Practical Intro-1

Osama Mahmoud 14/11/2019

Exercise 1:

Data on heights, weights and gender were collected for 10 individuals in early-adulthood. The data were reported in the table below (heights measured in cm, weights in Kg and m refers to a male gender):

id	ht	wt	gender
1	155	80	m
2	152	85	m
3	164	72	f
4	175	69	\mathbf{m}
5	193	86	\mathbf{f}
6	203	110	\mathbf{f}
7	190	106	\mathbf{f}
8	183	96	m
9	155	90	f
10	169	89	m

- a) Create vectors for height, weight and gender and assigned them to the names: ht; wt; gender respectively.
- b) Using ht and wt vectors, creat a new variable for the BMI (Hint: BMI is calculated by dividing weight measured in Kg by the squared height measured in meters)
- c) Show the length of the ht vector.
- d) Show a frequency table for the gender variable (Hint: search the help for the table function by typing in ?table)
- e) Round the calculated BMI values to 2 decimel digits only.
- f) Create a new data.frame with the name DT that includes height, in meters, weight, in Kg, BMI, and gender.
- g) Add a logical variable to the DT, with a name of obese whose values are TRUE for subjects with weights over 95 Kg.
- h) Find out how many subjects with weights over 95 Kg.
- i) Extract the BMI for the 3rd and 5th individuals.