
TAKING PHP
SERIOUSLY
Keith Adams
Facebook
Strange Loop 2013

Why PHP?

What this talk is
• Experience report
• Apologia
• Qualified advocacy
• A surprise.

What this talk is not
•  “Network effects”/”Legacy”
•  “Right tool for the job”

•  tautological
•  some tools really are bad
•  PHP might be such a tool

•  “Worse is better”
•  pace Richard Gabriel
•  Better is better
•  Most people think of UNIX as “better” nowadays

Recent changes
•  Traits (ala Scala)
• Closures
• Generators (yield statement)

•  The HipHop VM (hhvm) is fast
•  https://github.com/facebook/hiphop-php/
•  https://www.hhvm.com

•  ...and we want it to run your code
•  http://www.hhvm.com/blog/?p=875

Conventional Wisdom on PHP
•  “PHP: A fractal of bad design”

•  http://me.veekun.com/blog/2012/04/09/php-a-fractal-of-bad-design/

•  “[] You have reinvented PHP better, but that’s still no
justification”
•  http://colinm.org/language_checklist.html

• Etc.

And yet...
• A lot of software that has changed the world has been

rendered in PHP
•  Mediawiki
•  Facebook
•  Wordpress
•  Drupal

•  This is at least interesting
• Should they really have been written in Haskell?
• Does PHP make projects more or less successful?

Facebook’s PHP Codebase
•  x * 105 files
•  y * 107 LoC
•  10 releases per week

• Anecdotally, good engineers are astonishingly productive
in PHP

The Case Against PHP
• Unexpected behaviors

$x	
 /	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 =>	
 bool(false)	

	

“11abcd”	
 +	
 “1xy”	
 //	
 =>	
 int(12)	

“0123”	
 +	
 “3456”	
 	
 //	
 =>	
 int(3579)	

“0123”	
 |	
 “3456”	
 	
 //	
 =>	
 string(“3577”)	

The Case Against PHP (2)
• Schizophrenia about value/reference semantics

	
 	
 /*	
 	

	
 	
 	
 *	
 Probably	
 copy	
 $a	
 into	
 foo’s	
 0’th	
 param.	

	
 	
 	
 *	
 Unless	
 $a	
 is	
 a	
 user-­‐defined	
 object;	
 and	
 unless	

	
 	
 	
 *	
 foo’s	
 definition	
 specifies	
 that	
 arg	
 0	
 is	
 by	
 	

	
 	
 	
 *	
 reference.	

	
 	
 	
 */	

	
 	
 foo($a);	

The Case Against PHP (3)
• Reliance on reference-counting

•  String, array need O(1) logical copies
•  User-defined classes have destructors that run at a deterministic

time
•  Some programs use the RAII idiom from C++

•  Heavily constrains implementation

The Case Against PHP (4)
•  Inconsistent, dangerous standard library

•  array_map vs. array_reduce argument orders
•  array_merge
•  mysql_escape_string vs. (sigh) mysql_real_escape_string

The Case Against PHP: “Guilty”
•  It’s all true!
•  These are “unforced errors”
• Most other languages do better
• You would want to avoid them in a PHP Reboot

In Defense of PHP
• PHP gets three important things really right

•  Programmer workflow
•  State
•  Concurrency

Workflow
• Save, reload-the-page
• Short feedback cycle
• Optimizes most precious resource of all: programmer

short-term memory

State
• PHP requests always start with empty heap, namespace
• Cross-request state must be saved explicitly

•  Filesystem, memcache, APC
•  Affirmative virtue

•  Typical FB requests spend 10ms initializing
• Reduces the cost of bugs

•  Requests interact in limited ways
•  Natural boundary for failure isolation

Concurrency
• PHP requests execute in a single thread
• Concurrency happens via recursive web requests

•  shared-nothing
•  inputs/outputs copied

•  Limits PHP’s applicable domain
•  That’s actually good.

Workflow

State Concurrency

The limits of conscious design
• Discovered or invented?
• Shrug
•  In my opinion, more important than PHP’s problems
•  They’re not available anywhere else

Workflow

State Concurrency

Pushing PHP further
• PHP engineer dare: rename this method
• Reorder the parameters for this method
• Remove this method that we think is not called anywhere

Pushing PHP further (2)
• Enforce invariants:

•  Only escaped strings are passed to build_query	

•  A certain array() maps strings to Widgets

Wait...
• A static type system?

• Verbose types, or
incomprehensible error
messages

• Either way hoses
programmer productivity

• Millions of lines to migrate

Workflow

State Concurrency

We think we’ve solved this problem
•  Introducing Hack

• Gradual typing for PHP

• Novel type inference system

• Real-time type-checking
preserves PHP workflow

• Credit: Julien Verlaguet

Hack
• Opt into typing via <?hh (instead of <?php)
•  <?hh	
 //	
 strict	

•  Almost-totally sound analysis
•  Requires transitive closure of code has been hackified	

•  <?hh	

•  Tolerates missing annotations
•  Assumes undeclared classes/functions exist, behave as implied by

any types

• Disallows most “silly” PHP-isms

Hack implementation

Editor Type Checker HHVM

Filesystem

inotify

errors

web
requests

source

Changes from PHP
<?hh	

class	
 Point2	
 {	

	
 	
 public	
 float	
 $x,	
 $y;	

	
 	
 function	
 __construct(float	
 $x,	
 float	
 $y)	
 {	

	
 	
 	
 	
 $this-­‐>x	
 =	
 $x;	

	
 	
 	
 	
 $this-­‐>x	
 =	
 $y;	

	
 	
 }	

}	

Changes from PHP
<?hh	

class	
 Point2	
 {	

	
 	
 public	
 float	
 $x,	
 $y;	

	
 	
 function	
 __construct(float	
 $x,	
 float	
 $y)	
 {	

	
 	
 	
 	
 $this-­‐>x	
 =	
 $x;	

	
 	
 	
 	
 $this-­‐>x	
 =	
 $y;	
 //	
 Whoopsy.	
 Didn’t	
 init	
 y	

	
 	
 }	

}	

Changes from PHP
<?hh	

...	

function	
 meanOrigDistance(Point	
 $p,	
 Point	
 $q)	

	
 	
 :	
 float	
 {	

	
 	
 $distf	
 =	
 function(Point	
 $p)	
 :	
 float	
 {	

	
 	
 	
 	
 return	
 sqrt($p-­‐>x	
 *	
 $p-­‐>x	
 +	
 $p-­‐>y	
 *	
 $p-­‐>y);	

	
 	
 };	

	
 	
 $pdist	
 =	
 $distf($p);	

	
 	
 $qdist	
 =	
 $distf($q);	

	
 	
 return	
 ($pdist	
 +	
 $qdist)	
 /	
 2;	

}	

Hack Type Cheatsheet
• Base PHP types: int,	
 MyClassName,	
 array,	
 ...	

• Nullable: ?int,	
 ?MyClassName	

• Mixed: anything (careful)
•  Tuples: (int,	
 bool,	
 X)	

• Closures: (function(int):	
 int)	

• Collections: Vector<int>,	
 Map<string,	
 int>	

• Generics: A<T>,	
 foo<T>(T	
 $x):	
 T	

• Constraints: foo<T	
 as	
 A>(T	
 $x):	
 T	

Hack Type Inference (1)
•  Let’s infer the type of $x:

Hack Type Inference (2)
• How does a type-system normally work?

•  Type-variables are introduced
•  A unification algorithm solves the type-variables (usually noted α)

if (…) {
 $x = new A();
} else {
 $x = new B();
}

type($x) = α

unify(α, A) => α = A

unify(α, B) => α = B
 ERROR

Type inference in Hack
• Hack introduces unresolved types (noted U)

if (…) {
 $x = new A();
} else {
 $x = new B();
}

takesAnIFace($x);

type($x) = α = U()

$x = α = U(A);

$x = α = U(A, B);

$x = α = U(A, B) = IFace
 with (A ≤ IFace, B ≤ IFace)

Error messages
• We can’t expect the user to understand all the type-

inference
•  The solution: keep the reason why we deduced a type

and expose it to the user

Hack
•  “[X] You have reinvented PHP better, but that’s still no

justification
•  [X] The name of your language makes it impossible to

find on Google”

• Many millions of lines converted
• Most new code in Hack
• Most PHP users at Facebook regularly check in Hack

Postmodern PHP (2014-...)
• HipHop project provides

great tools
•  Fast VM
•  Debugger
•  Profiler
•  Integrations with editors/IDEs

• Hack is a SoA gradual typing
system

• Maintains all of PHP’s
strengths

• Compare to your favorite
“Dynamic Algol”

Workflow

State Concurrency

When PHP?
• Any time you might consider another “Dynamic Algol”

language
•  Python, Lua, JavaScript, Perl, Ruby, ...

• Server-side
• Request-oriented
•  ...but want to preserve some of the option value of

“BigLangs”
•  Type system
•  High-performance implementations

Backup

Everyone’s favorite generics slide
•  (Remember, “covariance” refers to type specifications for Type that accept T

>= Type. “Contravariance” means Type that accept T <= Type.)

• We allow:
•  Covariant function parameters
•  Covariant arrays
•  Constraints on type parameters (Foo<T as IFace> will error if T

does not implement IFace)

• We don’t allow
•  Contravariant function params (they don’t make sense)
•  Covariant type parameters

• Remember, runtime throws everything away anyway, so
perfwise, it’s type erasure.

