of the previous line invokes three applications of the layout rule, corresponding to the depth (3) of the nested where clauses, (b) the close braces in the where clause nested within the tuple and case expression, inserted because the end of the tuple was detected, and (c) the close brace at the very end, inserted because of the column 0 indentation of the end-of-file token.

When comparing indentations for standard Haskell programs, a fixed-width font with this tab convention is assumed: tab stops are 8 characters apart (with the first tab stop in column 9), and a tab character causes the insertion of enough spaces (always ≥ 1) to align the current position with the next tab stop. Particular implementations may alter this rule to accommodate variable-width fonts and alternate tab conventions, but standard Haskell (i.e., portable) programs must observe this rule.

```
module AStack( Stack, push, pop, top, size ) where
data Stack a = Empty
    | MkStack a (Stack a)
push :: a -> Stack a -> Stack a
push x s = MkStack x s
size :: Stack a -> Integer
size s = length (stkToLst s) where
    stkToLst Empty = []
    stkToLst (MkStack x s) = x:xs where xs = stkToLst s
pop :: Stack a -> (a, Stack a)
pop (MkStack x s)
    = (x, case s of r -> i r where i x = x) -- (pop Empty) is an error
top :: Stack a -> a
top (MkStack x s) = x -- (top Empty) is an error
```

Figure 1: A sample program

```
module AStack( Stack, push, pop, top, size ) where
{data Stack a = Empty
    | MkStack a (Stack a)
;push :: a -> Stack a -> Stack a
;push x s = MkStack x s
;size :: Stack a -> Integer
;size s = length (stkToLst s) where
    {stkToLst Empty = []
    ;stkToLst (MkStack x s) = x:xs where {xs = stkToLst s
}};pop :: Stack a -> (a, Stack a)
;pop (MkStack x s)
    = (x, case s of {r -> i r where {i x = x}}) -- (pop Empty) is an error
;top :: Stack a -> a
;top (MkStack x s) = x -- (top Empty) is an error
}
```

Figure 2: Sample program with layout expanded

2 Lexical Structure

In this section, we describe the low-level lexical structure of Haskell. Most of the details may be skipped in a first reading of the report.

2.1 Notational Conventions

These notational conventions are used for presenting syntax:

```
    [pattern] optional
{pattern} zero or more repetitions
(pattern) grouping
pat 
    pat {pat`\rangle difference-elements generated by pat
            except those generated by pat'
fibonacci terminal syntax in typewriter font
```

Because the syntax in this section describes lexical syntax, all whitespace is expressed explicitly; there is no implicit space between juxtaposed symbols. BNF-like syntax is used throughout, with productions having the form:
nonterm \rightarrow alt $\left.\right|_{1}$ alt $_{2}|\ldots|$ alt $_{n}$

Care must be taken in distinguishing metalogical syntax such as \mid and [...] from concrete terminal syntax (given in typewriter font) such as I and [...], although usually the context makes the distinction clear.

Haskell source programs are currently biased toward the ASCII character set, although future Haskell standardisation efforts will likely address broader character standards.

2.2 Lexical Program Structure

```
program }->\mathrm{ {lexeme | whitespace }
lexeme }->\mathrm{ varid | conid | varsym | consym | literal | special | reservedop | reservedid
literal }->\mathrm{ integer | float | char | string
special }->(|)|,|;|[|]|_|`|{|
whitespace }->\mathrm{ whitestuff {whitestuff }
whitestuff }->\mathrm{ whitechar | comment | ncomment
whitechar }->\mathrm{ newline | space | tab | vertab | formfeed
newline }->\mathrm{ a newline (system dependent)
space }->\quad\mathrm{ a space
tab }->\mathrm{ a horizontal tab
vertab }->\mathrm{ a vertical tab
```

```
formfeed \(\rightarrow\) a form feed
comment \(\rightarrow\)-- \(\{a n y\}\) newline
ncomment \(\rightarrow \quad\{-A N Y s e q\{n\) comment \(A N Y\) seq \(\}-\}\)
\(A N Y\) seq \(\left.\rightarrow\{A N Y\}_{\langle\{A N Y\}}(\{-\mid-\})\{A N Y\}\right\rangle\)
\(A N Y \rightarrow\) any \(\mid\) newline \(\mid\) vertab \(\mid\) formfeed
any \(\rightarrow\) graphic \(\mid\) space \(\mid\) tab
graphic \(\rightarrow\) large \(\mid\) small \(\mid\) digit
    | ! | " | \# | \(\$|\%| \&\left|{ }^{\prime}\right|(\mid)|*|+\)
    \(|\quad,|-|.|/|:|;|<|=|>|?| @\)
    \(|\quad[|\backslash|]|^{\wedge}|\ldots| \cdot|\{| | \mid\}|^{\sim}\)
small \(\rightarrow \mathrm{a}|\mathrm{b}| \ldots \mid \mathrm{z}\)
large \(\rightarrow\) A \(|\mathrm{B}| \ldots \mid \mathrm{Z}\)
digit \(\rightarrow 0|1| \ldots \mid 9\)
```

Characters not in the category graphic or whitestuff are not valid in Haskell programs and should result in a lexing error.

Comments are valid whitespace. An ordinary comment begins with two consecutive dashes (--) and extends to the following newline. A nested comment begins with \{- and ends with -$\}$; it can be between any two lexemes. All character sequences not containing \{nor -$\}$ are ignored within a nested comment. Nested comments may be nested to any depth: any occurrence of $\{-$ within the nested comment starts a new nested comment, terminated by -$\}$. Within a nested comment, each $\{-$ is matched by a corresponding occurrence of -$\}$. In an ordinary comment, the character sequences $\{-$ and -$\}$ have no special significance, and, in a nested comment, the sequence -- has no special significance.

If some code is commented out using a nested comment, then any occurrence of $\{-$ or -\} within a string or within an end-of-line comment in that code will interfere with the nesting of the nested comments.

2.3 Identifiers and Operators


```
conid }->\mathrm{ large {small |large | digit |' | _}
reservedid }->\mathrm{ case | class | data|default | deriving|else| hiding
    | if | import | in | infix| infixl | infixr| instance| interface
    let | module | of | renaming | then | to | type | where
```

An identifier consists of a letter followed by zero or more letters, digits, underscores, and acute accents. Identifiers are lexically distinguished into two classes: those that begin with a lower-case letter (variable identifiers) and those that begin with an upper-case letter (constructor identifiers). Identifiers are case sensitive: name, naMe, and Name are three distinct identifiers (the first two are variable identifiers, the last is a constructor identifier).

```
varsym \(\rightarrow((\text { symbol } \mid \text { presymbol })\{\text { symbol } \mid:\})_{\text {〈reservedop }\rangle}\)
consym \(\rightarrow(:\{\text { symbol } \mid:\})_{\langle\text {reservedop }\rangle}\)
presymbol \(\rightarrow \quad-\left.\right|^{\sim}\)
symbol \(\rightarrow\) ! \(|\#| \$|\%| \&|*|+|.|/|<|=|>|?| @| \backslash|-| |\)
reservedop \(\rightarrow \ldots|::|\Rightarrow|=|@||\left|\left|\left.\right|^{\sim}\right|\langle-\mid-\rangle\right.\)
```

Operator symbols are formed from one or more symbol characters, as defined above, and are lexically distinguished into two classes: those that start with a colon (constructors) and those that do not (functions).

Other than the special syntax for prefix negation, all operators are infix, although each infix operator can be used in a section to yield partially applied operators (see Section 3.4). All of the standard infix operators are just predefined symbols and may be rebound.

Although case is a reserved word, cases is not. Similarly, although $=$ is reserved, ==and $\sim=$ are not. At each point, the longest possible lexeme is read, using a context-independent deterministic lexical analysis (i.e. no lookahead beyond the current character is required). Any kind of whitespace is also a proper delimiter for lexemes.

In the remainder of the report six different kinds of names will be used:

varid		(variables)	
conid		(constructors)	
tyvar	\rightarrow	varid	(type variables)
tycon	\rightarrow	conid	(type constructors)
tycls	\rightarrow	conid	(type classes)
modid	\rightarrow	conid	(modules)

Variables and type variables are represented by identifiers beginning with small letters, and the other four by identifiers beginning with capitals; also, variables and constructors have infix forms, the other four do not. Namespaces are also discussed in Section 1.4.

2.4 Numeric Literals

```
integer }->\mathrm{ digit{digit}
float }->\mathrm{ integer.integer [(e|E)[-|+]integer }
```

There are two distinct kinds of numeric literals: integer and floating. A floating literal must contain digits both before and after the decimal point; this ensures that a decimal point cannot be mistaken for another use of the dot character. Negative numeric literals are discussed in Section 3.3. The typing of numeric literals is discussed in Section 6.8.2.

2.5 Character and String Literals

char $\quad \rightarrow \quad\left(\right.$ graphic $_{\langle }{ }^{\prime}|\backslash\rangle$ space \mid escape $\left._{\langle\backslash \&\rangle}\right)$ '

```
string }->\mathrm{ "{graphic;"|\)| space | escape |gap}"
escape }->\mathrm{ \(charesc | ascii | integer | O octit{octit}|x hexit{hexit})
charesc }->\textrm{a}|\textrm{b}|\textrm{f}|\textrm{n}|\textrm{r}|\textrm{t}|\textrm{v}|\|"|'|
ascii }->\quad`\quadcntrl| NUL | SOH| STX| ETX| EOT | ENQ| ACK
    | BEL | BS | HT | LF|VT | FF| CR | SO | SI| DLE
    | DC1 | DC2 | DC3 | DC4| NAK | SYN | ETB| CAN
    | EM| SUB|ESC|FS|GS|RS|US|SP|DEL
cntrl }->\mathrm{ large |@|[|\|] |^ | _
gap }->\mathrm{ \ whitechar {whitechar}\
hexit }->\mathrm{ digit | A | B | C | D | E | F|a|b|c|d|e|f
octit }->00|1|2|3|4|5|6|
```

Character literals are written between acute accents, as in 'a', and strings between double quotes, as in "Hello".

Escape codes may be used in characters and strings to represent special characters. Note that ' may be used in a string, but must be escaped in a character; similarly, " may be used in a character, but must be escaped in a string. $\$ must always be escaped. The category charesc also includes portable representations for the characters "alert" (la), "backspace" $(\backslash b)$, "form feed" (\f), "new line" (\n), "carriage return" (\r), "horizontal tab" (\t), and "vertical tab" (\v).

Escape characters for the ASCII character set, including control characters such as $\backslash \wedge X$, are also provided. Numeric escapes such as $\backslash 137$ are used to designate the character with (implementation dependent) decimal representation 137; octal (e.g. \o137) and hexadecimal (e.g. $\backslash x 137$) representations are also allowed. Numeric escapes that are out-of-range of the ASCII standard are undefined and thus non-portable.

Consistent with the "consume longest lexeme" rule, numeric escape characters in strings consist of all consecutive digits and may be of arbitrary length. Similarly, the one ambiguous ASCII escape code, " \backslash SOH", is parsed as a string of length 1. The escape character $\backslash \&$ is provided as a "null character" to allow strings such as "\137
\&9" and "\SO
\&H" to be constructed (both of length two). Thus "
\&" is equivalent to "" and the character '
\&' is disallowed. Further equivalences of characters are defined in Section 6.2.

A string may include a "gap"-two backslants enclosing white characters-which is ignored. This allows one to write long strings on more than one line by writing a backslant at the end of one line and at the start of the next. For example,
"Here is a backslant $\$ as well as \137, \}
la numeric escape character, and $1^{\wedge} X$, a control character."
String literals are actually abbreviations for lists of characters (see Section 3.6).

3 Expressions

In this section, we describe the syntax and informal semantics of Haskell expressions, including their translations into the Haskell kernel, where appropriate.

In the syntax that follows, there are some families of nonterminals indexed by precedence levels (written as a superscript). Similarly, the nonterminals op, varop, and conop may have a double index: a letter l, r, or n for left-, right- or nonassociativity and a precedence level. A precedence-level variable i ranges from 0 to 9 ; an associativity variable a varies over $\{l, r, n\}$. Thus, for example

$$
\operatorname{aexp} \quad \rightarrow \quad\left(\exp ^{i+1} o p^{(a, i)}\right)
$$

actually stands for 30 productions, with 10 substitutions for i and 3 for a.

exp	$\overrightarrow{\mid}$	$\begin{aligned} & \exp ^{0}::[\text { context }=>] \text { type } \\ & \exp ^{0} \end{aligned}$	(expression type signature)
$e x p{ }^{i}$	\rightarrow	$\begin{aligned} & \exp ^{i+1}\left[o p^{(\mathrm{n}, i)} \exp ^{i+1}\right] \\ & \operatorname{lexp}^{i} \\ & \exp ^{i} \end{aligned}$	
$l e x p{ }^{\text {i }}$	\rightarrow	$\left(\exp ^{i} \mid \exp ^{i+1}\right) o p^{(1, i)} \exp ^{i+1}$	
lexp ${ }^{6}$	\rightarrow	- exp ${ }^{7}$	
rexp ${ }^{\text {i }}$	\rightarrow	$\exp ^{i+1} o p^{(\mathrm{r}, i)}\left(\operatorname{rexp}^{i} \mid \exp ^{i+1}\right)$	
exp ${ }^{10}$	$\overrightarrow{1}$	\apat ${ }_{1} \ldots$ apat $_{n} \rightarrow$ exp let $\{$ decls [;] \} in \exp if exp then exp else exp case exp of \{ alts [;] \} fexp	(lambda abstraction, $n \geq 1$) (let expression) (conditional) (case expression)
fexp	$\overrightarrow{\mid}$	$\begin{aligned} & \text { fexp aexp } \\ & \text { aexp } \end{aligned}$	(function application)
aexp	\rightarrow	var	(variable)
		con	(constructor)
		literal	
		()	(unit)
		(exp)	(parenthesised expression)
		(exp $\left.{ }_{1}, \ldots, \exp _{k}\right)$	(tuple, $k \geq 2$)
		[$\left.\exp _{1}, \ldots, \exp _{k}\right]$	(list, $k \geq 0$)
		$\left[\exp _{1}\left[, \exp _{2}\right] \ldots\left[\exp _{3}\right]\right]$	(arithmetic sequence)
			(list comprehension, $n \geq 1$)
		$\left(e x p p^{i+1} o p^{(a, i)}\right)$	(left section)
		(op ${ }^{(a, i)} \exp ^{i+1}$)	(right section)

As an aid to understanding this grammar, Table 1 shows the relative precedence of expressions, patterns and definitions, plus an extended associativity. -- indicates that the item is non-associative.

Item	Associativity
$\left.\begin{array}{l} \left\{\begin{array}{l} \text { simple terms, parenthesised terms } \\ \text { irrefutable- }(\sim), \text { as- (© patterns } \end{array}\right. \\ \text { function application } \end{array}\right\} \begin{aligned} & \text { if, let, lambda(} \backslash \text {), case (leftwards) } \\ & \text { case (rightwards) } \end{aligned}$ infix operators, prec. 9 infix operators, prec. 0 function types (->) contexts (=>) type constraints (: :) if, let, lambda(\backslash) (rightwards) sequences (..) generators (<-) grouping (,) guards (I) case alternatives ($->$) definitions (=) separation (;)	right left right right as defined ... as defined right - right - - n-ary - - - n-ary

Table 1: Precedence of expressions, patterns, definitions (highest to lowest)

The grammar is ambiguous regarding the extent of lambda abstractions, let expressions, and conditionals. The ambiguity is resolved by the metarule that each of these constructs extends as far to the right as possible. As a consequence, each of these constructs has two precedences, one to its left, which is the precedence used in the grammar; and one to its right which is obtained via the metarule. See the sample parses below.

Expressions involving infix operators are disambiguated by the operator's fixity (see Section 5.7). Consecutive unparenthesised operators with the same precedence must both be either left or right associative to avoid a syntax error. Given an unparenthesised expression " $x o p^{(a, i)} y o p^{(b, j)} z$ ", parentheses must be added around either " $x o p^{(a, i)} y$ " or " y op ${ }^{(b, j)} z$ " when $i=j$ unless $a=b=1$ or $a=b=\mathrm{r}$.

Negation is the only prefix operator in Haskell; it has the same precedence as the infix - operator defined in the standard prelude (see Figure 2, page 54).

The separation of function arrows from case alternatives solves the ambiguity which otherwise arises when an unparenthesised function type is used in an expression, such as the guard in a case expression.

Sample parses are shown below.

This	Parses as
$f \mathrm{x}+\mathrm{g} \mathrm{y}$	(f x) + (g y)
- f x +y	$(-(f x))+y$
let $\{$... \} in $\mathrm{x}+\mathrm{y}$	let $\{\ldots \ldots$ in $(x+y)$
$z+\operatorname{let}\{\ldots \mathrm{l}$, in $\mathrm{x}+\mathrm{y}$	$z+(\operatorname{let}\{\ldots, \mathrm{l}$ in $(\mathrm{x}+\mathrm{y})$)
$f \mathrm{x} y$: : Int	(f x y) : : Int
\x x - $\mathrm{a}+\mathrm{b}$: : Int	\x x ($(\mathrm{a}+\mathrm{b}):$: Int)

For the sake of clarity, the rest of this section shows the syntax of expressions without their precedences.

3.1 Variables, Constructors, and Operators

var	\rightarrow varid $\mid($ varsym $)$	(variable)
con	\rightarrow conid $\mid($ consym $)$	(constructor)
varop	\rightarrow varsym \mid varid'	(variable operator)
conop	\rightarrow consym \mid conid	(constructor operator)
op	\rightarrow varop \mid conop	(operator)

Alphanumeric operators are formed by enclosing an identifier between grave accents (backquotes). Any variable or constructor may be used as an operator in this way. If fun is an identifier (either variable or constructor), then an expression of the form fun $x y$ is equivalent to x `fun` y. If no fixity declaration is given for `fun' then it defaults to highest precedence and left associativity (see Section 5.7).

Similarly, any symbolic operator may be used as a (curried) variable or constructor by enclosing it in parentheses. If op is an infix operator, then an expression or pattern of the form x op y is equivalent to (op) $x y$.

3.2 Curried Applications and Lambda Abstractions

$\exp \rightarrow \exp \operatorname{aexp}$
$\exp \rightarrow$ \apat a $_{1} \ldots$ apat $_{n} \rightarrow \exp$

Function application is written $e_{1} e_{2}$. Application associates to the left, so the parentheses may be omitted in ($\mathrm{f} x$) y, for example. Because e_{1} could be a constructor, partial applications of constructors are allowed.

Lambda abstractions are written $\backslash p_{1} \ldots p_{n} \rightarrow e$, where the p_{i} are patterns. An expression such as $\backslash \mathrm{x}: \mathrm{xs}->\mathrm{x}$ is syntactically incorrect, and must be rewritten as $\backslash(\mathrm{x}: \mathrm{xs})->\mathrm{x}$.

The set of patterns must be linear-no variable may appear more than once in the set.

Translation: The lambda abstraction $\backslash p_{1} \ldots p_{n} \rightarrow e$ is equivalent to

$$
\backslash x_{1} \ldots x_{n} \rightarrow \text { case }\left(x_{1}, \ldots, x_{n}\right) \text { of }\left(p_{1}, \ldots, p_{n}\right) \rightarrow e
$$

where the x_{i} are new identifiers. Given this translation combined with the semantics of case expressions and pattern-matching described in Section 3.14.3, if the pattern fails to match, then the result is \perp.

The type of a variable bound by a lambda abstraction is monomorphic, as is always the case in the Hindley-Milner type system.

3.3 Operator Applications

(prefix negation)

The form e_{1} op ϵ_{2} is the infix application of binary operator op to expressions e_{1} and e_{2}.
The special form - e denotes prefix negation, the one and only prefix operator in Haskell, and is simply syntax for negate (e), where negate is as defined in the standard prelude (see Figure 8, page 60). Prefix negation has the same precedence as the infix operator - (see Figure 2, page 54). Because e1-e2 parses as an infix application of the binary operator - , one must write e1(-e2) for the alternative parsing. Similarly, (-) is syntax for ($\backslash \mathrm{x} y \rightarrow \mathrm{x}-\mathrm{y}$), as with any infix operator, and does not denote ($\backslash \mathrm{x} \rightarrow-\mathrm{x}$) -one must use negate for that.

Translation: $e_{1} o p e_{2}$ is equivalent to ($o p$) $e_{1} e_{2} .-\epsilon$ is equivalent to negate (e) where negate, an operator in the class Num, is as defined in the standard prelude.

3.4 Sections

aexp $\quad \rightarrow \quad($ exp op $)$
$\mid(o p \exp)$
Sections are written as ($o p e$) or ($e o p$), where $o p$ is a binary operator and e is an expression. Sections are a convenient syntax for partial application of binary operators.

The normal rules of syntactic precedence apply to sections; for example, (*a+b) is syntactically invalid, but ($+\mathrm{a} * \mathrm{~b}$) and ($*(\mathrm{a}+\mathrm{b})$) are valid. Syntactic associativity, however, is not taken into account in sections; thus, $(a+b+)$ must be written $((a+b)+)$.

Because - is treated specially in the grammar, ($-\exp$) is not a section, but an application of prefix negation, as described in the preceding section. However, there is a subtract function defined in the standard prelude such that (subtract exp) is equivalent to the disallowed section. The expression (+ (-exp)) can serve the same purpose.

Translation: For binary operator op and expression e, if x is a variable that does not occur free in e, the section (ope) is equivalent to $\backslash x \rightarrow x o p e$, and the section ($e o p$) is equivalent to $\backslash x \rightarrow e o p x$.

3.5 Conditionals

$\exp \quad \rightarrow \quad$ if $\exp _{1}$ then $\exp _{2}$ else $\exp _{3}$

A conditional expression has the form if e_{1} then e_{2} else e_{3} and returns the value of e_{2} if the value of e_{1} is True, e_{3} if e_{1} is False, and \perp otherwise.

Translation: if e_{1} then e_{2} else e_{3} is equivalent to:

$$
\text { case } e_{1} \text { of }\left\{\text { True } \rightarrow e_{2} ; \text { False } \rightarrow e_{3}\right\}
$$

where True and False are the two nullary constructors from the type Bool, as defined in the standard prelude.

3.6 Lists

$\operatorname{aexp} \quad \rightarrow \quad\left[\exp _{1}, \ldots, \exp _{k}\right] \quad(k \geq 0)$

Lists are written $\left[e_{1}, \ldots, e_{k}\right]$, where $k \geq 0$; the empty list is written []. Standard operations on lists are given in the standard prelude (see Appendix A, notably Section A.5).

Translation: $\left[e_{1}, \ldots, e_{k}\right]$ is equivalent to

$$
e_{1}:\left(e_{2}:\left(\ldots\left(e_{k}:[]\right)\right)\right)
$$

where : and [] are constructors for lists, as defined in the standard prelude (see Section 6.4). The types of e_{1} through e_{k} must all be the same (call it t), and the type of the overall expression is [t] (see Section 4.1.1).

3.7 Tuples

$\operatorname{aexp} \quad \rightarrow\left(\exp _{1}, \ldots, \exp _{k}\right) \quad(k \geq 2)$

Tuples are written (e_{1}, \ldots, e_{k}), and may be of arbitrary length $k \geq 2$. Standard operations on tuples are given in the standard prelude (see Appendix A).

Translation: $\left(e_{1}, \ldots, e_{k}\right)$ for $k \geq 2$ is an instance of a k-tuple as defined in the standard prelude, and requires no translation. If t_{1} through t_{k} are the types of e_{1} through e_{k}, respectively, then the type of the resulting tuple is (t_{1}, \ldots, t_{k}) (see Section 4.1.1).

3.8 Unit Expressions and Parenthesised Expressions

aexp \rightarrow ()
| (exp)
The form (e) is simply a parenthesised expression, and is equivalent to e. The unit expression () has type () (see Section 4.1.1); it is the only member of that type (it can be thought of as the "nullary tuple")-see Section 6.6.

Translation: (e) is equivalent to e.

3.9 Arithmetic Sequences

$\operatorname{aexp} \quad \rightarrow \quad\left[\exp _{1}\left[, \exp _{2}\right] \ldots\left[\exp _{3}\right]\right]$
The form $\left[e_{1}, e_{2} \ldots e_{3}\right]$ denotes an arithmetic sequence from e_{1} in increments of $e_{2}-e_{1}$ of values not greater than e_{3} (if the increment is nonnegative) or not less than e_{3} (if the increment is negative). Thus, the resulting list is empty if the increment is nonnegative and e_{3} is less than ϵ_{1} or if the increment is negative and e_{3} is greater than e_{1}. If the increment is zero, an infinite list of $e_{1} \mathrm{~s}$ results if e_{3} is not less than e_{1}. If e_{3} is omitted, the result is an infinite list, unless the element type is an enumeration, in which case the implied limit is the greatest value of the type if the increment is nonnegative, or the least value, otherwise.

The forms $\left[e_{1}, e_{3}\right]$ and $\left[e_{1} \ldots\right]$ are similar to those above, but with an implied increment of one.

Arithmetic sequences may be defined over any type in class Enum, including Char, Int, and Integer (see Figure 5 and Section 4.3.3). For example, ['a'. . 'z'] denotes the list of lower-case letters in alphabetical order.

Translation: Arithmetic sequences satisfy these identities:

$$
\begin{array}{ll}
{\left[e_{1} \ldots\right]} & =\text { enumFrom } e_{1} \\
{\left[e_{1}, e_{2} \ldots\right]} & =\text { enumFromThen } e_{1} e_{2} \\
{\left[e_{1} \ldots e_{3}\right]} & =\text { enumFromTo } e_{1} e_{3} \\
{\left[e_{1}, e_{2} \ldots e_{3}\right]} & =\text { enumFromThenTo } e_{1} e_{2} e_{3}
\end{array}
$$

where enumFrom, enumFromThen, enumFromTo, and enumFromThenTo are operations in the class Enum as defined in the standard prelude (see Figure 5).

3.10 List Comprehensions

```
aexp ( [ exp | qual , ..., qualn ] (list comprehension, n \geq1)
qual }->\quad\mathrm{ pat <- exp
    | exp
```

A list comprehension has the form $\left[e \mid q_{1}, \ldots, q_{n}\right], n \geq 1$, where the q_{i} qualifiers are either generators of the form $p<-e$, where p is a pattern (see Section 3.14) of type t and e is an expression of type [t]; or guards, which are arbitrary expressions of type Bool.

Such a list comprehension returns the list of elements produced by evaluating e in the successive environments created by the nested, depth-first evaluation of the generators in the qualifier list. Binding of variables occurs according to the normal pattern-matching rules (see Section 3.14), and if a match fails then that element of the list is simply skipped over. Thus:

```
[ x | xs <- [ [(1,2),(3,4)], [(5,4),(3,2)]],
    (3,x)<- xs ]
```

yields the list $[4,2]$. If a qualifier is a guard, it must evaluate to True for the previous pattern-match to succeed. As usual, bindings in list comprehensions can shadow those in outer scopes; for example:

$$
[\mathrm{x} \mid \mathrm{x}<-\mathrm{x}, \mathrm{x}<-\mathrm{x}]=[\mathrm{z} \mid \mathrm{y}<-\mathrm{x}, \mathrm{z}<-\mathrm{y}]
$$

Translation: List comprehensions satisfy these identities, which may be used as a translation into the kernel:

$$
\begin{aligned}
{\left[\begin{array}{l|l}
e & b
\end{array}\right]=} & \text { if } b \text { then }[e] \text { else }[] \\
{\left[\begin{array}{llll}
e & q_{1}, q_{2}
\end{array}\right]=} & \text { concat } \left.\left.\left[\begin{array}{lll}
e & \mid & q_{2}
\end{array}\right] \right\rvert\, q_{1}\right] \\
{[} & \mid p<-l]= \\
& \text { let ok } p=\text { True } \\
& \quad \text { ok }=\text { False } \\
& \quad \operatorname{map}(\backslash p \rightarrow e) \text { (filter ok } l)
\end{aligned}
$$

where e ranges over expressions, p ranges over patterns, l ranges over list-valued expressions, b ranges over boolean expressions, q_{1} and q_{2} range over non-empty lists of qualifiers, and ok is a new identifier not appearing in e, p, or l. These three equations uniquely define list comprehensions. True, False, map, concat and filter are all as defined in the standard prelude.

3.11 Let Expressions

Let expressions have the general form let $\left\{d_{1} ; \ldots ; d_{n}\right\}$ in e, and introduce a nested, lexically-scoped, mutually-recursive list of declarations (let is often called letrec in other languages). The scope of the declarations is the expression e and the right hand side of the declarations. Declarations are described in Section 4. Pattern bindings are matched lazily as irrefutable patterns.

Translation: The dynamic semantics of the expression let $\left\{d_{1} ; \ldots ; d_{n}\right\}$ in e_{0} is captured by this translation: After removing all type signatures, each declaration d_{i} is translated into an equation of the form $p_{i}=e_{i}$, where p_{i} and e_{i} are patterns and expressions respectively, using the translation in Section 4.4.2. Once done, these identities hold, which may be used as a translation into the kernel:

```
let \(\left\{p_{1}=e_{1} ; \ldots ; p_{n}=e_{n}\right\}\) in \(e_{0}=\operatorname{let}\left({ }^{\sim} p_{1}, \ldots,{ }^{\sim} p_{n}\right)=\left(e_{1}, \ldots, e_{n}\right)\) in \(e_{0}\)
let \(p=e_{1}\) in \(e_{0} \quad=\) case \(e_{1}\) of \({ }^{\sim} p \rightarrow e_{0}\)
    where no variable in \(p\) appears free in \(e_{1}\)
let \(p=e_{1}\) in \(e_{0} \quad=\) let \(p=\operatorname{fix}\left(\backslash{ }^{\sim} p \rightarrow e_{1}\right)\) in \(\epsilon_{0}\)
```

where fix is the least fixpoint operator. Note the use of the irrefutable patterns in the second and third rules. The static semantics of the bindings in a let expression is described in Section 4.4.2.

3.12 Case Expressions

$$
\begin{array}{llll}
\exp & \rightarrow & \text { case } \exp \text { of }\{\text { alts }[;]\} & \\
\text { alts } & \rightarrow & \text { alt } t_{1} \ldots ; \text { alt } \\
\text { alt } & \rightarrow & \text { pat } \rightarrow \exp [\text { where }\{\text { decls }[;]\}] & (n \geq 1) \\
& \mid & \text { pat gdpat }[\text { where }\{\text { decls }[;]\}] & \\
\text { gdpat } & \rightarrow & \\
\text { gd } & \rightarrow \text { gd exp }[\text { gdpat }] &
\end{array}
$$

A case expression has the general form

```
case e of { p p match ; ; .. ; p p match _ }
```

where each match is of the general form

$$
\begin{array}{ll}
\mid g_{i t} & \rightarrow>e_{i 1} ; \\
\ldots & \\
\mid g_{i m_{i}} & \rightarrow e_{i m_{i}} \\
\text { where }\left\{\operatorname{decls}_{i}\right\}
\end{array}
$$

Each alternative p_{i} matches $_{i}$ consists of a pattern p_{i} and its matches i_{i}, which consists of pairs of optional guards $g_{i j}$ and bodies $e_{i j}$ (expressions), as well as optional bindings (decls ${ }_{i}$) that scope over all of the guards and expressions of the alternative. An alternative of the form

$$
\text { pat } \rightarrow \text { expr where }\{d e c l s\}
$$

is treated as shorthand for:

```
pat | True -> expr
where { decls }
```

A case expression must have at least one alternative and each alternative must have at least one body. Each body must have the same type, and the type of the whole expression is that type.

A case expression is evaluated by pattern-matching the expression e against the individual alternatives. The matches are tried sequentially, from top to bottom. The first successful match causes evaluation of the corresponding alternative body, in the environment of the case expression extended by the bindings created during the matching of that alternative and by the decls s_{i} associated with that alternative. If no match succeeds, the result is \perp. Pattern matching is described in Section 3.14, with the formal semantics of case expressions in Section 3.14.3.

3.13 Expression Type-Signatures

```
exp }\quad->\quad\mathrm{ exp ::[context =>] type
```

Expression type-signatures have the form $e:: t$, where e is an expression and t is a type (Section 4.1.1); they are used to type an expression explicitly and may be used to resolve ambiguous typings due to overloading (see Section 4.3.4). The value of the expression is just that of exp. As with normal type signatures (see Section 4.4.1), the declared type may be more specific than the principal type derivable from exp, but it is an error to give a type that is more general than, or not comparable to, the principal type.

3.14 Pattern-Matching

Patterns appear in lambda abstractions, function definitions, pattern bindings, list comprehensions, and case expressions. However, the first four of these ultimately translate into case expressions, so defining the semantics of pattern-matching for case expressions is sufficient.

3.14.1 Patterns

Patterns have this syntax:

```
pat }->\quad\mp@subsup{pat}{}{0
pat\mp@subsup{t}{}{i}}
    lpati
lpat i
lpat }\mp@subsup{}{}{6}->(var|_)+\mathrm{ integer (successor pattern)
    | - (integer | float) (negative literal)
rpat i }->\mathrm{ pat i+1 conop }\mp@subsup{}{}{(\textrm{r},i)}(\mp@subsup{\mathrm{ rpat }}{}{i}|\mp@subsup{\mathrm{ pat }}{}{i+1}
patt }\mp@subsup{}{}{10}
    con apat }\mp@subsup{|}{1}{\ldots}\mp@subsup{\mathrm{ apat }}{k}{}\quad(\mathrm{ arity con =k,k}2\geq1
```

apat $\quad \rightarrow$	var [@ apat]	(as pattern)
	con	(arity con $=0$)
	literal	
	-	(wildcard)
	()	(unit pattern)
	(pat)	(parenthesised pattern)
	($\mathrm{pat}_{1}, \ldots, \mathrm{pat}_{k}$)	(tuple pattern, $k \geq 2$)
	[$\left.\mathrm{pat}_{1}, \ldots, \mathrm{pat}_{k}\right]$	(list pattern, $k \geq 0$)
	\sim apat	(irrefutable pattern)

The arity of a constructor must match the number of sub-patterns associated with it; one cannot match against a partially-applied constructor.

All patterns must be linear-no variable may appear more than once.
Patterns of the form var@pat are called as-patterns, and allow one to use var as a name for the value being matched by pat. For example,

```
case e of { xs@(x:rest) -> if x==0 then rest else xs }
```

is equivalent to:

```
let { xs = e } in
    case xs of { (x:rest) -> if x == 0 then rest else xs }
```

Patterns of the form _ are wildcards and are useful when some part of a pattern is not referenced on the right-hand-side. It is as if an identifier not used elsewhere were put in its place. For example,

```
case e of { [x,_,_] -> if x==0 then True else False }
```

is equivalent to:

```
case e of { [x,y,z] -> if x==0 then True else False }
```

In the pattern-matching rules given below we distinguish two kinds of patterns: an irrefutable pattern is: a variable, a wildcard, of the form var@apat where apat is irrefutable, or of the form " apat (whether or not apat is irrefutable). All other patterns are refutable.

3.14.2 Informal semantics of pattern-matching

Patterns are matched against values. Attempting to match a pattern can have one of three results: it may fail; it may succeed, returning a binding for each variable in the pattern; or it may diverge (i.e. return \perp). Pattern-matching proceeds from left to right, and outside in, according to these rules:

1. Matching a value v against the irrefutable pattern var always succeeds and binds var to v. Similarly, matching v against the irrefutable pattern ~apat always succeeds.

The free variables in apat are bound to the appropriate values if matching v against apat would otherwise succeed, and to \perp if matching v against apat fails or diverges. (Binding does not imply evaluation.)

Operationally, this means that no matching is done on an irrefutable pattern until one of the variables in the pattern is used. At that point the entire pattern is matched against the value, and if the match fails or diverges, so does the overall computation.
2. Matching \perp against a refutable pattern always diverges.
3. Matching a non- \perp value can occur against two kinds of refutable patterns:
(a) Matching a non- \perp value against a constructed pattern fails if the outermost constructors are different. If the constructors are the same, the result of the match is the result of matching the sub-patterns left-to-right: if all matches succeed, the overall match succeeds; the first to fail or diverge causes the overall match to fail or diverge, respectively.
Constructed values consist of those created by prefix or infix constructors, tuple or list patterns, and strings (which are lists of characters). Characters and () are treated as nullary constructors. Numeric literals are matched using the overloaded $==$ function.
(b) Matching a non- \perp value n against a pattern of the form $x+k$ (where x is a variable and k is a positive integer literal) succeeds if $n \geq k$, resulting in the binding of x to $n-k$, and fails if $n<k$. For example, the Fibonacci function may be defined as follows:

```
    fib n = case n of {
        0 -> 1 ;
        1 -> 1;
        n+2 -> fib n + fib (n+1) }
```

Since n must be bound to a positive value, f ib diverges for a negative argument, and exactly one of the equations matches any non-negative argument.
4. The result of matching a value v against an as-pattern var@apat is the result of matching v against pat augmented with the binding of var to v. If the match of v against pat fails or diverges, then so does the overall match.

Aside from the obvious static type constraints (for example, it is a static error to match a character against a boolean), these static class constraints hold: an integer literal pattern can only be matched against a value in the class Num; a floating literal pattern can only be matched against a value in the class Fractional; and a $n+k$ pattern can only be matched against a value in the class Integral.

Here are some examples:

1. If the pattern $[1,2]$ is matched against $[0, \perp]$, then 1 fails to match against 0 , and the result is a failed match. But if $[1,2]$ is matched against $[\perp, 0]$, then attempting to match 1 against \perp causes the match to diverge.
2. These examples demonstrate refutable vs. irrefutable matching:

$$
\begin{aligned}
& (1 \sim(x, y) \rightarrow 0) \perp \quad \Rightarrow \quad 0 \\
& \text { (} 1(x, y) \rightarrow 0) \perp \quad \Rightarrow \quad \perp \\
& \text { (}(\mathrm{\sim}[\mathrm{x}]->0)[] \quad \Rightarrow \quad 0 \\
& \text { (} \left.\text { ~ }^{2} \mathrm{x}\right] \text {-> x) [] } \quad \Rightarrow \quad \perp \\
& (\backslash \sim[x, \sim(a, b)] \rightarrow x)[(0,1), \perp] \quad \Rightarrow \quad(0,1) \\
& \text { (} \left.{ }^{\sim}[x,(a, b)] \rightarrow x\right)[(0,1), \perp] \quad \Rightarrow \quad \perp \\
& \text { (} 1 \text { (} x: x s) ~->x: x: x s) \perp \Rightarrow \perp \\
& \text { (} \left.{ }^{\sim} \text { (x:xs) }->\mathrm{x}: \mathrm{x}: \mathrm{xs}\right) ~ \perp \quad \Rightarrow \quad \perp: \perp: \perp
\end{aligned}
$$

Top level patterns in case expressions, and the set of top level patterns in function or pattern bindings, may have zero or more associated guards. A guard is a boolean expression that is evaluated only after all of the arguments have been successfully matched, and it must be true for the overall pattern-match to succeed. The environment of the guard is the same as the right-hand-side of the case-expression alternative, function definition, or pattern binding to which it is attached.

The guard semantics has an obvious influence on the strictness characteristics of a function or case expression. In particular, an otherwise irrefutable pattern may be evaluated because of a guard. For example, in

$$
f \sim(x, y, z)[a] \mid a==y=1
$$

both a and y will be evaluated.

3.14.3 Formal semantics of pattern-matching

The semantics of all pattern-matching constructs other than case expressions is defined by giving identities that relate those constructs to case expressions. The semantics of case expressions themselves is in turn given as a series of identities, in Figures 3-4. Any implementation should behave so that these identities hold; it is not expected that it will use them directly, since that would generate rather inefficient code.

In Figures 3-4: e, ϵ^{\prime} and e_{i} are expressions; g and g_{i} are boolean-valued expressions; p and p_{i} are patterns; x and x_{i} are variables; K and K^{\prime} are constructors (including tuple constructors); a match h_{i} is a form as shown in rule (a); and k is a character, string, or numeric literal.

For clarity, several rules are expressed using let (used only in a non-recursive way); their usual purpose is to prevent name capture (e.g., in rule (b)). The rules may be re-expressed entirely with cases by applying this identity:

$$
\text { let } x=y \text { in } e=\text { case } y \text { of }\{x \rightarrow e\}
$$

```
(a) case \(e_{0}\) of \(\left\{p_{1}\right.\) match \(_{1} ; \ldots\); \(p_{n}\) match \(\left._{n}\right\}\)
    \(=\) case \(e_{0}\) of \(\left\{p_{1}\right.\) match \(_{1}\);
                _ -> ... case \(\epsilon_{0}\) of \{
                        \(p_{n}\) match \(_{n}\)
                        _ \(->\) error "No match" \}...\}
        where each match \(_{i}\) has the form:
            \(\left|g_{i, 1} \rightarrow e_{i, 1} ; \ldots ;\right| g_{i, m_{i}} \rightarrow e_{i, m_{i}}\) where \(\left\{\right.\) decls \(\left.s_{i}\right\}\)
(b) case \(e_{0}\) of \(\left\{p \mid g_{1} \rightarrow e_{1} ; \ldots\right.\)
            \(\mid g_{n} \rightarrow e_{n}\) where \(\{\) decls \(\}\)
                        -> \(\left.e^{\prime}\right\}\)
    \(=\) let \(\left\{y=\overline{e^{\prime}}\right\} \quad\) (where \(y\) is a completely new variable)
        in case \(e_{0}\) of \(\{\)
            \(p \rightarrow\) let \(\{\) decls \(\}\) in
                if \(g_{1}\) then \(e_{1} \ldots\) else if \(g_{n}\) then \(e_{n}\) else \(y\)
            _ -> \(y\}\)
(c) case \(e_{0}\) of \(\left\{\sim \sim p \rightarrow e^{\sim} \quad->e^{\prime}\right\}\)
    \(=\) let \(\left\{y=e_{0}\right\}\) in
        let \(\left\{x_{1}^{\prime}=\right.\) case \(y\) of \(\left.\left\{p \rightarrow x_{1}\right\}\right\}\) in \(\ldots\)
        let \(\left\{x_{n}^{\prime}=\right.\) case \(y\) of \(\left.\left\{p \rightarrow x_{n}\right\}\right\}\) in \(\epsilon\left[x_{1}^{\prime} / x_{1}, \ldots, x_{n}^{\prime} / x_{n}\right]\)
    \(x_{1}, \ldots, x_{n}\) are all the variables in \(p ; y, x_{1}^{\prime}, \ldots, x_{n}^{\prime}\) are completely new variables
(d) case \(e_{0}\) of \(\left\{x @ p \rightarrow e ; \quad->\epsilon^{\prime}\right\}\)
    \(=\) let \(\left\{y=e_{0}\right\} \quad\) (where \(y\) is a completely new variable)
        in case \(y\) of \(\left\{p \rightarrow(\backslash x \rightarrow e) y ;->e^{\prime}\right\}\)
```


Figure 3: Semantics of Case Expressions, Part 1

Using all but the last two identities (rules (k) and (1)) in Figure 4 in a left-to-right manner yields a translation into a subset of general case expressions called simple case expressions. Rule (a) matches a general source-language case expression, regardless of whether it actually includes guards-if no guards are written, then True is substituted for the guards $g_{i, j}$ in the match forms. Subsequent identities manipulate the resulting case expression into simpler and simpler forms. The semantics of simple case expressions is given by the last two identities ((k) and (1)).

Rules (g) and (h) in Figure 4 involve the overloaded operators $==$ and $>=$; it is these rules that define the meaning of pattern-matching against overloaded constants.

These identities all preserve the static semantics. Rules (d) and (j) use a lambda rather than a let; this indicates that variables bound by case are monomorphically typed (Section 4.1.3).
(f) case e_{0} of $\left\{K p_{1} \ldots p_{n} \rightarrow e ; ~->e^{\prime}\right\}$
$=\operatorname{let}\left\{y=e^{\prime}\right\}$
in case e_{0} of $\{$
$K x_{1} \ldots x_{n} \rightarrow$ case x_{1} of \{
$p_{1} \rightarrow \ldots$ case x_{n} of $\left\{p_{n} \rightarrow e ; \quad->y\right\} \ldots$ _ -> y\}

- -> $y\}$
at least one of p_{1}, \ldots, p_{n} is not a variable; y, x_{1}, \ldots, x_{n} are new variables
(g) case e_{0} of $\left\{k \rightarrow e ; ~->e^{\prime}\right\}=$ if ($e_{0}==k$) then e else e^{\prime}
(h) case e_{0} of $\left\{x+k \rightarrow e ; ~->\epsilon^{\prime}\right\}$
$=$ if $\epsilon_{0}>=k$ then let $\left\{x^{\prime}=\epsilon_{0}-k\right\}$ in $\epsilon\left[x^{\prime} / x\right]$ else ϵ^{\prime} (x^{\prime} is a new variable)
(i) case e_{0} of $\left\{x \rightarrow e ;->e^{\prime}\right\}=$ case ϵ_{0} of $\{x \rightarrow e\}$
(j) case e_{0} of $\{x \rightarrow e\}=(\backslash x \rightarrow e) e_{0}$
(k) case ($K^{\prime} e_{1} \ldots e_{m}$) of $\left\{\begin{array}{lllll}K & x_{1} & \ldots & x_{n} \\ \rightarrow> & e & \text { _ } & \left.e^{\prime}\right\}=e^{\prime}\end{array}\right.$ where K and K^{\prime} are distinct constructors of arity n and m, respectively
(1) case ($\begin{array}{llll} & e_{1} & \ldots & e_{n}\end{array}$) of $\left\{\begin{array}{lllll}K & x_{1} & \ldots & x_{n} & \rightarrow \\ e & \text {; } & \text {-> } e^{\prime}\end{array}\right\}$ $=$ case e_{1} of $\left\{x_{1}^{\prime} \rightarrow \ldots\right.$ case e_{n} of $\left.\left\{x_{n}^{\prime} \rightarrow e\left[x_{1}^{\prime} / x_{1} \ldots x_{n}^{\prime} / x_{n}\right]\right\} \ldots\right\}$ where K is a constructor of arity $n ; x_{1}^{\prime} \ldots x_{n}^{\prime}$ are completely new variables

Figure 4: Semantics of Case Expressions, Part 2

4 Declarations and Bindings

In this section, we describe the syntax and informal semantics of Haskell declarations.

```
module \(\rightarrow\) module modid [exports] where body
    body
body \(\rightarrow\) \{[impdecls ;][[fixdecls ;] topdecls [;]]\}
    | \{ impdecls [;]\}
topdecls \(\rightarrow\) topdecl \(_{1} ; \ldots\); topdecl \(l_{n} \quad(n \geq 1)\)
topdecl \(\rightarrow\) type simple \(=\) type
        data \([\) context \(=>]\) simple \(=\) constrs \([\) deriving \((\) tycls \(\mid\) (tyclses) \()]\)
        class [context \(\Rightarrow>\) ] class [where \(\{\) cbody [;] \}]
        instance [context \(=>\) ] tycls inst [where \{ valdefs [;] \}]
        default (type \(\mid\left(\right.\) type \(_{1}, \ldots\), type \(\left.\left._{n}\right)\right) \quad(n \geq 0)\)
        decl
decls \(\rightarrow\) decl \(_{1} ; \ldots ;\) decl \(_{n} \quad(n \geq 0)\)
decl \(\rightarrow\) vars : : [context \(\Rightarrow>\) ] type
    | valdef
```

The declarations in the syntactic category topdecls are only allowed at the top level of a Haskell module (see Section 5), whereas decls may be used either at the top level or in nested scopes (i.e. those within a let or where construct).

For exposition, we divide the declarations into three groups: user-defined datatypes, consisting of type and data declarations (Section 4.2); type classes and overloading, consisting of class, instance, and default declarations (Section 4.3); and nested declarations, consisting of value bindings and type signatures (Section 4.4).

Haskell has several primitive datatypes that are "hard-wired" (such as integers and arrays), but most "built-in" datatypes are defined in the standard prelude with normal Haskell code, using type and data declarations. These "built-in" datatypes are described in detail in Section 6.

4.1 Overview of Types and Classes

Haskell uses a traditional Hindley-Milner polymorphic type system to provide a static type semantics [4, 7], but the type system has been extended with type classes (or just classes) that provide a structured way to introduce overloaded functions. This is the major technical innovation in Haskell.

A class declaration (Section 4.3.1) introduces a new type class and the overloaded operations that must be supported by any type that is an instance of that class. An instance declaration (Section 4.3.2) declares that a type is an instance of a class and
includes the definitions of the overloaded operations-called methods-instantiated on the named type.

For example, suppose we wish to overload the operations (+) and negate on types Int and Float. We introduce a new type class called Num:

```
class Num a where -- simplified class declaration for Num
    (+) \(\quad:: a \rightarrow a->a\)
    negate : : a \(->\) a
```

This declaration may be read "a type a is an instance of the class Num if there are (overloaded) operations (+) and negate, of the appropriate types, defined on it."

We may then declare Int and Float to be instances of this class:

```
instance Num Int where -- simplified instance of Num Int
    x + y = addInt x y
    negate x = negateInt x
instance Num Float where -- simplified instance of Num Float
    x + y = addFloat x y
    negate x = negateFloat x
```

where addInt, negateInt, addFloat, and negateFloat are assumed in this case to be primitive functions, but in general could be any user-defined function. The first declaration above may be read "Int is an instance of the class Num as witnessed by these definitions (i.e. methods) for (+) and negate."

More examples can be found in Wadler and Blott's paper [21].

4.1.1 Syntax of Types

type	\rightarrow	btype [$->$ type]	
btype		$\begin{aligned} & \text { tycon atype }_{1} \ldots \text { atype }_{k} \\ & \text { atype } \end{aligned}$	$($ arity tycon $=k, k \geq 1)$
atype	\rightarrow	tyvar	
		tycon	(arity tycon $=0$)
		()	(unit type)
		(type)	(parenthesised type)
		(type $_{1}, \ldots$, type $_{k}$)	(tuple type, $k \geq 2$)
		[type]	

The syntax for Haskell type expressions is given above. They are built in the usual way from type variables, function types, type constructors, tuple types, and list types. Type variables are identifiers beginning with a lower-case letter and type constructors are identifiers beginning with an upper-case letter. A type is one of:

1. A function type having form $t_{1} \rightarrow t_{2}$. Function arrows associate to the right.
2. A constructed type having form $T t_{1} \ldots t_{k}$, where T is a type constructor of arity k.
3. A tuple type having form $\left(t_{1}, \ldots, t_{k}\right)$ where $k \geq 2$. It denotes the type of k-tuples with the first component of type t_{1}, the second component of type t_{2}, and so on (see Sections 3.7 and 6.5).
4. A list type has the form [t]. It denotes the type of lists with elements of type t (see Sections 3.6 and 6.4).
5. The trivial type having form (). It denotes the "nullary tuple" type, and has exactly one value, also written () (see Sections 3.8 and 6.6).
6. A parenthesised type, having form (t), is identical to the type t.

Although the tuple, list, and trivial types have special syntax, they are not different from user-defined types with equivalent functionality.

Expressions and types have a consistent syntax. If t_{i} is the type of expression or pattern e_{i}, then the expressions ($\backslash e_{1} \rightarrow e_{2}$), $\left[e_{1}\right]$, and (e_{1}, e_{2}) have the types ($t_{1} \rightarrow t_{2}$), $\left[t_{1}\right]$, and (t_{1}, t_{2}), respectively.

With one exception, the type variables in a Haskell type expression are all assumed to be universally quantified; there is no explicit syntax for universal quantification [4, 17]. For example, the type expression a $->$ a denotes the type $\forall a . a \rightarrow a$. For clarity, however, we will often write quantification explicitly when discussing the types of Haskell programs.

The exception referred to is that of the distinguished type variable in a class declaration (Section 4.3.1).

4.1.2 Syntax of Class Assertions and Contexts

$\begin{array}{llll}\text { context } & \rightarrow & \text { class } & \\ & \mid(\text { class }\end{array}, \ldots$, class $\left._{n}\right) \quad(n \geq 1)$

A class assertion has form tycls tyvar, and indicates the membership of the parameterised type tyvar in the class tycls. A class identifier begins with a capital letter.

A context consists of one or more class assertions, and has the general form

$$
\left(C_{1} u_{1}, \ldots, C_{n} u_{n}\right)
$$

where C_{1}, \ldots, C_{n} are class identifiers, and u_{1}, \ldots, u_{n} are type variables; the parentheses may be omitted when $n=1$. In general, we use c to denote a context and we write $c \Rightarrow t$ to indicate the type t restricted by the context c. The context c must only contain type variables referenced in t. For convenience, we write $c \Rightarrow t$ even if the context c is empty, although in this case the concrete syntax contains no $=>$.

4.1.3 Semantics of Types and Classes

In this subsection, we provide informal details of the type system. (Wadler and Blott [21] discuss type classes further.)

The Haskell type system attributes a type to each expression in the program. In general, a type is of the form $\forall \bar{u} . c \Rightarrow t$, where \bar{u} is a set of type variables u_{1}, \ldots, u_{n}. In any such type, any of the universally-quantified type variables u_{i} which are free in c must also be free in t. Furthermore, the context c must be of the form given above in Section 4.1.2; that is, it must have the form ($C_{1} u_{1}, \ldots, C_{n} u_{n}$) where C_{1}, \ldots, C_{n} are class identifiers, and u_{1}, \ldots, u_{n} are type variables.

The type of an expression e depends on a type environment that gives types for the free variables in e, and a class environment that declares which types are instances of which classes (a type becomes an instance of a class only via the presence of an instance declaration or a deriving clause).

Types are related by a generalisation order (specified below); the most general type that can be assigned to a particular expression (in a given environment) is called its principal type. Haskell's extended Hindley-Milner type system can infer the principal type of all expressions, including the proper use of overloaded operations (although certain ambiguous overloadings could arise, as described in Section 4.3.4). Therefore, explicit typings (called type signatures) are optional (see Sections 3.13 and 4.4.1).

The type $\forall \bar{u} . c_{1} \Rightarrow t_{1}$ is more general than the type $\forall \bar{w} . c_{2} \Rightarrow t_{2}$ if and only if there is a substitution S whose domain is \bar{u} such that:

- t_{2} is identical to $S\left(t_{1}\right)$.
- Whenever c_{2} holds in the class environment, $S\left(c_{1}\right)$ also holds.

The main point about contexts above is that, given the type $\forall \bar{u} . c \Rightarrow t$, the presence of $C u_{i}$ in the context c expresses the constraint that the type variable u_{i} may be instantiated as t^{\prime} within the type expression t only if t^{\prime} is a member of the class C. For example, consider the function double:

```
double x = x + x
```

The most general type of double is $\forall a$. Num $a \Rightarrow a \rightarrow a$. double may be applied to values of type Int (instantiating a to Int), since Int is an instance of the class Num. However, double may not be applies to values of type Char, because Char is not an instance of class Num.

4.2 User-Defined Datatypes

In this section, we describe algebraic datatypes (data declarations) and type synonyms (type declarations). These declarations may only appear at the top level of a module.

4.2.1 Algebraic Datatype Declarations

The precedence for constr is the same as that for expressions-normal constructor application has higher precedence than infix constructor application (thus a : Foo a parses as a : (F○○ a)).

An algebraic datatype declaration introduces a new type and constructors over that type and has the form:

$$
\text { data } c \Rightarrow T u_{1} \ldots u_{k}=K_{1} t_{11} \ldots t_{1 k_{1}}|\ldots| K_{n} t_{n 1} \ldots t_{n k_{n}}
$$

where c is a context. This declaration introduces a new type constructor T with constituent data constructors K_{1}, \ldots, K_{n} whose types are given by:

$$
K_{i}:: \forall u_{1} \ldots u_{k} . c_{i} \Rightarrow t_{i 1} \rightarrow \cdots \rightarrow t_{i k_{i}} \rightarrow\left(T u_{1} \ldots u_{k}\right)
$$

where c_{i} is the largest subset of c that constrains only those type variables free in the types $t_{i 1}, \ldots, t_{i k_{i}}$. The type variables u_{1} through u_{k} must be distinct and may appear in c and the $t_{i j}$; it is a static error for any other type variable to appear in c or on the right-hand-side.

For example, the declaration

```
data Eq a => Set a = NilSet | ConsSet a (Set a)
```

introduces a type constructor Set, and constructors NilSet and ConsSet with types

```
NilSet :: }\foralla.\mathrm{ Set }
ConsSet :: }\foralla.\mathrm{ Eq a ma m Set a Set a
```

In the example given, the overloaded type for ConsSet ensures that ConsSet can only be applied to values whose type is an instance of the class Eq. The context in the data declaration has no other effect whatsoever. In particular, pattern matching is unaffected.

The visibility of a datatype's constructors (i.e. the "abstractness" of the datatype) outside of the module in which the datatype is defined is controlled by the form of the datatype's name in the export list as described in Section 5.6.

The optional deriving part of a data declaration has to do with derived instances, and is described in Section 4.3.3.

4.2.2 Type Synonym Declarations

topdecl \rightarrow type simple $=$ type
simple \rightarrow tycon tyvar \ldots tyvar $_{k} \quad$ (arity tycon $=k, k \geq 0$)

A type synonym declaration introduces a new type that is equivalent to an old type and has the form

$$
\text { type } T u_{1} \ldots u_{k}=t
$$

which introduces a new type constructor, T. The type ($T t_{t} \ldots t_{k}$) is equivalent to the type $t\left[t_{1} / u_{1}, \ldots, t_{k} / u_{k}\right]$. The type variables u_{1} through u_{k} must be distinct and are scoped only over t; it is a static error for any other type variable to appear in t.

Although recursive and mutually recursive datatypes are allowed, this is not so for type synonyms, unless an algebraic datatype intervenes. For example,

```
type Rec a = [Circ a]
data Circ a = Tag [Rec a]
```

is allowed, whereas

```
type Rec a = [Circ a] -- ILLEGAL
type Circ a = [Rec a] --
```

is not. Similarly, type Rec a = [Rec a] is not allowed.

4.3 Type Classes and Overloading

4.3.1 Class Declarations

topdecl	\rightarrow	class $[$ context $\Rightarrow>]$ class $[$ where $\{$ cbody $[;]\}]$	
cbody	\rightarrow	csigns $[;$ valdef $[;$ valdefs $]]$	
	\mid	valdefs	
csigns	\rightarrow	csign $; \ldots ;$ csign	
csign	\rightarrow	vars $:[$ context $=>]$ type	$(n \geq 1)$
vars	\rightarrow	var $_{1}, \ldots$, var $_{n}$	$(n \geq 1)$

A class declaration introduces a new class and the operations on it. A class declaration has the general form:

$$
\begin{aligned}
\text { class } c \Rightarrow C u \text { where }\left\{\begin{array}{l}
\\
v_{1}:: c_{1} \Rightarrow t_{1} ; \ldots ; v_{n}:: c_{n} \Rightarrow t_{n} ; \\
\\
\\
\text { valdef } \left.f_{1} ; \ldots ; \text { valdef }_{m}\right\}
\end{array}\right.
\end{aligned}
$$

This introduces a new class name C; the type variable u is scoped only over the method signatures in the class body. The context c specifies the superclasses of C, as described below; the only type variable that may be referred to in c is u. The class declaration introduces new class methods v_{1}, \ldots, v_{n}, whose scope extends outside the class declaration, with types:

$$
v_{i}:: \forall u, \bar{w} .\left(C u, c_{i}\right) \Rightarrow t_{i}
$$

The t_{i} must mention u; they may mention type variables \bar{w} other than u, and the type of v_{i} is polymorphic in both u and \bar{w}. The c_{i} may constrain only \bar{w}; in particular, the c_{i} may not constrain u. For example:

```
class Foo a where
    op :: Num b => a -> b -> a
```

Here the type of op is $\forall a, b$. (Foo a, Num b) $\Rightarrow a \rightarrow b \rightarrow a$.
Default methods for any of the v_{i} may be included in the class declaration as a normal valdef; no other definitions are permitted. The default method for v_{i} is used if no binding for it is given in a particular instance declaration (see Section 4.3.2).

Two classes in scope at the same time may not share any of the same methods.
Figure 5 shows some standard Haskell classes, including the use of superclasses; note the class inclusion diagram on the right. For example, Eq is a superclass of Ord, and thus in any context Ord a is equivalent to (Eq a, Ord a).

A class declaration with no where part may be useful for combining a collection of classes into a larger one that inherits all of the operations in the original ones. For example:

```
class (Ord a, Text a, Binary a) => Data a
```

In such a case, if a type is an instance of all superclasses, it is not automatically an instance of the subclass, even though the subclass has no immediate operations. The instance declaration must be given explicitly, and it must have an empty where part as well.

The superclass relation must not be cyclic; i.e. it must form a directed acyclic graph.

4.3.2 Instance Declarations

topdecl inst		```instance [context =>] tycls tycon (tycon tyvar. ...tyvar }\mp@subsup{\mathrm{ tra}}{k}{\prime (tyvar },\ldots,\mp@subsup{t}{1}{\prime () [tyvar] (tyvar_ -> tyvara)```	aldefs [;] \}] (arity tycon $=0$) ($k \geq 1$, tyvars distinct) ($k \geq 2$, tyvars distinct) tyvar $_{1}$ and tyvar ${ }_{2}$ distinct
valdefs	\rightarrow	valdef ${ }_{1} ; \ldots$; valdef ${ }_{n}$	$(n \geq 0)$

An instance declaration introduces an instance of a class. Let

$$
\text { class } c \Rightarrow C u \text { where }\{\text { cbody }\}
$$

be a class declaration. The general form of the corresponding instance declaration is:

$$
\text { instance } c^{\prime} \Rightarrow C\left(T u_{1} \ldots u_{k}\right) \text { where }\{d\}
$$

```
class Eq a where -- Eq
    (==), (/=) :: a -> a -> Bool -- |
    -- Ord
    x /= y = not (x == y) -- / \
    -- Ix Enum
class (Eq a) => Ord a where
    (<), (<=), (>=), (>) :: a -> a -> Bool
    max, min :: a -> a -> a
    x<y = x <= y && x /= y
    x >= y = y<= x
    x>y = y< x
    max x y | x >= y = x
            | y >= x = y
    min x y | x <= y = x
            | y<= x = y
class Text a where
    showsPrec :: Int -> a -> String -> String
    readsPrec :: Int -> String -> [(a,String)]
    showList :: [a] -> String -> String
    readList :: String -> [([a],String)]
    showList = ... -- see Appendix A
    readList = ... -- see Appendix A
class Binary a where
    showBin :: a -> Bin -> Bin
    readBin :: Bin -> (a,Bin)
class (Ord a) => Ix a where
    range :: (a,a) -> [a]
    index :: (a,a) -> a >> Int
    inRange :: (a,a) -> a -> Bool
class (Ord a) => Enum a where
    enumFrom :: a -> [a] -- [n..]
    enumFromThen :: a -> a -> [a] -- [n,n'..]
    enumFromTo :: a -> a -> [a] -- [n..m]
    enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]
    enumFromTo n m = takeWhile ((>=) m) (enumFrom n)
    enumFromThenTo n n' m = takeWhile
                        ((if n' >= n then (>=) else (<=)) m)
                        (enumFromThen n n')
```

Figure 5: Standard Classes and Associated Functions
where $k \geq 0$ and T is not a type synonym. The type being instanced, ($T u_{1} \ldots u_{k}$), is a type constructor applied to simple type variables $u_{1}, \ldots u_{k}$, which must be distinct. This prohibits instance declarations such as:

```
instance C (a,a) where ...
instance C (Int,a) where ...
instance C [[a]] where ...
```

The declarations d may contain bindings only for the class methods of C, and may not contain any type signatures since the method signatures have already been given in the class declaration.

If no binding is given for some class method then the corresponding default method in the class declaration is used (if present); if such a default does not exist then the class method at this instance is implicitly bound to the completely undefined function (of the appropriate type) and no static error results.

An instance declaration that makes the type T to be an instance of class C is called a C-T instance declaration and is subject to these static restrictions:

- A C - T instance declaration may only appear either in the module in which C is declared or in the module in which T is declared, and only where both C and T are in scope.
- A type may not be declared as an instance of a particular class more than once in the same scope.
- Assume that the type variables in the instance type ($T u_{1} \ldots u_{k}$) satisfy the constraints in the instance context c^{\prime}. Under this assumption, the following two conditions must also be satisfied:

1. The constraints expressed by the superclass context $c[(T u 1 \ldots u k) / u]$ of C must be satisfied. In other words, T must be an instance of each of C 's superclasses.
2. Any constraints on the type variables in the instance type that are required for the method declarations in d to be well-typed must also be satisfied.

In fact, except in pathological cases it is possible to infer from the instance declaration the most general instance context c^{\prime} satisfying the above two constraints, but it is nevertheless mandatory to write an explicit instance context.

The last of these restrictions has quite subtle implications. Consider, for example, the following declarations:

```
class Foo a => Bar a where ...
instance (Eq a, Text a) => Foo [a] where ...
instance Num a => Bar [a] where ...
```

This is perfectly legal. Since Foo is a superclass of Bar, the second instance declaration is only legal if [a] is an instance of Foo under the assumption Num a. The first instance declaration does indeed say that [a] is an instance of Foo under this assumption, because Eq and Text are superclasses of Num.

If the two instance declarations instead read like this:

```
instance Num a => Foo [a] where ...
instance (Eq a, Text a) => Bar [a] where ...
```

then the program would be illegal. The second instance declaration is legal only if [a] is an instance of Foo under the assumptions (Eq a, Text a). But this does not hold, since [a] is only an instance of Foo under the stronger assumption Num a.

Further examples of instance declarations may be found in Appendix A.2.

4.3.3 Derived Instances

As mentioned in Section 4.2.1, data declarations contain an optional deriving form. If the form is included, then derived instance declarations are automatically generated for the datatype in each of the named classes. If a derived instance of a subclass is asked for, then each of the superclasses must either be asked for or an explicit instance declaration must be given for it.

Derived instances provide convenient commonly-used operations for user-defined datatypes. For example, derived instances for datatypes in the class Eq define the operations $==$ and $/=$, freeing the programmer from the need to define them.

The only classes for which derived instances are allowed are Eq, Ord, Ix, Enum, Text, and Binary, all defined in Figure 5, page 31. The precise details of how the derived instances are generated for each of these classes are provided in Appendix E, including a specification of when such derived instances are possible.

If it is not possible to derive an instance declaration over a class named in a deriving form, then a static error results. For example, not all datatypes can properly support operations in Enum. It is also a static error to give an explicit instance declaration for one that is also derived.

If the deriving form is omitted from a data declaration, then no instance declarations will be derived for that datatype; that is, omitting a deriving form is equivalent to including an empty deriving form: deriving ().

4.3.4 Defaults for Overloaded Operations

topdecl \rightarrow default (type $\mid\left(\right.$ type $_{1}, \ldots$, type $\left.\left._{n}\right)\right) \quad(n \geq 0)$

A problem inherent with overloading is the possibility of an ambiguous type. For example, using the read and show functions defined in Appendix E, and supposing that just Int and Bool are members of Text, then the expression

```
let x = read "..." in show x -- ILLEGAL
```

is ambiguous, because the types for show and read,

$$
\begin{aligned}
& \text { show }:: \forall a . \text { Text } a \Rightarrow a \rightarrow \text { String } \\
& \text { read }:: \forall a \text { Text } a \Rightarrow \text { String } \rightarrow a
\end{aligned}
$$

could be satisfied by instantiating a as either Int in both cases, or Bool. Such expressions are considered ill-typed, a static error.

We say that an expression e is ambiguously overloaded if, in its type $\forall \bar{u} . c \Rightarrow t$, there is a type variable u in \bar{u} which occurs in c but not in t. Such types are illegal.

For example, the earlier expression involving show and read is ambiguously overloaded since its type is $\forall a$. Text $a \Rightarrow$ String.

Overloading ambiguity, although rare, can only be circumvented by input from the user. One way is through the use of expression type-signatures as described in Section 3.13. For example, for the ambiguous expression given earlier, one could write:

```
let x = read "..." in show (x::Bool)
```

which disambiguates the type.
Occasionally, an otherwise ambiguous expression needs to be made the same type as some variable, rather than being given a fixed type with an expression type-signature. This is the purpose of the function asTypeOf (Appendix A): x asTypeOf y has the value of x, but x and y are forced to have the same type. For example,

```
approxSqrt x = encodeFloat 1 (exponent x 'div` 2) 'asTypeOf' x
```

(See Section 6.8.8.)
Ambiguities in the class Num are most common, so Haskell provides another way to resolve them-with a default declaration:

$$
\text { default }\left(t_{1}, \ldots, t_{n}\right)
$$

where $n \geq 0$ (the parentheses may be omitted when $n=1$), and each t_{i} must be a monotype for which Num t_{i} holds. In situations where an ambiguous type is discovered, an ambiguous type variable is defaultable if at least one of its classes is a numeric class and if all of its classes are either numeric classes or standard classes. (Figures $8-10$, pages $60-62$, show the numeric classes, and Figure 5, page 31, shows the standard classes.) Each defaultable variable is replaced by the first type in the default list that is an instance of all the ambiguous variable's classes. It is a static error if no such type is found.

Only one default declaration is permitted per module, and its effect is limited to that module. If no default declaration is given in a module then it defaults to:

```
default (Int, Double)
```

The empty default declaration default () must be given to turn off all defaults in a module.

4.4 Nested Declarations

The following declarations may be used in any declaration list, including the top level of a module.

4.4.1 Type Signatures

decl \rightarrow vars :: [context $=>$] type
vars $\quad \rightarrow$ var $_{1}, \ldots, \operatorname{var}_{n} \quad(n \geq 1)$

A type signature specifies types for variables, possibly with respect to a context. A type signature has the form:

$$
x_{1}, \ldots, x_{n}:: c \Rightarrow t
$$

which is equivalent to asserting $x_{i}:: c \Rightarrow t$ for each i from 1 to n. Each x_{i} must have a value binding in the same declaration list that contains the type signature; i.e. it is illegal to give a type signature for a variable bound in an outer scope. Moreover, it is illegal to give more than one type signature for one variable.

As mentioned in Section 4.1.1, every type variable appearing in a signature is universally quantified over that signature, and hence the scope of a type variable is limited to the type signature that contains it. For example, in the following declarations

```
f :: a -> a
f x = x::a -- ILLEGAL
```

the a's in the two type signatures are quite distinct. Indeed, these declarations contain a static error, since x does not have type $\forall a . a$.

A type signature for x may be more specific than the principal type derivable from the value binding of x (see Section 4.1.3), but it is an error to give a type that is more general than, or incomparable to, the principal type. If a more specific type is given then all occurrences of the variable must be used at the more specific type or at a more specific type still. For example, if we define

```
sqr x = x*x
```

then the principal type is sqr :: $\forall a$. Num $a \Rightarrow a \rightarrow a$, which allows applications such as sqr 5 or sqr 0.1. It is also legal to declare a more specific type, such as

```
sqr :: Int -> Int
```

but now applications such as sqr 0.1 are illegal. Type signatures such as

```
sqr :: (Num a, Num b) => a -> b -- ILLEGAL
sqr :: a -> a -- ILLEGAL
```

are illegal, as they are more general than the principal type of sqr.

4.4.2 Function and Pattern Bindings

decl	\rightarrow	valdef
valdef	$\overrightarrow{\mid}$	$\begin{aligned} & \text { lhs =exp }[\text { where }\{\text { decls }[;]\}] \\ & \text { lhs gdrhs }[\text { where }\{\text { decls [;] \}] } \end{aligned}$
lhs	1	$\operatorname{pat}_{\langle(\text {var } \mid-)}+\text { integer }$ funlhs
funlhs	\rightarrow	
gdrhs	\rightarrow	$g d=\exp [g d r h s]$
$g d$	\rightarrow	$1 \exp ^{0}$

We distinguish two cases within this syntax: a pattern binding occurs when lhs is pat; otherwise, the binding is called a function binding. Either binding may appear at the toplevel of a module or within a where or let construct. Top level $n+k$ pattern bindings are explicitly disallowed; otherwise, programs such as $\mathrm{x}+2=3$ could be parsed either as a definition of + or as a pattern binding.

Function bindings. A function binding binds a variable to a function value. The general form of a function binding for variable x is:

$$
\begin{array}{lllll}
x & p_{11} & \ldots & p_{1 k} & \text { match }_{1} \\
\ldots & & & & \\
x & p_{n 1} & \ldots & p_{n k} & \text { match }_{n}
\end{array}
$$

where each $p_{i j}$ is a pattern, and where each match h_{i} is of the general form:

$$
=e \text { where }\{\text { decls }\}
$$

or

$$
\begin{aligned}
\mid g_{i 1} & =e_{i 1} \\
\ldots & \\
\mid g_{i m_{i}} & =e_{i m_{i}} \\
& \text { where }\left\{d e c l s_{i}\right\}
\end{aligned}
$$

and where $n \geq 1,1 \leq i \leq n, m_{i} \geq 1$. The former is treated as shorthand for a particular case of the latter, namely:

$$
\mid \text { True }=e \text { where }\{\text { decls }\}
$$

The set of patterns corresponding to each match must be linear-no variable is allowed to appear more than once in the entire set.

Alternative syntax is provided for binding functional values to infix operators. For example, these two function definitions are equivalent:

```
plus x y z = x+y+z
x `plus` y = \ z -> x+y+z
```

Translation: The general binding form for functions is semantically equivalent to the equation (i.e. simple pattern binding):

$$
\begin{aligned}
x x_{1} x_{2} \ldots x_{k}=\operatorname{case}\left(x_{1}, \ldots, x_{k}\right) \text { of } & \left(p_{11}, \ldots, p_{1 k}\right) \text { match }_{1} \\
& \ldots \\
& \left(p_{m 1}, \ldots, p_{m k}\right) \text { match }_{m}
\end{aligned}
$$

where the x_{i} are new identifiers.

Pattern bindings. A pattern binding binds variables to values. A simple pattern binding has form $p=e$. In both a where or let clause and at the top level of a module, the pattern p is matched "lazily" as an irrefutable pattern by default (as if there were an implicit ~ in front of it). See the translation in Section 3.11.

The general form of a pattern binding is p match, where a match is the same structure as for function bindings above; in other words, a pattern binding is:

$$
\begin{array}{ll}
p \quad \mid g_{1}=\epsilon_{1} \\
& \mid g_{2}=e_{2} \\
\ldots \\
& \text { I } g_{m}=\epsilon_{m} \\
\text { where \{ decls \} }
\end{array}
$$

Translation: The pattern binding above is semantically equivalent to this simple pattern binding:

```
p = let decls in
    if g}\mp@subsup{g}{1}{}\mathrm{ then }\mp@subsup{e}{1}{}\mathrm{ else
    if g}\mp@subsup{g}{2}{}\mathrm{ then }\mp@subsup{e}{2}{}\mathrm{ else
    if g}\mp@subsup{g}{m}{}\mathrm{ then }\mp@subsup{e}{m}{}\mathrm{ else error "Unmatched pattern"
```


4.5 Static semantics of function and pattern bindings

The static semantics of the function and pattern bindings of a let expression or where clause is discussed in this section.

4.5.1 Dependency analysis

In general the static semantics is given by the normal Hindley-Milner inference rules, except that a dependency analysis transformation is first performed to enhance polymorphism, as follows. Two variables bound by value declarations are in the same declaration group if either

1. they are bound by the same pattern binding, or
2. their bindings are mutually recursive (perhaps via some other declarations which are also part of the group).

Careful application of the following rules causes each let or where construct to bind only the variables of a single declaration group, thus capturing the required dependency analysis: ${ }^{2}$
(1) The order of declarations in where/let constructs is irrelevant.
(2) let $\left\{d_{1} ; d_{2}\right\}$ in $e=$ let $\left\{d_{1}\right\}$ in (let $\left\{d_{2}\right\}$ in e) (when no identifier bound in d_{2} appears free in d_{1})

4.5.2 Generalisation

The Hindley-Milner type system assigns types to a let-expression in two stages. First, the right-hand side of the declaration is typed, giving a type with no universal quantification. Second, all type variables which occur in this type are universally quantified unless they are associated with bound variables in the type environment; this is called generalisation. Finally, the body of the let-expression is typed.

For example, consider the declaration

```
f x = let g y = (y,y)
    in ...
```

The type of g 's definition is $a \rightarrow(a, a)$. The generalisation step attributes to g the polymorphic type $\forall a . a \rightarrow(a, a)$, after which the typing of the "..." part can proceed.

When typing overloaded definitions, all the overloading constraints from a single declaration group are collected together, to form the context for the type of each variable declared in the group. For example, in the definition:

```
f x = let g1 x y = if x>y then show x else g2 y x
    g2 p q = g1 q p
    in ...
```

The types of the definitions of g1 and g2 are both $a \rightarrow a \rightarrow$ String, and the accumulated constraints are Ord a (arising from the use of >), and Text a (arising from the use of show). The type variables appearing in this collection of constraints are called the constrained type variables.

[^1]The generalisation step attributes to both g1 and g2 the type $\forall a$. (Ord a, Text a) \Rightarrow $a \rightarrow a \rightarrow$ String. Notice that g 2 is overloaded in the same way as g1 even though the occurrences of $>$ and show are in the definition of g 1 .

If the programmer supplies explicit type signatures for more than one variable in a declaration group, the contexts of these signatures must be identical up to renaming of the type variables.

As mentioned in Section 4.1.3, the context of a type may constrain only type variables. Consider, for example, the definition:

```
f xs y = xs == [y]
```

Its type is given by

```
f :: Eq a => [a] -> a -> Bool
```

and not

$$
\mathrm{f}:: \text { Eq }[\mathrm{a}] \Rightarrow \text { [a] } \rightarrow \text { a } \rightarrow \text { Bool }
$$

Even though the equality is taken at the list type, the context must be simplified, using the instance declaration for Eq on lists, before generalisation. If no such instance is in scope, an error is signalled.

4.5.3 Monomorphism

Sometimes it is not possible to generalise over all the type variables used in the type of the definition. For example, consider the declaration

```
f x = let g y z = ([x,y], z)
    in ...
```

In an environment where x has type a, the type of g 's definition is $a \rightarrow b \rightarrow([a], b)$. The generalisation step attributes to g the type $\forall b . a \rightarrow b \rightarrow$ ([a],b); only b can be universally quantified because a occurs in the type environment. We say that the type of g is monomorphic in the type variable a.

The effect of such monomorphism is that the first argument of all applications of g must be of a single type. For example, it would be legal for the ". . ." to be

```
(g True, g False)
```

(which would, incidentally, force x to have type Bool) but illegal for it to be

$$
\text { (g True, } g^{\prime} c^{\prime} \text {) }
$$

In general, a type $\forall \bar{u} . c \Rightarrow t$ is said to be monomorphic in the type variable a if a is free in $\forall \bar{u} . c \Rightarrow t$.

It is worth noting that the explicit type signatures provided by Haskell are not powerful enough to express types which include monomorphic type variables. For example, we cannot write

```
f x = let
    g :: a -> b -> ([a],b)
    g y z = ([x,y], z)
    in ...
```

because that would claim that g was polymorphic in both a and b (Section 4.4.1). In this program, g can only be given a type signature if its first argument is restricted to a type not involving type variables; for example

$$
\mathrm{g}:: \text { Int } \rightarrow \mathrm{b} \rightarrow([\operatorname{In} \mathrm{t}], \mathrm{b})
$$

This signature would also cause x to have type Int.

4.5.4 The monomorphism restriction

Haskell places certain extra restrictions on the generalisation step, beyond the standard Hindley-Milner restriction described above, which further reduce polymorphism in particular cases.

The monomorphism restriction uses the binding syntax of a variable. Recall that a variable is bound by either a function binding or a pattern binding, and that a simple pattern binding is a pattern binding in which the pattern consists of only a single variable (Section 4.4.2).

Two rules define the monomorphism restriction:
Rule 1. We say that a given declaration group is unrestricted if and only if:
(a): every variable in the group is bound by a function binding or a simple pattern binding, and
(b): an explicit type signature is given for every variable in the group which is bound by simple pattern binding.

The usual Hindley-Milner restriction on polymorphism is that only type variables free in the environment may be generalised. In addition, the constrained type variables of a a restricted declaration group may not be generalised in the generalisation step for that group. (Recall that a type variable is constrained if it must belong to some type class; see Section 4.5.2.)

Rule 2. The type of a variable exported from a module must be completely polymorphic; that is, it must not have any free type variables. It follows from Rule 1 that if all top-level declaration groups are unrestricted, then Rule 2 is automatically satisfied.

Rule 1 is required for two reasons, both of which are fairly subtle. First, it prevents computations from being unexpectedly repeated. For example, recall that genericLength is a standard function whose type is given by

```
genericLength :: Num a => [b] -> a
```

Now consider the following expression:

```
let { len = genericLength xs } in (len, len)
```

It looks as if len should be computed only once, but without Rule 1 it might be computed twice, once at each of two different overloadings. If the programmer does actually wish the computation to be repeated, an explicit type signature may be added:

$$
\text { let }\{\text { len :: Num a }=>\text { a; len = genericLength xs \} in (len, len) }
$$

When non-simple pattern bindings are used, the types inferred are always monomorphic in their constrained type variables, irrespective of whether a type signature is provided. For example, in

$$
(f, g)=((+),(-))
$$

both f and g will be monomorphic regardless of any type signatures supplied for f or g.
Rule 1 also prevents ambiguity. For example, consider the declaration group

$$
[(\mathrm{n}, \mathrm{~s})]=\text { reads } \mathrm{t}
$$

Recall that reads is a standard function whose type is given by the signature

```
reads :: (Text a) => String >> [(a,String)]
```

Without Rule 1 , n would be assigned the type $\forall a$. Text $a \Rightarrow a$ and s the type $\forall a$. Text $a \Rightarrow$ String. The latter is an illegal type, because it is inherently ambiguous. It is not possible to determine at what overloading to use s . Rule 1 makes n and s monomorphic in a.

Lastly, Rule 2 is required because there is no way to enforce monomorphic use of an exported binding, except by performing type inference on the entire program at once.

The monomorphism rule has a number of consequences for the programmer. Anything defined with function syntax will usually generalize as a function is expected to. Thus in

$$
f x y=x+y
$$

the function f may be used at any overloading in class Num. There is no danger of recomputation here. However, the same function defined with pattern syntax

$$
f=\backslash x \rightarrow \backslash y \rightarrow x+y
$$

requires a type signature if f is to be fully overloaded. Many functions are most naturally defined using simple pattern bindings; the user must be careful to affix these with type signatures to retain full overloading. The standard prelude contains many examples of this:

```
indices :: (Ix a) => Array a b -> [a]
indices = range . bounds
```


5 Modules

A module defines a collection of values, datatypes, type synonyms, classes, etc. (see Section 4), and exports some of these resources, making them available to other modules. We use the term entity to refer to the values, types, and classes defined in and perhaps exported from a module.

A Haskell program is a collection of modules, one of which, by convention, must be called Main and must export the value main. The value of the program is the value of the identifier main in module Main, and main must have type Dialogue (see Section 7).

Modules may reference other modules via explicit import declarations, each giving the name of a module to be imported, specifying its entities to be imported, and optionally renaming some or all of them. Modules may be mutually recursive.

The name-space for modules is flat, with each module being associated with a unique module name (which are Haskell identifiers beginning with a capital letter; i.e. conid). There are two distinguished modules, PreludeCore and Prelude, both discussed in Section 5.4.

5.1 Overview

5.1.1 Interfaces and Implementations

A module consists of an interface and an implementation of that interface.
The interface of a module provides complete information about the static semantics of that module, including type signatures, class definitions, and type declarations for the various entities made available by the module. This information is complete in this sense: If a module M imports modules M_{1}, \ldots, M_{n}, then only the interfaces of M_{1}, \ldots, M_{n} need be examined in order to perform static checking on the implementation of M. No implementations of M_{1}, \ldots, M_{n} need to exist, nor need any further interfaces be consulted. Interfaces are discussed in Section 5.3.

An implementation "fills in" the information about a module missing from the interface. For example, for each value given a type signature in the interface the implementation either imports a module that defines the value or defines the value itself. Implementations are discussed in Section 5.2.

5.1.2 Original Names

It may be that a particular entity is imported into a module by more than one route-for example, because it is exported by two modules both of which are imported by a third module. It is important that benign name-clashes of this form are allowed, but that accidental name-clashes are detected and reported as errors. This is done as follows:

Each entity (class, type constructor, value, etc.) has an original name that is a pair consisting of the name of the module in which it was originally declared, and the name
it was given in that declaration. The original name is carried with the entity wherever it is exported. Two types, classes or values are the same if and only if they have the same original name.

Renaming does not affect the original name; it is a purely syntactic operation that affects only the name by which the entity is currently known. For example, if a class is renamed and a type is declared to be an instance of the newly-named class, then it is also an instance of the original class-there is just one class, which happens to be known by different names in different parts of the program. Also, fixity is a property of the original name of an identifier or operator and is not affected by renaming; the new name has the same fixity as the old one.

A given entity may be known by at most one name in any scope. So, for example, a module may not import an entity twice and rename it differently on each occasion. Either it must be renamed in the same way on each import or else not imported twice (for example, by using a hiding clause).

As there are several name spaces, a single name may identify more than one entity. In a renaming clause, such as renaming (\ldots, n_{1} to n_{2}, \ldots), all the entities to which n_{1} refers are renamed to n_{2}.

5.1.3 Closure

The implementation together with the interfaces of the modules it imports must be statically closed according to this rule: every value, type, or class referred to in the text of an implementation together with the declarations that it imports, must be declared in the implementation or in one of the imported declarations.

It is an error for a module to export a collection of entities that cannot possibly become closed. For example, if a module A declares both the type T and a value t of type T, it may not export t without also exporting T. But if another module B imported T from module A, and declared another value s of type T, it may export s without exporting T-but any module importing B must also import the type T by some other route, for example by also importing A .

5.1.4 The Compilation System

The task of checking consistency between interfaces and implementations must be done by the compilation system.

Haskell does not specify any particular association between implementations and interfaces on the one hand, and files on the other; nor does it specify how implementations and interfaces are produced. These matters are determined by the compilation system, and many variations are possible, depending on the programming environment. For example, a compilation system could insist that each implementation and each interface reside alone in a file, and that the module name is the same as that of the file, with the implementation and interface distinguished by a suffix.

Similarly, a compilation system may require the programmer to write the interface, or it may derive the interface from examination of the implementation, or some hybrid of the two. Haskell is defined so that, given the interfaces of all imported modules, it is always possible to perform a complete static check on the implementation, and, if it is well-typed, to derive its unique interface automatically. However, given a set of mutually recursive implementations, the compilation system may have to examine several modules at once to derive the interfaces, which will still be unique with one exception: because of the shorthand for exporting all entities from an imported module, the set of exports may not be unique. Any set satisfying the consistency constraints is a valid solution for a well-typed Haskell program, but if an implementation automatically derives the interface it must derive the smallest set of exports.

For optimisation across module boundaries, a compilation system may need more information (e.g., information about strictness, inlining, uncurrying, etc.) than is provided by the standard interface as defined in this report. Draft proposals exist for including such information as comments in interfaces; for details, contact the implementors listed in the preface (page x).

5.2 Module Implementations

A module implementation defines a mutually recursive scope containing declarations for value bindings, data types, type synonyms, classes, etc. (see Section 4).

A module implementation begins with a header: the keyword module, the module name, and a list of entities (enclosed in round parentheses) to be exported. The header is followed by an optional list of import declarations that specify modules to be imported, optionally restricting and renaming the imported bindings. This is followed by an optional list of fixity declarations and the module body. The module body is simply a list of top-level declarations (topdecls), as described in Section 4.

An abbreviated form of module is permitted, which consists only of the module body. If this is used, the header is assumed to be module Main where. If the first lexeme in the abbreviated module is not a $\{$, then the layout rule applies for the top level of the module. It is inadvisable for a compilation system to permit an abbreviated module to appear in the same file as some unabbreviated modules.

5.2.1 Export Lists

exports	\rightarrow	(export ${ }_{1}, \ldots$, export $\left._{n}\right)$	$(n \geq 1)$
export	$\overrightarrow{\mid}$	entity modid	
entity	\rightarrow	var	
		tycon	
	\|	tycon (..)	
	\|	$\operatorname{tycon}\left(\operatorname{con}_{1}, \ldots, \operatorname{con}_{n}\right)$	$(n \geq 1)$
	\|	tycls (..)	
		tycls (var $\left.{ }_{1}, \ldots, \operatorname{var}_{n}\right)$	$(n \geq 0)$

An export list identifies the entities to be exported by a module declaration. A module implementation may only export an entity that it declares, or that it imports from some other module. If the export list is omitted, all values, types and classes defined in the module are exported, but not those that are imported.

Entities in an export list may be named as follows:

1. Ordinary values, whether declared in the implementation body or imported, may be named by giving the name of the value as a varid. Operators should be enclosed in parentheses to turn them into varid's.
2. An algebraic datatype T with constructors K_{1}, \ldots, K_{n} declared by a data declaration may be named in one of three ways:

- The form T names the type but not the constructors. The ability to export a type without its constructors allows the construction of abstract datatypes (see Section 5.6).
- The form $T\left(K_{1}, \ldots, K_{n}\right)$, where all and only the constructors are listed without duplications, names the type and all its constructors.
- The abbreviated form T (..) also names the type and all its constructors.

Data constructors cannot be named in export lists in any other way.
3. A type synonym T declared by a type declaration may be named by the form T (. .). (The (. .) is a syntactic reminder that a type synonym can only be exported along with its definition.)
4. A class C with operations f_{1}, \ldots, f_{n} declared in a class declaration may be named in one of two ways, both of which name the class together with all its operations:

- The form $C\left(f_{1}, \ldots, f_{n}\right)$, where all and only the operations in that class are listed without duplications.
- The abbreviated form $C(.$.$) .$

Operators in a class may not be named in export lists in any other way.
5. The set of all entities brought into scope (after renaming) from a module m by one or more import declarations may be named by the form $m .$. , which is equivalent to listing all of the entities imported from the module. For example,

```
module Queue( Stack.., enqueue, dequeue ) where
    import Stack
```

Here the module Queue uses the module name Stack in its export list to abbreviate all the entities imported from Stack.
6. A module can name its own local definitions in its export list using its own name in the m. . syntax. For example,

```
module Mod1(Mod1.., Mod2..)
import Mod2
import Mod3
```

Here module Mod1 exports all local definitions as well as those from Mod2 but not Mod3.

5.2.2 Import Declarations

```
impdecl }->\mathrm{ import modid [impspec] [renaming renamings]
impspec }->\mathrm{ ( import },\ldots,\mp@subsup{\mathrm{ import }}{n}{})\quad(n\geq0
    | hiding ( import },\mp@code{,.., import }\mp@subsup{|}{n}{})\quad(n\geq1
import }->\mathrm{ entity
renamings }->\mathrm{ (renaming , ... , renaming n ) ( n < 1)
renaming }->\mathrm{ var to var,
    | con, to con2
```

The entities exported by a module may be brought into scope in another module with an import declaration at the beginning of the module. The import declaration names the module to be imported, optionally specifies the entities to be imported, and optionally provides renamings for imported entities. A single module may be imported by more than one import declaration.

Exactly which entities are to be imported can be specified in one of three ways:

1. The set of entities to be imported can be specified explicitly by listing them in parentheses. Items in the list have the same form as those in export lists, except that the modid abbreviation is not permitted.

The list must name a subset of the entities exported by the imported module. The list may be empty, in which case nothing is imported; this is only useful in the case of the module Prelude (see Section 5.4.3).
2. Specific entities can be excluded by using the form hiding (import $_{1}, \ldots$, import $_{n}$), which specifies that all entities exported by the named module should be imported apart from those named in the list. Only the forms $T(\ldots), C(\ldots)$ and varid are permitted in hiding lists.
3. Finally, if impspec is omitted then all the entities exported by the specified module are imported.

As instance declarations do not have names, their import cannot be controlled by the impspec list. Instead, the following rule is used: A $C-T$ instance declaration is imported from an interface if and only if C is imported or T is imported from that interface.

Some or all of the imported entities may be renamed, thus allowing them to be known by a new name in the importing scope (see Section 5.1.2). This is done using the renaming keyword, with a renaming of the form oldname to newname. No oldname can be given more than one renaming.

5.3 Module Interfaces

Every module has an interface containing all the information needed to do static checks on any importing module. All static checks on a module implementation can be done by inspecting its text and the interfaces of the modules it imports.

```
interface }->\mathrm{ interface modid where ibody
ibody }->\mathrm{ {[iimpdecls;][[fixdecls ;] itopdecls [;]]}
| { iimpdecls [;]}
iimpdecls }->\mathrm{ iimpdecl_ ; ... ; iimpdecln}\quad(n\geq1
iimpdecl }->\mathrm{ import modid ( import , , . , import }\mp@subsup{|}{n}{}\mathrm{ )
        [renaming renamings] ( }n\geq1
itopdecls }->\mathrm{ itopdecl 
itopdecl }->\mathrm{ type simple = type
    | data [context =>] simple [= constrs[deriving (tycls | (tyclses))]]
        class [context =>] class [where { icdecls [;] }]
        instance [context =>] tycls inst
        vars :: [context =>] type
icdecls }->\mathrm{ icdecl_ ; .. ; icdecl 
icdecl }->\mathrm{ vars :: type
```

The syntax of interface is similar to that of module, except:

- There is no export list: everything in the interface is exported.
- import declarations have a slightly different purpose from those in implementations (see Section 5.3.2). The list of entities to be imported is always specified explicitly.
- data declarations appear without their constructors if these are not exported.
- There is no implementation part to instance declarations.
- Value declarations do not appear at all; for exported values, type signatures take their place.

5.3.1 Consistency

The interface and implementation of a module must obey certain constraints. In the following, a declaration described as "in the implementation" is either a declaration in the module body itself, or one imported from an interface after any renaming specified by the import statement has been applied.

1. Every entity given a declaration in an interface must either have an import declaration for the entity in the interface (the import specifies the module that defines it) or have a definition of the entity in the implementation. Furthermore, if an interface A imports an entity X from module B (perhaps renaming it), then the interface for B must define X but not import it.
2. A class, type synonym, algebraic datatype, or value appears in the interface exactly when its name appears in the implementation's export list or, if the export list is omitted, when it is declared in the implementation.
3. A type signature appears in the interface for every value that the implementation exports. The type expressed by this signature must be the same as the most general type inferred from the declaration of the value in the implementation (see Section 4.1.3), after any constraints expressed by explicit type signatures in the implementation have been applied.
The type signature in the interface may (but need not) use type synonyms; if any such synonyms are used, then the closure rule (Section 5.1.3) implies that these synonyms must be in scope wherever this value is imported. To maximise portability it is recommended that types in automatically-generated interfaces have all type synonyms expanded.
4. A type declaration in an interface must be identical to that in the implementation.
5. A class declaration in an interface must be identical to that in the implementation, except that default-method declarations are omitted.
6. If the constructors of a data declaration are not exported, then the data declaration in the interface differs from that in the implementation by omitting everything after (and including) the $=$ sign. If the data declaration in the implementation uses the deriving mechanism to derive instance declarations for the type, a separate instance declaration must appear in the interface for each class of which the type is made an instance. Hence, the information that certain instances are derived is hidden when the constructors are hidden, since in this case the type is abstract (see Section 5.6).
7. If the constructors of a data declaration are to be exported, then the data declaration in the interface is identical to that in the implementation including the deriving part. ${ }^{3}$
8. If a C - T instance is declared in a module or imported by it, then the instance declaration appears in the interface (omitting the where part) if either C is exported or T is exported. Instance declarations are not named explicitly in export or import lists. This rule ensures that, if C and T are both in scope, then the (unique) C - T instance declaration will also be in scope. ${ }^{4}$

No explicit instance declaration should appear in the interface for instances that are specified by the deriving part of a data declaration in the interface.
9. A fixity declaration for a value or constructor appears in an interface exactly when (a) the value or constructor is declared by the interface, and (b) the identical fixity declaration appears either in the implementation or in an imported interface.

5.3.2 Imports and Original Names

The original-name information is carried in the interface file using import declarations in a special way.

Suppose that a module A exports an entity x; the interface for A will contain static information about x. If x was originally defined in A, then this is all that appears. But, suppose that x was imported by A from some other module B and that x was originally defined in module C with name y; this declaration must appear in the interface for A :
import $C(y)$ renaming (y to x)
No reference to B remains in the interface. The import declaration in the interface serves only to convey to the importing module the original name of x , and does not imply that module C's interface must be consulted when reading module A's interface. Multiple imports from a single original module may optionally be grouped in a single import declaration in the interface.

A module may export a value whose typing involves a type and/or class that is not exported. (Any importing module would have to import the type or class by some other route.) Nevertheless, it is still required that the interface contain the import declaration required to give the original name of the type or class.

In summary, for every entity e1 mentioned in the interface of a module M whose original name is $e 2$ in module N, M's interface must contain the import declaration

```
import N(e2) renaming ( e2 to e1 )
```

The word "mentioned" includes mention in the type signature of an exported value, as discussed above.

[^2]This example illustrates most of these constraints; first, the interface:

```
interface A where
import PreludeList(sum) renaming ( sum to oldSum )
infixr 4 `sameShape`
data BinTree a = Empty | Branch a (BinTree a) (BinTree a)
class Tree a where
    sameShape :: a -> a -> Bool
instance Tree (BinTree a)
sum :: Num a => BinTree a -> a
oldSum :: Num a => [a] -> a
```

Now the implementation:

```
module A( BinTree(..), Tree(..), sum, oldSum ) where
import Prelude renaming ( sum to oldSum )
infixr 4 'sameShape`
        -- 'sameShape' is an operation of class C below
data BinTree a = Empty | Branch a (BinTree a) (BinTree a)
class Tree a where
        sameShape :: a -> a -> Bool
        t1 'sameShape` t2 = False -- Default method
instance Tree (BinTree a) where
            Empty 'sameShape` Empty = True
            (Branch _ t1 t2) 'sameShape' (Branch _ t1' t2')
            = (t1 'sameShape` t1') && (t2 'sameShape` t2')
            t1 'sameShape' t2 = False
sum Empty =0
sum (Branch n t1 t2) = n + sum t1 + sum t2
```


5.4 Standard Prelude

Many of the features of Haskell are defined in Haskell itself, as a library of standard datatypes, classes and functions, called the "standard prelude." In Haskell, the standard prelude is specified as two distinct modules (in the technical sense of this chapter), PreludeCore and Prelude.

PreludeCore and Prelude differ from other modules in that their interfaces, and the semantics of the entities defined by those interfaces, are part of the Haskell language definition. This means, for example, that a compiler may optimise calls to functions in the standard prelude, because it knows their semantics as well as their interface.

Each of these modules is structured into submodules. To avoid name-clashes with these sub-modules, user-defined module names must not begin with the prefix Prelude.

5.4.1 The PreludeCore Module

The PreludeCore module contains certain of the algebraic datatypes, type synonyms, classes and instance declarations specified by the standard prelude.

PreludeCore is always implicitly imported into both interfaces and implementations, so it is not possible to import only part of it or to rename any of the entities that it defines. PreludeCore thereby ensures consistent naming across all Haskell programs for the entities it exports.

The semantics of the entities defined by PreludeCore is specified by an implementation written in Haskell, in Appendix A.2. A Haskell system need not implement PreludeCore in this way. The interface for PreludeCore may be inferred from the implementation in Appendix A.2.

Some datatypes (such as Int) and functions (such as addition of Ints) cannot be specified directly in Haskell. This is expressed in the PreludeCore implementation by importing these built-in types and values from PreludeBuiltin. The semantics of the built-in datatypes and functions is given as English text in Appendix A.1.

The implementation for PreludeCore is incomplete in its treatment of tuples: there should be an infinite family of instance declarations for tuples, but the implementation only gives a scheme.

The alert reader may notice that the implementation of PreludeCore given in Appendix A. 2 uses some functions defined in Prelude (see next section). There is no conflict; PreludeCore and Prelude are mutually recursive.

5.4.2 The Prelude Module

The Prelude module contains all the value declarations in the standard prelude.
The Prelude module is imported automatically into both interfaces and implementations, if and only if it is not imported with an explicit import declaration. This provision for explicit import allows values defined in the standard prelude to be renamed or not imported at all.

The semantics of the entities in Prelude is specified by an implementation of Prelude written in Haskell, given in Appendix A. As for PreludeCore, a Haskell system may implement the Prelude module as it pleases, provided it maintains the semantics in Appendix A. The interface for the Prelude and each of its submodules may be inferred from their implementations in Appendix A. All references to type synonyms are fully expanded in these interfaces.

5.4.3 Shadowing Prelude Names and Non-Standard Preludes

The rules about the standard prelude have been cast so that it is possible to use standard prelude names for nonstandard purposes; however, every module that does so will have an import declaration that makes this nonstandard usage explicit. For example:

```
module A where
import Prelude hiding (map)
map f x = x f
```

Module A redefines map, but it must indicate this by importing Prelude without map. Furthermore, A exports map, but every module that imports map from A must also hide map from Prelude just as A does. Thus there is little danger of accidentally shadowing standard prelude names.

It is possible to construct and use a different Prelude module:

```
module B where
import Prelude()
import MyPrelude
```

B imports nothing from Prelude, but the explicit import Prelude declaration prevents the automatic import of Prelude. import MyPrelude brings the non-standard prelude into scope. As before, the standard prelude names are hidden explicitly.

5.5 Example

As an example, here are two small modules:

```
module A( Tree(..), depth ) where
    data Tree a = Leaf a | Branch (Tree a) (Tree a)
    depth (Leaf a) = 0
    depth (Branch xt yt) = (depth xt 'max' depth yt) + 1
interface A where
    data Tree a = Leaf a | Branch (Tree a) (Tree a)
    depth :: Num a => Tree b -> a
module B( leaves ) where
    import A
    leaves (Leaf a) = [a]
    leaves (Branch xt yt) = leaves xt ++ leaves yt
interface B where
    import A(Tree)
    leaves :: Tree a -> [a]
```

Module A must export Tree because it exports depth, and Tree could not be made visible in any other way. However, B is not required to export Tree, since a module importing B could import A in order to satisfy the closure constraints.

Modules may be used to combine the resources of other modules. For example, one might use renaming to make trees available to French speakers:

```
module C( Arbre(..), fond, feuilles ) where
import A renaming ( Tree to Arbre, Leaf to Feuille, Branch to Branche,
        depth to fond)
import B renaming ( leaves to feuilles )
```

The interface for module C is:

```
interface C where
    import A(Tree(Leaf,Branch), depth)
            renaming (Tree to Arbre,
                Leaf to Feuille,
                        Branch to Branche,
                        depth to fond)
    import B(leaves) renaming (leaves to feuilles)
    data Arbre a = Feuille a | Branche (Arbre a) (Arbre a)
    fond :: Num a => Arbre b -> a
    feuilles :: Arbre a -> [a]
```


5.6 Abstract Datatypes

The ability to export a datatype without its constructors allows the construction of abstract datatypes (ADTs). For example, an ADT for stacks could be defined as:

```
module Stack( StkType, push, pop, empty ) where
    data StkType a = EmptyStk | Stk a (StkType a)
    push x s = Stk x s
    pop (Stk _ s) = s
    empty = EmptyStk
```

Modules importing Stack cannot construct values of type StkType because they do not have access to the constructors of the type.

It is also possible to build an ADT on top of an existing type by using a data declaration with a single constructor with only one field. For example, stacks can be defined with lists:

```
module Stack( StkType, push, pop, empty ) where
    data StkType a = Stk [a]
    push \(x\) (Stk s) \(=\) Stk ( \(x: s\) )
    pop (Stk (x:s)) = Stk s
    empty = Stk []
```

Note 1. Every ADT must be a module (but a Haskell compilation system may allow multiple modules in a single file).

Note 2. Using a single-constructor single-field data declaration to create an isomorphic type introduces an unwanted extra element to the new type, namely (Stk \perp), with the risk of an accompanying small inefficiency in the implementation.

5.7 Fixity Declarations

```
fixdecls }->\mathrm{ fixi ; .. ; fix 
fix }\quad->\quad\mathrm{ infixl [digit]ops
    | infixr [digit] ops
```

$\begin{aligned} & \text { Prec- } \\ & \text { edence } \end{aligned}$	Left associative operators	Non-associative operators	Right associative operators
9	!, ! !, //		.
8			**, ^, ^^
7	*	$\begin{aligned} & \%, /, \text { 'div', } \\ & \text { 'mod', 'rem', 'quot' } \end{aligned}$	
6	+, -	:+	
5		11	:, ++
4		$\begin{aligned} & \text { /=, <, <=, ==, >, >=, } \\ & \text { 'elem'', 'notElem' } \end{aligned}$	
3			
2			11
1		:=	
0			\$

Table 2: Precedences and fixities of prelude-defined operators

```
    | infix [digit]ops
ops }->o\mp@subsup{p}{1}{},\ldots,o\mp@subsup{p}{n}{}\quad(n\geq1
op varop | conop
```

A fixity declaration gives the fixity and binding precedence of a set of operators. Fixity declarations must appear only at the start of a module and may only be given for identifiers defined in that module. Fixity declarations cannot subsequently be overridden, and an identifier can only have one fixity definition.

There are three kinds of fixity, non-, left- and right-associativity (infix, infixl, and infixr, respectively), and ten precedence levels, 0 through 9 (level 0 binds least tightly, and level 9 binds most tightly). If the digit is omitted, level 9 is assumed. Any operator lacking a fixity declaration is assumed to be infixl 9 (See Section 3 for more on the use of fixities). Table 2 lists the fixities and precedences of the operators defined in the standard prelude.

Fixity is a property of the original name of an identifier or operator (see Section 5.1.2). Fixity is not affected by renaming; the new name has the same fixity as the old one. The same fixity attaches to every occurrence of an operator name in a module, whether at the top level or rebound at an inner level. For example:

```
module Foo
import Bar
infix 3 'op'
f x = ... where p 'op' q = ...
```

Here 'op' has fixity 3 wherever it is in scope, provided Bar does not export the identifier
op. If Bar does export op, then the example becomes illegal, because the fixity (or lack thereof) of op is defined in Bar (or wherever Bar imported op from).

6 Basic Types

6.1 Booleans

The boolean type Bool is an enumeration; Figure 6 shows its definition and standard functions \&\&, II, not, and otherwise.

```
data Bool = False | True
(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && x = False
True || x = True
False || x = x
not :: Bool -> Bool
not True = False
not False = True
otherwise :: Bool
otherwise = True
```

Figure 6: Standard functions on booleans

6.2 Characters and Strings

The character type Char is an enumeration, and consists of 256 values, of which the first 128 are the ASCII character set. The lexical syntax for characters is defined in Section 2.5; character literals are nullary constructors in the datatype Char. The standard prelude provides an instance declaration for Char in classes Enum and $I x$ and two functions relating characters to Ints in the range [0,255]:

```
ord :: Char -> Int
chr :: Int -> Char
```

Note that ASCII control characters each have several representations in character literals: numeric escapes, ASCII mnemonic escapes, and the $\backslash^{\wedge} X$ notation. In addition, there are the following equivalences: $\backslash \mathrm{a}$ and $\backslash \mathrm{BEL}, \backslash \mathrm{b}$ and $\backslash \mathrm{BS}, \backslash \mathrm{f}$ and $\backslash \mathrm{FF}, \backslash \mathrm{r}$ and $\backslash \mathrm{CR}$, $\backslash \mathrm{t}$ and $\backslash H T, \backslash v$ and $\backslash V T$, and $\backslash n$ and \LF.

A string is a list of characters:
type String = [Char]
Strings may be abbreviated using the lexical syntax described in Section 2.5. For example, "A string" abbreviates

$$
\left[{ }^{\prime} A^{\prime}, \prime^{\prime}, s^{\prime}, t^{\prime}, r^{\prime}, \mathrm{i}^{\prime}, \mathrm{n}^{\prime}, \mathrm{g}^{\prime}\right]
$$

6.3 Functions

Functions are defined via lambda abstractions and function definitions. Besides application, an infix composition operator is defined:

```
(.) :: (b -> c) -> (a -> b) -> a >> c
(f . g) x = f (g x)
```

The function until applies a function to an initial value zero or more times until the result satisfies a given predicate:

```
until :: (a -> Bool) -> (a -> a) -> a -> a
until p f x | p x = x
    | otherwise = until p f (f x)
```

The function flip, applied to a binary function, reverses the order of the arguments:

```
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
```


6.4 Lists

Lists are an algebraic datatype of two constructors, although with special syntax, as described in Section 3.6. The first constructor is the null list, written [], and the second is : ("cons"). See the standard prelude (Appendix A.5) for the definitions of the standard list functions. Arithmetic sequences and list comprehensions, two convenient syntaxes for special kinds of lists, are described in Sections 3.9 and 3.10, respectively.

6.5 Tuples

Tuples are also algebraic datatypes with special syntax, as defined in Section 3.7. Each tuple type has a single constructor. Six functions, named zip, zip3, ..., zip7, are provided by the standard prelude (Appendix A.5). These produce lists of n-tuples from n lists, for $2 \leq n \leq 7$. The resulting lists are as long as the shortest argument list; excess elements of other argument lists are ignored.

6.6 Unit Datatype

The unit datatype () has one member, the nullary constructor () (and thus an overloading of syntax) - see also Section 3.8.

6.7 Binary Datatype

The Bin datatype is a primitive abstract datatype including the value nullBin (the empty or nullary binary value), the function appendBin, and the predicate isNullBin (which returns True when applied to nullBin and False when applied to all other values of type Bin).

Figure 7: Hierarchy of standard classes (cf. Figure 5, page 31)

Also, derived instances of the Binary class generate definitions for showBin and readBin, as described in Section 4.3.3 and Appendix E. The Bin datatype is used primarily for efficient and transparent I/O, as described in Section 7.

6.8 Numbers

6.8.1 Introduction

Haskell provides several kinds of numbers; the numeric types and the operations upon them have been heavily influenced by Common Lisp [18] and Scheme [16]. Numeric function names and operators are usually overloaded, using several type classes with an inclusion relation shown in Figure 7 (cf. Figure 5, page 31). (Some classes are immediate subclasses of two other classes; there are pairs of classes with a nontrivial intersection.) The class Num of numeric types is a subclass of Eq, since all numbers may be compared for equality; its subclass Real is also a subclass of Ord, since the other comparison operations apply to all but complex numbers. The class Integral contains both fixed- and arbitrary-precision integers; the class Fractional contains all nonintegral types; and the class Floating contains all floating-point types, both real and complex.

Table 3 lists the standard numeric types. The type Int is a fixed-precision type, covering at least the range $\left[-2^{29}+1,2^{29}-1\right]$ and closed under negation. The constants minInt $=-$ maxInt and maxInt (Figure 9, page 61) define the limits of Int in each implementation. Float is a floating-point type, also implementation-defined; it is desirable

Type	Class	Description
Integer	Integral	Arbitrary-precision integers
Int	Integral	Fixed-precision integers
(Integral a) \Rightarrow Ratio a	RealFrac	Rational numbers
Float	RealFloat	Real floating-point, single precision
Double	RealFloat	Real floating-point, double precision
(RealFloat a) \Rightarrow Complex a	Floating	Complex floating-point

Table 3: Standard numeric types
that this type be at least equal in range and precision to the IEEE single-precision type. Similarly, Double should cover IEEE double-precision. An implementation may provide other numeric types, such as additional precisions of integer and floating-point. The results of exceptional conditions (such as overflow or underflow) on the fixed-precision numeric types are undefined; an implementation may choose error (\perp, semantically), a truncated value, or a special value such as infinity, indefinite, etc.

The interface text (Section 5.3) associated with the standard numeric classes, types, and operations is shown in Figures 8-10.

6.8.2 Numeric Literals

The syntax of numeric literals is given in Section 2.4. An integer literal represents the application of the function fromInteger to the appropriate value of type Integer. Similarly, a floating literal stands for an application of fromRational to a value of type Rational (that is, Ratio Integer). Given the typings:

```
fromInteger :: (Num a) => Integer -> a
fromRational :: (Fractional a) => Rational -> a
```

integer and floating literals have the typings (Num a) $\Rightarrow>$ a and (Fractional a) $=>$ a, respectively. Numeric literals are defined in this indirect way so that they may be interpreted as values of any appropriate numeric type. For example, fromInteger for complex numbers is defined as follows:

```
fromInteger n = fromInteger n :+ 0
```

See Section 4.3.4 for a discussion of overloading ambiguity.

6.8.3 Constructed Numbers

There are two kinds of numeric types formed by data constructors: namely, Ratio and Complex. For each Integral type t, there is a type Ratio t of rational pairs with components of type t. (The type name Rational is a synonym for Ratio Integer.) Similarly, for each

```
class (Eq a, Text a) => Num a where
    (+), (-), (*) :: a -> a -> a
    negate :: a -> a
    abs, signum :: a -> a
    fromInteger :: Integer -> a
class (Num a, Enum a) => Real a where
    toRational :: a -> Rational
class (Real a, Ix a) => Integral a where
        quot, rem, div, mod :: a -> a -> a
        quotRem, divMod :: a -> a -> (a,a)
        even, odd :: a -> Bool
        toInteger :: a -> Integer
class (Num a) => Fractional a where
        (/) :: a -> a -> a
        recip :: a -> a
        fromRational :: Rational -> a
class (Fractional a) => Floating a where
        pi :: a
        exp, log, sqrt :: a -> a
        (**), logBase :: a -> a -> a
        sin, cos, tan :: a -> a
        asin, acos, atan :: a -> a
        sinh, cosh, tanh :: a -> a
        asinh, acosh, atanh :: a -> a
```

Figure 8: Numeric classes and related operations
real floating-point type t, Complex t is a type of complex numbers with real and imaginary components of type t.

The operator (\%) forms the ratio of two integral numbers. The functions numerator and denominator extract the components of a ratio; these are in reduced form with a positive denominator.

Complex numbers are an algebraic type:

```
data (RealFloat a) => Floating (Complex a) = a :+ a
```

The constructor (:+) forms a complex number from its real and imaginary rectangular components. A complex number may also be formed from polar components of magnitude and phase by the function mkPolar. The function cis produces a complex number from an angle t :

```
cis t = cos t :+ sin t
```

```
class (Real a, Fractional a) => RealFrac a where
    properFraction :: (Integral b) => a -> (b,a)
    truncate, round :: (Integral b) => a -> b
    ceiling, floor :: (Integral b) => a -> b
class (RealFrac a, Floating a) => RealFloat a where
    floatRadix :: a -> Integer
    floatDigits :: a -> Int
    floatRange :: a -> (Int,Int)
    decodeFloat :: a -> (Integer,Int)
    encodeFloat :: Integer -> Int -> a
    exponent :: a -> Int
    significand :: a -> a
    scaleFloat :: Int -> a -> a
instance Integral Int
instance Integral Integer
minInt, maxInt :: Int
fromIntegral :: (Integral a, Num b) => a -> b
gcd, lcm :: (Integral a) => a -> a-> a
(^) :: (Num a, Integral b) => a -> b >> a
(~`) :: (Fractional a, Integral b) => a -> b -> a
data (Integral a) => Ratio a
type Rational = Ratio Integer
instance (Integral a) => RealFrac (Ratio a)
(%) :: (Integral a) => a -> a >> Ratio a
numerator, denominator :: (Integral a) => Ratio a -> a
instance RealFloat Float
instance RealFloat Double
fromRealFrac :: (RealFrac a, Fractional b) => a -> b
atan2 :: (RealFloat a) => a -> a -> a
```

Figure 9: Numeric classes and related operations (continued)

Put another way, cis t is a complex value with magnitude 1 and phase $t(\operatorname{modulo} 2 \pi)$.
The function polar takes a complex number and returns a (magnitude, phase) pair in canonical form: The magnitude is nonnegative, and the phase, in the range ($-\pi, \pi$]; if the magnitude is zero, then so is the phase. Several component-extraction functions are provided:

```
data (RealFloat a) => Complex a = a :+ a deriving (Eq, Binary, Text)
instance (RealFloat a) => Floating (Complex a)
realPart, imagPart :: (RealFloat a) => Complex a -> a
conjugate :: (RealFloat a) => Complex a -> Complex a
mkPolar :: (RealFloat a) => a -> a -> Complex a
cis :: (RealFloat a) => a -> Complex a
polar :: (RealFloat a) => Complex a -> (a,a)
magnitude, phase :: (RealFloat a) => Complex a -> a
```

Figure 10: Numeric classes and related operations (continued)

```
realPart (x:+y) = x
imagPart (x:+y) = y
magnitude z = r where (r,t) = polar z
phase z = t where (r,t) = polar z
```

Also defined on complex numbers is the conjugate function:

```
conjugate (x:+y) = x:+(-y)
```


6.8.4 Arithmetic and Number-Theoretic Operations

The infix operations (+), (*), (-) and the unary function negate (which can also be written as a prefix minus sign; see section 3.3) apply to all numbers. The operations quot, rem, div, and mod apply only to integral numbers, while the operations (/) apply only to fractional ones. The quot, rem, div, and mod operations satisfy these laws:

$$
(\mathrm{x} \text { `quot` } \mathrm{y}) * \mathrm{y}+(\mathrm{x} \text { `rem` } \mathrm{y})=\mathrm{x}\left(\mathrm{x} \text { `div} \mathrm{div}^{\prime} \mathrm{y}\right) * \mathrm{y}+(\mathrm{x} \text { `mod` } \mathrm{y})=\mathrm{x}
$$

\bkqBquot \bkqA is integer division truncated toward zero, while the result of \bkqBdiv $\backslash \mathrm{bkq}$ A is truncated toward negative infinity. The quotRem operation takes a dividend and a divisor as arguments and returns a (quotient, remainder) pair; divMod is defined similarly:

```
quotRem x y = (x `quot` y, x `rem` y)
divMod x y = (x `div` y, x `mod` y)
```

Also available on integers are the even and odd predicates:

```
even x = x `rem' 2 == 0
odd = not . even
```

Finally, there are the greatest common divisor and least common multiple functions: gcd $x y$ is the greatest integer that divides both x and $y . l \mathrm{~cm} x y$ is the smallest positive integer that both x and y divide.

6.8.5 Exponentiation and Logarithms

The one-argument exponential function exp and the logarithm function log act on floatingpoint numbers and use base ϵ. logBase $a x$ returns the logarithm of x in base a. sqrt returns the principal square root of a floating-point number. There are three two-argument exponentiation operations: (${ }^{\wedge}$) raises any number to a nonnegative integer power, (${ }^{\wedge}$) raises a fractional number to any integer power, and (**) takes two floating-point arguments. The value of $x^{\wedge} 0$ or $x^{\wedge \wedge} 0$ is 1 for any x, including zero; $0 * * y$ is undefined.

6.8.6 Magnitude and Sign

A number has a magnitude and a sign. The functions abs and signum apply to any number and satisfy the law:

```
abs x * signum x == x
```

For real numbers, these functions are defined by:

```
abs x | x > = 0 = x
    | x<0 = - x
signum x | x > 0 = 1
    | x == 0 = 0
    | x< 0 = -1
```

For complex numbers, the definitions are different:

```
abs z = magnitude z :+ 0
signum 0 = 0
signum z@(x:+y) = x/r :+ y/r where r = magnitude z
```

That is, abs z is a number with the magnitude of z, but oriented in the positive real direction, whereas signum z has the phase of z, but unit magnitude. (abs for a complex number differs from magnitude only in type. See Section 6.8.3.)

6.8.7 Trigonometric Functions

The circular and hyperbolic sine, cosine, and tangent functions and their inverses are provided for floating-point numbers. A version of arctangent taking two real floating-point arguments is also provided: For real floating x and y, atan2 $y x$ differs from atan (y / x) in that its range is $(-\pi, \pi]$ rather than $(-\pi / 2, \pi / 2)$ (because the signs of the arguments provide quadrant information), and that it is defined when x is zero.

The precise definition of the above functions is as in Common Lisp [18], which in turn follows Penfield's proposal for APL [13]. See these references for discussions of branch cuts, discontinuities, and implementation.

6.8.8 Coercions and Component Extraction

The ceiling, floor, truncate, and round functions each take a real fractional argument and return an integral result. ceiling x returns the least integer not less than x, and floor x, the greatest integer not greater than x. truncate x yields the integer nearest x between 0 and x, inclusive. round x returns the nearest integer to x, the even integer if x is equidistant between two integers.

The function properFraction takes a real fractional number x and returns a pair comprising x as a proper fraction: an integral number with the same sign as x and a fraction with the same type and sign as x and with absolute value less than 1 . The ceiling, floor, truncate, and round functions can be defined in terms of this one.

Two functions convert numbers to type Rational: toRational returns the rational equivalent of its real argument with full precision; approxRational takes two real fractional arguments x and ϵ and returns the simplest rational number within ϵ of x, where a rational p / q in reduced form is simpler than another p^{\prime} / q^{\prime} if $|p|<=\left|p^{\prime}\right|$ and $q<=q^{\prime}$. Every real interval contains a unique simplest rational; in particular, note that $0 / 1$ is the simplest rational of all[16, Section 6.5.5].

The operations of class RealFloat allow efficient, machine-independent access to the components of a floating-point number. The functions floatRadix, floatDigits, and floatRange give the parameters of a floating-point type: the radix of the representation, the number of digits of this radix in the significand, and the lowest and highest values the exponent may assume, respectively. The function decodeFloat applied to a real floatingpoint number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int). If decodeFloat x yields (m, n), then x is equal in value to $m b^{n}$, where b is the floating-point radix, and furthermore, either m and n are both zero or else $b^{d-1} \leq m<b^{d}$, where d is the value of floatDigits x. encodeFloat performs the inverse of this transformation. The functions significand and exponent together provide the same information as decodeFloat, but rather than an Integer, significand x yields a value of the same type as x, scaled to lie in the open interval ($-1,1$). exponent 0 is zero. scaleFloat multiplies a floating-point number by an integer power of the radix.

Also available are the following coercion functions:

```
fromIntegral :: (Integral a, Num b) => a -> b
fromRealFrac :: (RealFrac a, Fractional b) => a -> b
```


6.9 Arrays

Haskell provides indexable arrays, which may be thought of as functions whose domains are isomorphic to contiguous subsets of the integers. Functions restricted in this way can be implemented efficiently; in particular, a programmer may reasonably expect rapid access to the components. To ensure the possibility of such an implementation, arrays are treated as data, not as general functions.

6.9.1 The Class Ix

Arrays may be subscripted by any type in the class Ix, which is defined as follows (definition repeated from Section 4.3.2)

```
class (Ord a) => Ix a where
    range :: (a,a) -> [a]
    index :: (a,a) -> a -> Int
    inRange :: (a,a) -> a -> Bool
```

The index operation maps the lower and upper bounds of the array, and a subscript, to an integer. Typically, this integer is used to index a linear representation of the array. The range operation enumerates all subscripts, and the inRange operation tells whether a particular subscript lies in the domain of the array.

An implementation is entitled to assume the following laws about these operations:

```
range (1,u) !! index (l,u) i == i
inRange ( \(1, u\) ) \(i==i\) 'elem' range ( \(1, u\) )
```

The first law allows the implementation to allocate a suitably-sized array representation given only the array bounds. The second law is an obvious consistency condition on inRange.

6.9.2 Array Construction

If a is an index type and b is any type, the type of arrays with indices in a and elements in b is written Array a b. An array may be created by the function array:

```
array :: (Ix a) => (a,a) -> [Assoc a b] -> Array a b
data Assoc a b = a := b
```

The first argument of array is a pair of bounds, each of the index type of the array. These bounds are the lowest and highest indices in the array, in that order. For example, a oneorigin vector of length 10 has bounds $(1,10)$, and a one-origin 10 by 10 matrix has bounds $((1,1),(10,10))$.

The second argument of array is a list of associations of the form index := value. Typically, this list will be expressed as a comprehension. An association $i=x$ defines the value of the array at index i to be x. The array is undefined if any index in the list is out of bounds. If any two associations in the list have the same index, the value at that index is undefined. Because the indices must be checked for these errors, array is strict in the bounds argument and in the indices of the association list, but nonstrict in the values. Thus, recurrences such as the following are possible:

$$
a=\operatorname{array}(1,100)((1:=1):[i \quad:=i * a!(i-1) \mid i<-[2 \ldots 100]])
$$

```
-- Scaling an array of numbers by a given number:
scale :: (Num a, Ix b) => a -> Array b a -> Array b a
scale x a = array b [i := a!i * x | i <- range b]
    where b = bounds a
-- Inverting an array that holds a permutation of its indices
invPerm :: (Ix a) => Array a a -> Array a a
invPerm a = array b [a!i := i | i <- range b]
    where b = bounds a
-- The inner product of two vectors
inner :: (Ix a, Nurn b) => Array a b -> Array a b -> b
inner v w = if b == bounds w
    then sum [v!i * w!i | i <- range b]
    else error "inconformable arrays for inner product"
    where b = bounds v
```

Figure 11: Array examples

Not every index within the bounds of the array need appear in the association list, but the values associated with indices that do not appear will be undefined. Figure 11 shows some examples that use the array constructor.
(!) denotes array subscripting. The bounds function applied to an array returns its bounds:

```
(!) :: (Ix a) => Array a b -> a -> b
bounds :: (Ix a) => Array a b -> (a,a)
```

The functions indices, elems, and assocs, when applied to an array, return lists of the indices, elements, or associations, respectively, in index order:

```
indices:: (Ix a) => Array a b -> [a]
indices = range . bounds
elems:: (Ix a) => Array a b -> [b]
elems a = [a!i | i <- indices a]
assocs:: (Ix a) => Array a b -> [Assoc a b]
assocs a = [ i := a!i | i <- indices a]
```

An array may be constructed from a pair of bounds and a list of values in index order using the function listArray:

```
listArray:: (Ix a) => (a,a) -> [b] -> Array a b
listArray bnds xs = array bnds (zipWith (:=) (range bnds) xs)
```


6.9.3 Accumulated Arrays

Another array creation function, accumArray, relaxes the restriction that a given index may appear at most once in the association list, using an accumulating function which combines the values of associations with the same index [12, 20]:

```
accumArray: \(:(\operatorname{Ix} a) \Rightarrow(b->c->b) \rightarrow b \rightarrow(a, a) \rightarrow[A s s o c a c] ~ A r r a y ~ a b\)
```

The first argument of accumArray is the accumulating function; the second is an initial value; the remaining two arguments are a bounds pair and an association list, as for the array function. For example, given a list of values of some index type, hist produces a histogram of the number of occurrences of each index within a specified range:

```
hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
hist bnds is = accumArray (+) 0 bnds [i := 1 | i<-is, inRange bnds i]
```

If the accumulating function is strict, then accumArray is strict in the values, as well as the indices, in the association list. Thus, unlike ordinary arrays, accumulated arrays should not in general be recursive.

6.9.4 Incremental Array Updates

```
(//) :: (Ix a) => Array a b -> [Assoc a b] -> Array a b
accum :: (Ix a) => (b -> c -> b) -> Array a b -> [Assoc a c] -> Array a b
```

The operator (//) takes an array and a list of Assoc pairs and returns an array identical to the left argument except that it has been updated by the associations in the right argument. (As with the array function, the indices in the association list must be unique for the updated elements to be defined.) For example, if m is a 1 -origin, n by n matrix, then $m / /[(i, i):=0 \mid i<-[1 . . n]]$ is the same matrix, except with the diagonal zeroed.
accum f takes an array and an association list and accumulates pairs from the list into the array with the accumulating function f. Thus accumArray can be defined using accum:

```
accumArray f z b = accum f (array b [i := z | i <- range b])
```


6.9.5 Derived Arrays

The two functions amap and ixmap derive new arrays from existing ones; they may be thought of as providing function composition on the left and right, respectively, with the mapping that the original array embodies:

```
amap :: (Ix a) => (b -> c) -> Array a b -> Array a c
amap f a = array b [i := f (a!i) | i <- range b]
    where b = bounds a
ixmap :: (Ix a, Ix a') => (a',a') -> (a'->a) -> Array a b -> Array a' b
ixmap bnds f a = array bnds [i := a ! f i | i <- range bnds]
```

amap is the array analogue of the map function on lists, while ixmap allows for transformations on array indices. Figure 12 shows some examples.

```
-- A rectangular subarray
subArray :: (Ix a) => (a,a) -> Array a b >> Array a b
subArray bnds = ixmap bnds (\i->i)
-- A row of a matrix
row :: (Ix a, Ix b) => a -> Array (a,b) c -> Array b c
row i x = ixmap (l',u') (\j->(i,j)) x where ((l,l'),(u,u')) = bounds x
-- Diagonal of a square matrix
diag :: (Ix a) => Array (a,a) b >> Array a b
diag x = ixmap (l,u) (\i->(i,i)) x
    where ((l,l'),(u,u')) | l == l' && u == u' = bounds x
-- Projection of first components of an array of pairs
firstArray :: (Ix a) => Array a (b,c) -> Array a b
firstArray = amap (\(x,y)->x)
```

Figure 12: Derived array examples

6.10 Errors

All errors in Haskell are semantically equivalent to \perp. error:: String -> a takes a string argument and returns \perp. An application of error terminates evaluation of the program and displays the string as appropriate.

7 Input/Output

Haskell's I/O system is based on the view that a program communicates to the outside world via streams of messages: a program issues a stream of requests to the operating system and in return receives a stream of responses. Since a stream in Haskell is only a lazy list, a Haskell program has the type:

```
type Dialogue = [Response] -> [Request]
```

The datatypes Response and Request are defined below. Intuitively, [Response] is an ordered list of responses and [Request] is an ordered list of requests; the nth response is the operating system's reply to the nth request.

With this view of I/O, there is no need for any special-purpose syntax or constructs for I/O; the I/O system is defined entirely in terms of how the operating system responds to a program with the above type-i.e. what response it issues for each request. An abstract specification of this behaviour is defined by giving a definition of the operating system as a function that takes as input an initial state and a collection of Haskell programs, each with the above type. This specification appears in Appendix D, using standard Haskell syntax augmented with a single non-deterministic merge operator.

One can define a continuation-based version of I/O in terms of a stream-based version. Such a definition is provided in Section 7.5. The specific I/O requests available in each style are identical; what differs is the way they are expressed. This means that programs in either style may be combined with a well-defined semantics. In both cases arbitrary I/O requests within conventional operating systems may be induced while retaining referential transparency within a Haskell program.

The required requests for a valid implementation are:

```
data Request =
    -- file system requests:
                ReadFile String
            | WriteFile String String
            | AppendFile String String
            | ReadBinFile String
            | WriteBinFile String Bin
            | AppendBinFile String Bin
            | DeleteFile String
            | StatusFile String
    -- channel system requests:
            | ReadChan String
            | AppendChan String String
            | ReadBinChan String
            | AppendBinChan String Bin
            | StatusChan String
```

```
    -- environment requests:
    | Echo Bool
    | GetArgs
    | GetProgName
    | GetEnv String
    | SetEnv String String
stdin = "stdin"
stdout = "stdout"
stderr = "stderr"
stdecho = "stdecho"
```

Conceptually the above requests can be organised into three groups: those relating to the file system component of the operating system (the first eight), those relating to the channel system (the next five), and those relating to the environment (the last four).

The file system is fairly conventional: a mapping of file names to contents. The channel system consists of a collection of channels, examples of which include standard input (stdin), standard output (stdout), standard error (stderr), and standard echo (stdecho) channels. A channel is a one-way communication medium-it either consumes values from the program (via AppendChan or AppendBinChan) or produces values for the program (by responding to ReadChan or ReadBinChan). Channels communicate to and from agents (a concept made more precise in Appendix D). Examples of agents include line printers, disk controllers, networks, and human beings. As an example of the latter, the user is normally the consumer of standard output and the producer of standard input. Channels cannot be deleted, nor is there a notion of creating a channel.

Apart from these required requests, several optional requests are described in Appendix D.1. Although not required for a valid Haskell implementation, they may be useful in particular implementations.

Requests to the file system are in general order-dependent; if $i>j$ then the response to the i th request may depend on the j th request. In the case of the channel system the nature of the dependencies is dictated by the agents. In all cases external effects may also be felt "between" internal effects.

Responses are defined by:

```
data Response = Success
    | Str String
    | StrList [String]
    | Bn Bin
    | Failure IOError
data IOError = WriteError String
    | ReadError String
    | SearchError String
    | FormatError String
    | OtherError String
```

The response to a request is either Success, when no value is returned; Str $s[\mathrm{Bn} b]$, when
a string [binary] value $s[b]$ is returned; or Failure e, indicating failure with I/O error e.
The nature of a failure is defined by the IOError datatype, which captures the most common kinds of errors. The String components of these errors are implementation dependent, and may be used to refine the description of the error (for example, for ReadError, the string might be "file locked", "access rights violation", etc.). An implementation is free to extend IOError as required.

7.1 I/O Modes

The I/O requests ReadFile, WriteFile, AppendFile, ReadChan, and AppendChan all work with text values-i.e. strings. Any value whose type is an instance of the class Text may be written to a file (or communicated on a channel) by using the appropriate output request if it is first converted to a string, using shows (see Section 4.3.3). Similarly, reads can be used with the appropriate input request to read such a value from a file (or a channel). This is text mode I/O.

For both efficiency and transparency, Haskell also supports a corresponding set of binary I/O requests-ReadBinFile, WriteBinFile, AppendBinFile, ReadBinChan, and AppendBinChan. showBin and readBin are using analogously to shows and reads (see Section 4.3.3) for values whose types are instances of the class Binary (see Section 6.7).

Binary mode I/O ensures transparency within an implementation-i.e. "what is read is what was written." Implementations on conventional machines will probably be able to realise binary mode more efficiently than text mode. On the other hand, the Bin datatype itself is implementation dependent, and thus binary mode should not be used as a method to ensure transparency between implementations.

In the remainder of this section, various aspects of text mode will be discussed, including the behaviour of standard channels such as stdin and stdout.

7.1.1 Transparent Character Set

The transparent character set is defined by:
the 52 uppercase and lowercase alphabetic characters
the 10 decimal digits
the 32 graphic characters:
! " \# \$ \% \& () * + , . / : ; < = > ? @ [\] _ `\{ \} ~

the space character
(This is identical to the any syntactic category defined in Section 2.2, with tab excluded.)
A transparent line is a list of no more than 254 transparent characters followed by a In character (i.e. no more than 255 characters in total). A transparent string is the finite concatenation of zero or more transparent lines.

Haskell's text mode for files is transparent whenever the string being used is transparent. An implementation must ensure that a transparent string written to a file in text mode is
identical to the string read back from the same file in text mode (assuming there were no intervening external effects).

The transparent character set is restricted because of the inconsistent treatment of text files by operating systems. For example, some systems translate the newline character In into CR/LF, and others into just CR or just LF-so none of these characters can be in the transparent character set. Similarly, some systems truncate lines exceeding a certain length, others do not. Haskell's transparent string is intended to provide a useful degree of portability of text file manipulating programs. Of course, an implementation is free to guarantee a higher degree of transparency than that defined here (such as longer lines or more character types).

Besides this definition of text mode transparency, the standard input and output channels carry with them notions of standard presentation and acceptance, as defined below.

7.1.2 Presentation

Standard text mode presentation guarantees a minimum kind of presentable output on standard output devices; thus it is only defined for AppendChan using the channels stdout, stderr, and stdecho. Abstractly, these channels are assumed to be attached to a sequence of rectangular grids of characters called pages; each page consists of a number of lines and columns, with the first line presented at the "top" and the first column presented to the "left." The width of a column is assumed to be constant. (On a paper printing device, we expect an abstract page to correspond to a physical page; on a terminal display, it will correspond to whatever abstraction is presented by the terminal, but at a minimum the terminal should support display of at least one full page.)

Characters obtained from AppendChan requests are written sequentially into these pages starting at the top left hand corner of the first page. The characters are written in order horizontally across the page until a newline character ($\backslash n$) is processed, at which point the subsequent characters are written starting in column one of line two, and so on. If a form feed character ($\backslash f$) is processed, writing starts at the top left hand corner of the second page, and so on.

Maximum line length and page length for the output channels stdout, stdecho, and stderr may be obtained via the StatusChan request as described in Section 7.3. These are implementation-dependent constants, but must be at least 40 characters and 20 lines, respectively. AppendChan may induce a FormatError if either of these limits is exceeded.

Presentation of the transparent character set may be in any readable font. Presentation of $\backslash n$ and $\backslash f$ is as defined above. Presentation of any other character is not definedpresentation of such a character may invalidate standard presentation of all subsequent characters. An implementation, of course, may guarantee other forms of useful presentation beyond what is specified here.

To facilitate processing of text to and from standard input/output channels, the auxiliary functions shown in Figures $13-14$ are provided in the standard prelude.

Figure 13: Auxiliary Functions for Text Processing of Standard Output, Part 1

unlines	$::$ [String] \rightarrow String
unlines ls	$=$ concat (map (\l $->1++" \backslash n ")$ ls)
unwords	$::$ [String] \rightarrow String
unwords []	$=$ ""
unwords [w]	$=\mathrm{w}$
unwords (w:ws)	$=\mathrm{w}++$ concat (map (, , :) ws)

Figure 14: Auxiliary Functions for Text Processing of Standard Output, Part 2

7.1.3 Acceptance

Standard text mode acceptance guarantees a minimum kind of character input from standard input devices; thus it is only defined for ReadChan using the channel stdin. Abstractly, stdin is assumed to be attached to a keyboard. The only requirement of the keyboard is that it have keys to support the transparent character set plus the newline (Xn) character.

7.1.4 Echoing

The channel stdecho is assumed connected to the display associated with the device to which stdin is connected. It may be possible for stdout and stdecho to be connected to the same device, but this is not required. It may be possible in some operating systems to redirect stdout to a file while still displaying information to the user on stdecho.

The Echo request (described in Section 7.4) controls echoing of stdin on stdecho. When echoing is enabled, characters typed at the terminal connected to stdin are echoed onto
stdecho, with optional implementation-specific line-editing functions available. The list of characters returned by a read request to stdin should be the result of this processing. As an entire line may be erased by the user, a program will not see any of the line until a \n character is typed.

A display may receive data from four different sources: echoing from stdin, and explicit output to stdecho, stdout, and stderr. The result is an interleaving of these character streams, but it is not an arbitrary one, because of two constraints: (1) explicit output (via AppendChan) must appear as the concatenation of the individual streams; i.e. they cannot be interleaved (this is consistent with the hyperstrict nature of AppendChan), and (2) if echoing is on, characters from stdin that a program depends on for some I/O request must appear on the display before that I/O occurs. These constraints permit a user to type ahead, but prevent a system from printing a reply before echoing the user's request.

7.2 File System Requests

In this section, each request is described using the stream model-the corresponding behaviour using the continuation model should be obvious. Optional requests, not required of a valid Haskell implementation, are described in Appendix D.1.

- ReadFile name

ReadBinFile name
Returns the contents of file name treated as a text [binary] file. If successful, the response will be of the form $\operatorname{Str} \mathrm{s}[\mathrm{Bn} \mathrm{b}]$, where $\mathrm{s}[\mathrm{b}]$ is a string [binary] value. If the file is not found, the response Failure (SearchError string) is induced; if it is unreadable for some other reason, the Failure (ReadError string) error is induced.

- WriteFile name string

WriteBinFile name bin
Writes string [bin] to file name. If the file does not exist, it is created. If it already exists, it is overwritten. A successful response has form Success; the only failure possible has the form Failure (WriteError string).
Both of these requests are "hyperstrict" in their second argument: no response is returned until the entire list of values is completely evaluated.

- AppendFile name string AppendBinFile name bin
Identical to WriteFile [WriteBinFile], except that (1) the string [bin] argument is appended to the current contents of the file named name; (2) if the I/O mode does not match the previous mode with which name was written, the behaviour is not specified; and (3) if the file does not exist, the response Failure (SearchError string) is induced. All other errors have form Failure (WriteError string), and both requests are hyperstrict in their second argument.
- DeleteFile name

Deletes file name, with successful response Success. If the file does not exist, the response Failure (SearchError string) is induced. If it cannot be deleted for some other reason, a response of the form Failure (WriteError string) is induced.

- StatusFile name

Induces Failure (SearchError string) if an object name does not exist, otherwise induces Str status where status is a string containing, in this order: (1) either ' t ', 'b ', 'd ', or 'u' depending on whether the object is a text file, binary file, directory, or something else, respectively (if text and binary files cannot be distinguished, 'f' indicates either text or binary file); (2) ' r ' if the object is readable by this program, '- 'if not; and (3) 'w' if the object is writable by this program, '- 'if not. For example "dr-" denotes a directory that can be read but not written. An implementation is free to append more status information to this string.

Note 1. A proper implementation of ReadFile or ReadBinFile may have to make copies of files in order to preserve referential transparency-a successful read of a file returns a lazy list whose contents should be preserved, despite future writes to or deletions of that file, even if the lazy list has not yet been completely evaluated.

Note 2. Given the two juxtaposed requests:
[..., WriteFile name contents1, ReadFile name, ...]
with the corresponding responses:
[.... Success, Str contents2, ...]
then contents1 == contents2 if contents1 is a transparent string, assuming that there were no external effects. A similar result would hold if the binary versions were used.

7.3 Channel System Requests

Channels are inherently different from files-they contain ephemeral streams of data as opposed to persistent stationary values. The most common channels are standard input (stdin), standard output (stdout), standard error (stderr), and standard echo (stdecho); these four are the only required channels in a valid implementation.

- ReadChan name ReadBinChan name
Opens channel name for input. A successful response returns the contents of the channel as a lazy stream of characters [a binary value]. If the channel does not exist the response Failure (SearchError string) is induced; all other errors have form Failure (ReadError string).
Unlike files, once a ReadChan or ReadBinChan request has been issued for a particular channel, it cannot be issued again for the same channel in that program. This reflects the ephemeral nature of its contents and prevents a serious space leak.
- AppendChan name string

AppendBinChan name bin
Writes string [bin] to channel name. The semantics is as for AppendFile, except: (1) the second argument is appended to whatever was previously written (if anything); (2) if AppendChan and AppendBinChan are both issued to the same channel, the resulting behaviour is not specified; (3) if the channel does not exist, the response Failure (SearchError string) is induced; and (4) if the maximum line or page length of stdout, stderr, or stdecho is exceeded, the response Failure (FormatError string) is induced (see Section 7.1.2). All other errors have form Failure (WriteError string). Both requests are hyperstrict in their second argument.

- StatusChan name

Induces Failure (SearchError string) if channel name does not exist, otherwise induces Str status where status is a string containing implementation-dependent information about the named channel. The only information required of a valid implementation is that for the output channels stdout, stdecho, and stderr: the beginning of the status string must contain two integers separated by a space, the first integer indicating the maximum line length (in characters) allowed on the channel, the second indicating the maximum page length (in lines) allowed (see Section 7.1.2). A zero length implies that there is no bound.

7.4 Environment Requests

- Echo bool

Echo True enables echoing of stdin on stdecho; Echo False disables it (see Section 7.1.4). Either Success or Failure (OtherError string) is induced.

The echo mode can only be set once by a particular program, and it must be done before any I/O operation involving stdin. If no Echo request is made, a valid implementation is expected to use the echoing mode of the OS at the time the program is run.

- GetArgs

Induces the response StrList str_list, where str_list is a list of the program's explicit command line arguments.

- GetProgName

Returns the short name of the current program, not including search path information. If successful, the response will be of the form Str s, where s is a string. If the operating system is unable to provide the program name, Failure (OtherError string) is induced.

- GetEnv name

Returns the value of environment variable name. If successful, the response will be of the form Str s, where s is a string. If the environment variable does not exist, a SearchError is induced.

- SetEnv name string

Sets environment variable name to value string, with response Success. If the environment variable does not exist, it is created.

7.5 Continuation-based I/O

Haskell supports an alternative style of I/O called continuation-based I/O. Under this model, a Haskell program still has type [Response]-> [Request], but instead of the user manipulating the requests and responses directly, a collection of transactions defined in a continuation style, captures the effect of each request/response pair.

Transactions are functions. For each request Req there corresponds a transaction req, as shown in Figures 15-16. For example, ReadFile induces either a failure response Failure msg or success response Str contents. In contrast the transaction readFile would be used in continuation-based I/O, as for example,

```
readFile name (\ msg -> errorTransaction)
    (\ contents -> successTransaction)
```

where the second and third arguments are the failure continuation and success continuation, respectively. If the transaction fails then the error continuation is applied to the error message; if it succeeds then the success continuation is applied to the contents of the file. The following type synonyms and auxiliary functions are defined for continuation-based I/O:

type Dialogue	$=$	[Response]
type SuccCont	[Request]	
type StrCont	$=$ String	Dialogue
type Dialogue		
type StrListCont	$=$ [String]	\rightarrow Dialogue
type BinCont	$=$ Bin	\rightarrow Dialogue
type FailCont	$=$ I0Error	\rightarrow Dialogue

done			Dialogue
readFile	:: String ->	FailCont -> StrCont	-> Dialogue
writeFile	:: String -> String -> F	FailCont -> SuccCont	-> Dialogue
appendFile	:: String -> String -> F	FailCont \rightarrow SuccCont	-> Dialogue
readBinFile	:: String ->	FailCont -> BinCont	-> Dialogue
writeBinFile	:: String -> Bin \rightarrow F	FailCont -> SuccCont	-> Dialogue
appendBinFile	:: String -> Bin -> F	FailCont -> SuccCont	-> Dialogue
deleteFile	:: String ->	FailCont \rightarrow SuccCont	-> Dialogue
statusFile	:: String ->	FailCont -> StrCont	-> Dialogue
readChan	:: String ->	FailCont -> StrCont	-> Dialogue
appendChan	: S String -> String ->	FailCont -> SuccCont	-> Dialogue
readBinChan	:: String ->	FailCont -> BinCont	-> Dialogue
appendBinChan	:: String -> Bin ->	ailCont -> SuccCont	-> Dialogue
statusChan	:: String ->	FailCont -> StrCont	-> Dialogue
echo	: Bool ->	FailCont -> SuccCont	-> Dialogue
getArgs	$:: \quad$ F	FailCont -> StrListCont	-> Dialogue
getProgName	$:: \quad$ F	FailCont \rightarrow StrCont	-> Dialogue
getEnv	:: String ->	FailCont -> StrCont	-> Dialogue
setEnv	:: String -> String -> F	FailCont -> SuccCont	-> Dialogue

Figure 15: Transactions of continuation-based I/O - signatures.

```
strDispatch fail succ (resp:resps) =
    case resp of Str val -> succ val resps
    Failure msg -> fail msg resps
strListDispatch fail succ (resp:resps) =
    case resp of StrList val -> succ val resps
        Failure msg -> fail msg resps
binDispatch fail succ (resp:resps) =
    case resp of Bn val -> succ val resps
        Failure msg -> fail msg resps
succDispatch fail succ (resp:resps) =
    case resp of Success -> succ resps
        Failure msg -> fail msg resps
```

```
done resps = []
readFile name fail succ resps = --similarly for readBinFile
    (ReadFile name) : strDispatch fail succ resps
writeFile name contents fail succ resps = --similarly for writeBinFile
    (WriteFile name contents) : succDispatch fail succ resps
appendFile name contents fail succ resps = --similarly for appendBinFile
    (AppendFile name contents) : succDispatch fail succ resps
deleteFile name fail succ resps =
    (DeleteFile name) : succDispatch fail succ resps
statusFile name fail succ resps = --similarly for statusChan
    (StatusFile name) : strDispatch fail succ resps
readChan name fail succ resps = --similarly for readBinChan
    (ReadChan name) : strDispatch fail succ resps
appendChan name contents fail succ resps = --similarly for appendBinChan
    (AppendChan name contents) : succDispatch fail succ resps
echo bool fail succ resps =
    (Echo bool) : succDispatch fail succ resps
getArgs fail succ resps =
    GetArgs : strListDispatch fail succ resps
getProgName fail succ resps =
    GetProgName : strDispatch fail succ resps
getEnv name fail succ resps =
    (GetEnv name) : strDispatch fail succ resps
setEnv name contents fail succ resps =
    (SetEnv name contents) : succDispatch fail succ resps
```

Figure 16: Transactions of continuation-based I/O - definitions.

```
abort :: FailCont
abort err = done
exit :: FailCont
exit err = appendChan stderr msg abort done
    where msg = case err of ReadError s -> s
                                    WriteError s -> s
                                    SearchError s -> s
                                    FormatError s -> s
                                    OtherError s -> s
print :: (Text a) => a -> Dialogue
print x = appendChan stdout (show x) exit done
prints :: (Text a) => a -> String -> Dialogue
prints x s = appendChan stdout (shows x s) exit done
interact :: (String -> String) -> Dialogue
interact f = readChan stdin exit
    (\x -> appendChan stdout (f x) exit done)
```


7.6 A Small Example

Both of the following programs prompt the user for the name of a file, and then look up and display the contents of the file on standard-output. The filename as typed by the user is also echoed. The first program uses the stream-based style (note the irrefutable patterns):

```
main ~(Success : ~((Str userInput) : ~(Success : ~(r4 : _)))) =
    [ AppendChan stdout "please type a filename\n",
        ReadChan stdin,
        AppendChan stdout name,
        ReadFile name,
        AppendChan stdout (case r4 of Str contents -> contents
                            Failure ioerror -> "can't open file")
    ] where (name : _) = lines userInput
```

The second program uses the continuation-based style:

```
main = appendChan stdout "please type a filename\n" exit (
    readChan stdin exit (\ userInput ->
    let (name : _) = lines userInput in
    appendChan stdout name exit (
    readFile name (\ ioerror -> appendChan stdout
                                    "can't open file" exit done)
        (\ contents ->
    appendChan stdout contents exit done))))
```

More examples and a general discussion of both forms of I/O may be found in a report by Hudak and Sundaresh [8].

7.7 An Example Involving Synchronisation

The following program reads two numbers and prints their sum. After the initial readChan request, the value of the input stream must be passed in and out of the functions which actually obtain the user input. The programmer must control the synchronisation between the appendChan requests and when the program stops to read input. The readChan request does not actually cause the program to stop and wait for the user to enter the entire input stream; only at demands for actual input characters will execution pause for input. This program assures that this demand is properly synchronised with the appendChan requests by verifying input values in the readInt function.

```
main :: Dialogue
main = readChan stdin exit (\ userInput -> readNums (lines userInput))
readNums :: [String] -> Dialogue
readNums inputLines =
    readInt "Enter first number: " inputLines
        (\ num1 inputLines1 ->
            readInt "Enter second number: " inputLines1
            (\ num2 _ -> reportResult num1 num2))
reportResult :: Int -> Int -> Dialogue
reportResult num1 num2 =
    appendChan stdout ("Their sum is: " ++ show (num1 + num2)) exit done
-- readInt prints a prompt and then reads a line of input. If the
-- line contains an integer, the value of the integer is passed to the
-- success continuation. If a line cannot be parsed as an integer,
-- an error message is printed and the user is asked to try again.
-- If EOF is detected, the program is aborted.
readInt :: String -> [String] -> (Int -> [String] -> Dialogue) -> Dialogue
readInt prompt inputLines succ =
    appendChan stdout prompt exit
        (case inputLines of
            (11 : rest) -> case (reads l1) of
                                    [(x,""')] -> succ x rest
                            - -> appendChan stdout
                                    "Error - retype the number\n" exit
                                    (readInt prompt rest succ)
            _ -> appendChan stdout "Early EOF" exit done)
```


A Standard Prelude

In this appendix the entire Haskell prelude is given. It is organised into a root module and eight sub-modules.
-- Standard value bindings
module Prelude (
PreludeCore.., PreludeRatio.., PreludeComplex.., PreludeList..,
PreludeArray.., PreludeText.., PreludeIO..,
nullBin, isNullBin, appendBin,
(\&\&), (|l), not, otherwise,
minChar, maxChar, ord, chr, isAscii, isControl, isPrint, isSpace, isUpper, isLower, isAlpha, isDigit, isAlphanum, toUpper, toLower,
minInt, maxInt, subtract, gcd, $1 \mathrm{~cm},\left({ }^{-}\right),\left({ }^{-}\right)$,
fromIntegral, fromRealFrac, atan2,
fst, snd, id, const, (.), flip, (\$), until, asTypeOf, error) where
import PreludeBuiltin
import PreludeCore
import PreludeList
import PreludeArray
import PreludeRatio
import PreludeComplex
import PreludeText
import PreludeIo
infixr 9
infixr 8 ^, ^
infixr 3 \&\&
infixr 2 ||
infixr 0 \$
-- Binary functions

nullBin	$::$ Bin
nullBin	$=$ primNullBin
isNullBin	$::$ Bin $->$ Bool
isNullBin	$=$ primIsNullBin
appendBin	$::$ Bin $->$ Bin $->$ Bin
appendBin	$=$ primAppendBin

-- Boolean functions

```
(&&), (||) :: Bool -> Bool -> Bool
True && x = x
False && _ = False
True || _ = True
False || x = x
not :: Bool -> Bool
not True = False
not False = True
otherwise :: Bool
otherwise = True
-- Character functions
minChar, maxChar :: Char
minChar = '\0'
maxChar = '\255'
ord :: Char -> Int
ord = primCharToInt
chr :: Int -> Char
chr = primIntToChar
```

isAscii, isControl, isPrint, isSpace : Char -> Bool
isUpper, isLower, isAlpha, isDigit, isAlphanum :: Char -> Bool
isAscii c $\quad=$ ord $c<128$
isControl $c \quad=c<, \quad \| \mathrm{c}==$ '\DEL'
isPrint $c \quad=c>=$, , \&\& $c<=, \sim$,

isUpper $c \quad=c>=$ ' A ' \&\& $c<=, Z '$
isLower $c \quad=c>=$ ' a ' \&\& $c<=' z$ '
isAlpha c $\quad=$ isUpper c l| isLower c
isDigit $c \quad=c>=$ ' 0 ' \&\& $c<=$ ' 9 '
isAlphanum c $\quad=\quad$ isAlpha $c \mid l i s D i g i t ~ c ~$
toUpper, toLower :: Char -> Char
toUpper c l isLower c $=\operatorname{chr}(($ ord $c-$ ord 'a') + ord 'A')
| otherwise $=c$
toLower c | isUpper c $=\operatorname{chr}((\operatorname{ord} c-\operatorname{ord}$ ' A ') + ord 'a')
| otherwise $=c$
-- Numeric functions

```
minInt, maxInt :: Int
minInt = primMinInt
maxInt = primMaxInt
subtract :: (Num a) => a -> a -> a
subtract = flip (-)
gcd ::(Integral a) => a >> a -> a
gcd 0 0 = error "gcd{Prelude}: gcd 0 0 is undefined"
gcd x y = gcd' (abs x) (abs y)
    where gcd' x 0 = x
    gcd' x y = gcd' y (x 'rem' y)
lcm ::(Integral a) => a >> a >> a
lcm_0 = 0
lcm O = O
lcm x y = abs ((x 'quot' (gcd x y)) * y)
(^) :: (Num a, Integral b) => a >> b >> a
x - 0 = 1
x - (n+1) = f x n x
        where f _ 0 y = y
                            f x n y = g x n where
                                    g x n | even n = g(x*x) (n 'quot' 2)
                                    | otherwise = f x (n-1) (x*y)
_ _ _ = error "(^){Prelude}: negative exponent"
(~`) :: (Fractional a, Integral b) => a -> b >> a
x ^ n = if n >= 0 then m^n else recip ( }\mp@subsup{\textrm{x}}{}{\wedge}(-n)
fromIntegral :: (Integral a, Num b) => a -> b
fromIntegral = fromInteger . toInteger
fromRealFrac :: (RealFrac a, Fractional b) => a -> b
fromRealFrac = fromRational . toRational
atan2 :: (RealFloat a) => a -> a -> a
atan2 y x = case (signum y, signum x) of
    (0, 1) -> 0
    (1, 0) -> pi/2
    ( 0,-1) -> pi
    (-1, 0) -> -pi/2
    ( _, 1) -> atan (y/x)
    (_, -1) -> atan (y/x) + pi
    (0, 0) -> error "atan2{Prelude}: atan2 of origin"
```

```
-- Some standard functions:
-- component projections for pairs:
fst :: (a,b) -> a
fst (x,y) = x
snd ::(a,b) >> b
snd (x,y) = y
-- identity function
id :: a -> a
id x = x
-- constant function
const :: a -> b -> a
const x _ = x
-- function composition
(.) ::(b -> c) -> (a -> b) -> a -> c
f.g = \ x > f (g x)
-- flip f takes its (first) two arguments in the reverse order of f.
flip :: (a -> b -> c) -> b -> a -> c
flip f x y = f y x
-- right-associating infix application operator (useful in continuation-
-- passing style)
($)
::(a -> b) -> a -> b
f $ x = f x
-- until p f yields the result of applying f until p holds.
until :: (a -> Bool) -> (a -> a) -> a >> a
until p f x | p x = x
    | otherwise = until p f (f x)
-- asTypeOf is a type-restricted version of const. It is usually used
-- as an infix operator, and its typing forces its first argument
-- (which is usually overloaded) to have the same type as the second.
asTypeOf :: a -> a -> a
asTypeOf = const
```


A. 1 Prelude PreludeBuiltin

```
interface PreludeBuiltin where
```

infixr 5 :
-- The following are algebraic types with special syntax. All of their
-- standard instances are derived here, except for class Text, for
-- which the special syntax must be taken into account. See PreludeText
-- for the Text instances of lists and the trivial type and a scheme
-- for Tuple Text instances.
--
-- data $[a]=[] \mid a \operatorname{a}]$ deriving (Eq, Ord, Binary) Lists
-- data () = () deriving (Eq, Ord, Ix, Enum, Binary) Trivial Type
-- data $(a, b)=(a, b)$ deriving (Eq, Ord, Ix, Binary) Pairs
-- data $(a, b, c)=(a, b, c)$ deriving (Eq, Ord, Ix, Binary) Triples
-- et cetera
Other Tuples
-- The primitive types:
data Char
data Int
data Integer
data Float
data Double
data Bin
instance Binary Char
instance Binary Int
instance Binary Integer
instance Binary Float
instance Binary Double
primMinInt, primMaxInt : : Int
primCharToInt :: Char -> Int
primIntToChar :: Int -> Char
primIntToInteger :: Int \rightarrow Integer
primIntegerToInt :: Integer \rightarrow Int
primEqInt, primLeInt : : Int $->$ Int \rightarrow Bool
primPlusInt, primMulInt :: Int \rightarrow Int \rightarrow Int
primNegInt :: Int \rightarrow Int
primQuotRemInt :: Int \rightarrow Int $->$ (Int, Int)
primEqInteger, primLeInteger :: Integer -> Integer -> Bool
primPlusInteger, primMulInteger :: Integer \rightarrow Integer \rightarrow Integer
primNegInteger :: Integer \rightarrow Integer
primQuotRemInteger :: Integer -> Integer -> (Integer,Integer)

```
primFloatRadix :: Integer
primFloatDigits, primFloatMinExp,
    primFloatMaxExp :: Int
primDecodeFloat
:: Float -> (Integer,Int)
primEncodeFloat
primEqFloat, primLeFloat
primPlusFloat, primMulFloat,
    primDivFloat
primNegFloat
primPiFloat 
    primSqrtFloat, primSinFloat,
    primCosFloat, primTanFloat,
    primAsinFloat, primAcosFloat,
    primAtanFloat, primSinhFloat,
    primCoshFloat, primTanhFloat,
    primAsinhFloat, primAcoshFloat,
    primAtanhFloat :: Float -> Float
primDoubleRadix :: Integer
primDoubleRadix 
    primDoubleMaxExp
primDecodeDouble
primEncodeDouble
primEqDouble, primLeDouble
primPlusDouble, primMulDouble,
    primDivDouble
primNegDouble
primPiDouble
primExpDouble, primLogDouble,
    primSqrtDouble, primSinDouble,
    primCosDouble, primTanDouble,
    primAsinDouble, primAcosDouble,
    primAtanDouble, primSinhDouble,
    primCoshDouble, primTanhDouble,
    primAsinhDouble, primAcoshDouble,
    primAtanhDouble :: Double -> Double
primNullBin
primIsNullBin
primAppendBin
:: Integer -> Int -> Float
:: Float -> Float -> Bool
:: Float -> Float -> Float
:: Float -> Float
:: Float
:: Int
:: Double -> (Integer,Int)
:: Integer -> Int -> Double
:: Double -> Double -> Bool
:: Double -> Double -> Double
:: Double -> Double
:: Double
:: Bin
:: Bin -> Bool
:: Bin -> Bin -> Bin
```

-- error is applied to a string, returns any type, and is everywhere
-- undefined. Operationally, the intent is that its application
-- terminate execution of the program and display the argument string
-- in some appropriate way.
error :: String \rightarrow a

A. 2 Prelude PreludeCore

```
-- Standard types, classes, and instances
module PreludeCore (
    Eq((==), (/=)),
    Ord((<), (<=), (>=), (>), max, min),
    Num((+), (-), (*), negate, abs, signum, fromInteger),
    Integral(quot, rem, div, mod, quotRem, divMod, even, odd, toInteger),
    Fractional((/), fromRational),
    Floating(pi, exp, log, sqrt, (**), logBase,
        sin, cos, tan, asin, acos, atan,
        sinh, cosh, tanh, asinh, acosh, atanh),
    Real(toRational),
    RealFrac(properFraction, truncate, round, ceiling, floor),
    RealFloat(floatRadix, floatDigits, floatRange,
        encodeFloat, decodeFloat, exponent, significand, scaleFloat),
    Ix(range, index, inRange),
    Enum(enumFrom, enumFromThen, enumFromTo, enumFromThenTo),
    Text(readsPrec, showsPrec, readList, showList), ReadS(..), ShowS(..),
    Binary(readBin, showBin),
-- List type: [_]((:), [])
-- Tuple types: (_,_), (_,_,_), etc.
-- Trivial type: ()
    Bool(True, False),
    Char, Int, Integer, Float, Double, Bin,
    Ratio, Complex((:+)), Assoc((:=)), Array,
    String(..), Rational(..) ) where
import PreludeBuiltin
import Prelude(iterate)
import PreludeText(Text(readsPrec, showsPrec, readList, showList))
import PreludeRatio(Ratio, Rational(..))
import PreludeComplex(Complex((:+)))
import PreludeArray(Assoc((:=)), Array)
import PreludeIO(Request, Response, IOError,
                    Dialogue(..), SuccCont(..), StrCont(..),
    StrListCont(..), BinCont(..), FailCont(..))
infixr 8 **
infixl 7 *, /, 'quot', 'rem', 'div', 'mod`
infixl 6 +, -
infix 4 ==, /=, <, <=, >=, >
```

```
-- Equality and Ordered classes
class Eq a where
    (==), (/=) :: a -> a -> Bool
    x /= y = not (x == y)
class (Eq a) => Ord a where
    (<), (<=), (>=), (>):: a -> a -> Bool
    max, min :: a -> a -> a
    x<y = x<= y && x /= y
    x >= y = y<= x
    x>y = y< x
    -- The following default methods are appropriate for partial orders.
    -- Note that the second guards in each function can be replaced
    -- by "otherwise" and the error cases, eliminated for total orders.
    max x y | x >= y = x
            | y >= x = y
            |otherwise = error "max{PreludeCore}: no ordering relation"
    min x y | x <= y = x
            | y<= x = y
            |otherwise = error "min{PreludeCore}: no ordering relation"
-- Numeric classes
class (Eq a, Text a) => Num a where
    (+), (-), (*) :: a -> a -> a
    negate :: a -> a
    abs, signum :: a -> a
    fromInteger :: Integer -> a
    x - y = x + negate y
class (Num a, Enum a) => Real a where
        toRational :: a -> Rational
```

```
class (Real a, Ix a) => Integral a where
    quot, rem, div, mod :: a \(->\) a \(->\) a
    quotRem, divMod \(\quad:: a \rightarrow\) a \(->(a, a)\)
    even, odd : : a \(->\) Bool
    toInteger \(::\) a \(->\) Integer
    n 'quot' \(\mathrm{d}=\mathrm{q}\) where \((\mathrm{q}, \mathrm{r})=\) quotRem n d
    \(n\) 'rem' \(d \quad=r\) where \((q, r)=\) quotRem \(n d\)
    \(n\) 'div' \(d \quad=q\) where \((q, r)=\) divMod \(n d\)
    \(n\) 'mod' \(d \quad=r\) where \((q, r)=\operatorname{divMod} n d\)
    divMod \(n d=\) if signum \(r==-\operatorname{signum} d\) then ( \(q-1, r+d\) ) else qr
        where qr@ \((q, r)=\) quotRem \(n d\)
    even \(n \quad=n^{\prime}\) rem' \(2=0\)
    odd \(=\) not . even
class (Num a) \(\Rightarrow\) Fractional a where
    (/) : : a -> a -> a
    recip \(\quad::\) a \(->\) a
    fromRational :: Rational -> a
    recip \(x=1 / x\)
class (Fractional a) => Floating a where
    pi : a
    exp, log, sqrt : a \(->\) a
    (**) , \(\log\) Base \(:\) a \(->\) a \(->a\)
    sin, cos, tan \(\quad:\) a \(->\) a
    asin, acos, atan \(::\) a \(->\) a
    sinh, cosh, tanh \(::\) a \(\rightarrow\) a
    asinh, acosh, atanh :: a -> a
    \(\mathrm{x} * * \mathrm{y} \quad=\exp (\log \mathrm{x} * \mathrm{y})\)
    \(\log\) Base \(\mathrm{x} y \quad=\log \mathrm{y} / \log \mathrm{x}\)
    sqrt \(\mathrm{x}=\mathrm{x} * * 0.5\)
    \(\tan x \quad=\sin x / \cos x\)
    \(\tanh x=\sinh x / \cosh x\)
```

```
class (Real a, Fractional a) => RealFrac a where
    properFraction :: (Integral b) => a -> (b,a)
    truncate, round :: (Integral b) => a -> b
    ceiling, floor :: (Integral b) => a -> b
    truncate x = m where (m,_) = properFraction x
    round x = let (n,r) = properFraction x
        m = if r < 0 then n - 1 else n + 1
        in case signum (abs r - 0.5) of
                -1 -> n
        0 -> if even n then n else m
        1 -> m
    ceiling x = if r>0 then n + 1 else n
        where (n,r) = properFraction x
    floor x = if r< 0 then n - 1 else n
    where (n,r) = properFraction x
class (RealFrac a, Floating a) => RealFloat a where
    floatRadix :: a -> Integer
    floatDigits :: a -> Int
    floatRange :: a -> (Int,Int)
    decodeFloat :: a -> (Integer,Int)
    encodeFloat :: Integer -> Int >> a
    exponent :: a -> Int
    significand :: a -> a
    scaleFloat :: Int -> a -> a
    exponent x = if m == 0 then 0 else n + floatDigits x
    where (m,n) = decodeFloat x
    significand x = encodeFloat m (- floatDigits x)
        where (m,_) = decodeFloat x
    scaleFloat k x = encodeFloat m ( }\textrm{n}+\textrm{k}\mathrm{ )
    where (m,n) = decodeFloat x
-- Index and Enumeration classes
class (Ord a) => Ix a where
    range :: (a,a) -> [a]
    index :: (a,a) -> a >> Int
    inRange :: (a,a) -> a -> Bool
```

```
class (Ord a) => Enum a where
    enumFrom :: a -> [a] -- [n..]
    enumFromThen :: a m a -> [a] -- [n,n'..]
    enumFromTo :: a -> a -> [a] -- [n..m]
    enumFromThenTo :: a -> a -> a -> [a] -- [n,n'..m]
    enumFromTo n m = takeWhile (<= m) (enumFrom n)
    enumFromThenTo n n' m
        = takeWhile (if n' >= n then (<= m) else (>= m))
                        (enumFromThen n n')
-- Text class
type ReadS a = String -> [(a,String)]
type ShowS = String -> String
class Text a where
    readsPrec :: Int -> ReadS a
    showsPrec :: Int -> a -> ShowS
    readList :: ReadS [a]
    showList :: [a] -> ShowS
    readList = readParen False (\r -> [pr | ("[",s) <- lex r,
                                    pr <- readl s])
                                where readl s = [([],t) | ("]",t) <- lex s] ++
                        [(x:xs,u) | (x,t) <- reads s,
                                    (xs,u) <- readl' t]
                            readl' s = [([],t) | ("]",t) <- lex s] ++
                                    [(x:xs,v) | (",",t) <- lex s,
                                    (x,u) <- read t,
                                    (xs,v) <- readl' u]
        showList [] = showString "[]"
        showList (x:xs)
            = showChar '[' . shows x . showl xs
                        where showl [] = showChar ']'
                        showl (x:xs) = showString ", " . shows x . showl xs
-- Binary class
class Binary a where
        readBin :: Bin -> (a,Bin)
        showBin :: a -> Bin -> Bin
```

```
-- Trivial type
-- data () = () deriving (Eq, Ord, Ix, Enum, Binary)
instance Text () where
    readsPrec p = readParen False
                                    (\r -> [((),t) | ("(",s) <- lex r,
                                    (')",t) <- lex s ] )
    showsPrec p () = showString "()"
-- Binary type
instance Text Bin where
    readsPrec p s = error "readsPrec{PreludeText}: Cannot read Bin."
    showsPrec p b = showString "<<Bin>>"
-- Boolean type
data Bool = False | True deriving (Eq, Ord, Ix, Enum, Text, Binary)
-- Character type
instance Eq Char where
    c== c, = ord c == ord c'
instance Ord Char where
    c<= c, = ord c <= ord c'
instance Ix Char where
    range (c, c') = [c..c']
    index b@(c,c') ci
        | inRange b ci = ord ci - ord c
        | otherwise = error "index{PreludeCore}: Index out of range."
    inRange (c,c') ci = ord c<= i && i <= ord c'
                                where i = ord ci
instance Enum Char where
    enumFrom c = map chr [ord c .. ord maxChar]
    enumFromThen c c, = map chr [ord c, ord c' .. ord lastChar]
                                where lastChar = if c' < c then minChar else maxChar
```

```
instance Text Char where
    readsPrec p = readParen False
                                    (\r -> [(c,t) | ('\'':s,t)<- lex r,
                                (c,_) <- readLitChar s])
    showsPrec p '\', = showString "'\\',"
    showsPrec p c = showChar '\', . showLitChar c . showChar '\',
    readList = readParen False (\r -> [(l,t) | ('|':s, t) <- lex r,
                                    (l,_) <- readl s ])
        where readl (,"':s) = [("",s)]
            readl ('\\':'&':s) = readl s
            readl s = [(c:cs,u) | (c ,t) <- readLitChar s,
                                    (cs,u) <- readl t ]
    showList cs = showChar '"', . showl cs
            where showl """ = showChar '",
                        showl ('"':Cs) = showString "\\\"" . showl CS
                        showl (c:cs) = showLitChar c . showl cs
type String = [Char]
-- Standard Integral types
instance Eq Int where
    (==) = primEqInt
instance Eq Integer where
    (==) = primEqInteger
instance Ord Int where
    (<=) = primLeInt
instance Ord Integer where
    (<=) = primLeInteger
instance Num Int where
    (+) = primPlusInt
    negate = primNegInt
    (*) = primMulInt
    abs = absReal
    signum = signumReal
    fromInteger = primIntegerToInt
```

```
instance Num Integer where
    (+) = primPlusInteger
    negate = primNegInteger
    (*) = primMulInteger
    abs = absReal
    signum = signumReal
    fromInteger x = x
absReal x | x >= 0 = x
    | otherwise = - x
signumReal x | x == 0 = 0
    | x > 0 = 1
    | otherwise = -1
instance Real Int where
    toRational x = toInteger x % 1
instance Real Integer where
    toRational x = x % 1
instance Integral Int where
    quotRem = primQuotRemInt
    toInteger = primIntToInteger
instance Integral Integer where
    quotRem = primQuotRemInteger
    toInteger x = x
instance Ix Int where
    range (m,n) = [m..n]
    index b@(m,n) i
        | inRange b i = i - m
        | otherwise = error "index{PreludeCore}: Index out of range."
    inRange (m,n) i =m<= i && i <= n
instance Ix Integer where
    range (m,n) = [m..n]
    index b@(m,n) i
        | inRange b i = fromInteger (i - m)
        | otherwise = error "index{PreludeCore}: Index out of range."
    inRange (m,n) i = m <= i && i <= n
instance Enum Int where
    enumFrom = numericEnumFrom
    enumFromThen = numericEnumFromThen
```

```
instance Enum Integer where
    enumFrom = numericEnumFrom
    enumFromThen = numericEnumFromThen
numericEnumFrom :: (Real a) => a -> [a]
numericEnumFromThen :: (Real a) => a -> a -> [a]
numericEnumFrom = iterate (+1)
numericEnumFromThen n m = iterate (+(m-n)) n
instance Text Int where
    readsPrec p = readSigned readDec
    showsPrec = showSigned showInt
instance Text Integer where
    readsPrec p = readSigned readDec
    showsPrec = showSigned showInt
-- Standard Floating types
instance Eq Float where
    (==) = primEqFloat
instance Eq Double where
    (==) = primEqDouble
instance Ord Float where
    (<=) = primLeFloat
instance Ord Double where
    (<=) = primLeDouble
instance Num Float where
    (+) = primPlusFloat
    negate = primNegFloat
    (*) = primMulFloat
    abs = absReal
    signum = signumReal
    fromInteger n = encodeFloat n 0
instance Num Double where
    (+) = primPlusDouble
    negate = primNegDouble
    (*) = primMulDouble
    abs = absReal
    signum = signumReal
    fromInteger n = encodeFloat n 0
instance Real Float where
    toRational = realFloatToRational
```

```
instance Real Double where
    toRational = realFloatToRational
realFloatToRational x = (m%1)*(b%1)^^n
    where (m,n) = decodeFloat x
                            b = floatRadix x
instance Fractional Float where
    (/) = primDivFloat
    fromRational = rationalToRealFloat
instance Fractional Double where
    (/) = primDivDouble
    fromRational = rationalToRealFloat
rationalToRealFloat x = x'
        where x' = f e
            f e = if e' == e then y else f e'
                        where y = encodeFloat (round (x * (1%b)^^e) e
                        (_,e') = decodeFloat y
            (_,e) = decodeFloat (fromInteger (numerator x) 'asTypeOf' x'
                                    / fromInteger (denominator x))
            b = floatRadix x'
instance Floating Float where
    pi = primPiFloat
    exp = primExpFloat
    log = primLogFloat
    sqrt = primSqrtFloat
    sin = primSinFloat
    cos = primCosFloat
    tan = primTanFloat
    asin = primAsinFloat
    acos = primAcosFloat
    atan = primAtanFloat
    sinh = primSinhFloat
    cosh = primCoshFloat
    tanh = primTanhFloat
    asinh = primAsinhFloat
    acosh = primAcoshFloat
    atanh = primAtanhFloat
```

```
instance Floating Double where
    pi = primPiDouble
    exp = primExpDouble
    log = primLogDouble
    sqrt = primSqrtDouble
    sin = primSinDouble
    cos = primCosDouble
    tan = primTanDouble
    asin = primAsinDouble
    acos = primAcosDouble
    atan = primAtanDouble
    sinh = primSinhDouble
    cosh = primCoshDouble
    tanh = primTanhDouble
    asinh = primAsinhDouble
    acosh = primAcoshDouble
    atanh = primAtanhDouble
instance RealFrac Float where
    properFraction = floatProperFraction
instance RealFrac Double where
    properFraction = floatProperFraction
floatProperFraction x
        | n >= 0 = (fromInteger m * fromInteger b ^ n, 0)
        | otherwise = (fromInteger w, encodeFloat r n)
            where (m,n) = decodeFloat x
            b = floatRadix x
            (w,r) = quotRem m (b^(-n))
instance RealFloat Float where
    floatRadix _ = primFloatRadix
    floatDigits _ = primFloatDigits
    floatRange _ = (primFloatMinExp,primFloatMaxExp)
    decodeFloat = primDecodeFloat
    encodeFloat = primEncodeFloat
instance RealFloat Double where
    floatRadix _ = primDoubleRadix
    floatDigits _ = primDoubleDigits
    floatRange _ = (primDoubleMinExp,primDoubleMaxExp)
    decodeFloat = primDecodeDouble
    encodeFloat = primEncodeDouble
```

```
instance Enum Float where
    enumFrom = numericEnumFrom
    enumFromThen = numericEnumFromThen
instance Enum Double where
    enumFrom = numericEnumFrom
    enumFromThen = numericEnumFromThen
instance Text Float where
    readsPrec p = readSigned readFloat
    showsPrec = showSigned showFloat
instance Text Double where
    readsPrec p = readSigned readFloat
    showsPrec = showSigned showFloat
-- Lists
-- data [a] = [] | a : [a] deriving (Eq, Ord, Binary)
instance (Text a) => Text [a] where
    readsPrec p = readList
    showsPrec p = showList
-- Tuples
-- data (a,b) = (a,b) deriving (Eq, Ord, Ix, Binary)
instance (Text a, Text b) => Text (a,b) where
    readsPrec p = readParen False
                                    (\r -> [((x,y), w) | ("(",s) <- lex r,
                                    (x,t) <- reads s,
                                    (",",u) <- lex t,
                                    (y,v) <- reads u,
                                    ('I)",w) <- lex v ] )
    showsPrec p (x,y) = showChar '(' . shows x . showChar ',' .
                shows y . showChar ')'
-- et cetera
-- Functions
instance Text (a -> b) where
    readsPrec p s = error "readsPrec{PreludeCore}: Cannot read functions."
    showsPrec p f = showString "<<function>>"
```


A. 3 Prelude PreludeRatio

```
-- Standard functions on rational numbers
module PreludeRatio (
    Ratio, Rational(..), (%), numerator, denominator, approxRational ) where
infixl 7 %, :%
prec = 7
data (Integral a) => Ratio a = a :% a deriving (Eq, Binary)
type Rational = Ratio Integer
(%) :: (Integral a) => a -> a -> Ratio a
numerator, denominator :: (Integral a) => Ratio a -> a
approxRational :: (RealFrac a) -> a -> a -> Rational
reduce _ 0 = error "(%){PreludeRatio}: zero denominator"
reduce x y = (x 'quot` d) :% (y 'quot` d)
                                where d = gcd x y
x % y = reduce ( }\textrm{x}*\mathrm{ * signum y) (abs y)
numerator (x:%y) = x
denominator (x:%y) = y
instance (Integral a) => Ord (Ratio a) where
    (x:%y) <= (x':%y') = x * y' <= x' * y
    (x:%y) < (x':%y') = x * y' < x' * y
instance (Integral a) => Num (Ratio a) where
    (x:%y) + (x':%y') = reduce (x*y' + x'*y) (y*y')
    (x:%y) * (x':%y') = reduce (x * x') (y * y')
    negate (x:%y) = (-x) :% y
    abs (x:%y) = abs x :% y
    signum (x:%y) = signum x :% 1
    fromInteger x = fromInteger x :% 1
instance (Integral a) => Real (Ratio a) where
    toRational (x:%y) = toInteger x :% toInteger y
instance (Integral a) => Fractional (Ratio a) where
    (x:%y) / (x':%y') = (x*y') % (y*x')
    recip (x:%y) = if x < 0 then (-y) :% (-x) else y :% x
    fromRational (x:%y) = fromInteger x :% fromInteger y
```

```
instance (Integral a) => RealFrac (Ratio a) where
    properFraction (x:%y) = (fromIntegral q, r:%y)
    where (q,r) = quotRem x y
instance (Integral a) => Enum (Ratio a) where
    enumFrom = iterate ((+)1)
    enumFromThen n m = iterate ((+)(m-n)) n
instance (Integral a) => Text (Ratio a) where
    readsPrec p = readParen (p > prec)
        (\r -> [(x%y,u) | (x,s) 
    showsPrec p (x:%y) = showParen (p > prec)
                                    (shows x . showString " % " . shows y)
-- approxRational, applied to two real fractional numbers x and epsilon,
-- returns the simplest rational number within epsilon of x. A rational
-- number n%d in reduced form is said to be simpler than another n'%d, if
-- abs n <= abs n' && d <= d'. Any real interval contains a unique
-- simplest rational; here, for simplicity, we assume a closed rational
-- interval. If such an interval includes at least one whole number, then
-- the simplest rational is the absolutely least whole number. Otherwise,
-- the bounds are of the form q%1 + r%d and q%1 + r%%d, where abs r < d
-- and abs r' < d', and the simplest rational is q%1 + the reciprocal of
-- the simplest rational between d'%r' and d%r.
approxRational x eps = simplest (x-eps) (x+eps)
where simplest x y | y < x = simplest y x
    | x == y = xr
    | x > 0 = simplest' n d n' d'
    | y<0 = - simplest' (-n') d' (-n) d
    | otherwise = 0:% 1
                                where xr@(n:%d) = toRational x
                        (n':%d') = toRational y
simplest' n d n' d' -- assumes 0< n%d< n'%d'
        | r == 0 = q : % 1
        | q/= q', = (q+1):% 1
        | otherwise = (q*n''+d'') :% n',
            where (q,r) = quotRem n d
                (q',r') = quotRem n' d'
                (n',:%d'') = simplest' d' r' d r
```


A. 4 Prelude PreludeComplex

-- Complex Numbers
module PreludeComplex where
infix 6 :+
data (RealFloat a) $\quad>$ Complex a $=\mathrm{a}:+\mathrm{a}$ deriving (Eq,Binary,Text)
instance (RealFloat a) => Num (Complex a) where

($\mathrm{x}:+\mathrm{y}$) - ($\left.\mathrm{x}^{\prime}:+\mathrm{y} \mathrm{y}^{\prime}\right)=\left(\mathrm{x}-\mathrm{x}^{\prime}\right):+\left(\mathrm{y}-\mathrm{y}^{\prime}\right)$
$(\mathrm{x}:+\mathrm{y}) *\left(\mathrm{x}^{\prime}:+\mathrm{y}^{\prime}\right)=\left(\mathrm{x} * \mathrm{x}^{\prime}-\mathrm{y} * \mathrm{y}^{\prime}\right):+\left(\mathrm{x} * \mathrm{y}^{\prime}+\mathrm{y} * \mathrm{x}^{\prime}\right)$
negate $(\mathrm{x}:+\mathrm{y}) \quad=$ negate x :+ negate y
abs $z \quad=$ magnitude $z:+0$
signum $0 \quad=0$
signum $z \mathbb{C}(x:+y)=x / r$:+ y / r where $r=$ magnitude z
fromInteger $\mathrm{n} \quad=$ fromInteger $\mathrm{n}:+0$
instance (RealFloat a) => Fractional (Complex a) where

where x^{\prime} = scaleFloat k x'
$y^{\prime}{ }^{\prime}=$ scaleFloat $k y^{\prime}$
$\mathrm{k}=-\max$ (exponent $\left.x^{\prime}\right)\left(\right.$ exponent $\left.y^{\prime}\right)$
$\mathrm{d}=\mathrm{x}^{\prime} * \mathrm{x}{ }^{\prime}{ }^{\prime}+\mathrm{y}^{\prime}{ }^{\prime}{ }^{\prime}{ }^{\prime}$
fromRational a $=$ fromRational a :+ 0

```
instance (RealFloat a) => Floating (Complex a) where
    pi = pi :+ 0
    exp (x:+y) = expx * cos y :+ expx * sin y
    where expx = exp x
    log z = log (magnitude z) :+ phase z
    sqrt 0 = 0
    sqrt z@(x:+y) = u :+ (if y< 0 then -v else v)
    where (u,v) = if x < 0 then (v',u') else (u',v')
        v' = abs y / (u'*2)
        u' = sqrt ((magnitude z + abs x) / 2)
    sin (x:+y) = sin x * cosh y :+ cos x * sinh y
    cos (x:+y) = cos x * cosh y :+ (- sin x * sinh y)
```



```
        where sin}x=\operatorname{sin}
        cosx = cos x
        sinhy = sinh y
        coshy = cosh y
    sinh (x:+y) = cos y * sinh x :+ sin y * cosh x
    cosh (x:+y) = cos y * cosh x :+ sin y * sinh x
    tanh (x:+y) = (cosy*sinhx:+siny*\operatorname{cosh}x)/(\operatorname{cosy*\operatorname{cosh}x:+\operatorname{sin}y*\operatorname{sinh}x)}\mp@subsup{)}{}{\prime}=(\mp@code{cos}
        where siny = sin y
        cosy = cos y
        sinh}\textrm{x}=\operatorname{sinh}\textrm{x
        cosh}\textrm{x}=\operatorname{cosh}\textrm{x
    asin z@(x:+y) = y':+(- ' ')
        where (x':+y') = log ((-y:+x) + sqrt (1 - z*z))
    acos z@(x:+y) = y'':+(-x'')
        where (x'':+y',})=\operatorname{log}(z+((-y'):+x')
                            ( }\mp@subsup{x}{}{\prime}:+\mp@subsup{y}{}{\prime})= sqrt (1 - z*z
    atan z@(x:+y) = y':+(-x')
        where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))
    asinh z = log (z + sqrt (1+z*z))
    acoshz = log (z+(z+1) * sqrt ((z-1)/(z+1)))
    atanh z = log ((1+z) / sqrt (1-z*z))
realPart, imagPart :: (RealFloat a) => Complex a -> a
realPart (x:+y) = x
imagPart (x:+y) = y
conjugate :: (RealFloat a) => Complex a -> Complex a
conjugate (x:+y) = x :+ (-y)
mkPolar :: (RealFloat a) => a -> a -> Complex a
mkPolar r theta = r * cos theta :+ r * sin theta
```

```
cis :: (RealFloat a) => a >> Complex a
cis theta = cos theta :+ sin theta
polar :: (RealFloat a) => Complex a -> (a,a)
polar z = (magnitude z, phase z)
magnitude, phase :: (RealFloat a) => Complex a -> a
magnitude ( }\textrm{x}:+\textrm{y}\mathrm{ ) = scaleFloat k
                (sqrt ((scaleFloat mk x)^2 + (scaleFloat mk y)^2))
            where k = max (exponent x) (exponent y)
            mk = - k
phase (x:+y) = atan2 y x
```

A. 5 Prelude PreludeList
-- Standard list functions
module PreludeList where
infixl 9 !!
infix 5

infixr 5 ++
infix 4 'elem‘, 'notElem‘
-- head and tail extract the first element and remaining elements,
-- respectively, of a list, which must be non-empty. last and init
-- are the dual functions working from the end of a finite list,
-- rather than the beginning.
head :: [a] -> a
head ($\mathrm{x}:$ _) $=\mathrm{x}$
head [] = error "head\{PreludeList\}: head []"
last :: [a] -> a
last [x] $=\mathrm{x}$
last (_:xs) = last xs
last [] = error "last\{PreludeList\}: last []"
tail :: [a] -> [a]
tail (_:xs) $=$ xs
tail [] = error "tail\{PreludeList\}: tail []"
init :: [a] -> [a]
init [x] = []
init ($\mathrm{x}: \mathrm{xs}$) $=\mathrm{x}$: init xs
init [] = error "init\{PreludeList\}: init []"
-- null determines if a list is empty.
null :: [a] \rightarrow Bool
null [] = True
null (_:_) = False
-- list concatenation (right-associative)
(++) :: [a] -> [a] -> [a]
xs ++ ys $\quad=$ foldr (:) ys xs
-- list difference (non-associative). In the result of xs $\ \$ ys,
-- the first occurrence of each element of ys in turn (if any)
-- has been removed from xs. Thus, (xs ++ ys) $\ 1$ xs == ys.
(II)
(II)
:: (Eq a) => [a] -> [a] -> [a]
$=$ foldl del
where [] 'del' _ $=[]$
($\mathrm{x}: \mathrm{xs}$) 'del' y
| $\mathrm{x}=\mathrm{=} \mathrm{y}=\mathrm{xs}$
| otherwise = x : xs 'del' y
-- length returns the length of a finite list as an Int; it is an instance
-- of the more general genericLength, the result type of which may be
-- any kind of number.

genericLength $\quad=$ foldl ($\backslash \mathrm{n}$ _ $-\mathrm{n}+1$) 0
length :: [a] -> Int
length $\quad=$ genericLength
-- List index (subscript) operator, 0-origin
(!!) :: (Integral a) \Rightarrow [b] \rightarrow a \rightarrow b
($\mathrm{x}: \mathrm{s}_{\mathrm{l}}$) ! $0 \quad \mathrm{x}$
(_:xs) !! ($\mathrm{n}+1$) \quad xs !! n
(_:_) !! _ error "(!!)\{PreludeList\}: negative index"
[] !! (_+1) = error "(!!)\{PreludeList\}: index too large"

map $::(\mathrm{a} \rightarrow \mathrm{b})$-> [a] \rightarrow [b]
$\operatorname{map} \mathrm{f}[] \quad=$ []
$\operatorname{map} f(x: x s) \quad=f x: \operatorname{map} f x$
-- filter, applied to a predicate and a list, returns the list of those
-- elements that satisfy the predicate; i.e.,
-- filter p xs $==[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}$].
filter :: (a -> Bool) -> [a] -> [a]
filter $p=$ foldr ($\backslash x$ xs \rightarrow if $p x$ then $x: x s$ else $x s$)
-- partition takes a predicate and a list and returns a pair of lists:
-- those elements of the argument list that do and do not satisfy the
-- predicate, respectively; i.e.,
-- partition p xs == (filter p xs, filter (not . p) xs).
partition :: (a -> Bool) -> [a] -> ([a],[a])
partition $p=$ foldr select ([],[])
where select x (ts,fs) | $\mathrm{p} x \quad=$ ($\mathrm{x}: \mathrm{ts}, \mathrm{fs}$)
| otherwise = (ts,x:fs)

```
-- foldl, applied to a binary operator, a starting value (typically the
-- left-identity of the operator), and a list, reduces the list using
-- the binary operator, from left to right:
-- foldl f z [x1, x2, ..., xn] == (...((z 'f` x1) 'f` x2) 'f`...) 'f` xn
-- foldl1 is a variant that has no starting value argument, and thus must
-- be applied to non-empty lists. scanl is similar to foldl, but returns
-- a list of successive reduced values from the left:
-- scanl f z [x1, x2, ...] == [z, z 'f' x1, (z 'f` x1) 'f` x2, ...]
-- Note that last (scanl f z xs) == foldl f z xs.
-- scanl1 is similar, again without the starting element:
-- scanl1 f [x1, x2, ...] == [x1, x1 'f' x2, ...]
foldl ::(a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl1 :: (a -> a -> a) -> [a] -> a
foldl1 f (x:xs) = foldl f x xs
foldl1 _ [] = error "foldl1{PreludeList}: empty list"
scanl ::(a -> b -> a) -> a -> [b] -> [a]
scanl f q xs = q: (case xs of
    [] -> []
    x:xs -> scanl f (f q x) xs)
scanl1 ::(a -> a -> a) -> [a] -> [a]
scanl1 f (x:xs) = scanl f x xs
scanl1 _ [] = error "scanl1{PreludeList}: empty list"
```

-- foldr, foldr1, scanr, and scanr1 are the right-to-left duals of the
-- above functions.

```
foldr
:: (a -> b -> b) -> b -> [a] -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
foldr1
::(a -> a -> a) -> [a] -> a
foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
foldr1 _ [] = error "foldr1{PreludeList}: empty list"
scanr ::(a -> b -> b) -> b -> [a] -> [b]
scanr f q0 [] = [q0]
scanr f q0 (x:xs) = f x q : qs
    where qs@(q:_) = scanr f q0 xs
```

```
scanr1 ::(a -> a -> a) -> [a] -> [a]
scanr1 f [x] = [x]
scanr1 f (x:xs)
    = f x q : qs
    where qs@(q:_) = scanr1 f xs
scanr1 _ [] = error "scanr1{PreludeList}: empty list"
-- iterate f x returns an infinite list of repeated applications of f to x:
-- iterate f x == [x, f x, f (f x), ...]
iterate :: (a -> a) -> a -> [a]
iterate f x = x : iterate f (f x)
-- repeat x is an infinite list, with x the value of every element.
repeat :: a -> [a]
repeat x = xs where xs = x:xs
-- cycle ties a finite list into a circular one, or equivalently,
-- the infinite repetition of the original list. It is the identity
-- on infinite lists.
```

```
cycle :: [a] -> [a]
```

cycle :: [a] -> [a]
cycle xs = xs' where xs' = xs ++ xs'
cycle xs = xs' where xs' = xs ++ xs'
-- take n, applied to a list xs, returns the prefix of xs of length n,
-- or xs itself if n > length xs. drop n xs returns the suffix of xs
-- after the first n elements, or [] if n > length xs. splitAt n xs
-- is equivalent to (take n xs, drop n xs).
take :: (Integral a) => a -> [b] -> [b]
take 0 - = []
take _ [] = []
take (n+1) (x:xs) = x : take n xs
drop :: (Integral a) => a -> [b] -> [b]
drop 0 xs = xs
drop _ [] = []
drop (n+1) (_:xs) = drop n xs
splitAt :: (Integral a) => a -> [b] -> ([b],[b])
splitAt 0 xs = ([],xs)
splitAt _ [] = ([],[])
splitAt (n+1) (x:xs) = (x:xs',xs'') where (xs',xs'') = splitAt n xs

```
-- takeWhile, applied to a predicate \(p\) and a list xs, returns the longest
-- prefix (possibly empty) of xs of elements that satisfy p. dropWhile p xs
-- returns the remaining suffix. Span \(p\) xs is equivalent to
-- (takeWhile p xs, dropWhile p xs), while break \(p\) uses the negation of \(p\).
```

takeWhile :: (a -> Bool) -> [a] -> [a]
takeWhile p [] = []
takeWhile p (x:xs)
| p x = x : takeWhile p xs
| otherwise = []
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile p [] = []
dropWhile p xs@(x:xs')
| p x = dropWhile p xs'
| otherwise = xs
span, break :: (a -> Bool) -> [a] -> ([a],[a])
span p [] = ([],[])
span p xs@(x:xs')
| p x = let (ys,zs) = span p xs' in (x:ys,zs)
| otherwise = ([],xs)
break p = span (not . p)

```
-- lines breaks a string up into a list of strings at newline characters.
-- The resulting strings do not contain newlines. Similary, words
-- breaks a string up into a list of words, which were delimited by
-- white space. unlines and unwords are the inverse operations.
-- unlines joins lines with terminating newlines, and unwords joins
-- words with separating spaces.
```

lines :: String -> [String]
lines """ = []
lines s = let (l, s') = break (== '\n') s
in l : case s' of
[] -> []
(_:s'') -> lines s',
words :: String -> [String]
words s = case dropWhile isSpace s of
"" -> []
s' -> w : words s',
where (w, s'') = break isSpace s'
unlines :: [String] -> String
unlines = concat . map (++ "\n")

```
```

unwords :: [String] -> String
unwords [] = ""
unwords ws = foldr1 (\w s -> w ++ ',':s) ws
-- nub (meaning "essence") removes duplicate elements from its list argument.
nub :: (Eq a) => [a] -> [a]
nub [] = []
nub (x:xs) = x : nub (filter (/= x) xs)

```
-- reverse xs returns the elements of \(x s\) in reverse order. xs must be finite. reverse :: [a] -> [a] reverse \(=\) foldl (flip (:)) []
-- and returns the conjunction of a Boolean list. For the result to be
-- True, the list must be finite; False, however, results from a False
-- value at a finite index of a finite or infinite list. or is the
-- disjunctive dual of and.
and, or :: [Bool] \(\rightarrow\) Bool
and \(=\) foldr (\&\&) True
or \(\quad=\) foldr (||) False
-- Applied to a predicate and a list, any determines if any element
-- of the list satisfies the predicate. Similarly, for all.
any, all :: (a \(\rightarrow\) Bool) \(\rightarrow\) [a] \(\rightarrow\) Bool
any \(p \quad=\) or \(\cdot \operatorname{map} p\)
all \(p=\) and \(\cdot \operatorname{map} p\)
-- elem is the list membership predicate, usually written in infix form,
-- e.g., x 'elem' xs. notElem is the negation.
elem, notElem \(::(E q\) a) \(\Rightarrow\) a \(->\) [a] \(\rightarrow\) Bool
elem \(=\) any . ( \(==\) )
notElem \(=\) all . (/=)
-- sum and product compute the sum or product of a finite list of numbers.
sum, product \(::(N u m a)=>[a] ~->~ a\)
sum \(=\) foldl (+) 0
product \(=\) foldl (*) 1
-- sums and products give a list of running sums or products from
-- a list of numbers. For example, sums \([1,2,3]==[0,1,3,6]\).
sums, products :: (Num a) => [a] -> [a]
sums \(=\) scanl (+) 0
products \(=\operatorname{scanl}(*) 1\)
-- maximum and minimum return the maximum or minimum value from a list, -- which must be non-empty, finite, and of an ordered type.
```

maximum, minimum :: (Ord a) => [a] -> a

```
maximum \(=\) foldl1 max
minimum \(=\) foldl1 min
-- concat, applied to a list of lists, returns their flattened concatenation.
concat :: [[a]] -> [a]
concat \(=\) foldr (++) []
-- transpose, applied to a list of lists, returns that list with the
-- "rows" and "columns" interchanged. The input need not be rectangular
-- (a list of equal-length lists) to be completely transposable, but can
-- be "triangular": Each successive component list must be not longer
-- than the previous one; any elements outside of the "triangular"
-- transposable region are lost. The input can be infinite in either
-- dimension or both.
\begin{tabular}{rl} 
transpose & \(::[[a]] \rightarrow[[a]]\) \\
transpose & \(=\) \\
& foldr \\
& \((\backslash x s\) xss \(\rightarrow\) zipWith (:) xs (xss ++ repeat [])) \\
& {[]}
\end{tabular}
-- zip takes two lists and returns a list of corresponding pairs. If one
-- input list is short, excess elements of the longer list are discarded.
-- zip3 takes three lists and returns a list of triples, etc. Versions
-- of zip producing up to septuplets are defined here.
```

zip :: [a] -> [b] -> [(a,b)]
zip = zipWith (\a b -> (a,b))
zip3 :: [a] -> [b] -> [c] -> [(a,b,c)]
zip3 = zipWith3 (\a b c -> (a,b,c))
zip4 :: [a] -> [b] -> [c] -> [d] -> [(a,b,c,d)]
zip4 = zipWith4 (\a b c d -> (a,b,c,d))
zip5 :: [a] -> [b] -> [c] -> [d] -> [e] -> [(a,b,c,d,e)]
zip5 = zipWith5 (\a b c d e -> (a,b,c,d,e))
zip6 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f]
-> [(a,b,c,d,e,f)]
zip6 = zipWith6 (\a b c def -> (a,b,c,d,e,f))
zip7 :: [a] -> [b] -> [c] -> [d] -> [e] -> [f] -> [g]
-> [(a,b,c,d,e,f,g)]
zip7 = zipWith7 (\a b c def g -> (a,b,c,d,e,f,g))

```
-- The zipWith family generalises the zip family by zipping with the
-- function given as the first argument, instead of a tupling function.
-- For example, zipWith (+) is applied to two lists to produce the list
-- of corresponding sums.
zipWith :: (a->b->c) \(\rightarrow\) [a]->[b]->[c]
zipWith \(z(a: a s)(b: b s)=z a b: z i p W i t h z a s b s\) zipWith _ _ _ \(\quad\) []
zipWith3 :: \((\mathrm{a}->\mathrm{b}->\mathrm{c}->\mathrm{d}) \rightarrow\) [a]->[b]->[c]->[d]
zipWith3 z (a:as) (b:bs) (c:cs)
\(=z a b c: z i p W i t h 3 z\) as \(b s\) cs
zipWith3 _ _ - \(\quad=\quad[]\)
zipWith4 :: (a->b->c->d->e) \(\rightarrow\) [a]->[b]->[c]->[d]->[e]
zipWith4 z (a:as) (b:bs) (c:cs) (d:ds)
\(=z a b c d: z i p W i t h 4 z a s b s c s d s\)
zipWith4 _ _ _ _ \(\quad\) []
zipWith5 \(::(a->b->c->d->e->f)\)
\(\rightarrow\) [a]->[b]->[c]->[d]->[e]->[f]
zipWith5 z (a:as) (b:bs) (c:cs) (d:ds) (e:es)
\(=z a b c d e: z i p W i t h 5 z\) as \(b s\) cs ds es
zipWith5 _ - - - - = []
zipWith6 \(::(a->b->c->d->e->f->g)\)
\(\rightarrow\) [a]->[b]->[c]->[d]->[e]->[f]->[g]
zipWith6 z (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs)
\(=z a b c d e f: z i p W i t h 6 z\) as \(b s c s d s\) es fs
zipWith6 _ _ . - . . . = []
zipWith \(\quad::(a->b->c->d->e->f->g->h)\) \(\rightarrow\) [a] \(\rightarrow\) [b] \(\rightarrow\) [c] \(->[d]->[e]->[f]->[g]->[h]\)
zipWith7 \(z\) (a:as) (b:bs) (c:cs) (d:ds) (e:es) (f:fs) (g:gs) \(=z a b c d e f g: z i p W i t h 7 z\) as \(b s c s d s\) es fs gs
zipWith7
-- unzip transforms a list of pairs into a pair of lists. As with zip, -- a family of such functions up to septuplets is provided.
unzip :: [(a,b)] -> ([a], [b])
unzip \(\quad=\) foldr \((\backslash(a, b) \sim(a s, b s)->(a: a s, b: b s))([],[])\)
unzip3 :: [(a,b,c)] -> ([a],[b],[c])
unzip3 \(\quad=\) foldr \(\left(\backslash(a, b, c){ }^{\sim}(a s, b s, c s)->(a: a s, b: b s, c: c s)\right)\)
([], [], [])
```

unzip4
:: [(a,b,c,d)] -> ([a],[b],[c],[d])
unzip4
unzip5
:: [(a,b,c,d,e)] -> ([a],[b],[c],[d],[e])
= foldr (\(a,b,c,d,e) ~(as,bs,cs,ds,es) ->
(a:as,b:bs,c:cs,d:ds,e:es))
([],[],[],[],[])
unzip6
:: [(a,b,c,d,e,f)] -> ([a],[b],[c],[d],[e],[f])
= foldr (\(a,b,c,d,e,f) ~(as,bs,cs,ds,es,fs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs))
([],[],[],[],[],[])
unzip7
:: [(a,b,c,d,e,f,g)] -> ([a],[b],[c],[d],[e],[f],[g])
unzip7
= foldr (\(a,b,c,d) ~(as,bs,cs,ds) ->
(a:as,b:bs,c:cs,d:ds))
([],[],[],[])
= foldr (\(a,b,c,d,e,f,g) ~(as,bs,cs,ds,es,fs,gs) ->
(a:as,b:bs,c:cs,d:ds,e:es,f:fs,g:gs))
([],[],[],[],[],[],[])

```

\section*{A. 6 Prelude PreludeArray}
```

module PreludeArray (Array, Assoc((:=)), array, listArray, (!), bounds,
indices, elems, assocs, accumArray, (//), accum, amap,
ixmap
) where
-- This module specifies the semantics of arrays only: it is not
-- intended as an efficient implementation.
infixl 9 !
infixl 9 //
infix 1 :=
data Assoc a b = a := b deriving (Eq, Ord, Ix, Text, Binary)
data (Ix a) \# Array a b = MkArray (a,a) (a m b) deriving ()
array :: (Ix a) => (a,a) -> [Assoc a b] -> Array a b
listArray :: (Ix a) => (a,a) >> [b] -> Array a b
(!) :: (Ix a) => Array a b >> a -> b
bounds :: (Ix a) => Array a b -> (a,a)
indices :: (Ix a) => Array a b -> [a]
elems :: (Ix a) => Array a b -> [b]
assocs :: (Ix a) => Array a b >> [Assoc a b]
accumArray :: (Ix a) => (b c> c >> b) >> b >> (a,a) -> [Assoc a c]
-> Array a b
(//) :: (Ix a) => Array a b -> [Assoc a b] -> Array a b
accum :: (Ix a) => (b c> c >> b) >> Array a b -> [Assoc a c]
-> Array a b
amap ::(Ix a) => (b > c) -> Array a b -> Array a c
ixmap ::(Ix a, Ix b) => (a,a) >> (a >> b) -> Array b c
-> Array a c
array b ivs =
if and [inRange b i | i:=_ <- ivs]
then MkArray b
(\j -> case [v | (i := v) <- ivs, i == j] of
[v] -> v
[] -> error "(!){PreludeArray}: \
\undefined array element"
- -> error "(!){PreludeArray}: \
\multiply defined array element")
else error "array{PreludeArray}: out-of-range array association"
listArray b vs = array b (zipWith (:=) (range b) vs)
(!) (MkArray _ f) = f

```
```

bounds (MkArray b _) = b
indices = range . bounds
elems a = [a!i | i <- indices a]
assocs a = [i := a!i | i <- indices a]
a // us = array (bounds a)
([i := a!i | i <- indices a
 [i | i:=_ <- us]]
++ us)
accum f = foldl (\a (i := v) -> a // [i := f (a!i) v])
accumArray f z b = accum f (array b [i := z | i <- range b])
amap f a = array b [i := f (a!i) | i <- range b]
where b = bounds a
ixmap b f a = array b [i := a ! f i | i <- range b]
instance (Ix a, Eq b) => Eq (Array a b) where
a == a' = assocs a == assocs a'
instance (Ix a, Ord b) => Ord (Array a b) where
a<= a, = assocs a <= assocs a'
instance (Ix a, Text a, Text b) => Text (Array a b) where
showsPrec p a = showParen (p > 9) (
showString "array " .
shows (bounds a) . showChar ' , .
shows (assocs a))
readsPrec p = readParen (p > 9)
(\r -> [(array b as, u) | ("array",s) <- lex r,
(b,t) <- reads s,
(as,u) <- reads t]
++
[(listArray b xs, u) | ("listArray",s) <- lex r,
(b,t) <- reads s,
(xs,u) <- reads t])
instance (Ix a, Binary a, Binary b) => Binary (Array a b) where
showBin a = showBin (bounds a) . showBin (elems a)
readBin bin = (listArray b vs, bin'')
where (b,bin') = readBin bin
(vs,bin'') = readBin bin'

```

\section*{A. 7 Prelude PreludeText}
```

module PreludeText (
reads, shows, show, read, lex,
showChar, showString, readParen, showParen, readLitChar, showLitChar,
readSigned, showSigned, readDec, showInt, readFloat, showFloat) where
reads :: (Text a) => ReadS a
reads = readsPrec 0
shows :: (Text a) => a -> ShowS
shows = showsPrec 0
read :: (Text a) => String -> a
read s = case [x | (x,t) <- reads s, ("","") <- lex t] of
[x] -> x
[] -> error "read{PreludeText}: no parse"
-> error "read{PreludeText}: ambiguous parse"
show :: (Text a) => a -> String
show x = shows x ""
showChar :: Char -> ShowS
showChar = (:)
showString :: String -> ShowS
showString = (++)
showParen :: Bool -> ShowS -> ShowS
showParen b p = if b then showChar '(' . p . showChar ')' else p
readParen :: Bool -> ReadS a -> ReadS a
readParen b g = if b then mandatory else optional
where optional r = g r ++ mandatory r
mandatory r = [(x,u) | ("(",s) <- lex r,
(x,t) <- optional s,
(I'",u) <- lex t]

lex	ReadS String
lex ""	= [("", "" $)$]
lex (c:s) \| isspace	= lex (dropWhile isSpace s)
lex ('-':','s)	$\begin{gathered} =\text { case dropWhile }\left(/=\text { ' } n^{\prime}\right. \text { ') s of } \\ \text { '\n':t } \rightarrow \text { lex } t \end{gathered}$
	_ -> [] -- unterminated end-of-line -- comment

```
```

lex ('{':'-':s) = lexNest lex s
where
lexNest f ('-':'}':s) = f s
lexNest f ('{':'-':s) = lexNest (lexNest f) s
lexNest f (c:s) = lexNest f s
lexNest _ """ = [] -- unterminated
-- nested comment
lex ('<':'-':s) = [("<-",s)]
lex ('\'':s) = [('\'':ch++",", t) | (ch,'\'':t) <- lexLitChar s,
ch /= ","]
lex ('"':s)
= [(,"':str, t) | (str,t) <- lexString s]
where
lexString ('"':s) = [("\"",s)]
lexString s = [(ch++str, u)
| (ch,t) <- lexStrItem s,
(str,u) <- lexString t]
lexStrItem ('
':'\&':s) = [("
\&",s)]
lexStrItem ('
':c:s) | isSpace c
= [("
\&",t) | '
':t <- [dropWhile isSpace s]]
lexStrItem s = lexLitChar s
lex (c:s) | isSingle c = [([c],s)]
| isSym1 c = [(c:sym,t) | (sym,t) <- [span isSym s]]
| isAlpha c = [(c:nam,t) | (nam,t) <- [span isIdChar s]]
| isDigit c = [(c:ds++fe,t) | (ds,s) <- [span isDigit s],
(fe,t) <- lexFracExp s]
| otherwise = [] -- bad character
where
isSingle c = c 'elem` ",;()[]{}_"
isSym1 c = c 'elem' "-~" || isSym c
isSym c = c'elem' "!@\#\$%\&**./<=>?
^|:"
isIdChar c = isAlphanum c || c 'elem' "_,"
lexFracExp ('.':s) = [('.':ds++e,u) | (ds,t) <- lexDigits s,
(e,u) <- lexExp t]
lexFracExp s = [("'",s)]
lexExp (e:s) | e 'elem' "eE"
= [(e:c:ds,u) | (c:t) <- [s], c 'elem' "+-",
(ds,u) <- lexDigits t] ++
[(e:ds,t) | (ds,t) <- lexDigits s]
lexExp s = [("",s)]
lexDigits :: ReadS String
lexDigits = nonnull isDigit

```
```

nonnull :: (Char -> Bool) -> ReadS String
nonnull p s = [(cs,t) | (cs@(_:_),t) <- [span p s]]
lexLitChar :: ReadS String
lexLitChar ('
':s) = [('
':esc, t) | (esc,t) <- lexEsc s]
where
lexEsc (c:s) | c 'elem' "abfnrtv
\"'" = [([c],s)]
lexEsc (,^,:c:s) | c >= '@' \&\& c <= ' _' = [([,^, c],s)]
lexEsc s@(d:_) | isDigit d = lexDigits s
lexEsc ('O':s) = [('O':os, t) | (os,t) <- nonnull isOctDigit s]
lexEsc ('x':s) = [('x':xs, t) | (xs,t) <- nonnull isHexDigit s]
lexEsc s@(c:_) | isUpper c
= case [(mne,s') | mne <- "DEL" : elems asciiTab,
([],s') <- [match mne s]]
of (pr:_) -> [pr]
lexEsc _ = []
lexLitChar (c:s) = [([c],s)]
lexLitChar "" = []
isOctDigit c = c >= 'O' \&\& c <= '7'
isHexDigit c = isDigit c || c >= 'A' \&\& c << 'F'
|| c >= 'a' \&\& c<= 'f'
match :: (Eq a) => [a] -> [a] -> ([a],[a])
match (x:xs) (y:ys) | x == y = match xs ys
match xs ys = (xs,ys)
asciiTab = listArray ('\NUL', , ')
["NUL", "SOH", "STX", "ETX", "EOT", "ENQ", "ACK", "BEL",
"BS", "HT", "LF", "VT", "FF", "CR", "SO", "SI",
"DLE", "DC1", "DC2", "DC3", "DC4", "NAK", "SYN", "ETB",
"CAN", "EM", "SUB", "ESC", "FS", "GS", "RS", "US",
"SP"]

```
```

readLitChar : : ReadS Char
readLitChar ('
':s) = readEsc s
where
readEsc ('a':s) $=[(' \backslash a ', s)]$
readEsc ('b':s) $=\left[\left(' \backslash b^{\prime}, s\right)\right]$
readEsc ('f':s) $=[(' \backslash f, s)]$
readEsc ('n':s) $=[(' \backslash n ', s)]$
readEsc ('r':s) $=[(' \backslash r ', s)]$
readEsc ('t':s) $=[(' \backslash t ', s)]$
readEsc ('v':s) $=\left[\left(' \backslash v^{\prime}, s\right)\right]$
readEsc ('
':s) = [('
',s)]
readEsc (, ", :s) $=[(, \cdots, s)]$
readEsc ('\','s) $=[(, \backslash, ', s)]$
readEsc (,^':c:s) | c >= '@' \&\& c <= ','
$=[(\operatorname{chr}($ ord $c-$ ord '©'), s)]
readEsc s©(d:_) | isDigit d
$=[(\operatorname{chr} \mathrm{n}, \mathrm{t}) \mid(\mathrm{n}, \mathrm{t})<-\operatorname{readDec} \mathrm{s}]$
readEsc ('o':s) $=[(\operatorname{chr} n, t) \mid(n, t)<-r e a d O c t s]$
readEsc ('x':s) $=[(\operatorname{chr} n, t) \mid(n, t)<-r e a d H e x ~ s]$
readEsc s@(c:_) | isUpper c
= let table = ('\DEL' := "DEL") : assocs asciiTab
in case $\left[\left(c, s^{\prime}\right)\right.$ | (c := mne) <- table,
([], s') <- [match mne s]]
of (pr:_) -> [pr]
readEsc _ $=$ []
readLitChar (c:s) $=[(c, s)]$
showLitChar :: Char -> ShowS

```

```

showLitChar '\DEL' = showString "
DEL"
showLitChar '
, = showString "
\"
showLitChar $c \mid c>=, \quad=$ showChar c
showLitChar '\a' = showString "
a"
showLitChar '\b' = showString "
b"
showLitChar '\f, = showString "
f"
showLitChar '\n' = showString "
n"
showLitChar '\r' = showString "
r"
showLitChar '\t, = showString "
t"
showLitChar '\v' = showString "
v"
showLitChar ' \backslash SO' $=$ protectEsc ($=={ }^{\prime} H^{\prime}$) (showString "
SO")
showLitChar c $\quad=$ showString ('
': asciiTab!c)
protectEsc pf $=f$. cont
where cont s@(c:_) | p c = "
\&" ++ s
cont $s=\quad=s$

```
```

readDec, readOct, readHex :: (Integral a) => ReadS a
readDec = readInt 10 isDigit (\d -> ord d - ord 'O')
readOct = readInt 8 isOctDigit (\d -> ord d - ord '0')
readHex = readInt 16 isHexDigit hex
where hex d = ord d - (if isDigit d then ord 'O'
else ord (if isUpper d then 'A' else 'a')
- 10)

```
readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
```

readInt :: (Integral a) => a -> (Char -> Bool) -> (Char -> Int) -> ReadS a
readInt radix isDig digToInt s =
readInt radix isDig digToInt s =
[(foldl1 (\n d -> n * radix + d) (map (fromIntegral . digToInt) ds), r)
[(foldl1 (\n d -> n * radix + d) (map (fromIntegral . digToInt) ds), r)
| (ds,r) <- nonnull isDig s]
| (ds,r) <- nonnull isDig s]
showInt :: (Integral a) => a -> ShowS
showInt n r = let (n', d) = quotRem n 10
r' = chr (ord 'O' + fromIntegral d) : r
in if n' == 0 then r' else showInt n' r'
readSigned:: (Real a) => ReadS a -> ReadS a
readSigned readPos = readParen False read'
where read' r = read'' r ++
[(-x,t) | ("-",s) <- lex r,
(x,t) <- read', s]
read'' r = [(n,s) | (str,s) <- lex r,
(n,"") <- readPos str]
showSigned:: (Real a) => (a -> ShowS) -> Int -> a -> ShowS
showSigned showPos p x = if x < 0 then showParen (p > 6)
(showChar '-' . showPos (-x))
else showPos x

```
-- The functions readFloat and showFloat below use rational arithmetic
-- to insure correct conversion between the floating-point radix and
-- decimal. It is often possible to use a higher-precision floating-
-- point type to obtain the same results.
readFloat: : (RealFloat a) \(\Rightarrow\) ReadS a
readFloat \(r=\left[\left(f r o m R a t i o n a l\left((n \% 1) * 10^{-}(k-d)\right), t\right) \mid(n, d, s)<-r e a d F i x ~ r\right.\), (k,t) <- readExp s]
where readFix \(r=\left[\left(\operatorname{read}\left(d s++d s^{\prime}\right)\right.\right.\), length \(\left.d s ', t\right)\)
| (ds,'.':s) <- lexDigits r, (ds',t) <- lexDigits s ]
readExp (e:s) | e 'elem' "eE" = readExp' s
readExp \(s=[(0, s)]\)
readExp' ('-':s) \(=[(-k, t) \mid(k, t)<-r e a d D e c ~ s]\)
readExp' ('+':s) \(=\) readDec \(s\)
readExp' \(s \quad=r e a d D e c s\)
```

-- The number of decimal digits m below is chosen to guarantee
-- read (show x) == x. See
-- Matula, D. W. A formalization of floating-point numeric base
-- conversion. IEEE Transactions on Computers C-19, 8 (1970 August),
-- 681-692.
showFloat:: (RealFloat a) => a -> ShowS
showFloat x =
if x == 0 then showString ("0." ++ take (m-1) (repeat '0'))
else if e >= m-1 || e < 0 then showSci else showFix
where
showFix = showString whole . showChar '.' . showString frac
where (whole,frac) = splitAt (e+1) (show sig)
showSci = showChar d . showChar '.' . showString frac
. showChar 'e' . shows e
where (d:frac) = show sig
(m, sig, e) = if b == 10 then (w, s, n+w-1)
else (m', sig', e')
m, = ceiling
(fromIntegral w * log (fromInteger b) / log 10 :: Double)
+ 1
(sig', e') = if sig1 >= 10'm' then (round (t/10), e1+1)
else if sig1 < 10^(m'-1) then (round (t*10), e1-1)
else (sig1, e1)
sig1 = round t
t = s%1 * (b%1)^^n * 10^^(m'-e1-1)
e1 = floor (logBase 10 x)
(s, n) = decodeFloat x
b = floatRadix x
w = floatDigits x

```

\section*{A. 8 Prelude PreludeIo}
-- I/O functions and definitions
module PreludeIO where
-- File and channel names:
\begin{tabular}{ll} 
stdin & \(=\) "stdin" \\
stdout & \(=\) "stdout" \\
stderr & \(=\) "stderr" \\
stdecho & \(=\) "stdecho"
\end{tabular}
-- Requests and responses:
```

data Request = -- file system requests:
ReadFile String
| WriteFile String String
| AppendFile String String
| ReadBinFile String
| WriteBinFile String Bin
| AppendBinFile String Bin
| DeleteFile String
| StatusFile String
-- channel system requests:
| ReadChan String
| AppendChan String String
| ReadBinChan String
| AppendBinChan String Bin
| StatusChan String
-- environment requests:
| Echo Bool
| GetArgs
| GetProgName
| GetEnv String
| SetEnv String String
deriving Text
data Response = Success
| Str String
| StrList [String]
| Bn Bin
| Failure IOError
deriving Text

```
data IOError = \(\quad\)\begin{tabular}{ll} 
& WriteError \\
& String \\
& ReadError \\
& String \\
& | SearchError \\
& String \\
& | OtherError \\
& String \\
& deriving \\
& Text
\end{tabular}
-- Continuation-based I/0:
\begin{tabular}{llll} 
type Dialogue & \(=\) & [Response] & \(\rightarrow\) [Request] \\
type SuccCont & \(=\) & Dialogue \\
type StrCont & \(=\) & String & \(\rightarrow\) Dialogue \\
type StrListCont & \(=[\) String] & \(\rightarrow\) Dialogue \\
type BinCont & \(=\) & Bin & \(\rightarrow\) Dialogue \\
type FailCont & \(=\) IOError & \(\rightarrow\) Dialogue
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline done & : & & Dialogue \\
\hline readFile & :: String -> & FailCont -> StrCont & -> Dialogue \\
\hline writeFile & : S String -> String -> & FailCont \(\rightarrow\) SuccCont & -> Dialogue \\
\hline appendFile & : S String -> String -> & FailCont -> SuccCont & -> Dialogue \\
\hline readBinFile & :: String -> & FailCont \(\rightarrow\) BinCont & -> Dialogue \\
\hline writeBinFile & :: String -> Bin -> & FailCont -> SuccCont & -> Dialogue \\
\hline appendBinFile & :: String -> Bin -> & FailCont -> SuccCont & -> Dialogue \\
\hline deleteFile & :: String -> & FailCont \(\rightarrow\) SuccCont & -> Dialogue \\
\hline statusFile & :: String -> & FailCont -> StrCont & -> Dialogue \\
\hline readChan & :: String -> & FailCont -> StrCont & -> Dialogue \\
\hline appendChan & : S String -> String -> & FailCont -> SuccCont & -> Dialogue \\
\hline readBinChan & :: String -> & FailCont \(\rightarrow\) BinCont & -> Dialogue \\
\hline appendBinChan & : : String -> Bin -> & FailCont \(\rightarrow\) SuccCont & -> Dialogue \\
\hline statusChan & :: String -> & FailCont \(\rightarrow\) StrCont & -> Dialogue \\
\hline echo & :: Bool -> & FailCont -> SuccCont & -> Dialogue \\
\hline getArgs & \(:: \quad\) Fai & FailCont \(\rightarrow\) StrListCont & -> Dialogue \\
\hline getProgName & : & FailCont \(\rightarrow\) StrCont & -> Dialogue \\
\hline getEnv & :: String -> & FailCont -> StrCont & -> Dialogue \\
\hline setEnv & :: String -> String -> & FailCont -> SuccCont & -> Dialogue \\
\hline resps & & & \\
\hline
\end{tabular}
readFile name fail succ resps =
(ReadFile name) : strDispatch fail succ resps
writeFile name contents fail succ resps \(=\)
(WriteFile name contents) : succDispatch fail succ resps
appendFile name contents fail succ resps \(=\)
(AppendFile name contents) : succDispatch fail succ resps
```

readBinFile name fail succ resps =
(ReadBinFile name) : binDispatch fail succ resps
writeBinFile name contents fail succ resps =
(WriteBinFile name contents) : succDispatch fail succ resps
appendBinFile name contents fail succ resps =
(AppendBinFile name contents) : succDispatch fail succ resps
deleteFile name fail succ resps =
(DeleteFile name) : succDispatch fail succ resps
statusFile name fail succ resps =
(StatusFile name) : strDispatch fail succ resps
readChan name fail succ resps =
(ReadChan name) : strDispatch fail succ resps
appendChan name contents fail succ resps =
(AppendChan name contents) : succDispatch fail succ resps
readBinChan name fail succ resps =
(ReadBinChan name) : binDispatch fail succ resps
appendBinChan name contents fail succ resps =
(AppendBinChan name contents) : succDispatch fail succ resps
statusChan name fail succ resps =
(StatusChan name) : strDispatch fail succ resps
echo bool fail succ resps =
(Echo bool) : succDispatch fail succ resps
getArgs fail succ resps =
GetArgs : strListDispatch fail succ resps
getProgName fail succ resps =
GetProgName : strDispatch fail succ resps
getEnv name fail succ resps =
(GetEnv name) : strDispatch fail succ resps
setEnv name val fail succ resps =
(SetEnv name val) : succDispatch fail succ resps
strDispatch fail succ (resp:resps) =
case resp of Str val -> succ val resps
Failure msg -> fail msg resps

```
```

strListDispatch fail succ (resp:resps) =
case resp of StrList val -> succ val resps
Failure msg -> fail msg resps
binDispatch fail succ (resp:resps) =
case resp of Bn val -> succ val resps
Failure msg -> fail msg resps
succDispatch fail succ (resp:resps) =
case resp of Success -> succ resps
Failure msg -> fail msg resps
abort :: FailCont
abort err = done
exit :: FailCont
exit err = appendChan stderr (msg ++ "\n") abort done
where msg = case err of ReadError s -> s
WriteError s -> s
SearchError s -> s
FormatError s -> s
OtherError s -> s
print :: (Text a) => a -> Dialogue
print x = appendChan stdout (show x) exit done
prints :: (Text a) => a >> String -> Dialogue
prints x s = appendChan stdout (shows x s) exit done
interact :: (String -> String) -> Dialogue
interact f = readChan stdin exit
(\x -> appendChan stdout (f x) exit done)

```

\section*{B Syntax}

\section*{B. 1 Notational Conventions}

These notational conventions are used for presenting syntax:
\begin{tabular}{cl}
{\([\) pattern \(]\)} & optional \\
\(\{\) pattern \(\}\) & zero or more repetitions \\
\((\) pattern \()\) & grouping \\
pat \(_{1} \mid\) pat \(_{2}\) & choice \\
pat \(_{\left\langle{ }_{\langle p a t}\right\rangle}\) & difference-elements generated by pat \\
& except those generated by pat \({ }^{\prime}\) \\
fibonacci & terminal syntax in typewriter font
\end{tabular}

BNF-like syntax is used throughout, with productions having form:
nonterm \(\rightarrow\) alt \(\left.\right|_{1} \mid\) alt \(_{2}|\ldots|\) alt \(_{n}\)

There are some families of nonterminals indexed by precedence levels (written as a superscript). Similarly, the nonterminals op, varop, and conop may have a double index: a letter \(l\), \(r\), or \(n\) for left-, right- or nonassociativity and a precedence level. A precedencelevel variable \(i\) ranges from 0 to 9 ; an associativity variable \(a\) varies over \(\{l, r, n\}\). Thus, for example
\(\operatorname{aexp} \quad \rightarrow \quad\left(\exp ^{i+1} o p^{(a, i)}\right)\)
actually stands for 30 productions, with 10 substitutions for \(i\) and 3 for \(\boldsymbol{a}\).
In both the lexical and the context-free syntax, there are some ambiguities that are to be resolved by making grammatical phrases as long as possible, proceeding from left to right (in shift-reduce parsing, resolving shift/reduce conflicts by shifting). In the lexical syntax, this is the "consume longest lexeme" rule. In the context-free syntax, this means that conditionals, let-expressions, and lambda abstractions extend to the right as far as possible.

\section*{B. 2 Syntax Changes}

\section*{B.2.1 Minor Syntax Changes in Version 1.1}

This section is a list of the non-trivial changes to the Haskell syntax between versions 1.0 and 1.1 of this report, excluding those mentioned in the 1.1 preface (page ix). Other clarifications and corrections are reflected in the full syntax in the following sections.
1. Empty declarations and declaration lists ending with ; have been added, to aid automatic program generation.
2. Guards have been eliminated from lambda expressions.
3. List comprehensions must have at least one qualifier.
4. Case expressions may have more than one guard per clause.
5. Instance declarations can only have valdefs in their body; in particular, they cannot have type signatures in their body.

\section*{B.2.2 Changes from Version 1.1 to Version 1.2}

A few changes have been made for Version 1.2. These are mainly clarifications or corrections of the Version 1.1 syntax. A full list of changes is contained in the 1.2 preface (page xi). The principal changes are repeated below.
1. The precedence of type applications has been made explicit.
2. Successor patterns are restricted to variable/wildcard patterns.
3. The precedence of prefix minus has been made explicit.
4. The syntax of left-hand sides has been simplified.
5. Some changes have been made to the precedences of let, case, if and lambda( \(\backslash\) ) expressions.

\section*{B. 3 Lexical Syntax}
```

program }->\mathrm{ {lexeme | whitespace }
lexeme }->\mathrm{ varid | conid | varsym | consym | literal | special | reservedop | reservedid
literal }->\mathrm{ integer | float | char | string
special }->(|)|,|;|[|]|_|`|{|
whitespace }->\mathrm{ whitestuff {whitestuff }
whitestuff }->\mathrm{ whitechar | comment | ncomment
whitechar }->\mathrm{ newline | space | tab | vertab | formfeed
newline }->\mathrm{ a newline (system dependent)
space }->\mathrm{ a space
tab }->\mathrm{ a horizontal tab
vertab }->\mathrm{ a vertical tab
formfeed }->\mathrm{ a form feed
comment }->\mathrm{ -- {any} newline
ncomment }->\mathrm{ {-ANYseq {ncomment ANYseq}-}
ANYseq }->{{ANY\mp@subsup{}}{{{ANY}}{({-।-}){ANY}}
ANY }->\mathrm{ any | newline | vertab | formfeed
any }\quad->\quad\mathrm{ graphic | space | tab

```
```

graphic \rightarrow large \mid small \mid digit
! |"|\#|\$|\%|\& | $|(\mid)| * \mid+$
, |-|.|/|:|;|<|=|>|?|@
$\left.[|\backslash|]|\wedge| _|`|| |\right\}\left.\right|^{\wedge}$
small $\rightarrow \mathrm{a}|\mathrm{b}| \ldots \mid \mathrm{z}$
large $\rightarrow \mathrm{A}|\mathrm{B}| \ldots \mid \mathrm{Z}$
digit $\rightarrow 0|1| \ldots \mid 9$
varid $\quad \rightarrow \quad\left(\text { small }\left\{\text { small } \mid \text { large } \mid \text { digit }\left|{ }^{\prime}\right|-\right\}\right)_{\langle\text {reservedid }\rangle}$
conid \rightarrow large $\left\{\right.$ small \mid large \mid digit $\left|{ }^{\prime}\right| \ldots$
reservedid \rightarrow case |class \mid data \mid default \mid deriving |else | hiding
| if | import | in |infix | infixl | infixr | instance | interface
let \mid module \mid of \mid renaming \mid then \mid to \mid type \mid where
varsym $\rightarrow((\text { symbol } \mid \text { presymbol })\{\text { symbol } \mid:\})_{\langle\text {resesvedop }\rangle}$
consym $\rightarrow(:\{\text { symbol } \mid:\})_{\langle\text {reservedop }}$
presymbol $\rightarrow \quad-\left.\right|^{\sim}$
symbol \rightarrow ! | \# | $\$|\%| \&|*|+|.|/|<|=|>|?| @| \backslash| \wedge||$
reservedop \rightarrow.. $|::|=>|=|@| \backslash|||^{\sim}|<-|->$
tyvar \rightarrow varid \quad (type variables)
tycon \rightarrow conid \quad (type constructors)
tycls \rightarrow conid \quad (type classes)
modid \rightarrow conid (modules)
integer \rightarrow digit $\{d i g i t\}$
float \rightarrow integer.integer $[(\mathrm{e} \mid \mathrm{E})[-\mid+]$ integer $]$
char $\quad \rightarrow \quad$ ' graphic $_{\langle }{ }^{\prime}|\backslash\rangle \mid$ space \mid escape $\left._{\langle\backslash \&\rangle}\right)$
string \rightarrow " graphic $_{\langle ||\|} \mid$ space \mid escape \mid gap $\} "$
escape \rightarrow (charesc \mid ascii \mid integer $\mid \circ$ octit $\{$ octit $\} \mid \mathrm{x}$ hexit $\{$ hexit $\})$
charesc $\rightarrow \mathrm{a}|\mathrm{b}| \mathrm{f}|\mathrm{n}| \mathrm{r}|\mathrm{t}| \mathrm{v}|\mathrm{T\mid}| \mathrm{\prime}\left|{ }^{\prime}\right| \&$
ascii $\quad \rightarrow \quad$ centrl \mid NUL \mid SOH \mid STX \mid ETX \mid EOT \mid ENQ \mid ACK
BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 \mid DC3 \mid DC4 \mid NAK \mid SYi \mid ETB | CAN
| EM \mid SUB \mid ESC \mid FS \mid GS \mid RS \mid US \mid SP \mid DEL
cntrl \rightarrow large $|@|[|\backslash|]|\wedge|-$
gap $\quad \rightarrow$ \whitechar $\{$ whitechar $\} \backslash$
hexit $\rightarrow \operatorname{digit}|\mathrm{A}| \mathrm{B}|\mathrm{C}| \mathrm{D}|\mathrm{E}| \mathrm{F}|\mathrm{a}| \mathrm{b}|\mathrm{c}| \mathrm{d}|\mathrm{e}| \mathrm{f}$
octit $\quad \rightarrow$ 0|1|2|3|4|5|6|7

```

\section*{B. 4 Layout}

Definitions: The indentation of a lexeme is the column number indicating the start of that lexeme; the indentation of a line is the indentation of its leftmost lexeme. To determine the column number, assume a fixed-width font with this tab convention: tab stops are 8 characters apart, and a tab character causes the insertion of enough spaces to align the current position with the next tab stop.

In the syntax given in the rest of the report, declaration lists are always preceded by the keyword where, let or of, and are enclosed within curly braces ( \(\}\) ) with the individual declarations separated by semicolons (;). For example, the syntax of a let expression is:
\[
\text { let }\left\{\operatorname{decl_{1}} ; \operatorname{decl} l_{2} ; \ldots ; \operatorname{decl_{n}}[;]\right\} \text { in } \exp
\]

Haskell permits the omission of the braces and semicolons by using layout to convey the same information. This allows both layout-sensitive and -insensitive styles of coding, which can be freely mixed within one program. Because layout is not required, Haskell programs can be straightforwardly produced by other programs.

The layout (or "off-side") rule takes effect whenever the open brace is omitted after the keyword where, let or of. When this happens, the indentation of the next lexeme (whether or not on a new line) is remembered and the omitted open brace is inserted (the whitespace preceding the lexeme may include comments). For each subsequent line, if it contains only whitespace or is indented more, then the previous item is continued (nothing is inserted); if it is indented the same amount, then a new item begins (a semicolon is inserted); and if it is indented less, then the declaration list ends (a close brace is inserted). A close brace is also inserted whenever the syntactic category containing the declaration list ends; that is, if an illegal lexeme is encountered at a point where a close brace would be legal, a close brace is inserted. The layout rule will match only those open braces that it has inserted; an open brace that the user has inserted must be matched by a close brace inserted by the user.

Given these rules, a single newline may actually terminate several declaration lists. Also, these rules permit:
```

f x = let a = 1; b = 2
g y = exp2 in exp1

```
making \(\mathrm{a}, \mathrm{b}\) and g all part of the same declaration list.
To facilitate the use of layout at the top level of a module (several modules may reside in one file), the keywords module and interface and the end-of-file token are assumed to occur in column 0 (whereas normally the first column is 1 ). Otherwise, all top-level declarations would have to be indented.

Section 1.5 gives an example which uses the layout rule.

\section*{B. 5 Context-Free Syntax}
\begin{tabular}{|c|c|c|c|}
\hline module & \[
\rightarrow
\] & \multicolumn{2}{|l|}{module modid [exports] where body body} \\
\hline body & \(\rightarrow\) & \[
\begin{aligned}
& \{[\text { impdecls ;] [[fixdecls ;] top } \\
& \{\text { impdecls }[;]\}
\end{aligned}
\] & \\
\hline impdecls & \(\rightarrow\) & impdecl \(_{1} ; \ldots ;\) impdecl \(_{n}\) & \((n \geq 1)\) \\
\hline exports & \(\rightarrow\) & ( export \({ }_{1}, \ldots\), export \(\left._{n}\right)\) & \((n \geq 1)\) \\
\hline export & \(\rightarrow\) & \begin{tabular}{l}
entity \\
modid .
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline impdecl \(\rightarrow\) & import modid [impspec] [renaming renamings] & \\
\hline impspec \(\rightarrow\) & ( import \(_{1}\), ..., import \(_{n}\) ) & \((n \geq 0)\) \\
\hline & hiding ( import \(_{1}, \ldots\), import \(_{n}\) ) & \((n \geq 1)\) \\
\hline import & entity & \\
\hline renamings \(\rightarrow\) & ( renaming \({ }_{1}\), ..., renaming \({ }_{n}\) ) & \((n \geq 1)\) \\
\hline renaming \(\rightarrow\) & \(v a r_{1}\) to \(\operatorname{var}_{2}\) & \\
\hline & \(\mathrm{con}_{1}\) to \(\mathrm{con}_{2}\) & \\
\hline entity & var & \\
\hline & tycon & \\
\hline & tycon (..) & \\
\hline & tycon ( \(\operatorname{con}_{1}, \ldots, \operatorname{con}_{n}\) ) & \((n \geq 1)\) \\
\hline & tycls (..) & \\
\hline & tycls ( \(\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\) ) & \((n \geq 0)\) \\
\hline
\end{tabular}
\begin{tabular}{llll} 
fixdecls & \(\rightarrow\) & fix \(; \ldots ;\) fix & \((n \geq 1)\) \\
fix & \(\rightarrow\) & infixl \([\) digit \(]\) ops & \\
& \(\mid\) & infixr \([\) digit \(]\) ops & \\
& \(\mid\) & infix \([\) digit \(]\) ops & \\
ops & \(\rightarrow\) & op \(p_{1}, \ldots\), op & \\
& & & \((n \geq 1)\)
\end{tabular}
```

topdecls \rightarrow topdecl $_{1} ; \ldots$; topdecl $l_{n} \quad(n \geq 1)$
topdecl \rightarrow type simple $=$ type
data [context $\Rightarrow>]$ simple $=$ constrs $[$ deriving $($ tycls $\mid($ tyclses $))]$
class [context $=>$] class [where \{ cbody [;] \}]
instance [context $=>$] tycls inst [where \{ valdefs [;] \}]
default (type $\mid\left(\right.$ type $_{1}, \ldots$, type $\left.\left._{n}\right)\right) \quad(n \geq 0)$

```
\begin{tabular}{|c|c|c|c|}
\hline & & decl & \\
\hline \[
\begin{aligned}
& \text { decls } \\
& \text { decl }
\end{aligned}
\] & \[
\begin{aligned}
& \vec{i} \\
& \vec{i}
\end{aligned}
\] & \[
\begin{aligned}
& \text { decl }_{t} ; \ldots ; \text { decl }_{n} \\
& \text { vars }::[\text { context }=>] \text { type } \\
& \text { valdef }
\end{aligned}
\] & \((n \geq 0)\) \\
\hline type & \(\rightarrow\) & btype [-> type] & \\
\hline btype & \[
\vec{i}
\] & \[
\begin{aligned}
& \text { tycon atype }{ }_{1} \ldots \text { atype }_{k} \\
& \text { atype }
\end{aligned}
\] & \((\) arity tycon \(=k, k \geq 1)\) \\
\hline \multirow[t]{6}{*}{atype} & \(\rightarrow\) & tyvar & \\
\hline & & tycon & ( arity tycon \(=0\) ) \\
\hline & & () & (unit type) \\
\hline & & ( type) & (parenthesised type) \\
\hline & & \(\left(\right.\) type \(_{1}, \ldots\), type \(\left._{k}\right)\) & (tuple type, \(k \geq 2\) ) \\
\hline & | & [ type ] & \\
\hline \multirow[t]{2}{*}{context} & \(\rightarrow\) & class & \\
\hline & 1 & ( class \(_{1}, \ldots\), class \(_{n}\) ) & ( \(n \geq 1\) ) \\
\hline class & \(\rightarrow\) & tycls tyvar & \\
\hline \multirow[t]{2}{*}{cbody} & \(\rightarrow\) & csigns [ ; valdef [ ; valdefs ] ] & \\
\hline & | & valdefs & \\
\hline csigns & \(\rightarrow\) & \(\operatorname{csign}_{1} ; \ldots ; \operatorname{csign}_{n}\) & \((n \geq 1)\) \\
\hline csign & \(\rightarrow\) & vars : : [context =>] type & \\
\hline vars & \(\rightarrow\) & \(\operatorname{var}_{1}, \ldots, \operatorname{var}_{n}\) & \((n \geq 1)\) \\
\hline \multirow[t]{3}{*}{simple constrs constr} & \(\rightarrow\) & tycon tyvar \({ }_{1} \ldots\) tyvar \(^{6}\) & \((\) arity tycon \(=k, k \geq 0)\) \\
\hline & \(\rightarrow\) & constr \(_{1} \mid \ldots\) | constr \(_{n}\) & ( \(n \geq 1\) ) \\
\hline & \(\rightarrow\) & con atype \({ }_{1} \ldots\) atype \(_{k}\) btype \(_{1}\) conop btype & \[
\text { (arity con }=k, k \geq 0 \text { ) }
\]
(infix conop) \\
\hline tyclses & \(\rightarrow\) & tycls,\(\ldots\), tycls \(_{n}\) & \((n \geq 0)\) \\
\hline \multirow[t]{6}{*}{inst} & \multirow[t]{6}{*}{\(\rightarrow\)} & tycon & (arity tycon \(=0\) ) \\
\hline & &  & ( \(k \geq 1\), tyvars distinct) \\
\hline & & ( tyoar \(_{1}, \ldots\), tyvar \({ }^{\text {a }}\) ) & ( \(k \geq 2\), tyvars distinct) \\
\hline & & () & \\
\hline & & [ tyvar] & \\
\hline & & ( tyvar \(_{1} \rightarrow\) tyvar \(_{2}\) ) & tyvar \(_{1}\) and tyvar \({ }_{2}\) distinct \\
\hline
\end{tabular}
```

valdefs }->\mathrm{ valdef f ; .. ; valdef f
valdef }->\quad\mathrm{ lhs = exp[where { decls [;] }]
| lhs gdrhs [where { decls [;] }]
lhs }\quad->\quadpa\mp@subsup{t}{{(var | _ + integer)}{
funlhs
funlhs }->\mathrm{ var apat { apat }
pat\mp@subsup{t}{}{i+1}}\mp@subsup{\mathrm{ varopp}}{}{(a,i)}\mp@subsup{\mathrm{ pat }}{}{i+1
lpat i varop (1,i)}\mp@subsup{p}{}{(1,t+1
patti+1 varop (r,i) rpat i
gdrhs }\quad->\quadgd=\operatorname{exp}[gdrhs
gd }->\quad|\quad\mp@subsup{expp}{}{0
exp (exp 0 ::[context =>] type (expression type signature)
exp i}->\mp@subsup{exxp}{i+1}{[op(n,i)}\mp@subsup{\operatorname{exp}}{}{i+1}
lexp }\mp@subsup{}{}{1
rexp}\mp@subsup{}{}{i
lexp i}->(\mp@subsup{\mathrm{ expp}}{}{i}|\mp@subsup{\operatorname{exp}}{}{i+1})o\mp@subsup{p}{}{(1,i)}\mp@subsup{\operatorname{exp}}{}{i+1
lexp }\mp@subsup{}{}{6}->-\quad-\quad\mp@subsup{\operatorname{exp}}{}{7
rexp i }->\mp@subsup{exxp}{i+1}{*}o\mp@subsup{p}{}{(r,i)}(\mp@subsup{\mathrm{ rexp }}{}{i}|\mp@subsup{\operatorname{exp}}{}{i+1}
exp }\mp@subsup{}{}{10}->
\mp@subsup{apat }{1}{\prime}···\mp@subsup{a}{\mathrm{ apat }}{n}\boldsymbol{->> exp
let { decls [;]} in exp
if exp then exp else exp
case exp of { alts [;] }
fexp
fexp }->\mathrm{ fexp aexp
aexp
aexp }\quad->\quad\begin{array}{c}{\mathrm{ var }}
{|}
{\mathrm{ con }}
literal
()
(exp)
(exp
[<xp
[<exp}[[, \mp@subsup{\operatorname{exp}}{2}{}]···[\mp@subsup{\operatorname{exp}}{3}{}]
[exp \ qual , ..., qualn]
(exp i+1 op (a,i)}
(op (a,i)}\mp@subsup{expi}{}{i+1}
(variable)
(constructor)
(unit)
(parenthesised expression)
(tuple, k\geq2)
(list, k\geq0)
(arithmetic sequence)
(list comprehension, n\geq1)
(left section)
(right section)

```
```

qual }\quad->\quad\mp@code{pat<- exp
alts }->\mathrm{ alt ; ; ; alt
alt }\quad->\quad\mathrm{ pat }->\mathrm{ exp[where { decls [;] }]
| pat gdpat [where { decls [;] }]
gdpat }\quad->\quadgd -> exp[gdpat
pat }->\quadpat\mp@subsup{t}{}{0

```

```

 lpat }\mp@subsup{}{}{2
 rpat\mp@subsup{}{}{2}
 lpatt }\mp@subsup{}{}{i}->(\mp@subsup{\mathrm{ lpat }}{}{i}|\mp@subsup{\mathrm{ pat }}{}{i+1})\mp@subsup{\mathrm{ conop }}{}{(1,i)}\mp@subsup{\mathrm{ pat }}{}{i+1
lpat }\mp@subsup{}{}{6}
l l
rpat i }->\mathrm{ patti+1 conop (r,i)(rpat }\mp@subsup{}{}{i}|\mp@subsup{\mathrm{ pat }}{}{i+1}
pat }\mp@subsup{}{}{10}
| conapat
apa
| var[@ apat]
| var[@ apat]
var }\quad->\quad\mathrm{ varid |(varsym)
con }\quad->\mathrm{ conid |(consym)
varop }->\mathrm{ varsym | `varid`
conop }->\mathrm{ consym | `conid`
op }\quad->\quad\mathrm{ varop | conop
(successor pattern)
(negative literal)
apat
(as pattern)
(arity con = O)
(wildcard)
(unit pattern)
(parenthesised pattern)
(tuple pattern, k\geq2)
(list pattern, k\geq0)
(irrefutable pattern)
(variable)
(constructor)
(variable operator)
(constructor operator)
(operator)

```

\section*{B. 6 Interface Syntax}
```

interface }->\mathrm{ interface modid where ibody
ibody }->\mathrm{ { [iimpdecls ;] [[fixdecls ;] itopdecls [;]] }

```
```

 | { iimpdecls [;]}
 iimpdecls }->\mathrm{ iimpdecl }; ; .. ; iimpdecl l n (n\geq1)
iimpdecl }->\mathrm{ import modid (import , ..., , import t)
[renaming renamings]
(n\geq1)
itopdecls }->\mathrm{ itopdecl l ; .. ; itopdecl l
(n\geq1)
itopdecl }->\mathrm{ type simple = type
data [context =>] simple [= constrs [deriving (tycls | (tyclses))]]
class [context =>] class [where { icdecls [;] }]
| instance [context =>] tycls inst
vars :: [context =>] type
icdecls }->\mathrm{ icdecl }; [..; \mp@subsup{icdecl}{n}{}\quad(n\geq0
icdecl }->\mathrm{ vars :: type

```

\section*{C Literate comments}

Many Haskell implementations support the "literate comment" convention, first developed by Richard Bird and Philip Wadler for Orwell, and inspired in turn by Donald Knuth's "literate programming". The convention is not part of the Haskell language, but it is supported by the implementations known to us (Chalmers, Glasgow, and Yale).

The literate style encourages comments by making them the default. A line in which " \(>\) " is the first character is treated as part of the program; all other lines are comment. Within the program part, the usual "--" and "\{--\}" comment conventions may still be used. To capture some cases where one omits an " \(>\) " by mistake, it is an error for a program line to appear adjacent to a non-blank comment line, where a line is taken as blank if it consists only of whitespace.

By convention, the style of comment is indicated by the file extension, with ".hs" indicating a usual Haskell file, and ". lhs" indicating a literate Haskell file.

To make this precise, Figures 17 and 18 present a literate Haskell program to convert literate programs. The program expects a single name file on the command line, reads file.lhs, and either writes the corresponding program to file.hs or prints error messages to stderr.

Each of the lines in a literate script is a program line, a blank line, or a comment line. In the first case, the text is kept with the line.
```

data Classified = Program String | Blank | Comment

```

In a literate program, program lines begins with a ' \(>\) ' character, blank lines contain only whitespace, and all other lines are comment lines.
```

classify :: String -> Classified
> classify ('>':s) = Program s
> classify s | all isSpace s = Blank
> classify s | otherwise = Comment

```

In the corresponding program, program lines have the leading ' \(>\) ' replaced by a leading space, to preserve tab alignments.
```

unclassify :: Classified -> String
unclassify (Program s) = " " ++ s
unclassify Blank = ""
unclassify Comment = ""

```

Figure 17: Literate program converter (Part 1)

Process a literate program into error messages (if any) and the corresponding nonliterate program.
```

process :: String -> (String, String)
process lhs = (es, hs)
> where cs = map classify (lines lhs)
es = unlines (errors cs)
hs = unlines (map unclassify cs)

```

Check that each program line is not adjacent to a comment line.
```

> errors :: [Classified] -> [String]
> errors cs = concat (zipWith3 adjacent [1..] cs (tail cs))

```

Given a line number and a pair of adjacent lines, generate a list of error messages, which will contain either one entry or none.
```

> adjacent :: Int -> Classified -> Classified -> [String]
> adjacent n (Program _) Comment = [message n "program" "comment"]
adjacent n Comment (Program _) = [message n "comment" "program"]
> adjacent n this next = []
> message n p c = "Line "++show n++": "++p++" line before "++c++" line."

```

Get one argument from the command line; complain if too many or too few.
```

getArg :: FailCont -> StrCont -> Dialogue
> getArg fail succ
> = getArgs fail (\strs ->
> case strs of
[str] -> succ str
_ -> fail (OtherError "Too many or too few args"))

```

The main program gets name file, reads file.lhs, and either writes the corresponding program to file.hs or appends error messages to stderr.
```

> main :: Dialogue
main = getArg exit (\file ->
> readFile (file ++ ".lhs") exit (\lhs ->
case (process lhs) of
> ([],hs) -> writeFile (file ++ ".hs") hs exit done
> (es,_) -> appendChan stderr es exit done))

```

Figure 18: Literate program converter (Part 2)

\section*{D Input/Output Semantics}

The behaviour of a Haskell program performing I/O is given within the environment in which it is running. That environment will be described using standard Haskell code augmented with a non-deterministic merge operator.

The state of the operating system (OS state) that is relevant to Haskell programs is completely described by the file system and the channel system. The channel system is split into two subsystems, the input channel system and the output channel system.
```

type State = (FileSystem, ChannelSystem)
type FileSystem = String -> Response
type ChannelSystem = (ICs, OCs)
type ICs = String -> (Agent, Open)
type OCs = String -> Response
type Agent = (FileSystem, OCs) -> Response
type Open = PId -> Bool
type PId = Int
type PList = [(PId,[Request->Response])]

```

An agent maps a list of OS states to responses. Those responses will be used as the contents of input channels, and thus can depend on output channels, other input channels, files, or any combination thereof. For example, a valid implementation must allow the user to act as agent between the standard output channel and standard input channel.

Each running process (i.e. program) has a unique PId. Elements of PList are lists of running programs.
```

os :: TagReqList -> State -> (TagRespList, State)
type TagRespList = [(PId,Response)]
type TagReqList = [(PId,Request)]

```

The operating system is modeled as a (non-deterministic) function os. The os takes a tagged request list and an initial state, and returns a tagged response list and a final state. Given a list of programs pList, os must exhibit this behaviour:
```

(tagRespList, state') = os tagReqList state
tagReqList = merge [zip [pId,pId..] (proc (untag pId tagRespList))
| (pId, proc) <- pList]

```
where merge is a non-deterministic merge of a list of lists, and untag is:
```

untag n [] = []
untag n ((m,resp):resps) = if n==m then resp:(untag n resps)
else untag n resps

```

This relationship can be generalised to include requests such as CreateProcess.
A valid implementation must ensure that the input channel system is defined at stdin and the output channel system is defined at stdout, stderr, and stdecho. If the agent attached to standard input is called user (i.e. ics stdin has form (user, open)), then user must depend at least on standard output. In other words, this constraint must hold:
user [..., (fs,(ics,ocs)), ...] = ... user' (ocs stdout) ...
where user' is a strict, but otherwise arbitrary, function modelling the user. Its strictness corresponds to the user's consumption of standard output whilst determining standard input.

The rest of this section specifies the required behaviour of os in response to each kind of request. This semantics is relatively abstract and omits any reference to hardware errors (e.g. "bad sector on disk") and system dependent errors (e.g. "access rights violation"). Implementation-specific requests (for example the environment requests) are not shown here. We describe only the text version of the requests: the binary version differs trivially. os is defined by:
```

os :: TagReqList -> State -> (TagRespList,State)
os [] state = ([], state)
os ((n, ReadChan name):es) state@(fs,(ics,ocs)) =
(alist',state') where
(agent,open) = ics name
alist' = (n, (if open n
then fail
else (agent (fs,ocs)))) : alist
fail = Failure (OtherError "Channel already open\n")
(alist,state') = os es (fs, (update ics name
(agent, update open n true),
ocs))

```
where the auxiliary function update is defined by:
```

update f x v x' = if x==x' then v else f x

```

If an attempt is made to read a non-existent channel, ics returns an agent that gives the appropriate error message when applied to its arguments. This definition is generalised in the obvious way for the behaviour of ReadChannels. In particular, ack must be created by non-deterministically merging the result of applying each agent to the stream of future states.
```

os ((n, AppendChan name contents):es) state@(fs,(ics,ocs)) =
(alist',state') where
alist' = ack:alist
ack =
(n,
case (ocs name) of
Failure msg -> Failure (SearchError "Nonexistent Channel")
Str ochan -> Success
Bn ochan -> Failure (FormatError "format error")
)
(alist,state') = os es (fs,(ics,
case (ocs name) of
Failure msg -> ocs
Str ochan -> update ocs name
(Str (ochan ++ contents))
Bn ochan -> ocs
))
os ((n, ReadFile name):es) state@(fs,(ics,ocs)) =
(alist',state') where
alist' = ack : alist
ack = (n,
case (fs name) of
Failure msg -> Failure (SearchError "File not found")
Str string -> Str string
Bn binary -> Failure (FormatError "")
)
(alist,state') = os es state
os ((n, WriteFile name contents):es) state@(fs,(ics,ocs)) =
(alist',state') where
alist' = (n, Success):alist
(alist,state') = os es (update fs name (Str contents),
(ics,ocs))

```
```

os ((n, AppendFile name contents):es) state@(fs,(ics,ocs)) =
(alist',state') where
alist' = ack:alist
ack = (n,
case (fs name) of
Failure msg -> Failure (SearchError "file not found")
Str s -> Success
Bn b -> Failure (FormatError "")
)
(alist,state') = os es (newfs, (ics,ocs)) where
newfs = case (fs name) of
Failure msg -> fs
Str s ->
update fs name (Str (s++contents))
Bn b -> fs
os ((n, DeleteFile name):es) state@(fs,(ics,ocs)) =
(alist',state') where
alist' = ack : alist
ack = (n,
case (fs name) of
Failure msg -> Failure (SearchError "file not found")
Str s -> Success
Bn b -> Success
)
(alist,state') = os es (case (fs name) of
Failure msg -> fs
Str s -> update fs name fail
Bn b -> update fs name fail,
(ics,ocs))
fail = Failure (SearchError "file not found")
os ((n,StatusFile name):es) state@(fs,(ics,ocs)) = (alist',state') where
alist' = ack : alist
ack = (n,
case (fs name) of
Failure msg -> Failure (SearchError "File not found")
Str string -> Str "t"++(rw n fs name)
Bn binary -> Str "b"++(rw n fs name)
)
(alist, state') = os es state

```
where \(r w\) is a function that determines the read and write status of a file for this particular process.

\section*{D. 1 Optional Requests}

These optional I/O requests may be useful in a Haskell implementation.
- ReadChannels [cname1, ..., cnamek]

ReadBinChannels [cname1, ..., cnamek]
Opens cname1 through cnamek for input. A successful response has form Tag vals [BinTag vals] where vals is a list of values tagged with the name of the channel. These responses require an extension to the Response datatype:
```

data Response = ...
| Tag [(String,Char)]
| BinTag [(String,Bin)]

```

The tagged list of values is the non-deterministic merge of the values read from the individual channels. If an element of this list has form (cnamei, val), then it came from channel cnamei.
If any cnamei does not exist then the response Failure (SearchError string) is induced; all other errors induce Failure (ReadError string).
- CreateProcess prog

Introduces a new program prog into the operating system. prog must have type [Response] -> [Request]. Either Success or Failure (OtherError string) is induced.
- CreateDirectory name string DeleteDirectory name
Create or delete directory name. The string argument to CreateDirectory is an implementation-dependent specification of the initial state of the directory.
\begin{tabular}{ll} 
- OpenFile & name inout \\
OpenBinFile & name inout \\
CloseFile & file \\
ReadVal & file \\
ReadBinVal & file \\
WriteVal & file char \\
WriteBinVal & file bin
\end{tabular}

These requests emulate traditional file I/O in which characters are read and written one at a time.
```

data Response = ...
| Fil File
data File
type Bins = [Bin]

```

OpenFile name inout [OpenBinFile name inout] opens the file name in text [binary] mode with direction inout (True for input, False for output). The response Fil file
is induced, where file has type File, a primitive type that represents a handle to a file. Subsequent use of that file by other requests is via this handle.

CloseFile file closes file. Failure (OtherError string) is induced if file cannot be closed.

ReadVal [ReadBinVal] file reads file, inducing the response Str val [Bins val] or Failure (ReadError string).

WriteVal file char [WriteBinVal file bin] writes char [bin] to file. The response Success or Failure (WriteError string) is induced.

Failure (SearchError string) is induced for ReadVal, ReadBinVal, WriteVal, and WriteBinVal if file is not a text or binary file, as appropriate.

\section*{E Specification of Derived Instances}

If \(T\) is an algebraic datatype declared by:
\[
\begin{aligned}
\text { data } c \Rightarrow T u_{1} \ldots u_{k}= & K_{1} t_{11} \ldots t_{1 k_{1}}|\ldots| K_{n} t_{n 1} \ldots t_{n k_{n}} \\
& \text { deriving }\left(C_{1}, \ldots, C_{m}\right)
\end{aligned}
\]
(where \(m \geq 0\) and the parentheses may be omitted if \(m=1\) ) then a derived instance declaration is possible for a class \(C\) if and only if these conditions hold:
1. \(C\) is one of Eq, Ord, Enum, Ix, Text, or Binary.
2. There is a context \(c^{\prime}\) such that \(c^{\prime} \Rightarrow C t_{i j}\) holds for each of the constituent types \(t_{i j}\).
3. If \(C\) is either Ix or Enum, then further constraints must be satisfied as described under the paragraphs for Ix and Enum later in this section.
4. There must be no explicit instance declaration elsewhere in the module which makes \(T u_{1} \ldots u_{k}\) an instance of \(C\).

If the deriving form is present (as in the above general data declaration), an instance declaration is automatically generated for \(T u_{1} \ldots u_{k}\) over each class \(C_{i}\) and each of \(C_{i}\) 's superclasses. If the derived instance declaration is impossible for any of the \(C_{i}\) then a static error results. If no derived instances are required, the deriving form may be omitted or the form deriving () may be used.

Each derived instance declaration will have the form:
\[
\text { instance }\left(c, C_{1}^{\prime} u_{1}^{\prime}, \ldots, C_{j}^{\prime} u_{j}^{\prime}\right) \Rightarrow C_{i}\left(T u_{1} \ldots u_{k}\right) \text { where }\{d\}
\]
where \(d\) is derived automatically depending on \(C_{i}\) and the data type declaration for \(T\) (as will be described in the remainder of this section), and \(u_{1}^{\prime}\) through \(u_{j}^{\prime}\) form a subset of \(u_{1}\) through \(u_{k}\). When inferring the context for the derived instances, type synonyms must be expanded out first. The free variables of the declarations \(d\) are all functions defined in the standard prelude. The remaining details of the derived instances for each of the six classes are now given.

Derived instances of Eq and Ord. The operations automatically introduced by derived instances of Eq and Ord are (==), ( \(/=\) ), (<), (<=), ( \(>\) ), ( \(>=\) ), max, and min. The latter six operators are defined so as to compare their arguments lexicographically with respect to the constructor set given, with earlier constructors in the datatype declaration counting as smaller than later ones. For example, for the Bool datatype, we have that (True > False) \(==\) True.

Derived instances of Ix. The derived instance declarations for the class Ix introduce the overloaded functions range, index, and inRange. The operation range takes a (lower, upper) bound pair, and returns a list of all indices in this range, in ascending order. The operation inRange is a predicate taking a (lower, upper) bound pair and an index and returning True if the index is contained within the specified range. The operation index takes a (lower, upper) bound pair and an index and returns an integer, the position of the index within the range.

Derived instance declarations for the class \(I x\) are only possible for enumerations (i.e. datatypes having only nullary constructors) and single-constructor datatypes (including tuples) whose constituent types are instances of Ix.
- For an enumeration, the nullary constructors are assumed to be numbered left-to-right with the indices 0 through \(n-1\). For example, given the datatype:
```

data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

```
we would have:
```

range (Yellow,Blue) == [Yellow,Green,Blue]
index (Yellow,Blue) Green == 1
inRange (Yellow,Blue) Red == False

```
- For single-constructor datatypes, the derived instance declarations are created as shown for tuples in Figure 19.

Derived instances of Enum. Derived instance declarations for the class Enum are only possible for enumerations, using the same ordering assumptions made for Ix. They introduce the operations enumFrom, enumFromThen, enumFromTo, and enumFromThenTo, which are used to define arithmetic sequences as described in Section 3.9.
enumFrom \(n\) returns a list corresponding to the complete enumeration of n's type starting at the value \(n\). Similarly, enumFromThen \(n n\), is the enumeration starting at \(n\), but with second element \(n\) ', and with subsequent elements generated at a spacing equal to the difference between \(n\) and \(n^{\prime}\). enumFromTo and enumFromThenTo are as defined by the default methods for Enum (see Figure 5, page 31).

Derived instances of Binary. The Binary class is used primarily for transparent I/O (see Section 7.1). The operations automatically introduced by derived instances of Binary are readBin and showBin. They coerce values to and from the primitive abstract type Bin (see Section 6.7). An implementation must be able to create derived instances of Binary for any type \(t\) not containing a function type.
showBin is analogous to shows, taking two arguments: the first is the value to be coerced, and the second is a Bin value to which the result is to be concatenated. readBin is analogous to reads, "parsing" its argument and returning a pair consisting of the coerced value and any remaining Bin value.
```

class (Ord a) => Ix a where
range :: (a,a) -> [a]
index :: (a,a) -> a -> Int
inRange :: (a,a) -> a -> Bool
rangeSize :: (Ix a) => (a,a) -> Int
rangeSize (l,u) = index (l,u) u + 1
instance (Ix a, Ix b) => Ix (a,b) where
range ((l, l'), (u,u'))
= [(i,i') | i <- range (l,u), i' <- range (l',u')]
index ((l,l'),(u,u')) (i,i')
= index (l,u) i * rangeSize (l',u') + index (l',u') i'
inRange ((l, l'),(u,u')) (i,i')
= inRange (l,u) i \&\& inRange (l',u') i'
Instances for other tuples are obtained from this scheme:
instance (Ix a1, Ix a2, ... , Ix ak) => Ix (a1,a2,...,ak) where
range ((l1,l2,···,lk),(u1,u2,···,uk)) =
[(i1,i2,···,ik) | i1 <- range (l1,u1),
i2 <- range (12,u2),
ik <- range (lk,uk)]
index ((l1,l2,···,lk),(u1,u2,···,uk)) (i1,i2,···,ik) =
index (lk,uk) ik + rangeSize (lk,uk) * (
index (lk-1,uk-1) ik-1 + rangeSize (lk-1,uk-1) * (
...
index (l1,u1)))
inRange ((l1,l2,···..lk),(u1,u2,...,uk)) (i1,i2,···,ik) =
inRange (l1,u1) i1 \&\& inRange (l2,u2) i2 \&\&
... \&\& inRange (lk,uk) ik

```

Figure 19: Index classes and instances

Derived versions of showBin and readBin must obey this property:
\[
\text { readBin }(\operatorname{showBin~} v b)==(v, b)
\]
for any Bin value \(b\) and value \(v\) whose type is an instance of the class Binary.

Derived instances of Text. The operations automatically introduced by derived instances of Text are showsPrec, readsPrec, showList and readList. They are used to
coerce values into strings and parse strings into values.
The function showsPrec \(d \times r\) accepts a precedence level \(d\) (a number from 0 to 10), a value \(x\), and a string \(r\). It returns a string representing \(x\) concatenated to \(r\). showsPrec satisfies the law:
```

showsPrec d x r ++ s == showsPrec d x (r ++ s)

```

The representation will be enclosed in parentheses if the precedence of the top-level constructor operator in x is less than d . Thus, if d is 0 then the result is never surrounded in parentheses; if \(d\) is 10 it is always surrounded in parentheses, unless it is an atomic expression. The extra parameter \(r\) is essential if tree-like structures are to be printed in linear time rather than time quadratic in the size of the tree.

The function readsPrec d s accepts a precedence level d (a number from 0 to 10) and a string \(s\), and returns a list of pairs ( \(x, r\) ) such that showsPrec \(d \times r==s\). readsPrec is a parse function, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.
showList and readList allow lists of objects to be represented using non-standard denotations. This is especially useful for strings (lists of Char).

For convenience, the standard prelude provides the following auxiliary functions:
```

shows = showsPrec 0
reads = readsPrec 0
show x = shows x ""
read s = x where [(x,"")] = reads }\textrm{s

```
shows and reads use a default precedence of 0 , and show and read assume that the result is not being appended to an initial string.

The instances of Text for the standard types Int, Integer, Float, Double, Char, lists, tuples, and rational and complex numbers are defined in the standard prelude (see Appendix A). For characters and strings, the control characters that have special representations ( \(\backslash \mathrm{n}\) etc.) are shown as such by showsPrec; otherwise, ASCII mnemonics are used. Non-ASCII characters are shown by decimal escapes. Floating point numbers are represented by decimal numbers of sufficient precision to guarantee read . show is an identity function. If \(b\) is the floating-point radix and there are \(w\) base- \(b\) digits in the floating-point significand, the number of decimal digits required is \(d=\left\lceil w \log _{10} b\right\rceil+1[10]\). Numbers are shown in non-exponential format if this requires only \(d\) digits; otherwise, they are shown in exponential format, with one digit before the decimal point. readsPrec allows an exponent to be unsigned or signed with + or -; showsPrec shows a positive exponent without a sign.
readsPrec will parse any valid representation of the standard types apart from lists, for which only the bracketed form [...] is accepted. See Appendix A for full details.

\section*{E. 1 Specification of showsPrec}

As described in Section 4.3.3, showsPrec has the type
```

(Text a) => Int -> a -> String -> String

```
```

showsPrec d (e1 'Con' e2) = showParen (d > p) showStr
where
p = 'the precedence of Con'
lp = if 'Con is left associative' then p else p+1
rp = if 'Con is right associative' then p else p+1
cn = 'the original name of Con'
showStr = showsPrec lp e1.
showChar , ', showString cn . showChar ' '.
showsPrec rp e2

```

Figure 20: Specification of showsPrec for Constructors Declared in the Infix Style
```

showsPrec d (Con e1 ... en) = showParen (d >= 10) showStr
where

```
```

 showStr = showString cn . showChar , '.
    ```
        showStr = showString cn . showChar , '.
            showsPrec 10 e1 . showChar ', .
            showsPrec 10 e1 . showChar ', .
            showsPrec 10 en
            showsPrec 10 en
        cn = 'the original name of Con'
```

 cn = 'the original name of Con'
    ```

Figure 21: General Specification of showsPrec for User-Defined Constructors

The first parameter is a precedence in the range 0 to 10 , the second is the value to be converted into a string, and the third is the string to append to the end of the result.

For all constructors Con defined by some data declaration such as:
\[
\text { data } c \Rightarrow T u_{1} \ldots u_{k}=\ldots\left|\operatorname{Con} t_{1} \ldots t_{n}\right| \ldots
\]
the corresponding definition of showsPrec for Con is shown in Figure 20 for constructors declared in the infix style and Figure 21 for all other constructors. See Appendix A for details of showParen, showChar, etc.

\section*{E. 2 Specification of readsPrec}

A lexeme is exactly as in Section 2. lex :: String -> [(String, String)] reads the first lexeme from a string. If the string begins with a valid lexeme, the lexeme (with leading whitespace removed) and the remainder of the string are returned in a singleton list. If no lexeme is present or the lexeme is not syntactically correct, [] is returned. A full definition is provided in Appendix A.7.
```

readsPrec d r = readCon K1 k1 'the original name of K1' r ++
readCon Kn kn 'the original name of Kn' r
where
readCon con n cn = -- if con is infix
readParen (d > p) readVal
where
readVal r = [(u 'con' v, s2) |
(u,s0) <- readsPrec lp r,
(tok,s1) <- lex s0, tok == cn,
(v,s2) <- readsPrec rp s1]
p = 'the precedence of con'
lp = if 'con is left associative' then p else p+1
rp = if 'con is right associative' then p else p+1
readCon con n cn = -- if con is not infix
readParen (d > 9) readVal
where
readVal r = [(con t1 ... tn, sn) |
(t0,s0) <- lex r, t0 == cn,
(t1,s1) <- readsPrec 10 s0,

```

```

 (tn,sn) <- readsPrec 10 s(n-1)]
    ```

Figure 22: Definition of readsPrec for User-Defined Types

As described in Section 4.3.3, readsPrec has the type
\[
\text { Text a } \Rightarrow \text { Int } \rightarrow \text { String } \rightarrow \text { [(a,String })]
\]

Its first parameter is a precedence in the range 0 to 10 , its second is the string to be parsed. Figure 22 shows the specification of readsPrec for user-defined datatypes of the form:
\[
\text { data } c \Rightarrow T u_{1} \ldots u_{k}=K_{1} t_{11} \ldots t_{1 k_{1}}|\ldots| K_{n} t_{n 1} \ldots t_{n k_{n}}
\]

\section*{E. 3 An example}

As a complete example, consider a tree datatype:
```

data Tree a = Leaf a | Tree a :`: Tree a
deriving (Eq, Ord, Text, Binary)
instance (Eq a) => Eq (Tree a)
where ...
instance (Ord a) => Ord (Tree a)
where ...
instance (Text a) => Text (Tree a)
where ...
instance (Binary a) => Binary (Tree a)
where ...

```

Note the recursive context; the components of the datatype must themselves be instances of the class. Automatic derivation of instance declarations for Ix and Enum are not possible, as Tree is not an enumeration or single-constructor datatype. Except for Binary, the complete instance declarations for Tree are shown in Figure 23, Note the implicit use of defaultmethod definitions-for example, only \(<=\) is defined for Ord, with the other operations ( \(<\), \(>,>=\), max, and \(\min\) ) being defined by the defaults given in the class declaration shown in Figure 5 (page 31).
```

infix 4 :^:
data Tree a = Leaf a | Tree a :^: Tree a
instance (Eq a) => Eq (Tree a) where
Leaf m == Leaf n = m==n
u:`:v == x:`:y = u==x \&\& v==y
_ == _ = False
instance (Ord a) => Ord (Tree a) where
Leaf m <= Leaf n = m<=n
Leaf m<= x:^:y = True
u:^:v <= Leaf n = False
u:^:v <= x:^:y = u<x || u==x \&\& v<=y
instance (Text a) => Text (Tree a) where
showsPrec d (Leaf m) = showParen (d >= 10) showStr
where
showStr = showString "Leaf" . showChar , , . showsPrec 10 m
showsPrec d (u :`: v) = showParen (d > 4) showStr
where
showStr = showsPrec 5 u .
showChar , , . showString ":^:" . showChar ' ' .
showsPrec 5 v
readsPrec d r = readParen (d > 4)
(\r -> [(u:^:v,w) |
(u,s) <- readsPrec 5 r,
(":^:",t) <- lex s,
(v,w) <- readsPrec 5 t]) r
++ readParen (d > 9)
(\r -> [(Leaf m,t) |
("Leaf",t) <- lex r,
(m,t) <- readsPrec 10 t]) r

```

Figure 23: Example of Derived Instances

\section*{References}
[1] J. Backus. Can programming be liberated from the von Neumann style? A functional style and its algebra of programs. \(C A C M, 21(8): 613-641\), August 1978.
[2] R.M. Burstall, D.B. MacQueen, and D.T. Sannella. HOPE: An experimental applicative language. In The 1980 LISP Conference, pages 136-143, Stanford University, August 1980.
[3] H.B. Curry and R. Feys. Combinatory Logic. North-Holland Pub. Co., Amsterdam, 1958.
[4] L. Damas and R. Milner. Principal type schemes for functional programs. In Proceedings of 9th ACM Symposium on Principles of Programming Languages, pages 207-212, Albuquerque, N.M., January 1982.
[5] M. Gordon, R. Milner, L. Morris, M. Newey, and C. Wadsworth. A metalanguage for interactive proof in LCF. In Proceedings of 5th ACM Symposium on Principles of Programming Languages, pages 119-130, 1978.
[6] K. Hammond and C. Hall. A natural dynamic semantics for Haskell (draft). Department of Computing Science, Glasgow University, February 1991.
[7] R. Hindley. The principal type scheme of an object in combinatory logic. Transactions of the American Mathematical Society, 146:29-60, December 1969.
[8] P. Hudak and R. Sundaresh. On the expressiveness of purely functional I/O systems. Technical Report YALEU/DCS/RR665, Yale University, Department of Computer Science, December 1988.
[9] P.J. Landin. The next 700 programming languages. CACM, 9(3):157-166, March 1966.
[10] D.W. Matula. A formalization of floating-point numeric base conversion. IEEE Transactions on Computers, C-19(8):681-692, August 1970.
[11] J. McCarthy. Recursive functions of symbolic expressions and their computation by machine, Part I. CACM, 3(4):184-195, April 1960.
[12] R.S. Nikhil. Id-Nouveau (version 88.0) reference manual. Technical report, MIT Laboratory for Computer Science, Cambridge, Mass., March 1988.
[13] P. Penfield, Jr. Principal values and branch cuts in complex APL. In APL '81 Conference Proceedings, pages 248-256, San Francisco, September 1981.
[14] S. Peyton Jones. The Implementation of Functional Programming Languages. PrenticeHall International, Englewood Cliffs, New Jersey, 1987.
[15] S.L. Peyton Jones and P. Wadler. A static semantics for haskell. Department of Computing Science, Glasgow University, May 1991.
[16] J. Rees and W. Clinger (eds.). The revised \({ }^{3}\) report on the algorithmic language Scheme. SIGPLAN Notices, 21(12):37-79, December 1986.
[17] J.C. Reynolds. Introduction to part II (polymorphic lambda calculus). In G. Huet, editor, Logical Foundations of Functional Programming, University of Texas Year of Programming Series. Addison-Wesley, 1990.
[18] G.L. Steele Jr. Common Lisp: The Language. Digital Press, Burlington, Mass., 1984.
[19] D.A. Turner. Miranda: a non-strict functional language with polymorphic types. In Functional Programming Languages and Computer Architecture, volume 201 of Lecture Notes in Computer Science, pages 1-16, Nancy, France, September 1985. SpringerVerlag.
[20] P. Wadler. A new array operation. In J.H. Fasel and R.M. Keller, editors, Graph Reduction, volume 279 of Lecture Notes in Computer Science, pages 328-335, Heidelberg, 1987. Springer-Verlag.
[21] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In Proceedings of 16th ACM Symposium on Principles of Programming Languages, pages 60-76, Austin, Texas, January 1989.

\section*{Index}

Index entries that refer to nonterminals in the Haskell syntax are shown in an italic font. Code entities defined in the standard prelude (Appendix A) are shown in typewriter font. Ordinary index entries are shown in a roman font.
!, 54, 115
!!, 54, 106, 107
\$, 54, 82, 85
\(\%, 54,60,61,101\)
\&\&, 54, 56, 82, 83
(), see trivial type and unit expression
( \(e_{1}, \ldots, e_{n}\) ) (tuple), 14
( \(t_{1}, \ldots, t_{n}\) ) (tuple type), 89
*, \(54,60,62,89,90\)
**, 54, 60, 63, 89, 91
\(\boldsymbol{+}, 54,60,62,89,90\), see also \(n+k\) pattern
++, 54, 106
-, 54, 60, 62, 89, 90, see also negation
., \(54,57,82,85\)
/, 54, 60, 62, 89, 91
\(/ /, 54,67,115\)
\(/=, 31,54,89,90,145\)
:, 54, 57, 86
:\%,54, 101
:+, 54, 60, 62, 103
::, 18
\(:=, 54,65,115\)
<, 31, 54, 89, 90, 145
\(<=, 31,54,89,90,145\)
==, 31, 54, 89, 90,145
>, \(31,54,89,90,145\)
\(>=, 31,54,89,90,145\)
©, see as-pattern
[] (nil), 57, 89
\(\left[e_{1}, \ldots, e_{n}\right]\) (list), 14
[ \(t\) ] (list type), 89
\pats -> expr, 12
\\, 54, 106, 107
-, 54, 61, 63, 82, 84
\(\cdots, 54,61,63,82,84\)
_, see wildcard pattern
II, 54, 82, 83
~, see irrefutable pattern
abort, 80,127
abs, 60, 63, 90
abstract datatype, 1, 53
accum, 67, 115
accumArray, 67, 115
acos, 60, 91
acosh, 60,91
aexp, 10, 13-16, 134
agent, 70
algebraic datatype, \(28,45,48,51,60,145\)
all, 111
alt, 17, 135
alts, 17, 135
amap, 67, 115
ambiguous type, 34
and, 111
\(A N Y, 7,130\)
any, 7, 130
any, 111
ANYseq, 7, 130
apat, 19, 135
appendBin, 57, 82
AppendBinChan, 70, 76
appendBinChan, 78, 79, 125
AppendBinFile, 70, 74
appendBinFile, 78, 79, 125
AppendChan, 70, 76
appendChan, \(78,79,125\)
AppendFile, 70,74
appendFile, \(78,79,125\)
application, 12
function, see function application
operator, see operator application
approxRational, 61, 64, 101
arctangent, 63
arithmetic, 62
arithmetic sequence, 15,57
Array (datatype), 65
array, 1, 64
accumulated, 67
derived, 67
array, 65,115
as-pattern (©), 19, 20
ascii, 9, 130
ASCII character set, 6, 9, 56
asin, 60, 91
asinh, 60, 91
Assoc (datatype), 65, 115
assocs, 66, 115
asType0f, 85
atan, 60, 63, 91
atan2, 61, 63, 84
atanh, 60, 91
atype, 25, 133
Bin (datatype), 57, 86
Binary, 31, 93
derived instance, \(33,58,146\)
for efficient I/O, 71
instance for Array, 116
BinCont (type synonym), 77,125
binding, 24
function, see function binding
pattern, see pattern binding
simple pattern, see simple pattern binding
binDispatch, 78
Bn, 70
body, 24, 44, 132
Bool (datatype), 56, 94
boolean, 56
bounds, 66, 115
break, 73, 110
\(C-T\) instance declaration, 32
case expression, 17
cbody, 29, 133
ceiling, 61, 64, 92
channel, 70
channel system request, 75
Char (datatype), 56, 86
char, 9, 130
character, 56
literal syntax, 8
character set
ASCII, see ASCII character set transparent, see transparent charac-
ter set
charesc, 9, 130
chr, 56, 83
cis, 62, 105
class, 24, 29
class, 26, 133
class assertion, 26
class declaration, 29, 45, 51
with an empty where part, 30
class environment, 27
class method, ix, 25, 29, 32
cntrl, 9, 130
coercion, 64
comment, 7
end-of-line, 7
nested, 7
comment, 7, 130
compilation system, 43
Complex (datatype), 60, 62
con, 12, 135
concat, 112
conditional expression, 14
conid, \(7,8,130\)
conjugate, 62,104
conop, 12, 135
const, 85
constr, 28,133
constrs, 28, 133
constructed pattern, 20
constructed type, 26
consym, 8, 130
context, 26
in data declaration, ix, 28
context, 26, 133
cos, 60, 91
cosh, 60, 91
cosine, 63
csign, 29, 133
csigns, 29, 133
Curry, Haskell B., v
cycle, 109
data abstraction, 1
data declaration, 28
datatype, 27
abstract, see abstract datatype
algebraic, see algebraic datatype
declaration, see data declaration
recursive, see recursive datatype
decl, 24, 35, 36, 133
declaration, 24
\(C-T\) instance, see \(C-T\) instance declaration
class, see class declaration
datatype, see data declaration
default, see default declaration
fixity, see fixity declaration
import, see import declaration
instance, see instance declaration
within a class declaration, 29
within a let expression, 16
within an instance declaration, 30
declaration group, 38
decls, 24, 133
decodeFloat, 61, 64, 92
default declaration, 33
default method, vii, \(30,32,48,146,151\), see also class method
DeleteFile, 70, 75
deleteFile, 78, 79, 125
denominator, \(60,61,101\)
dependency analysis, 38
derived instance, ix, 33 , see also instance declaration
Dialogue (type synonym), 69, 77, 125
digit, 7, 130
div, 54, 60, 62, 89, 91
divMod, 60, 91
done, \(78,79,125\)
Double (datatype), 59, 61, 86
drop, 109
dropWhile, 110
Echo, 76
echo, 78, 79, 125
elem, 54, 106, 111
elems, 66, 115
encodeFloat, 61, 64, 92
entity, 42
entity, 45, 132
Enum, 31, 33, 93
derived instance, 33, 146
instance for Char, 94
instance for Double, 100
instance for Float, 100
instance for Integer, 97
instance for Int, 96
instance for Ratio, 102
superclass of Real, 90
enumeration, 146
enumFrom, 31, 93, 146
enumFromThen, 31, 93, 146
enumFromThenTo, 31, 93, 146
enumFromTo, 31, 93, 146
environment
class, see class environment
type, see type environment
environment request, 76
Eq, 31, 58, 90
derived instance, 33, 145
instance for Array, 116
instance for Char, 94
instance for Double, 97
instance for Float, 97
instance for Integer, 95
instance for Int, 95
superclass of Num, 90
superclass of Ord, 90
error, 2, 68
error, 68,88
escape, 9, 130
even, \(60,62,91\)
exit, 80, 127
exp \(^{i}, 10,134\)
exp, 10, 12-14, 16-18, 134
\(\exp , 60,63,91\)
exponent, \(61,64,92\)
exponentiation, 63
export, 45, 132
export list, ix, 45
exports, 45, 132
expression, 2,10
case, see case expression
conditional, see conditional expression
let, see let expression
simple case, see simple case expression
type, see type expression
unit, see unit expression
expression type-signature, 18,34
FailCont (type synonym), 77,125
Failure, 70
False, 56
file, 70
file system request, 74
filter, 107
fix, 54, 132
fixdecls, 54, 132
fixity, 12
fixity declaration, 53
flip, 57,85
Float (datatype), 58, 61, 86
float, 8, 130
floatDigits, 61, 64, 92
Floating, 58, 60, 62, 91
instance for Complex, 104
instance for Double, 99
instance for Float, 98
superclass of RealFloat, 92
Floating (datatype), 60
floating literal pattern, 20
floatRadix, 61, 64, 92
floatRange, 61, 64, 92
floor, 61, 64, 92
foldl, 108
foldl1, 108
foldr, 108
foldr1, 108
formal semantics, \(\mathrm{x}, 1\)
FormatError, 70
formfeed, 7, 130
Fractional, 58, 60, 91
instance for Complex, 103
instance for Double, 98
instance for Float, 98
instance for Ratio, 101
superclass of Floating, 91
superclass of RealFrac, 92
fromInteger, 59, 60, 90
fromIntegral, 61, 64, 84
fromRational, 59, 60, 91
fromRealFrac, 61, 64, 84
fst, 85
function, 57
function binding, 36
function type, 25
functional language, v
funlhs, 36, 134
gap, 9, 130
gcd, 61, 62, 84
\(g d, 17,36,134\)
gdpat, 17, 135
\(g d r h s, 36,134\)
generalisation, 38
generalisation order, 27
generator, 16
genericLength, 107
GetArgs, 70, 76
getArgs, 78, 79, 125
GetEnv, 70, 77
getEnv, 78, 79, 125
GetProgName, 70
getProgName, 78, 79, 125
graphic, 7, 130
guard, \(16,17,21\)
Haskell, v, 1
Haskell kernel, 2
Haskell mailing list, vi, ix, x
head, 106
hexit, 9, 130
hiding, 43, 47, 52
Hindley-Milner type system, 2, 24, 38
ibody, 47, 136
icdecl, 47, 136
icdecls, 47, 136
id, 85
identifier, 7
if-then-else expression, see conditional expression
iimpdecl, 47, 136
iimpdecls, 47, 136
imagPart, 62, 104
impdecl, 46, 132
impdecls, 44, 132
implementation, 42, 44
import, 46, 132
import declaration, 46
impspec, 46, 132
index, 31, 92, 146, 147
indices, 66, 115
information hiding, 1
init, 106
input/output, 69
acceptance, 73
echoing, 73
mode, 71
optional request, 143
presentation, 72
semantics, 139
transparency, 71
inRange, 31, 92, 146, 147
inst, 30, 134
instance declaration, 30,51 , see also derived instance
with an empty where part, 30
with respect to modules, 32
Int, 61
Int (datatype), 58, 86
Integer, 61
Integer (datatype), 86
integer, 8, 130
integer literal pattern, 20
Integral, 58, 60, 91
instance for Integer, 96
instance for Int, 96
interact, 80,127
interface, 42,47
interface, 47, 136
IOError, 70
IOError (datatype), 125
irrefutable pattern, 16, 19, 21, 37
isAlpha, 83
isAlphanum, 83
isAscii, 83
isControl, 83
isDigit, 83
isLower, 83
isNullBin, 57, 82
isPrint, 83
isSpace, 83
isUpper, 83
iterate, 109
itopdecl, 47, 136
itopdecls, 47, 136
Ix, 31, 65, 92, 147
derived instance, 33,146
instance for Char, 94
instance for Integer, 96
instance for Int, 96
superclass of Integral, 91
ixmap, 67, 115
lambda abstraction, 12
large, 7, 130
last, 106
layout, 3,131 , see also off-side rule
lcm, 61, 62, 84
length, 107
let expression, ix, 16
lex, 117, 149
lexDigits, 118
lexeme, 7,130
lexical structure, 6
lexLitChar, 119
lexp \({ }^{i}, 10,134\)
lhs, 36, 134
linear pattern, 12, 19, 36
linearity, 12, 19, 36
lines, 73, 110
list, 14,57
list comprehension, 16, 57
list type, 26
listArray, 115
literal, 7, 130
Literate comments, 137
log, 60, 63, 91
logarithm, 63
logBase, 60, 63, 91
longest lexeme rule, 8,9
lpat \({ }^{i}, 19,135\)
magnitude, 63
magnitude, 62, 105
Main (module), 42
main, 42
map, 107
match, 119
\(\max , 31,90,145\)
maxChar, 83
maximum, 112
maxInt, 58, 61, 84
method, see class method
min, 31, 90, 145
minChar, 83
minimum, 112
minInt, 58, 61, 84
mkPolar, 60, 62, 104
\(\bmod , 54,60,62,89,91\)
modid, 8, 44, 130, 132
module, 42
closure, 43
implementation, 44
interface, 47
module, 24, 44, 132
monomorphic type variable, viii, 13,22 , 39
monomorphism restriction, vii, ix, 40
\(n+k\) pattern, 20,36
namespaces, 3,8
ncomment, 7, 130
negate, \(13,60,62,90\)
negation, 11, 13
newline, 7,130
nonnull, 119
not, 56,83
notElem, 54, 106, 111
nub, 111
null, 106
nullBin, 57, 82
Num, 34, 58, 60, 90
instance for Complex, 103
instance for Double, 97
instance for Float, 97
instance for Integer, 96
instance for Int, 95
instance for Ratio, 101
superclass of Fractional, 91
superclass of Real, 90
number, 58
literal syntax, 8
numerator, 60, 61, 101
numeric type, 59
numericEnumFrom, 97
numericEnumFromThen, 97
octit, 9,130
odd, \(60,62,91\)
off-side rule, 3,131 , see also layout
op, 12, 54, 135
operator, 7,13
operator application, 13
ops, 54, 132
or, 111
Ord, 31, 58, 90
derived instance, 33,145
instance for Array, 116
instance for Char, 94
instance for Double, 97
instance for Float, 97
instance for Integer, 95
instance for Int, 95
instance for Ratio, 101
superclass of Enum, 93
superclass of Ix, 92
ord, 56, 83
original name, 42
in an interface, 49
OtherError, 70
otherwise, 56, 83
overloaded pattern, see pattern-matching
overloading, 1, 29
ambiguous, 34
defaults, 33
partition, 107
pat \({ }^{i}, 19,135\)
pat, 19, 135
pattern, 17, 18
©, see as-pattern
_, see wildcard pattern
constructed, see constructed pattern
floating, see floating literal pattern
integer, see integer literal pattern
irrefutable, see irrefutable pattern
linear, see linear pattern
\(n+k\), see \(n+k\) pattern
refutable, see refutable pattern
pattern binding, 36, 37
pattern-matching, 18
overloaded constant, 22
phase, 62,105
pi, 60, 91
polar, 60-62, 105
polymorphism, 2
precedence, 28, see also fixity
Prelude (module), 50, 51, 82, 89
PreludeArray (module), 82, 89, 115
PreludeBuiltin (module), 51, 82, 86, 89
PreludeComplex (module), 82, 89, 103
PreludeCore (module), 50, 51, 82, 89
PreludeIo (module), 82, 89, 124
PreludeList (module), 82, 106
PreludeRatio (module), 82, 89, 101
PreludeText (module), 82, 89, 117
presymbol, 8, 130
principal type, 27, 35
print, 80, 127
prints, 80,127
product, 111
products, 111
program, 7, 130
program structure, 1
properFraction, 61, 64, 92
qual, 16, 135
qualifier, 16
quot, \(60,62,89,91\)
quotRem, 60, 91
range, \(31,92,146,147\)
rangeSize, 147
Ratio (datatype), 59, 61
Rational (type synonym), 59, 61, 101
read, 117, 148
readBin, 31, 93, 146
ReadBinChan, 70, 75
readBinChan, 78, 79, 125
ReadBinFile, 70, 74
readBinFile, 78, 79, 125
ReadChan, 70, 75
readChan, \(78,79,125\)
readDec, 121
ReadError, 70
ReadFile, 70,74
readFile, \(78,79,125\)
readFloat, 122
readHex, 121
readInt, 121
readList, 31, 93, 147
readLitChar, 120
readoct, 121
readParen, 117
ReadS (type synonym), 93
reads, 117, 146, 148
readSigned, 121
readsPrec, 31, 93, 147, 149
Real, 58, 60, 90
instance for Double, 98
instance for Float, 97
instance for Integer, 96
instance for Int, 96
instance for Ratio, 101
superclass of Integral, 91
superclass of RealFrac, 92
RealFloat, 61, 64, 92
instance for Double, 99
instance for Float, 99
RealFrac, 61, 92
instance for Double, 99
instance for Float, 99
instance for Ratio, 102
superclass of RealFloat, 92
realPart, 62, 104
recip, 60, 91
recursive datatype, 29
refutable pattern, 19, 20
rem, 54, 60, 62, 89, 91
renaming, 42, 47
with respect to original name, 43
renaming, 46, 132
renamings, 46, 132
repeat, 109
Request (datatype), 69, 70, 124
reservedid, 7, 130
reservedop, 8, 130
Response (datatype), 69, 70, 124
reverse, 111
rexp \({ }^{i}, 10,134\)
round, \(61,64,92\)
\(r_{\text {rpat }}{ }^{i}, 19,135\)
scaleFloat, 61, 92
scanl, 108
scanl1, 108
scanr, 108
scanr1, 109
SearchError, 70
section, ix, 8,13 , see also operator application
semantics
formal, see formal semantics
input/output, see input/output semantics
SetEnv, 70, 77
setEnv, \(78,79,125\)
show, 117, 148
showBin, 31, 93, 146
showChar, 117
showFloat, 123
showInt, 121
showList, 31, 93,147
showLitChar, 120
showParen, 117
ShowS (type synonym), 93
shows, \(117,146,148\)
showSigned, 121
showsPrec, \(31,93,147,148\)
showString, 117
sign, 63
signature, see type signature
significand, 61, 64, 92
signum, 60, 63, 90
simple, 28, 29, 133
simple case expression, 22
simple pattern binding, 37
sin, 60, 91
sine, 63
sinh, 60,91
small, 7,130
snd, 85
space, 7,130
span, 73,110
special, 7, 130
splitAt, 109
sqrt, \(60,63,91\)
standard prelude, 50, see also Prelude
StatusChan, 70, 76
statusChan, 78, 79, 125
StatusFile, 70, 75
statusFile, \(78,79,125\)
stdecho, 70
stderr, 70
stdin, 70
stdout, 70
Str, 70
StrCont (type synonym), 77, 125
strDispatch, 78
String (type synonym), 56, 95
string, 56
literal syntax, 8
transparent, see transparent string
string, 9, 130
StrListCont (type synonym), 77,125
strListDispatch, 78
subtract, 84
SuccCont (type synonym), 77, 125
succDispatch, 78
Success, 70
sum, 111
sums, 111
superclass, \(29,30,33\)
symbol, 8, 130
synonym, see type synonym
syntax, 128
tab, 7, 130
tail, 106
take, 109
takeWhile, 110
tan, 60, 91
tangent, 63
tanh, 60, 91
Text, 31, 93
derived instance, 33,147
instance for Array, 116
instance for Bin, 94
instance for Char, 95
instance for Double, 100
instance for Float, 100
instance for Integer, 97
instance for Int, 97
instance for Ratio, 102
superclass of Num, 90
toInteger, 91
toLower, 83
topdecl (class), 29
topdecl (data), 28
topdecl (default), 34
topdecl (instance), 30
topdecl (type), 29
topdecl, 24, 133
topdecls, 24, 44, 133
toRational, \(60,64,90\)
toUpper, 83
transaction, 77
transparent character set, 71
transparent line, 71
transparent string, 71
transpose, 112
trigonometric function, 63
trivial type, \(15,26,57\)
True, 56
truncate, 61, 64, 92
tuple, 14, 57
tuple type, 26
tycls, 8, 26, 130
tyclses, 28, 133
tycon, 8, 130
type, \(2,25,27\)
ambiguous, see ambiguous type
constructed, see constructed type
function, see function type
list, see list type
monomorphic, see monomorphic type
numeric, see numeric type
principal, see principal type
trivial, see trivial type
tuple, see tuple type
type, 25, 133
type class, see class
type environment, 27
type expression, 25
type signature, \(27,32,35\)
for an expression, see expression typesignature
type synonym, ix, \(29,32,45,48,51,145\), see also datatype
recursive, 29
type system, 1
tyvar, 8, 26, 130
unit datatype, see trivial type
unit expression, 15
unlines, 73,110
until, 57,85
unwords, 73,111
unzip, 113
unzip3, 113
unzip4, 114
unzip5, 114
unzip6, 114
unzip7, 114
valdef, 36, 134
valdefs, 30, 134
value, 2
var, 12, 135
varid, \(7,8,130\)
varop, 12, 135
vars, 29, 35, 133
varsym, 8, 130
vertab, 7, 130
whitechar, 7, 130
whitespace, 7, 130
whitestuff, 7, 130
wildcard pattern (_), 19
words, 73,110
WriteBinFile, 70, 74
writeBinFile, 78, 79, 125

WriteError, 70
WriteFile, 70, 74
writeFile, 78, 79, 125
zip, 57, 112
zip3, 57, 112
zip4, 57, 112
zip5, 57, 112
zip6, 57, 112
zip7, 57, 112
zipWith, 113
zipWith3, 113
zipWith4, 113
zipWith5, 113
zipWith6, 113
zipWith7, 113```


[^0]:    ${ }^{1}$ Miranda is a trademark of Research Software Ltd.

[^1]:    ${ }^{2}$ A similar transformation is described in Peyton Jones' book [14].

[^2]:    ${ }^{3}$ It is important to retain the information about which instances are derived and which are not, because the importing module "knows" more about derived instances.
    ${ }^{4}$ The reverse also applies. For example, suppose that a new type $T$ is declared and made an instance of an imported class $C$. The instance declaration will be exported along with $T$, and so the closure rule (Section 5.1.3) will require that $C$ is also in scope in every importing scope.

