% ============================================================================ % Passive Learning % ============================================================================ @inproceedings{lei2016rationalizing, title={Rationalizing Neural Predictions}, author={Lei, Tao and Barzilay, Regina and Jaakkola, Tommi}, booktitle={Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing}, pages={107--117}, year={2016} } @inproceedings{ross2017right, title={Right for the right reasons: training differentiable models by constraining their explanations}, author={Ross, Andrew Slavin and Hughes, Michael C and Doshi-Velez, Finale}, booktitle={Proceedings of the 26th International Joint Conference on Artificial Intelligence}, pages={2662--2670}, year={2017} } @article{camburu2018snli, title={e-snli: Natural language inference with natural language explanations}, author={Camburu, Oana-Maria and Rockt{\"a}schel, Tim and Lukasiewicz, Thomas and Blunsom, Phil}, journal={Advances in Neural Information Processing Systems}, volume={31}, year={2018} } @inproceedings{wang2018learning, title={Learning credible models}, author={Wang, Jiaxuan and Oh, Jeeheh and Wang, Haozhu and Wiens, Jenna}, booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining}, pages={2417--2426}, year={2018} } @inproceedings{li2018tell, title={Tell me where to look: Guided attention inference network}, author={Li, Kunpeng and Wu, Ziyan and Peng, Kuan-Chuan and Ernst, Jan and Fu, Yun}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={9215--9223}, year={2018} } @inproceedings{shetty2019not, title={Not Using the Car to See the Sidewalk--Quantifying and Controlling the Effects of Context in Classification and Segmentation}, author={Shetty, Rakshith and Schiele, Bernt and Fritz, Mario}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={8218--8226}, year={2019} } @inproceedings{selvaraju2019taking, title={{Taking a HINT: Leveraging Explanations to Make Vision and Language Models More Grounded}}, author={Selvaraju, Ramprasaath R and Lee, Stefan and Shen, Yilin and Jin, Hongxia and Ghosh, Shalini and Heck, Larry and Batra, Dhruv and Parikh, Devi}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={2591--2600}, year={2019} } @inproceedings{du2019learning, title={Learning credible deep neural networks with rationale regularization}, author={Du, Mengnan and Liu, Ninghao and Yang, Fan and Hu, Xia}, booktitle={2019 IEEE International Conference on Data Mining (ICDM)}, pages={150--159}, year={2019}, organization={IEEE} } @inproceedings{bao2018deriving, title={Deriving Machine Attention from Human Rationales}, author={Bao, Yujia and Chang, Shiyu and Yu, Mo and Barzilay, Regina}, booktitle={Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing}, pages={1903--1913}, year={2018} } @inproceedings{hind2019ted, title={TED: Teaching AI to explain its decisions}, author={Hind, Michael and Wei, Dennis and Campbell, Murray and Codella, Noel CF and Dhurandhar, Amit and Mojsilovi{\'c}, Aleksandra and Natesan Ramamurthy, Karthikeyan and Varshney, Kush R}, booktitle={Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society}, pages={123--129}, year={2019} } @inproceedings{liu2019incorporating, title={Incorporating Priors with Feature Attribution on Text Classification}, author={Liu, Frederick and Avci, Besim}, booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics}, pages={6274--6283}, year={2019} } @inproceedings{ghaeini2019saliency, title={Saliency Learning: Teaching the Model Where to Pay Attention}, author={Ghaeini, Reza and Fern, Xiaoli and Shahbazi, Hamed and Tadepalli, Prasad}, booktitle={Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, pages={4016--4025}, year={2019} } @inproceedings{zhuang2019care, title={{CARE: Class Attention to Regions of Lesion for Classification on Imbalanced Data}}, author={Zhuang, Jiaxin and Cai, Jiabin and Wang, Ruixuan and Zhang, Jianguo and Zheng, Weishi}, booktitle={International Conference on Medical Imaging with Deep Learning}, pages={588--597}, year={2019}, organization={PMLR} } @inproceedings{simpson2019gradmask, title={GradMask: Reduce Overfitting by Regularizing Saliency}, author={Simpson, Becks and Dutil, Francis and Bengio, Yoshua and Cohen, Joseph Paul}, booktitle={International Conference on Medical Imaging with Deep Learning--Extended Abstract Track}, year={2019} } @inproceedings{strout2019human, title={Do Human Rationales Improve Machine Explanations?}, author={Strout, Julia and Zhang, Ye and Mooney, Raymond}, booktitle={Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP}, pages={56--62}, year={2019} } @inproceedings{pedapati2020learning, title={Learning Global Transparent Models Consistent with Local Contrastive Explanations}, author={Pedapati, Tejaswini and Balakrishnan, Avinash and Shanmugam, Karthikeyan and Dhurandhar, Amit}, booktitle={Advances in Neural Information Processing Systems}, volume={33}, year={2020} } @inproceedings{ramamurthy2020model, title={Model Agnostic Multilevel Explanations}, author={Natesan Ramamurthy, Karthikeyan and Vinzamuri, Bhanukiran and Zhang, Yunfeng and Dhurandhar, Amit}, booktitle={Advances in Neural Information Processing Systems}, volume={33}, year={2020} } @inproceedings{rieger2020interpretations, title={Interpretations are useful: penalizing explanations to align neural networks with prior knowledge}, author={Rieger, Laura and Singh, Chandan and Murdoch, William and Yu, Bin}, booktitle={International Conference on Machine Learning}, pages={8116--8126}, year={2020}, organization={PMLR} } @inproceedings{ebrahimi2020remembering, title={Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting}, author={Ebrahimi, Sayna and Petryk, Suzanne and Gokul, Akash and Gan, William and Gonzalez, Joseph E and Rohrbach, Marcus and others}, booktitle={International Conference on Learning Representations}, year={2020} } @inproceedings{jain2020learning, title={Learning to Faithfully Rationalize by Construction}, author={Jain, Sarthak and Wiegreffe, Sarah and Pinter, Yuval and Wallace, Byron C}, booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics}, pages={4459--4473}, year={2020} } @article{schneider2020reflective, title={Reflective-Net: Learning from Explanations}, author={Schneider, Johannes and Vlachos, Michalis}, journal={arXiv preprint arXiv:2011.13986}, year={2020} } @article{lage2020learning, title={Learning Interpretable Concept-Based Models with Human Feedback}, author={Lage, Isaac and Doshi-Velez, Finale}, journal={arXiv preprint arXiv:2012.02898}, year={2020} } @article{erion2021improving, title={Improving performance of deep learning models with axiomatic attribution priors and expected gradients}, author={Erion, Gabriel and Janizek, Joseph D and Sturmfels, Pascal and Lundberg, Scott M and Lee, Su-In}, journal={Nature Machine Intelligence}, pages={1--12}, year={2021}, publisher={Nature Publishing Group} } @article{setzu2021glocalx, title={GLocalX-From Local to Global Explanations of Black Box AI Models}, author={Setzu, Mattia and Guidotti, Riccardo and Monreale, Anna and Turini, Franco and Pedreschi, Dino and Giannotti, Fosca}, journal={Artificial Intelligence}, volume={294}, pages={103457}, year={2021}, publisher={Elsevier} } @inproceedings{bahadori2021debiasing, title={Debiasing Concept-based Explanations with Causal Analysis}, author={Bahadori, Mohammad Taha and Heckerman, David}, booktitle={International Conference on Learning Representations}, year={2021} } @inproceedings{raghu2021teaching, title={Teaching with Commentaries}, author={Raghu, Aniruddh and Raghu, Maithra and Kornblith, Simon and Duvenaud, David and Hinton, Geoffrey}, booktitle={International Conference on Learning Representations}, year={2021} } @inproceedings{viviano2021saliency, title={Saliency is a possible red herring when diagnosing poor generalization}, author={Viviano, Joseph D and Simpson, Becks and Dutil, Francis and Bengio, Yoshua and Cohen, Joseph Paul}, booktitle={International Conference on Learning Representations}, year={2021} } @inproceedings{chang2021towards, title={Towards Robust Classification Model by Counterfactual and Invariant Data Generation}, author={Chang, Chun-Hao and Adam, George Alexandru and Goldenberg, Anna}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={15212--15221}, year={2021} } @inproceedings{nanfack2021global, title={Global explanations with decision rules: a co-learning approach}, author={Nanfack, G{\'e}raldin and Temple, Paul and Fr{\'e}nay, Beno{\^\i}t}, booktitle={Uncertainty in Artificial Intelligence}, pages={589--599}, year={2021}, organization={PMLR} } @inproceedings{zhang2021explain, title={Explain and Predict, and then Predict again}, author={Zhang, Zijian and Rudra, Koustav and Anand, Avishek}, booktitle={Proceedings of the 14th ACM International Conference on Web Search and Data Mining}, pages={418--426}, year={2021} } @article{lertvittayakumjorn2021explanation, title={Explanation-Based Human Debugging of NLP Models: A Survey}, author={Lertvittayakumjorn, Piyawat and Toni, Francesca}, journal={arXiv preprint arXiv:2104.15135}, year={2021} } @article{hase2021can, title={When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data}, author={Hase, Peter and Bansal, Mohit}, journal={arXiv preprint arXiv:2102.02201}, year={2020} } @article{barnett2021case, title={A case-based interpretable deep learning model for classification of mass lesions in digital mammography}, author={Barnett, Alina Jade and Schwartz, Fides Regina and Tao, Chaofan and Chen, Chaofan and Ren, Yinhao and Lo, Joseph Y and Rudin, Cynthia}, journal={Nature Machine Intelligence}, volume={3}, number={12}, pages={1061--1070}, year={2021}, publisher={Nature Publishing Group} } @article{chrysostomou2021enjoy, title={Enjoy the Salience: Towards Better Transformer-based Faithful Explanations with Word Salience}, author={Chrysostomou, George and Aletras, Nikolaos}, journal={arXiv preprint arXiv:2108.13759}, year={2021} } @article{han2021influence, title={Influence Tuning: Demoting Spurious Correlations via Instance Attribution and Instance-Driven Updates}, author={Han, Xiaochuang and Tsvetkov, Yulia}, journal={arXiv preprint arXiv:2110.03212}, year={2021} } @article{saha2021saliency, title={Saliency Guided Experience Packing for Replay in Continual Learning}, author={Saha, Gobinda and Roy, Kaushik}, journal={arXiv preprint arXiv:2109.04954}, year={2021} } @article{carton2021learn, title={What to Learn, and How: Toward Effective Learning from Rationales}, author={Carton, Samuel and Kanoria, Surya and Tan, Chenhao}, journal={arXiv preprint arXiv:2112.00071}, year={2021} } @article{bento2021improving, title={Improving deep learning performance by using Explainable Artificial Intelligence (XAI) approaches}, author={Bento, Vitor and Kohler, Manoela and Diaz, Pedro and Mendoza, Leonardo and Pacheco, Marco Aurelio}, journal={Discover Artificial Intelligence}, volume={1}, number={1}, pages={9}, year={2021}, publisher={Springer} } @inproceedings{stacey2022supervising, title={Supervising Model Attention with Human Explanations for Robust Natural Language Inference}, author={Stacey, Joe and Belinkov, Yonatan and Rei, Marek}, booktitle={Proceedings of Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)}, year={2022} } @article{anders2022finding, title={Finding and removing clever hans: Using explanation methods to debug and improve deep models}, author={Anders, Christopher J and Weber, Leander and Neumann, David and Samek, Wojciech and M{\"u}ller, Klaus-Robert and Lapuschkin, Sebastian}, journal={Information Fusion}, volume={77}, pages={261--295}, year={2022}, publisher={Elsevier} } @inproceedings{wang2022toward, title={Toward learning human-aligned cross-domain robust models by countering misaligned features}, author={Wang, Haohan and Huang, Zeyi and Zhang, Hanlin and Lee, Yong Jae and Xing, Eric P}, booktitle={Uncertainty in Artificial Intelligence}, pages={2075--2084}, year={2022}, organization={PMLR} } @article{hartmann2022survey, title={A survey on improving NLP models with human explanations}, author={Hartmann, Mareike and Sonntag, Daniel}, journal={arXiv preprint arXiv:2204.08892}, year={2022} } @article{ying2022visfis, title={VisFIS: Visual Feature Importance Supervision with Right-for-the-Right-Reason Objectives}, author={Ying, Zhuofan and Hase, Peter and Bansal, Mohit}, journal={arXiv preprint arXiv:2206.11212}, year={2022} } @article{hagos2022identifying, title={Identifying Spurious Correlations and Correcting them with an Explanation-based Learning}, author={Hagos, Misgina Tsighe and Curran, Kathleen M and Mac Namee, Brian}, journal={arXiv preprint arXiv:2211.08285}, year={2022} } @inproceedings{rao2023studying, title={Studying How to Efficiently and Effectively Guide Models with Explanations}, author={Rao, Sukrut and B{\"o}hle, Moritz and Parchami-Araghi, Amin and Schiele, Bernt}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, pages={1922--1933}, year={2023} } @article{pukdee2023learning, title={Learning with Explanation Constraints}, author={Pukdee, Rattana and Sam, Dylan and Kolter, J Zico and Balcan, Maria-Florina and Ravikumar, Pradeep}, journal={arXiv preprint arXiv:2303.14496}, year={2023} } @article{eastwood2023spuriosity, title={Spuriosity Didn't Kill the Classifier: Using Invariant Predictions to Harness Spurious Features}, author={Eastwood, Cian and Singh, Shashank and Nicolicioiu, Andrei Liviu and Vlastelica, Marin and von K{\"u}gelgen, Julius and Sch{\"o}lkopf, Bernhard}, journal={arXiv preprint arXiv:2307.09933}, year={2023} } @inproceedings{neuhaus2023spurious, title={Spurious features everywhere-large-scale detection of harmful spurious features in imagenet}, author={Neuhaus, Yannic and Augustin, Maximilian and Boreiko, Valentyn and Hein, Matthias}, booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision}, year={2023} } @inproceedings{zhang2024targeted, title={Targeted Activation Penalties Help CNNs Ignore Spurious Signals}, author={Zhang, Dekai and Williams, Matt and Toni, Francesca}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, year={2024} } % ============================================================================ % Interactive Learning % ============================================================================ @inproceedings{kulesza2015principles, title={Principles of explanatory debugging to personalize interactive machine learning}, author={Kulesza, Todd and Burnett, Margaret and Wong, Weng-Keen and Stumpf, Simone}, booktitle={Proceedings of the 20th international conference on intelligent user interfaces}, pages={126--137}, year={2015} } @inproceedings{teso2019explanatory, title={Explanatory interactive machine learning}, author={Teso, Stefano and Kersting, Kristian}, booktitle={Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society}, pages={239--245}, year={2019} } @inproceedings{teso2019toward, title={Toward Faithful Explanatory Active Learning with Self-explainable Neural Nets}, author={Teso, Stefano}, booktitle={Proceedings of the Workshop on Interactive Adaptive Learning (IAL 2019)}, pages={4--16}, year={2019} } @article{schramowski2020making, title={Making deep neural networks right for the right scientific reasons by interacting with their explanations}, author={Schramowski, Patrick and Stammer, Wolfgang and Teso, Stefano and Brugger, Anna and Herbert, Franziska and Shao, Xiaoting and Luigs, Hans-Georg and Mahlein, Anne-Katrin and Kersting, Kristian}, journal={Nature Machine Intelligence}, volume={2}, number={8}, pages={476--486}, year={2020}, publisher={Nature Publishing Group} } @inproceedings{heo2020cost, title={Cost-effective Interactive Attention Learning with Neural Attention Processes}, author={Heo, Jay and Park, Junhyeon and Jeong, Hyewon and Kim, Kwang Joon and Lee, Juho and Yang, Eunho and Hwang, Sung Ju}, booktitle={International Conference on Machine Learning}, pages={4228--4238}, year={2020}, organization={PMLR} } @inproceedings{honeycutt2020soliciting, title={Soliciting human-in-the-loop user feedback for interactive machine learning reduces user trust and impressions of model accuracy}, author={Honeycutt, Donald and Nourani, Mahsan and Ragan, Eric}, booktitle={Proceedings of the AAAI Conference on Human Computation and Crowdsourcing}, volume={8}, number={1}, pages={63--72}, year={2020} } @article{mitsuhara2019embedding, title={Embedding Human Knowledge into Deep Neural Network via Attention Map}, author={Mitsuhara, Masahiro and Fukui, Hiroshi and Sakashita, Yusuke and Ogata, Takanori and Hirakawa, Tsubasa and Yamashita, Takayoshi and Fujiyoshi, Hironobu}, journal={arXiv preprint arXiv:1905.03540}, year={2019} } @article{sokol2020one, title={One explanation does not fit all}, author={Sokol, Kacper and Flach, Peter}, journal={KI-K{\"u}nstliche Intelligenz}, pages={1--16}, year={2020}, publisher={Springer} } @inproceedings{lertvittayakumjorn2020find, title={FIND: human-in-the-loop debugging deep text classifiers}, author={Lertvittayakumjorn, Piyawat and Specia, Lucia and Toni, Francesca}, booktitle={Conference on Empirical Methods in Natural Language Processing}, pages={332--348}, year={2020} } @inproceedings{ciravegna2020human, title={Human-driven FOL explanations of deep learning}, author={Ciravegna, Gabriele and Giannini, Francesco and Gori, Marco and Maggini, Marco and Melacci, Stefano}, booktitle={Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence}, pages={2234--2240}, year={2020}, organization={International Joint Conferences on Artificial Intelligence Organization} } @inproceedings{liang2020alice, title={{ALICE: Active Learning with Contrastive Natural Language Explanations}}, author={Liang, Weixin and Zou, James and Yu, Zhou}, booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)}, pages={4380--4391}, year={2020} } @article{popordanoska2020machine, title={{Machine Guides, Human Supervises: Interactive Learning with Global Explanations}}, author={Popordanoska, Teodora and Kumar, Mohit and Teso, Stefano}, journal={arXiv preprint arXiv:2009.09723}, year={2020} } @article{wang2021teaching, title={Teaching an Active Learner with Contrastive Examples}, author={Wang, Chaoqi and Singla, Adish and Chen, Yuxin}, journal={Advances in Neural Information Processing Systems}, volume={34}, pages={17968--17980}, year={2021} } @inproceedings{stammer2021right, title={{Right for the Right Concept: Revising Neuro-Symbolic Concepts by Interacting with their Explanations}}, author={Stammer, Wolfgang and Schramowski, Patrick and Kersting, Kristian}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={3619--3629}, year={2021} } @inproceedings{shao2021right, title={{Right for Better Reasons: Training Differentiable Models by Constraining their Influence Function}}, author={Shao, Xiaoting and Skryagin, Arseny and Schramowski, P and Stammer, W and Kersting, Kristian}, booktitle={Proceedings of Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI)}, year={2021} } @inproceedings{daly2021user, title={{User Driven Model Adjustment via Boolean Rule Explanations}}, author={Daly, Elizabeth M and Mattetti, Massimiliano and Alkan, {\"O}znur and Nair, Rahul}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={35}, number={7}, pages={5896--5904}, year={2021} } @article{ghai2021explainable, title={{Explainable Active Learning (XAL): Toward AI Explanations as Interfaces for Machine Teachers}}, author={Ghai, Bhavya and Liao, Q Vera and Zhang, Yunfeng and Bellamy, Rachel and Mueller, Klaus}, journal={Proceedings of the ACM on Human-Computer Interaction}, volume={4}, number={CSCW3}, pages={1--28}, year={2021}, publisher={ACM New York, NY, USA} } @article{behrens2021bandits, title={Bandits for Learning to Explain from Explanations}, author={Behrens, Freya and Teso, Stefano and Mottin, Davide}, journal={arXiv preprint arXiv:2102.03815}, year={2021} } @article{zylberajch2021hildif, title={{HILDIF: Interactive Debugging of NLI Models Using Influence Functions}}, author={Zylberajch, Hugo and Lertvittayakumjorn, Piyawat and Toni, Francesca}, journal={Workshop on Interactive Learning for Natural Language Processing}, pages={1}, year={2021} } @article{yao2021refining, title={{Refining Neural Networks with Compositional Explanations}}, author={Yao, Huihan and Chen, Ying and Ye, Qinyuan and Jin, Xisen and Ren, Xiang}, journal={arXiv preprint arXiv:2103.10415}, year={2021} } @inproceedings{teso2021interactive, title={{Interactive Label Cleaning with Example-based Explanations}}, author={Teso, Stefano and Bontempelli, Andrea and Giunchiglia, Fausto and Passerini, Andrea}, booktitle={Proceedings of the 35th International Conference on Neural Information Processing Systems}, year={2021} } @inproceedings{kambhampati2021symbols, title={{Symbols as a Lingua Franca for Bridging Human-AI Chasm for Explainable and Advisable AI Systems}}, author={Kambhampati, Subbarao and Sreedharan, Sarath and Verma, Mudit and Zha, Yantian and Guan, Lin}, booktitle={Proceedings of Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI)}, year={2022} } @inproceedings{bontempelli2021toward, title={{Toward a Unified Framework for Debugging Gray-box Models}}, author={Bontempelli, Andrea and Giunchiglia, Fausto and Passerini, Andrea and Teso, Stefano}, booktitle={The AAAI-22 Workshop on Interactive Machine Learning}, year={2021} } @inproceedings{margatina2021active, title={Active Learning by Acquiring Contrastive Examples}, author={Margatina, Katerina and Vernikos, Giorgos and Barrault, Lo{\"\i}c and Aletras, Nikolaos}, booktitle={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing}, pages={650--663}, year={2021} } @article{plumb2021finding, title={{Finding and Fixing Spurious Patterns with Explanations}}, author={Plumb, Gregory and Ribeiro, Marco Tulio and Talwalkar, Ameet}, journal={arXiv preprint arXiv:2106.02112}, year={2021} } @article{schramowski2021interactively, title={{Interactively Generating Explanations for Transformer Language Models}}, author={Schramowski, Patrick and Friedrich, Felix and Tauchmann, Christopher and Kersting, Kristian}, journal={arXiv preprint arXiv:2110.02058}, year={2021} } @article{hartmanninteraction, title={{Interaction with Explanations in the XAINES Project}}, author={Hartmann, Mareike and Kruijff-Korbayov{\'a}, Ivana and Sonntag, Daniel}, year={2021} } @inproceedings{lu2022rationale, title={A Rationale-Centric Framework for Human-in-the-loop Machine Learning}, author={Lu, Jinghui and Yang, Linyi and Namee, Brian and Zhang, Yue}, booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages={6986--6996}, year={2022} } @article{friedrich2022typology, title={A Typology to Explore and Guide Explanatory Interactive Machine Learning}, author={Friedrich, Felix and Stammer, Wolfgang and Schramowski, Patrick and Kersting, Kristian}, journal={arXiv preprint arXiv:2203.03668}, year={2022} } @inproceedings{slany2022caipi, title={CAIPI in Practice: Towards Explainable Interactive Medical Image Classification}, author={Slany, Emanuel and Ott, Yannik and Scheele, Stephan and Paulus, Jan and Schmid, Ute}, booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations}, pages={389--400}, year={2022}, organization={Springer} } @article{kiefer2022semantic, title={Semantic Interactive Learning for Text Classification: A Constructive Approach for Contextual Interactions}, author={Kiefer, Sebastian and Hoffmann, Mareike and Schmid, Ute}, journal={Machine Learning and Knowledge Extraction}, volume={4}, number={4}, pages={994--1010}, year={2022}, publisher={MDPI} } @inproceedings{hagos2022impact, title={Impact of Feedback Type on Explanatory Interactive Learning}, author={Hagos, Misgina Tsighe and Curran, Kathleen M and Mac Namee, Brian}, booktitle={International Symposium on Methodologies for Intelligent Systems}, pages={127--137}, year={2022}, organization={Springer} } @article{teso2023leveraging, title={Leveraging Explanations in Interactive Machine Learning: An Overview}, author={Teso, Stefano and Alkan, {\"O}znur and Stammer, Wolfang and Daly, Elizabeth}, journal={Frontiers in Artificial Intelligence}, year={2023} } @inproceedings{bontempelli2023concept, title={Concept-level debugging of part-prototype networks}, author={Bontempelli, Andrea and Teso, Stefano and Giunchiglia, Fausto and Passerini, Andrea}, booktitle={International Conference on Learning Representations}, year={2023} } @article{steinmann2023learning, title={Learning to Intervene on Concept Bottlenecks}, author={Steinmann, David and Stammer, Wolfgang and Friedrich, Felix and Kersting, Kristian}, journal={arXiv preprint arXiv:2308.13453}, year={2023} } @article{lalletti2024spurious, title={Spurious Correlations in Concept Drift: Can Explanatory Interaction Help?}, author={Lalletti, Cristiana and Teso, Stefano}, journal={arXiv preprint arXiv:2407.16515}, year={2024} } % ============================================================================ % Reinforcement Learning % ============================================================================ @inproceedings{guan2020explanation, title={Explanation augmented feedback in human-in-the-loop reinforcement learning}, author={Guan, Lin and Verma, Mudit and Kambhampati, Subbarao}, booktitle={Human And Machine in-the-Loop Evaluation and Learning Strategies}, year={2020} } @inproceedings{tulli2020learning, title={Learning from explanations and demonstrations: A pilot study}, author={Tulli, Silvia and Wallk{\"o}tter, Sebastian and Paiva, Ana and Melo, Francisco S and Chetouani, Mohamed}, booktitle={2nd Workshop on Interactive Natural Language Technology for Explainable Artificial Intelligence}, pages={61--66}, year={2020} } @inproceedings{guan2021widening, title={Widening the Pipeline in Human-Guided Reinforcement Learning with Explanation and Context-Aware Data Augmentation}, author={Guan, Lin and Verma, Mudit and Guo, Sihang and Zhang, Ruohan and Kambhampati, Suabbarao}, booktitle={Proceedings of the 35th International Conference on Neural Information Processing Systems}, year={2021} } % ============================================================================ % Model Distillation % ============================================================================ @inproceedings{milli2019model, title={Model reconstruction from model explanations}, author={Milli, Smitha and Schmidt, Ludwig and Dragan, Anca D and Hardt, Moritz}, booktitle={Proceedings of the Conference on Fairness, Accountability, and Transparency}, pages={1--9}, year={2019} } @article{pruthi2020evaluating, title={Evaluating Explanations: How much do explanations from the teacher aid students?}, author={Pruthi, Danish and Dhingra, Bhuwan and Soares, Livio Baldini and Collins, Michael and Lipton, Zachary C and Neubig, Graham and Cohen, William W}, journal={arXiv preprint arXiv:2012.00893}, year={2020} } % ============================================================================ % Regularization without Supervision % ============================================================================ @inproceedings{ross2018improving, title={Improving the adversarial robustness and interpretability of deep neural networks by regularizing their input gradients}, author={Ross, Andrew and Doshi-Velez, Finale}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={32}, number={1}, year={2018} } @inproceedings{alvarez2018towards, title={Towards robust interpretability with self-explaining neural networks}, author={Alvarez-Melis, David and Jaakkola, Tommi S}, booktitle={Proceedings of the 32nd International Conference on Neural Information Processing Systems}, pages={7786--7795}, year={2018} } @inproceedings{wu2018beyond, title={Beyond sparsity: Tree regularization of deep models for interpretability}, author={Wu, Mike and Hughes, Michael and Parbhoo, Sonali and Zazzi, Maurizio and Roth, Volker and Doshi-Velez, Finale}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={32}, number={1}, year={2018} } @inproceedings{wu2020regional, title={Regional tree regularization for interpretability in deep neural networks}, author={Wu, Mike and Parbhoo, Sonali and Hughes, Michael and Kindle, Ryan and Celi, Leo and Zazzi, Maurizio and Roth, Volker and Doshi-Velez, Finale}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={34}, number={04}, pages={6413--6421}, year={2020} } @inproceedings{plumb2020regularizing, title={Regularizing black-box models for improved interpretability}, author={Plumb, Gregory and Al-Shedivat, Maruan and Cabrera, {\'A}ngel Alexander and Perer, Adam and Xing, Eric and Talwalkar, Ameet}, booktitle={Advances in Neural Information Processing Systems}, volume={33}, year={2020} } @inproceedings{singh2020don, title={Don't Judge an Object by Its Context: Learning to Overcome Contextual Bias}, author={Singh, Krishna Kumar and Mahajan, Dhruv and Grauman, Kristen and Lee, Yong Jae and Feiszli, Matt and Ghadiyaram, Deepti}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={11070--11078}, year={2020} } @article{halliwell2020trustworthy, title={Trustworthy convolutional neural networks: A gradient penalized-based approach}, author={Halliwell, Nicholas and Lecue, Freddy}, journal={arXiv preprint arXiv:2009.14260}, year={2020} } @inproceedings{pillai2021explainable, title={Explainable Models with Consistent Interpretations}, author={Pillai, Vipin and Pirsiavash, Hamed}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, year={2021}, } @inproceedings{han2021explanation, title={Explanation Consistency Training: Facilitating Consistency-Based Semi-Supervised Learning with Interpretability}, author={Han, Tao and Tu, Wei-Wei and Li, Yu-Feng}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, year={2021}, } @article{ismail2021improving, title={Improving Deep Learning Interpretability by Saliency Guided Training}, author={Ismail, Aya Abdelsalam and Corrada Bravo, Hector and Feizi, Soheil}, journal={Advances in Neural Information Processing Systems}, volume={34}, year={2021} } @inproceedings{zeng2021generating, title={Generating Deep Networks Explanations with Robust Attribution Alignment}, author={Zeng, Guohang and Kowsar, Yousef and Erfani, Sarah and Bailey, James}, booktitle={Asian Conference on Machine Learning}, pages={753--768}, year={2021}, organization={PMLR} } @article{stammer2023learning, title={Learning by Self-Explaining}, author={Stammer, Wolfgang and Friedrich, Felix and Steinmann, David and Shindo, Hikaru and Kersting, Kristian}, journal={arXiv preprint arXiv:2309.08395}, year={2023}, } % ============================================================================ % Machine Teaching % ============================================================================ @inproceedings{su2017interpretable, title={Interpretable Machine Teaching via Feature Feedback}, author={Su, Shihan and Chen, Yuxin and Mac Aodha, Oisin and Perona, Pietro and Yue, Yisong}, booktitle={NIPS'17 Workshop on Teaching Machines, Robots, and Humans}, year={2017} } @inproceedings{mac2018teaching, title={Teaching categories to human learners with visual explanations}, author={Mac Aodha, Oisin and Su, Shihan and Chen, Yuxin and Perona, Pietro and Yue, Yisong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, pages={3820--3828}, year={2018} } % ============================================================================ % Applications % ============================================================================ @article{sefcik2021improving, title={Improving a neural network model by explanation-guided training for glioma classification based on MRI data}, author={Sefcik, Frantisek and Benesova, Wanda}, journal={arXiv preprint arXiv:2107.02008}, year={2021} } % ============================================================================ % Related Works % ============================================================================ % Explanation-based Learning @article{mitchell1986explanation, title={Explanation-based generalization: A unifying view}, author={Mitchell, Tom M and Keller, Richard M and Kedar-Cabelli, Smadar T}, journal={Machine learning}, volume={1}, number={1}, pages={47--80}, year={1986}, publisher={Springer} } @article{dejong1986explanation, title={Explanation-based learning: An alternative view}, author={DeJong, Gerald and Mooney, Raymond}, journal={Machine learning}, volume={1}, number={2}, pages={145--176}, year={1986}, publisher={Springer} } @article{ellman1989explanation, title={Explanation-based learning: A survey of programs and perspectives}, author={Ellman, Thomas}, journal={ACM Computing Surveys (CSUR)}, volume={21}, number={2}, pages={163--221}, year={1989}, publisher={ACM New York, NY, USA} } @inproceedings{kimmig2007probabilistic, title={Probabilistic explanation based learning}, author={Kimmig, Angelika and De Raedt, Luc and Toivonen, Hannu}, booktitle={European Conference on Machine Learning}, pages={176--187}, year={2007}, organization={Springer} } % Injecting invariances / feature constraints into models @inproceedings{simard1991tangent, title={Tangent prop-a formalism for specifying selected invariances in an adaptive network}, author={Simard, Patrice and Victorri, Bernard and LeCun, Yann and Denker, John S}, booktitle={NIPS}, volume={91}, pages={895--903}, year={1991} } @article{decoste2002training, title={Training invariant support vector machines}, author={DeCoste, Dennis and Sch{\"o}lkopf, Bernhard}, journal={Machine learning}, volume={46}, number={1}, pages={161--190}, year={2002}, publisher={Springer} } @inproceedings{small2011constrained, title={The constrained weight space svm: learning with ranked features}, author={Small, Kevin and Wallace, Byron C and Brodley, Carla E and Trikalinos, Thomas A}, booktitle={Proceedings of the 28th International Conference on International Conference on Machine Learning}, pages={865--872}, year={2011} } % Dual label-feature feedback @article{raghavan2006active, title={Active learning with feedback on features and instances}, author={Raghavan, Hema and Madani, Omid and Jones, Rosie}, journal={The Journal of Machine Learning Research}, volume={7}, pages={1655--1686}, year={2006}, publisher={JMLR. org} } @inproceedings{raghavan2007interactive, title={An interactive algorithm for asking and incorporating feature feedback into support vector machines}, author={Raghavan, Hema and Allan, James}, booktitle={Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval}, pages={79--86}, year={2007} } @inproceedings{druck2008learning, title={Learning from labeled features using generalized expectation criteria}, author={Druck, Gregory and Mann, Gideon and McCallum, Andrew}, booktitle={Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval}, pages={595--602}, year={2008} } @inproceedings{druck2009active, title={Active learning by labeling features}, author={Druck, Gregory and Settles, Burr and McCallum, Andrew}, booktitle={Proceedings of the 2009 conference on Empirical methods in natural language processing}, pages={81--90}, year={2009} } @inproceedings{attenberg2010unified, title={A unified approach to active dual supervision for labeling features and examples}, author={Attenberg, Josh and Melville, Prem and Provost, Foster}, booktitle={Joint European Conference on Machine Learning and Knowledge Discovery in Databases}, pages={40--55}, year={2010}, organization={Springer} } @inproceedings{settles2011closing, title={Closing the loop: Fast, interactive semi-supervised annotation with queries on features and instances}, author={Settles, Burr}, booktitle={Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing}, pages={1467--1478}, year={2011} } @inproceedings{dasgupta2018learning, title={Learning from discriminative feature feedback}, author={Dasgupta, Sanjoy and Dey, Akansha and Roberts, Nicholas and Sabato, Sivan}, booktitle={Proceedings of the 32nd International Conference on Neural Information Processing Systems}, pages={3959--3967}, year={2018} } @inproceedings{dasgupta2020robust, title={Robust Learning from Discriminative Feature Feedback}, author={Dasgupta, Sanjoy and Sabato, Sivan}, booktitle={International Conference on Artificial Intelligence and Statistics}, pages={973--982}, year={2020}, organization={PMLR} } @article{katakkar2021practical, title={Practical Benefits of Feature Feedback Under Distribution Shift}, author={Katakkar, Anurag and Wang, Weiqin and Yoo, Clay H and Lipton, Zachary C and Kaushik, Divyansh}, journal={arXiv preprint arXiv:2110.07566}, year={2021} } % Annotator Rationales @inproceedings{zaidan2007using, title={Using “annotator rationales” to improve machine learning for text categorization}, author={Zaidan, Omar and Eisner, Jason and Piatko, Christine}, booktitle={Human language technologies 2007: The conference of the North American chapter of the association for computational linguistics; proceedings of the main conference}, pages={260--267}, year={2007} } @inproceedings{zaidan2008modeling, title={Modeling annotators: A generative approach to learning from annotator rationales}, author={Zaidan, Omar and Eisner, Jason}, booktitle={Proceedings of the 2008 conference on Empirical methods in natural language processing}, pages={31--40}, year={2008} } @inproceedings{sharma2015active, title={Active learning with rationales for text classification}, author={Sharma, Manali and Zhuang, Di and Bilgic, Mustafa}, booktitle={Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies}, pages={441--451}, year={2015} } % Counterfactual augmentation @inproceedings{kaushik2019learning, title={{Learning The Difference That Makes A Difference With Counterfactually-Augmented Data}}, author={Kaushik, Divyansh and Hovy, Eduard and Lipton, Zachary}, booktitle={International Conference on Learning Representations}, year={2019} } @inproceedings{kaushik2020explaining, title={{Explaining the Efficacy of Counterfactually Augmented Data}}, author={Kaushik, Divyansh and Setlur, Amrith and Hovy, Eduard H and Lipton, Zachary Chase}, booktitle={International Conference on Learning Representations}, year={2021} } @article{joshi2021investigation, title={An investigation of the (in)effectiveness of counterfactually augmented data}, author={Joshi, Nitish and He, He}, journal={arXiv preprint arXiv:2107.00753}, year={2021} } % Critiquing in recommenders @article{chen2012critiquing, title={Critiquing-based recommenders: survey and emerging trends}, author={Chen, Li and Pu, Pearl}, journal={User Modeling and User-Adapted Interaction}, volume={22}, number={1}, pages={125--150}, year={2012}, publisher={Springer} } @inproceedings{teso2017coactive, title={Coactive critiquing: Elicitation of preferences and features}, author={Teso, Stefano and Dragone, Paolo and Passerini, Andrea}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={31}, number={1}, year={2017} } % Gray-box models @inproceedings{koh2020concept, title={Concept bottleneck models}, author={Koh, Pang Wei and Nguyen, Thao and Tang, Yew Siang and Mussmann, Stephen and Pierson, Emma and Kim, Been and Liang, Percy}, booktitle={International Conference on Machine Learning}, pages={5338--5348}, year={2020}, organization={PMLR} } % ============================================================================ % Resources % ============================================================================ @article{andrews1995survey, title={Survey and critique of techniques for extracting rules from trained artificial neural networks}, author={Andrews, Robert and Diederich, Joachim and Tickle, Alan B}, journal={Knowledge-based systems}, volume={8}, number={6}, pages={373--389}, year={1995}, publisher={Elsevier} } @inproceedings{stumpf2007toward, title={Toward harnessing user feedback for machine learning}, author={Stumpf, Simone and Rajaram, Vidya and Li, Lida and Burnett, Margaret and Dietterich, Thomas and Sullivan, Erin and Drummond, Russell and Herlocker, Jonathan}, booktitle={Proceedings of the 12th international conference on Intelligent user interfaces}, pages={82--91}, year={2007} } @article{lipton2018mythos, title={The Mythos of Model Interpretability: In machine learning, the concept of interpretability is both important and slippery}, author={Lipton, Zachary C}, journal={Queue}, volume={16}, number={3}, pages={31--57}, year={2018}, publisher={ACM New York, NY, USA} } @article{guidotti2018survey, title={A survey of methods for explaining black box models}, author={Guidotti, Riccardo and Monreale, Anna and Ruggieri, Salvatore and Turini, Franco and Giannotti, Fosca and Pedreschi, Dino}, journal={ACM computing surveys (CSUR)}, volume={51}, number={5}, pages={1--42}, year={2018}, publisher={ACM New York, NY, USA} } @inproceedings{adebayo2018sanity, title={Sanity checks for saliency maps}, author={Adebayo, Julius and Gilmer, Justin and Muelly, Michael and Goodfellow, Ian and Hardt, Moritz and Kim, Been}, booktitle={Proceedings of the 32nd International Conference on Neural Information Processing Systems}, pages={9525--9536}, year={2018} } @inproceedings{beery2018recognition, title={Recognition in terra incognita}, author={Beery, Sara and Van Horn, Grant and Perona, Pietro}, booktitle={Proceedings of the European conference on computer vision (ECCV)}, pages={456--473}, year={2018} } @article{miller2019explanation, title={Explanation in artificial intelligence: Insights from the social sciences}, author={Miller, Tim}, journal={Artificial intelligence}, volume={267}, pages={1--38}, year={2019}, publisher={Elsevier} } @article{lapuschkin2019unmasking, title={Unmasking Clever Hans predictors and assessing what machines really learn}, author={Lapuschkin, Sebastian and W{\"a}ldchen, Stephan and Binder, Alexander and Montavon, Gr{\'e}goire and Samek, Wojciech and M{\"u}ller, Klaus-Robert}, journal={Nature communications}, volume={10}, number={1}, pages={1--8}, year={2019}, publisher={Nature Publishing Group} } @inproceedings{ghorbani2019interpretation, title={Interpretation of neural networks is fragile}, author={Ghorbani, Amirata and Abid, Abubakar and Zou, James}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={33}, number={01}, pages={3681--3688}, year={2019} } @article{hooker2019benchmark, title={A Benchmark for Interpretability Methods in Deep Neural Networks}, author={Hooker, Sara and Erhan, Dumitru and Kindermans, Pieter-Jan and Kim, Been}, journal={Advances in Neural Information Processing Systems}, volume={32}, pages={9737--9748}, year={2019} } @inproceedings{serrano2019attention, title={Is Attention Interpretable?}, author={Serrano, Sofia and Smith, Noah A}, booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics}, pages={2931--2951}, year={2019} } @inproceedings{jain2019attention, title={Attention is not Explanation}, author={Jain, Sarthak and Wallace, Byron C}, booktitle={Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)}, pages={3543--3556}, year={2019} } @inproceedings{wiegreffe2019attention, title={Attention is not not Explanation}, author={Wiegreffe, Sarah and Pinter, Yuval}, booktitle={Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)}, pages={11--20}, year={2019} } @incollection{kindermans2019reliability, title={The (un) reliability of saliency methods}, author={Kindermans, Pieter-Jan and Hooker, Sara and Adebayo, Julius and Alber, Maximilian and Sch{\"u}tt, Kristof T and D{\"a}hne, Sven and Erhan, Dumitru and Kim, Been}, booktitle={Explainable AI: Interpreting, Explaining and Visualizing Deep Learning}, pages={267--280}, year={2019}, publisher={Springer} } @article{dombrowski2019explanations, title={Explanations can be manipulated and geometry is to blame}, author={Dombrowski, Ann-Kathrin and Alber, Maximillian and Anders, Christopher and Ackermann, Marcel and M{\"u}ller, Klaus-Robert and Kessel, Pan}, journal={Advances in Neural Information Processing Systems}, volume={32}, pages={13589--13600}, year={2019} } @article{heo2019fooling, title={Fooling neural network interpretations via adversarial model manipulation}, author={Heo, Juyeon and Joo, Sunghwan and Moon, Taesup}, journal={Advances in Neural Information Processing Systems}, volume={32}, pages={2925--2936}, year={2019} } @article{rudin2019stop, title={Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead}, author={Rudin, Cynthia}, journal={Nature Machine Intelligence}, volume={1}, number={5}, pages={206--215}, year={2019}, publisher={Nature Publishing Group} } @article{green2019principles, title={The principles and limits of algorithm-in-the-loop decision making}, author={Green, Ben and Chen, Yiling}, journal={Proceedings of the ACM on Human-Computer Interaction}, volume={3}, number={CSCW}, pages={1--24}, year={2019}, publisher={ACM New York, NY, USA} } @article{geirhos2020shortcut, title={Shortcut learning in deep neural networks}, author={Geirhos, Robert and Jacobsen, J{\"o}rn-Henrik and Michaelis, Claudio and Zemel, Richard and Brendel, Wieland and Bethge, Matthias and Wichmann, Felix A}, journal={Nature Machine Intelligence}, volume={2}, number={11}, pages={665--673}, year={2020}, publisher={Nature Publishing Group} } @inproceedings{sixt2020explanations, title={When explanations lie: Why many modified bp attributions fail}, author={Sixt, Leon and Granz, Maximilian and Landgraf, Tim}, booktitle={International Conference on Machine Learning}, pages={9046--9057}, year={2020}, organization={PMLR} } @inproceedings{bastings2020elephant, title={The elephant in the interpretability room: Why use attention as explanation when we have saliency methods?}, author={Bastings, Jasmijn and Filippova, Katja}, booktitle={Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP}, pages={149--155}, year={2020} } @inproceedings{grimsley2020attention, title={Why Attention is Not Explanation: Surgical Intervention and Causal Reasoning about Neural Models}, author={Grimsley, Christopher and Mayfield, Elijah and Bursten, Julia RS}, booktitle={Proceedings of the 12th Language Resources and Evaluation Conference}, pages={1780--1790}, year={2020} } @article{degrave2021ai, title={AI for radiographic COVID-19 detection selects shortcuts over signal}, author={DeGrave, Alex J and Janizek, Joseph D and Lee, Su-In}, journal={Nature Machine Intelligence}, pages={1--10}, year={2021}, publisher={Nature Publishing Group} } @article{zimmermann2021well, title={How Well do Feature Visualizations Support Causal Understanding of CNN Activations?}, author={Zimmermann, Roland S and Borowski, Judy and Geirhos, Robert and Bethge, Matthias and Wallis, Thomas SA and Brendel, Wieland}, journal={arXiv preprint arXiv:2106.12447}, year={2021} } @inproceedings{adebayo2021post, title={Post hoc explanations may be ineffective for detecting unknown spurious correlation}, author={Adebayo, Julius and Muelly, Michael and Abelson, Harold and Kim, Been}, booktitle={International Conference on Learning Representations}, year={2022} } @article{busch2024truth, title={Where is the Truth? The Risk of Getting Confounded in a Continual World}, author={Busch, Florian Peter and Kamath, Roshni and Mitchell, Rupert and Stammer, Wolfgang and Kersting, Kristian and Mundt, Martin}, journal={arXiv preprint arXiv:2402.06434}, year={2024} } @article{steinmann2024navigating, title={Navigating Shortcuts, Spurious Correlations, and Confounders: From Origins via Detection to Mitigation}, author={Steinmann, David and Divo, Felix and Kraus, Maurice and W{\"u}st, Antonia and Struppek, Lukas and Friedrich, Felix and Kersting, Kristian}, journal={arXiv preprint arXiv:2412.05152}, year={2024} }