Practical Intro-1

Osama Mahmoud
14/11/2019

Exercise 1:

Data on heights, weights and gender were collected for 10 individuals in early-adulthood. The data were reported in the table below (heights measured in cm , weights in Kg and m refers to a male gender):

id	ht	wt	gender
1	155	80	m
2	152	85	m
3	164	72	f
4	175	69	m
5	193	86	f
6	203	110	f
7	190	106	f
8	183	96	m
9	155	90	f
10	169	89	m

a) Create vectors for height, weight and gender and assigned them to the names: ht; wt; gender respectively.
b) Using ht and wt vectors, creat a new variable for the BMI (Hint: BMI is calculated by dividing weight measured in Kg by the squared height measured in meters)
c) Show the length of the ht vector.
d) Show a frequency table for the gender variable (Hint: search the help for the table function by typing in ?table)
e) Round the calculated BMI values to 2 decimel digits only.
f) Create a new data.frame with the name DT that includes height, in meters, weight, in Kg, BMI, and gender.
g) Add a logical variable to the DT, with a name of obese whose values are TRUE for subjects with weights over 95 Kg .
h) Find out how many subjects with weights over 95 Kg .
i) Extract the BMI for the 3rd and 5th individuals.

