{ "cells": [ { "cell_type": "markdown", "id": "73de9609-9539-483a-a930-1f1b12b79a55", "metadata": { "slideshow": { "slide_type": "skip" }, "tags": [] }, "source": [ "[![View slides in browser](https://img.shields.io/badge/view-slides-orange?logo=reveal.js&logoColor=white)](https://stefaniemolin.com/pandas-workshop/)\n", "\n", "---\n", "\n", "\n" ] }, { "cell_type": "markdown", "id": "8b7dfb40-1ef0-4621-89c3-87c5b226c023", "metadata": { "slideshow": { "slide_type": "slide" }, "tags": [ "id_intro" ] }, "source": [ "# Introduction to Data Analysis Using Pandas\n", "\n", "### Stefanie Molin" ] }, { "cell_type": "markdown", "id": "d4e1f7fe-9777-477f-b361-08e448f03af7", "metadata": { "slideshow": { "slide_type": "subslide" }, "tags": [ "id_bio" ] }, "source": [ "## Bio\n", "\n", "- 👩‍💻 Software engineer at Bloomberg in NYC\n", "- 🚀 Core developer of [numpydoc](https://github.com/numpy/numpydoc)\n", "- ✍️ Author of [Hands-On Data Analysis with Pandas](https://www.amazon.com/Hands-Data-Analysis-Pandas-visualization-dp-1800563450/dp/1800563450/) (currently in its second edition; translated into Korean and Simplified Chinese)\n", "- 🎓 Bachelor's degree in operations research from Columbia University\n", "- 🎓 Master's degree in computer science (ML specialization) from Georgia Tech" ] }, { "cell_type": "markdown", "id": "0345e6e4-5c39-4c57-96d5-4b3980fe2e67", "metadata": { "slideshow": { "slide_type": "slide" }, "tags": [ "id_prerequisites" ] }, "source": [ "### Prerequisites\n", "- To follow along with this workshop, you will need to either configure a local environment or use a cloud solution like GitHub Codespaces. Consult the [README](https://github.com/stefmolin/pandas-workshop#setup-instructions) for step-by-step setup instructions.\n", "- In addition, you should have basic knowledge of Python and be comfortable working in Jupyter Notebooks; if not, check out the resources [here](https://github.com/stefmolin/pandas-workshop#prerequisites) to get up to speed." ] }, { "cell_type": "markdown", "id": "6134e4a8-f4c8-4698-b970-d2e83ea9d922", "metadata": { "slideshow": { "slide_type": "slide" }, "tags": [ "id_session-outline" ] }, "source": [ "### Session Outline\n", "1. Getting Started With Pandas\n", "2. Data Wrangling\n", "3. Data Visualization\n", "4. Hands-On Data Analysis Lab" ] }, { "cell_type": "markdown", "id": "def73df3-56b3-45a1-a157-2bb3488abef9", "metadata": { "slideshow": { "slide_type": "slide" }, "tags": [ "id_follow-along" ] }, "source": [ "## Let's get started\n", "\n", "*Be sure to follow along in the [notebooks](https://github.com/stefmolin/pandas-workshop/tree/main/notebooks).*\n", "\n", "\"Silhouette," ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.3" } }, "nbformat": 4, "nbformat_minor": 5 }