# Wrappers Glaze provides a number of wrappers that indicate at compile time how a value should be read and/or written. These wrappers allow you to modify the read/write behavior of a type without affecting your C++ class. ## Available Wrappers ```c++ glz::append_arrays<&T::x> // When reading into an array that is appendable, the new data will be appended rather than overwrite glz::bools_as_numbers<&T::x> // Read and write booleans as numbers glz::cast<&T::x, CastType> // Casts a value to and from the CastType, which is parsed/serialized glz::quoted_num<&T::x> // Read and write numbers as strings glz::quoted<&T::x> // Read a value as a string and unescape, to avoid the user having to parse twice glz::number<&T::x> // Read a string as a number and writes the string as a number glz::raw<&T::x> // Write out string like types without quotes glz::raw_string<&T::string> // Do not decode/encode escaped characters for strings (improves read/write performance) glz::escaped<&T::string> // Opposite of glz::raw_string, it turns off this behavior glz::escape_bytes_t // A wrapper type for local use to treat char array or vector as byte sequence to be fully escaped (prevents null termination truncation) glz::escape_bytes<&T::x> // For meta usage: treats char array or vector as byte sequence to be fully escaped (prevents null termination truncation) glz::read_constraint<&T::x, constraint_function, "Message"> // Applies a constraint function when reading glz::partial_read<&T::x> // Reads into only existing fields and elements and then exits without parsing the rest of the input glz::invoke<&T::func> // Invoke a std::function, lambda, or member function with n-arguments as an array input glz::write_float32<&T::x> // Writes out numbers with a maximum precision of float32_t glz::write_float64<&T::x> // Writes out numbers with a maximum precision of float64_t glz::write_float_full<&T::x> // Writes out numbers with full precision (turns off higher level float precision wrappers) glz::custom<&T::read, &T::write> // Calls custom read and write std::functions, lambdas, or member functions glz::manage<&T::x, &T::read_x, &T::write_x> // Calls read_x() after reading x and calls write_x() before writing x glz::as_array<&T::member> // Treat a reflected/member-annotated type as a positional array for read and write ``` ## Associated glz::opts `glz::opts` is the compile time options struct passed to most of Glaze functions to configure read/write behavior. Often wrappers are associated with compile time options and can also be set via `glz::opts`. For example, the `glz::quoted_num` wrapper is associated with the `quoted_num` boolean in `glz::opts`. ## append_arrays When reading into an array that is appendable, the new data will be appended rather than overwrite Associated option: add `bool append_arrays = true;` to a custom options struct (for example, `struct append_arrays_opts : glz::opts { bool append_arrays = true; };`). ```c++ struct append_obj { std::vector names{}; std::vector> arrays{}; }; template <> struct glz::meta { using T = append_obj; static constexpr auto value = object("names", append_arrays<&T::names>, "arrays", append_arrays<&T::arrays>); }; ``` In use: ```c++ append_obj obj{}; expect(not glz::read_json(obj, R"({"names":["Bob"],"arrays":[[0,0]]})")); expect(obj.names == std::vector{"Bob"}); expect(obj.arrays == std::vector>{{0,0}}); expect(not glz::read_json(obj, R"({"names":["Liz"],"arrays":[[1,1]]})")); expect(obj.names == std::vector{"Bob", "Liz"}); expect(obj.arrays == std::vector>{{0,0},{1,1}}); ``` ## bools_as_numbers Read and write booleans as numbers Associated option: add `bool bools_as_numbers = true;` to a custom options struct (for example, `struct bools_as_numbers_opts : glz::opts { bool bools_as_numbers = true; };`). ```c++ struct bools_as_numbers_struct { bool a{}; bool b{}; bool c{}; bool d{}; struct glaze { using T = bools_as_numbers_struct; static constexpr auto value = glz::object("a", glz::bools_as_numbers<&T::a>, "b", glz::bools_as_numbers<&T::b>, &T::c, &T::d); }; }; ``` In use: ```c++ std::string s = R"({"a":1,"b":0,"c":true,"d":false})"; bools_as_numbers_struct obj{}; expect(!glz::read_json(obj, s)); expect(obj.a == true); expect(obj.b == false); expect(glz::write_json(obj) == s); ``` ### bools_as_numbers from glz::opts You don't have to use wrappers if you want the global behavior to handle booleans as numbers. ```c++ std::string s = R"([1,0,1,0])"; std::array obj{}; struct bools_as_numbers_opts : glz::opts { bool bools_as_numbers = true; }; constexpr bools_as_numbers_opts opts{}; expect(!glz::read(obj, s)); expect(glz::write(obj) == s); ``` ## cast `glz::cast` is a simple wrapper that will serialize and deserialize the cast type rather than underlying type. This enables the user to parse JSON for a floating point value into an integer, or perform similar `static_cast` behaviors. ```c++ struct cast_obj { int integer{}; }; template <> struct glz::meta { using T = cast_obj; static constexpr auto value = object("integer", cast<&T::integer, double>); }; ``` In use: ```c++ cast_obj obj{}; std::string buffer = R"({"integer":5.7})"; expect(not glz::read_json(obj, buffer)); expect(obj.integer == 5); ``` When a cast-backed type is used as a key in a map (for example `std::map`), BEVE now recognises the wrapper and emits the same header as the cast target. This means strong-ID wrappers can be reused across JSON, TOML, and BEVE without specialising custom read/write logic. ## quoted_num Read and write numbers as strings. Associated option: `glz::opts{.quoted_num = true};` ```c++ struct foo { int x{}; }; template <> struct glz::meta { using T = foo; static constexpr auto value = object("x", quoted_num<&T::x>); }; ``` In use: ```c++ std::string input = R"({ "x": "5" })"; foo obj{}; expect(!glz::read_json(obj, input)); expect(glz::write_json(obj) == R"({ "x": "5" })"); ``` > `quoted_num` is more efficient than `quoted` for numbers. ## quoted When reading, first reads a value as a string, which unescapes, and then reads the value normally. When writing, will first write the value as a string and then write the string to produce escapes. > `glz::quoted` is useful for storing escaped JSON inside of a higher level JSON object. ```c++ struct client_state { uint64_t id{}; std::map> layouts{}; }; template <> struct glz::meta { using T = client_state; static constexpr auto value = object("id", &T::id, "layouts", quoted<&T::layouts>); }; ``` In use: ```c++ client_state obj{}; std::string input = R"({ "id": 4848, "layouts": "{\"first layout\": [ \"inner1\", \"inner2\" ] }" })"; expect(!glz::read_json(obj, input)); expect(obj.id == 4848); expect(obj.layouts.at("first layout") == std::vector{"inner1", "inner2"}); std::string out{}; glz::write_json(obj, out); expect(out == R"({"id":4848,"layouts":"{\"first layout\":[\"inner1\",\"inner2\"]}"})"); ``` ## as_array Convert a positional JSON array into an existing struct while writing back out as an array. Use `glz::as_array<&T::member>` when declaring the member in `glz::object`. Handy when a service sends compact arrays but your C++ type is a struct in memory. ```c++ struct Person_details { std::string_view name; std::string_view surname; std::string_view city; std::string_view street; }; struct Person { int id{}; Person_details person{}; }; template <> struct glz::meta { using T = Person; static constexpr auto value = glz::object( "id", &T::id, "person", glz::as_array<&T::person> ); }; std::string payload = R"({ "id": 1, "person": ["Joe", "Doe", "London", "Chamber St"] })"; Person p{}; expect(!glz::read_json(p, payload)); expect(p.person.city == "London"); auto written = glz::write_json(p).value(); expect(written == R"({"id":1,"person":["Joe","Doe","London","Chamber St"]})" ); ``` ## number Read JSON numbers into strings and write strings as JSON numbers. Associated option: `glz::opts{.number = true};` ```c++ struct numbers_as_strings { std::string x{}; std::string y{}; }; template <> struct glz::meta { using T = numbers_as_strings; static constexpr auto value = object("x", glz::number<&T::x>, "y", glz::number<&T::y>); }; ``` In use: ```c++ std::string input = R"({"x":555,"y":3.14})"; numbers_as_strings obj{}; expect(!glz::read_json(obj, input)); expect(obj.x == "555"); expect(obj.y == "3.14"); std::string output; glz::write_json(obj, output); expect(input == output); ``` ## raw Write out string like types without quotes. > Useful for when a string is already in JSON format and doesn't need to be quoted. Associated option: `glz::opts{.raw = true};` ```c++ struct raw_struct { std::string str{}; }; template <> struct glz::meta { using T = raw_struct; static constexpr auto value = object("str", glz::raw<&T::str>); }; ``` In use: ```c++ suite raw_test = [] { raw_struct obj{.str = R"("Hello")"}; // quotes would have been escaped if str were not wrapped with raw expect(glz::write_json(obj) == R"({"str":"Hello"})"); }; ``` ## raw_string Do not decode/encode escaped characters for strings (improves read/write performance). > If your code does not care about decoding escaped characters or you know your input will never have escaped characters, this wrapper makes reading/writing that string faster. Associated option: `glz::opts{.raw_string = true};` ```c++ struct raw_stuff { std::string a{}; std::string b{}; std::string c{}; struct glaze { using T = raw_stuff; static constexpr auto value = glz::object(&T::a, &T::b, &T::c); }; }; struct raw_stuff_wrapper { raw_stuff data{}; struct glaze { using T = raw_stuff_wrapper; static constexpr auto value{glz::raw_string<&T::data>}; }; }; ``` In use: ```c++ raw_stuff_wrapper obj{}; std::string buffer = R"({"a":"Hello\nWorld","b":"Hello World","c":"\tHello\bWorld"})"; expect(!glz::read_json(obj, buffer)); expect(obj.data.a == R"(Hello\nWorld)"); expect(obj.data.b == R"(Hello World)"); expect(obj.data.c == R"(\tHello\bWorld)"); buffer.clear(); glz::write_json(obj, buffer); expect(buffer == R"({"a":"Hello\nWorld","b":"Hello World","c":"\tHello\bWorld"})"); ``` ## escaped The `glz::escaped` wrapper turns off the effects of `glz::raw_string`. ```c++ struct raw_stuff_escaped { raw_stuff data{}; struct glaze { using T = raw_stuff_escaped; static constexpr auto value{glz::escaped<&T::data>}; }; }; ``` In use: ```c++ raw_stuff_escaped obj{}; std::string buffer = R"({"a":"Hello\nWorld"})"; expect(!glz::read_json(obj, buffer)); expect(obj.data.a == R"(Hello World)"); buffer.clear(); glz::write_json(obj, buffer); expect(buffer == R"({"a":"Hello\nWorld","b":"","c":""})"); ``` ## escape_bytes The `glz::escape_bytes_t` wrapper (for local usage) and `glz::escape_bytes` (for meta usage) are used to read and write binary data stored in character arrays (`char[]`) or vectors (`std::vector`) as fully escaped JSON strings. This is particularly useful for handling binary data that might contain null characters or other control characters that would otherwise be truncated or cause issues. **Meta Usage (`glz::escape_bytes<&T::member>`):** ```c++ struct binary_data { char data[4]; }; template <> struct glz::meta { using T = binary_data; static constexpr auto value = object("data", glz::escape_bytes<&T::data>); }; ``` In use: ```c++ binary_data obj; obj.data[0] = 0; obj.data[1] = 1; obj.data[2] = 0; obj.data[3] = 2; std::string out; glz::write_json(obj, out); expect(out == R"({"data":"\u0000\u0001\u0000\u0002"})"); binary_data obj2; glz::read_json(obj2, out); expect(std::memcmp(obj.data, obj2.data, 4) == 0); ``` **Local Usage (`glz::escape_bytes_t{value}`):** ```c++ char local_data[4] = {0, 'A', 0, 'B'}; std::string out; glz::write_json(glz::escape_bytes_t{local_data}, out); expect(out == R"("\u0000A\u0000B")"); char read_back_data[4]; glz::read_json(glz::escape_bytes_t{read_back_data}, out); expect(read_back_data[0] == 0); expect(read_back_data[1] == 'A'); expect(read_back_data[2] == 0); expect(read_back_data[3] == 'B'); ``` ## read_constraint Enables complex constraints to be defined within a `glz::meta` or using member functions. Parsing is short circuited upon violating a constraint and a nicely formatted error can be produced with a custom error message. ### Field order and optional members Object members are visited in the order that the JSON input supplies them. This is an intentional design choice so that input streams do not have to be re-ordered to match the declaration order. Because of this, a `read_constraint` may only rely on fields that have already appeared in the JSON payload. If you need to validate the final state of the entire object, use a `self_constraint` as shown below—those run after every field has been read. Optional members are parsed lazily: if the JSON payload does not contain the key, the member is left untouched and the corresponding `read_constraint` is not evaluated. This guarantees that absent optional data does not trigger constraints. Keep in mind that reusing the same C++ object across multiple reads will retain the previous value for any field that is omitted in later payloads, so reset or re-initialize the instance when you expect fresh state. ```c++ struct constrained_object { int age{}; std::string name{}; }; template <> struct glz::meta { using T = constrained_object; static constexpr auto limit_age = [](const T&, int age) { return (age >= 0 && age <= 120); }; static constexpr auto limit_name = [](const T&, const std::string& name) { return name.size() <= 8; }; static constexpr auto value = object("age", read_constraint<&T::age, limit_age, "Age out of range">, // "name", read_constraint<&T::name, limit_name, "Name is too long">); }; ``` ### Object level validation To validate combinations of fields after the object has been fully deserialized, provide a single `self_constraint` entry. This constraint runs once after all object members have been populated and can therefore reason about the final state. ```c++ struct cross_constrained { int age{}; std::string name{}; }; template <> struct glz::meta { using T = cross_constrained; static constexpr auto combined = [](const T& v) { return ((v.name.starts_with('A') && v.age > 10) || v.age > 5); }; static constexpr auto value = object(&T::age, &T::name); static constexpr auto self_constraint = glz::self_constraint; }; ``` You can perform more elaborate business logic as well, such as validating that user credentials are consistent and secure: ```c++ struct registration_request { std::string username{}; std::string password{}; std::string confirm_password{}; std::optional email{}; }; template <> struct glz::meta { using T = registration_request; static constexpr auto strong_credentials = [](const T& value) { const bool strong_length = value.password.size() >= 12; const bool matches = value.password == value.confirm_password; const bool has_username = !value.username.empty(); return strong_length && matches && has_username; }; static constexpr auto value = object( &T::username, &T::password, &T::confirm_password, &T::email); static constexpr auto self_constraint = glz::self_constraint; }; ``` If a self constraint fails, deserialization stops and `glz::error_code::constraint_violated` is reported with the associated message. When it is important that object memory remains valid after every individual assignment—for example, when other code observes the partially constructed object during parsing—prefer `read_constraint` on the specific members. Those constraints fire before the member is written, so the in-memory representation never stores an invalid value. In contrast, `self_constraint` runs after fields are populated, so it can detect issues that span multiple members but the object may hold the problematic data until the constraint handler reports an error. ### Skipping self_constraint validation In some cases you may want to skip `self_constraint` validation—for example, when performance is critical and the data is known to be valid, or when validation should be deferred to a later stage. You can disable `self_constraint` checks by creating a custom options struct with `skip_self_constraint = true`: ```c++ struct skip_constraint_opts : glz::opts { bool skip_self_constraint = true; }; // Use it like this: constexpr skip_constraint_opts opts{}; auto ec = glz::read(obj, buffer); ``` With this option enabled, the `self_constraint` is still defined in `glz::meta` but will not be evaluated during deserialization. This allows you to toggle validation on or off at compile time based on your use case. ## partial_read Reads into existing object and array elements and then exits without parsing the rest of the input. More documentation concerning `partial_read` can be found in the [Partial Read documentation](./partial-read.md). > `partial_read` is useful when parsing header information before deciding how to decode the rest of a document. Or, when you only care about the first few elements of an array. ## invoke Invoke a std::function or member function with n-arguments as an array input. ```c++ struct invoke_struct { int y{}; std::function square{}; void add_one() { ++y; } // MSVC requires this constructor for 'this' to be captured invoke_struct() { square = [&](int x) { y = x * x; }; } }; template <> struct glz::meta { using T = invoke_struct; static constexpr auto value = object("square", invoke<&T::square>, "add_one", invoke<&T::add_one>); }; ``` In use: ```c++ std::string s = R"( { "square":[5], "add_one":[] })"; invoke_struct obj{}; expect(!glz::read_json(obj, s)); expect(obj.y == 26); // 5 * 5 + 1 }; ``` ## write_float32 Writes out numbers with a maximum precision of `float32_t`. ```c++ struct write_precision_t { double pi = std::numbers::pi_v; struct glaze { using T = write_precision_t; static constexpr auto value = glz::object("pi", glz::write_float32<&T::pi>); }; }; ``` > [!IMPORTANT] > > The `glz::float_precision float_max_write_precision` is not a core option in `glz::opts`. You must create an options structure that adds this field to enable float precision control. The example below shows this user defined options struct that inherits from `glz::opts`. In use: ```c++ struct float_opts : glz::opts { glz::float_precision float_max_write_precision{}; }; write_precision_t obj{}; std::string json_float = glz::write(obj); expect(json_float == R"({"pi":3.1415927})") << json_float; ``` ## write_float64 Writes out numbers with a maximum precision of `float64_t`. ## write_float_full Writes out numbers with full precision (turns off higher level float precision wrappers). ## Associated glz::opts for float precision ```c++ enum struct float_precision : uint8_t { full, float32 = 4, float64 = 8, float128 = 16 }; ``` glz::opts ```c++ // The maximum precision type used for writing floats, higher precision floats will be cast down to this precision float_precision float_max_write_precision{}; ``` ## custom Calls custom read and write std::functions, lambdas, or member functions. ```c++ struct custom_encoding { uint64_t x{}; std::string y{}; std::array z{}; void read_x(const std::string& s) { x = std::stoi(s); } uint64_t write_x() { return x; } void read_y(const std::string& s) { y = "hello" + s; } auto& write_z() { z[0] = 5; return z; } }; template <> struct glz::meta { using T = custom_encoding; static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, // "y", custom<&T::read_y, &T::y>, // "z", custom<&T::z, &T::write_z>); }; ``` In use: ```c++ "custom_reading"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); expect(obj.x == 3); expect(obj.y == "helloworld"); expect(obj.z == std::array{1, 2, 3}); }; "custom_writing"_test = [] { custom_encoding obj{}; std::string s = R"({"x":"3","y":"world","z":[1,2,3]})"; expect(!glz::read_json(obj, s)); std::string out{}; glz::write_json(obj, out); expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})"); }; ``` ### Another custom example Showing use of constexpr lambdas for customization. ```c++ struct custom_buffer_input { std::string str{}; }; template <> struct glz::meta { static constexpr auto read_x = [](custom_buffer_input& s, const std::string& input) { s.str = input; }; static constexpr auto write_x = [](auto& s) -> auto& { return s.str; }; static constexpr auto value = glz::object("str", glz::custom); }; ``` In use: ```c++ std::string s = R"({"str":"Hello!"})"; custom_buffer_input obj{}; expect(!glz::read_json(obj, s)); expect(obj.str == "Hello!"); s.clear(); glz::write_json(obj, s); expect(s == R"({"str":"Hello!"})"); expect(obj.str == "Hello!"); ``` > [!NOTE] > > With read lambdas like `[](custom_buffer_input& s, const std::string& input)`, both types must be concrete (cannot use `auto`), otherwise you'll get a compilation error noting this. The reason is that Glaze must be able to determine what type to decode into before passing the decoded value to `input`. ## manage Calls a read function after reading and calls a write function before writing. > `glz::manage` is useful for transforming state from a user facing format into a more complex or esoteric internal format. ```c++ struct manage_x { std::vector x{}; std::vector y{}; bool read_x() { y = x; return true; } bool write_x() { x = y; return true; } }; template <> struct glz::meta { using T = manage_x; static constexpr auto value = object("x", manage<&T::x, &T::read_x, &T::write_x>); }; ``` In use: ```c++ manage_x obj{}; std::string s = R"({"x":[1,2,3]})"; expect(!glz::read_json(obj, s)); expect(obj.y[0] == 1); expect(obj.y[1] == 2); obj.x.clear(); s.clear(); glz::write_json(obj, s); expect(s == R"({"x":[1,2,3]})"); expect(obj.x[0] == 1); expect(obj.x[1] == 2); ``` ### Another manage example ```c++ struct manage_x_lambda { std::vector x{}; std::vector y{}; }; template <> struct glz::meta { using T = manage_x_lambda; static constexpr auto read_x = [](auto& s) { s.y = s.x; return true; }; static constexpr auto write_x = [](auto& s) { s.x = s.y; return true; }; [[maybe_unused]] static constexpr auto value = object("x", manage<&T::x, read_x, write_x>); }; ``` In use: ```c++ manage_x_lambda obj{}; std::string s = R"({"x":[1,2,3]})"; expect(!glz::read_json(obj, s)); expect(obj.y[0] == 1); expect(obj.y[1] == 2); obj.x.clear(); s.clear(); glz::write_json(obj, s); expect(s == R"({"x":[1,2,3]})"); expect(obj.x[0] == 1); expect(obj.x[1] == 2); ``` ## skip_null_members_on_read The `skip_null_members_on_read` option allows reading JSON or BEVE data with null values without requiring `std::optional` wrappers on your C++ types. When enabled, null values in the input are simply skipped, leaving the existing field values unchanged. This option is particularly useful when: - You receive JSON from external sources that may include null values but you want to maintain default or existing values - You want to avoid wrapping all your types in `std::optional` just to handle occasional null values - You're implementing partial updates where null means "don't change this field" ### Usage Add `bool skip_null_members_on_read = true;` to a custom options struct: ```c++ struct Person { std::string name = "Unknown"; int age = 0; double salary = 0.0; }; template <> struct glz::meta { using T = Person; static constexpr auto value = glz::object(&T::name, &T::age, &T::salary); }; struct opts_skip_null : glz::opts { bool skip_null_members_on_read = true; }; ``` ### Example: Preserving Existing Values ```c++ Person person; person.name = "Alice"; person.age = 30; person.salary = 75000.0; // JSON with null values std::string json = R"({"name":null,"age":35,"salary":null})"; glz::read(person, json); // null fields were skipped, preserving existing values expect(person.name == "Alice"); // Unchanged (was null in JSON) expect(person.age == 35); // Updated expect(person.salary == 75000.0); // Unchanged (was null in JSON) ``` ### Format Support This option works with both JSON and BEVE formats: **JSON:** ```c++ struct opts_skip_null_json : glz::opts { bool skip_null_members_on_read = true; // format = JSON (default) }; ``` **BEVE:** ```c++ struct opts_skip_null_beve : glz::opts { uint32_t format = glz::BEVE; bool skip_null_members_on_read = true; }; ``` ### Behavior - **With option enabled:** Null values in input are skipped; C++ field retains its existing value - **With option disabled (default):** Null values cause errors for non-nullable types, or reset `std::optional` types to empty ### Comparison with std::optional **Without skip_null_members_on_read:** ```c++ struct PersonWithOptional { std::optional name; std::optional age; }; PersonWithOptional p; p.name = "Alice"; p.age = 30; glz::read_json(p, R"({"name":null,"age":35})"); // name is reset to empty by null expect(!p.name.has_value()); expect(p.age == 35); ``` **With skip_null_members_on_read:** ```c++ struct Person { std::string name; // No std::optional needed int age; }; Person p; p.name = "Alice"; p.age = 30; glz::read(p, R"({"name":null,"age":35})"); // name preserves existing value expect(p.name == "Alice"); expect(p.age == 35); ``` > [!NOTE] > This option is not a core field in `glz::opts`. You must create a custom options struct that adds this field, as shown in the examples above.