--- title: "On a Möbius transformation" author: "Stéphane Laurent" date: '2022-06-21' tags: R, maths, geometry, graphics, special-functions, Rcpp rbloggers: yes output: md_document: variant: markdown preserve_yaml: true html_document: highlight: kate keep_md: no highlighter: pandoc-solarized --- Consider a complex number $\gamma$ such that $|\gamma| < 1$ and the following matrix: $$ M = \begin{pmatrix} i & \gamma \\ \bar\gamma & -i \end{pmatrix}. $$ Then the Möbius transformation associated to this matrix is nice. Why? Because: - it maps the unit disk to itself; - it is of order $2$; - its fractional powers have a closed form. For these reasons, I often use this Möbius transformation in [my shaders](https://laustep.github.io/stlahblog/frames/shaders_index.html). Let us derive the fractional powers of $M$. We set $h = \sqrt{1-|\gamma|^2}$. The eigenvalues of $M$ are $$ \begin{align} \lambda_1 & = -ih \\ \lambda_2 & = ih = \bar{\lambda_1} \end{align} $$ with corresponding eigen vectors $$ \begin{align} v_1 & = \begin{pmatrix} (1-h)\dfrac{i\gamma}{|\gamma|^2} \\ 1 \end{pmatrix} \\ v_2 & = \begin{pmatrix} (1+h)\dfrac{i\gamma}{|\gamma|^2} \\ 1 \end{pmatrix}. \end{align} $$ Let $P = \begin{pmatrix} v_1 & v_2 \end{pmatrix}$. Then $$ \frac{1}{\det(P)} = \frac{i\bar\gamma}{2h} $$ and for any complex numbers $d_1$ and $d_2$, $$ P \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} P^{-1} = \frac{1}{2h} \begin{pmatrix} d_2(1+h)-d_1(1-h) & i(d_1-d_2)\gamma \\ i(d_1-d_2)\bar\gamma & d_1(1+h)-d_2(1-h) \end{pmatrix}. $$ In particular, $M^t$ is given by $$ \begin{pmatrix} a & b \\ \bar b & \bar a \end{pmatrix} $$ where $$ \begin{align} a & = \Re(d_1) - i \dfrac{\Im(d_1)}{h}, \\ b & = \gamma \dfrac{\Im(d_2)}{h}, \\ d_1 & = \bar{d_2}, \\ d_2 & = h^t \exp\left(i\dfrac{t\pi}{2}\right). \end{align} $$ ``` {.r .numberLines} M_power_t <- function(gamma, t){ h <- sqrt(1-Mod(gamma)^2) d2 <- h^t * (cos(t*pi/2) + 1i*sin(t*pi/2)) d1 <- Conj(d2) a <- Re(d1) - 1i*Im(d1)/h b <- gamma * Im(d2)/h c <- Conj(b) d <- Conj(a) c(a = a, b = b, c = c, d = d) } ``` Let's apply this Möbius transformation now. Here is a visualization of the *Dedekind eta function*, a complex function availale in the **jacobi** package: ``` {.r .numberLines} # background color bkgcol <- rgb(21, 25, 30, maxColorValue = 255) modulo <- function(a, p) { a - p * ifelse(a > 0, floor(a/p), ceiling(a/p)) } colormap <- function(z){ if(is.na(z)){ return(bkgcol) } if(is.infinite(z) || is.nan(z)){ return("#000000") } x <- Re(z) y <- Im(z) r <- modulo(Mod(z), 1) g <- 2 * abs(modulo(atan2(y, x), 0.5)) b <- abs(modulo(x*y, 1)) if(is.nan(b)){ return("#000000") } rgb( 8 * (1 - cos(r-0.5)), 8 * (1 - cos(g-0.5)), 8 * (1 - cos(b-0.5)), maxColorValue = 1 ) } library(jacobi) f <- Vectorize(function(x, y){ q <- x + 1i*y if(Mod(q) > 0.9999 || (Im(q) == 0 && Re(q) <= 0)){ return(bkgcol) } tau <- -1i * log(q) / pi z <- eta(tau) colormap(z) }) x <- y <- seq(-1, 1, len = 2000) image <- outer(x, y, f) opar <- par(mar = c(0,0,0,0), bg = bkgcol) plot( c(-100, 100), c(-100, 100), type = "n", xlab = "", ylab = "", axes = FALSE, asp = 1 ) rasterImage(image, -100, -100, 100, 100) par(opar) ``` ![](./figures/Dedekind.png){width="55%"} Here is how to apply the Möbius transformation for one value of the power $t$: ``` {.r .numberLines} Mobius <- M_power_t(gamma = 0.7 - 0.3i, t = ...) a <- Mobius["a"] b <- Mobius["b"] c <- Mobius["c"] d <- Mobius["d"]; f <- Vectorize(function(x, y){ q0 <- x + 1i*y q <- (a*q0 + b) / (c*q0 + d) if(Mod(q) > 0.9999 || (Im(q) == 0 && Re(q) <= 0)){ return(bkgcol) } tau <- -1i * log(q) / pi z <- eta(tau) colormap(z) }) x <- y <- seq(-1, 1, len = 2000) image <- outer(x, y, f) ``` Then it suffices to run this code for $t$ varying from $0$ to $2$, and to save the image for each value of $t$. But this would be very slow. Actually I implemented the image generation with **Rcpp**. Here is the result: ![](./figures/Dedekind.gif){width="55%"} My **Rcpp** code is available in the [Github version](https://github.com/stla/jacobi) of the **jacobi** package. The R code which generates an image for one value of $t$ is: ``` {.r .numberLines} x <- seq(-1, 1, len = 2000L) gamma <- 0.7 - 0.3i t <- ... image <- jacobi:::Image_eta(x, gamma, t) opar <- par(mar = c(0,0,0,0), bg = bkgcol) plot( c(-100, 100), c(-100, 100), type = "n", xlab = "", ylab = "", axes = FALSE, asp = 1 ) rasterImage(image, -100, -100, 100, 100) par(opar) ``` You can also play with `jacobi:::Image_E4` and `jacobi:::Image_E6`, which respectively generate a visualization of the Eisenstein series of weight $4$ and a visualization of the Eisenstein series of weight $6$.