{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ea4e3349-9fc2-41e9-834c-f784c843a95e",
   "metadata": {},
   "source": [
    "# Example Visualizations using CyberGIS-Vis"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f595ccc2-a25e-4745-b18a-555938b037ea",
   "metadata": {},
   "source": [
    "#### Documentations and Demos about CyberGIS-Vis are available at: https://github.com/su-gis/CyberGIS-Vis"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4ff57881-5852-4900-87a8-4479da615c77",
   "metadata": {},
   "source": [
    "## Adaptive Choropleth Mapper with Multiple Line Chart (MLC): Temporal Patterns of Covid-19 Crude Rate and Death Rate in US Counties"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ed09b33e-a504-44c4-b208-aea277961934",
   "metadata": {},
   "source": [
    "## Setup environment"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f2fea90f-ace0-49a7-ba55-832f941eb6c4",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import geopandas as gpd\n",
    "from Adaptive_Choropleth_Mapper import CLC, MLC, Initial_Layers"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "30bb97d9-c261-479f-9f15-eb3ac440cb14",
   "metadata": {},
   "source": [
    "### Set input Data"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "efa40adb-9028-48ca-a516-515d586ae06c",
   "metadata": {},
   "source": [
    "1. Load U.S. counties from the Shapefile. Note: New York is an exception, represented by New York City with the city ID 777777, instead of county names and IDs.\n",
    "- Read the Shapefile \"County_NY_TIMES.shp\" into a GeoDataFrame\n",
    "- The Shapefile is located in the \"shp/US/\" directory\n",
    "- The 'geoid' column is explicitly set to be read as a string (str)\n",
    "- The first column in both the attribute file and the shapefile must be named 'geoid,' as it serves as the key for joining the shapefile with the attribute data.\n",
    "- The second column should contain the names of the corresponding regions, which will be directly displayed on the resulting map."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "2c3b778c-7391-4288-b198-097f7059b763",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>geoid</th>\n",
       "      <th>name</th>\n",
       "      <th>Shape_Leng</th>\n",
       "      <th>Shape_Area</th>\n",
       "      <th>geometry</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>10001</td>\n",
       "      <td>Kent,DE</td>\n",
       "      <td>2.029682</td>\n",
       "      <td>0.215240</td>\n",
       "      <td>POLYGON ((-75.74776 39.14334, -75.75600 39.246...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>10003</td>\n",
       "      <td>New Castle,DE</td>\n",
       "      <td>1.798779</td>\n",
       "      <td>0.134081</td>\n",
       "      <td>POLYGON ((-75.78860 39.72220, -75.77379 39.722...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>10005</td>\n",
       "      <td>Sussex,DE</td>\n",
       "      <td>2.369084</td>\n",
       "      <td>0.320841</td>\n",
       "      <td>POLYGON ((-75.70157 38.56074, -75.70744 38.635...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1001</td>\n",
       "      <td>Autauga,AL</td>\n",
       "      <td>1.994948</td>\n",
       "      <td>0.150242</td>\n",
       "      <td>POLYGON ((-86.41312 32.70739, -86.41279 32.625...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1003</td>\n",
       "      <td>Baldwin,AL</td>\n",
       "      <td>3.977560</td>\n",
       "      <td>0.494110</td>\n",
       "      <td>POLYGON ((-87.59883 30.99745, -87.59650 30.987...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3212</th>\n",
       "      <td>9007</td>\n",
       "      <td>Middlesex,CT</td>\n",
       "      <td>1.878172</td>\n",
       "      <td>0.122471</td>\n",
       "      <td>POLYGON ((-72.75218 41.57889, -72.75294 41.592...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3213</th>\n",
       "      <td>9009</td>\n",
       "      <td>New Haven,CT</td>\n",
       "      <td>2.629868</td>\n",
       "      <td>0.240237</td>\n",
       "      <td>POLYGON ((-73.31047 41.46881, -73.32091 41.477...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3214</th>\n",
       "      <td>9011</td>\n",
       "      <td>New London,CT</td>\n",
       "      <td>2.390277</td>\n",
       "      <td>0.215441</td>\n",
       "      <td>POLYGON ((-72.46673 41.58390, -72.41723 41.590...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3215</th>\n",
       "      <td>9013</td>\n",
       "      <td>Tolland,CT</td>\n",
       "      <td>1.812081</td>\n",
       "      <td>0.117074</td>\n",
       "      <td>POLYGON ((-72.13572 42.03025, -72.10217 42.028...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3216</th>\n",
       "      <td>9015</td>\n",
       "      <td>Windham,CT</td>\n",
       "      <td>1.754612</td>\n",
       "      <td>0.146376</td>\n",
       "      <td>POLYGON ((-71.78970 41.72456, -71.78725 41.656...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>3217 rows × 5 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      geoid           name  Shape_Leng  Shape_Area   \n",
       "0     10001        Kent,DE    2.029682    0.215240  \\\n",
       "1     10003  New Castle,DE    1.798779    0.134081   \n",
       "2     10005      Sussex,DE    2.369084    0.320841   \n",
       "3      1001     Autauga,AL    1.994948    0.150242   \n",
       "4      1003     Baldwin,AL    3.977560    0.494110   \n",
       "...     ...            ...         ...         ...   \n",
       "3212   9007   Middlesex,CT    1.878172    0.122471   \n",
       "3213   9009   New Haven,CT    2.629868    0.240237   \n",
       "3214   9011  New London,CT    2.390277    0.215441   \n",
       "3215   9013     Tolland,CT    1.812081    0.117074   \n",
       "3216   9015     Windham,CT    1.754612    0.146376   \n",
       "\n",
       "                                               geometry  \n",
       "0     POLYGON ((-75.74776 39.14334, -75.75600 39.246...  \n",
       "1     POLYGON ((-75.78860 39.72220, -75.77379 39.722...  \n",
       "2     POLYGON ((-75.70157 38.56074, -75.70744 38.635...  \n",
       "3     POLYGON ((-86.41312 32.70739, -86.41279 32.625...  \n",
       "4     POLYGON ((-87.59883 30.99745, -87.59650 30.987...  \n",
       "...                                                 ...  \n",
       "3212  POLYGON ((-72.75218 41.57889, -72.75294 41.592...  \n",
       "3213  POLYGON ((-73.31047 41.46881, -73.32091 41.477...  \n",
       "3214  POLYGON ((-72.46673 41.58390, -72.41723 41.590...  \n",
       "3215  POLYGON ((-72.13572 42.03025, -72.10217 42.028...  \n",
       "3216  POLYGON ((-71.78970 41.72456, -71.78725 41.656...  \n",
       "\n",
       "[3217 rows x 5 columns]"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "shapefile = gpd.read_file(\"shp/US/County_NY_TIMES.shp\", dtype={'geoid': str})\n",
    "shapefile"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bb46b47e-ac00-4339-871c-97bf9011a0dc",
   "metadata": {},
   "source": [
    "2. Load the attribute data that will be used for visualization. Data Source: \"The New York Times. (2021). Coronavirus (Covid-19) Data in the United States. Retrieved [08/01/2024], from https://github.com/nytimes/covid-19-data.\"\n",
    "- Read the CSV file \"Covid_Rate_Mobility_US_2020_2021_weekly.csv\" into a DataFrame\n",
    "- The CSV file is located in the \"attributes/\" directory\n",
    "- The 'geoid' column is explicitly set to be read as a string (str)\n",
    "- The first column in both the attribute file and the shapefile must be named 'geoid,' as it serves as the key for joining the shapefile with the attribute data.\n",
    "- The second column header must be named 'period' and should contain time-related values, such as days, months, or years, formatted as YYYY, MM-DD, or MM-DD-YYYY.\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e37bce9e-9ba3-4b3c-b37b-35b36dbf7112",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>geoid</th>\n",
       "      <th>period</th>\n",
       "      <th>confirmed_rate</th>\n",
       "      <th>death_rate</th>\n",
       "      <th>confirmed_rate_total</th>\n",
       "      <th>death_rate_total</th>\n",
       "      <th>visitor_flows_to_selected_area</th>\n",
       "      <th>visitor_flows_from_selected_area</th>\n",
       "      <th>pop_flows_to_selected_area</th>\n",
       "      <th>pop_flows_from_selected_area</th>\n",
       "      <th>confirmed_cases_total</th>\n",
       "      <th>death_total</th>\n",
       "      <th>cases</th>\n",
       "      <th>death</th>\n",
       "      <th>pop</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>25021</td>\n",
       "      <td>2020-03-02</td>\n",
       "      <td>76.34</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>76.34</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>225932.0</td>\n",
       "      <td>222941.0</td>\n",
       "      <td>4296827.0</td>\n",
       "      <td>4489797.0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>131</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>17031</td>\n",
       "      <td>2020-03-02</td>\n",
       "      <td>0.27</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>1.88</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>2410769.0</td>\n",
       "      <td>2203579.0</td>\n",
       "      <td>34150598.0</td>\n",
       "      <td>31518502.0</td>\n",
       "      <td>7</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>37172</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>6095</td>\n",
       "      <td>2020-03-02</td>\n",
       "      <td>0.12</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>2.97</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>155015.0</td>\n",
       "      <td>176145.0</td>\n",
       "      <td>2935064.0</td>\n",
       "      <td>3281805.0</td>\n",
       "      <td>24</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>80680</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>6075</td>\n",
       "      <td>2020-03-02</td>\n",
       "      <td>0.00</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>3.45</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>291306.0</td>\n",
       "      <td>221035.0</td>\n",
       "      <td>5711711.0</td>\n",
       "      <td>4196901.0</td>\n",
       "      <td>6</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>17376</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>12057</td>\n",
       "      <td>2020-03-02</td>\n",
       "      <td>7.16</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>14.33</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>943468.0</td>\n",
       "      <td>855974.0</td>\n",
       "      <td>10914786.0</td>\n",
       "      <td>9880641.0</td>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>0</td>\n",
       "      <td>1396</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>276123</th>\n",
       "      <td>42109</td>\n",
       "      <td>2021-11-22</td>\n",
       "      <td>261.53</td>\n",
       "      <td>0.000000</td>\n",
       "      <td>57660.29</td>\n",
       "      <td>1214.848144</td>\n",
       "      <td>27845.0</td>\n",
       "      <td>15230.0</td>\n",
       "      <td>415693.0</td>\n",
       "      <td>228453.0</td>\n",
       "      <td>20504</td>\n",
       "      <td>432</td>\n",
       "      <td>93</td>\n",
       "      <td>0</td>\n",
       "      <td>3556</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>276124</th>\n",
       "      <td>42107</td>\n",
       "      <td>2021-11-22</td>\n",
       "      <td>134.07</td>\n",
       "      <td>2.180000</td>\n",
       "      <td>22966.91</td>\n",
       "      <td>532.710791</td>\n",
       "      <td>40167.0</td>\n",
       "      <td>52320.0</td>\n",
       "      <td>568134.0</td>\n",
       "      <td>733340.0</td>\n",
       "      <td>84114</td>\n",
       "      <td>1951</td>\n",
       "      <td>491</td>\n",
       "      <td>8</td>\n",
       "      <td>36624</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>276125</th>\n",
       "      <td>27139</td>\n",
       "      <td>2021-11-22</td>\n",
       "      <td>75.85</td>\n",
       "      <td>0.622421</td>\n",
       "      <td>8641.97</td>\n",
       "      <td>61.708636</td>\n",
       "      <td>53778.0</td>\n",
       "      <td>75885.0</td>\n",
       "      <td>725802.0</td>\n",
       "      <td>979598.0</td>\n",
       "      <td>97191</td>\n",
       "      <td>694</td>\n",
       "      <td>853</td>\n",
       "      <td>7</td>\n",
       "      <td>112464</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>276126</th>\n",
       "      <td>42121</td>\n",
       "      <td>2021-11-22</td>\n",
       "      <td>1559.36</td>\n",
       "      <td>35.210000</td>\n",
       "      <td>148385.31</td>\n",
       "      <td>3143.863179</td>\n",
       "      <td>14101.0</td>\n",
       "      <td>15193.0</td>\n",
       "      <td>196044.0</td>\n",
       "      <td>202678.0</td>\n",
       "      <td>29499</td>\n",
       "      <td>625</td>\n",
       "      <td>310</td>\n",
       "      <td>7</td>\n",
       "      <td>1988</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>276127</th>\n",
       "      <td>9015</td>\n",
       "      <td>2021-11-22</td>\n",
       "      <td>25.40</td>\n",
       "      <td>0.120000</td>\n",
       "      <td>6932.50</td>\n",
       "      <td>109.875203</td>\n",
       "      <td>32688.0</td>\n",
       "      <td>43879.0</td>\n",
       "      <td>502565.0</td>\n",
       "      <td>641831.0</td>\n",
       "      <td>56217</td>\n",
       "      <td>891</td>\n",
       "      <td>206</td>\n",
       "      <td>1</td>\n",
       "      <td>81092</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>276128 rows × 15 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "        geoid      period  confirmed_rate  death_rate  confirmed_rate_total   \n",
       "0       25021  2020-03-02           76.34    0.000000                 76.34  \\\n",
       "1       17031  2020-03-02            0.27    0.000000                  1.88   \n",
       "2        6095  2020-03-02            0.12    0.000000                  2.97   \n",
       "3        6075  2020-03-02            0.00    0.000000                  3.45   \n",
       "4       12057  2020-03-02            7.16    0.000000                 14.33   \n",
       "...       ...         ...             ...         ...                   ...   \n",
       "276123  42109  2021-11-22          261.53    0.000000              57660.29   \n",
       "276124  42107  2021-11-22          134.07    2.180000              22966.91   \n",
       "276125  27139  2021-11-22           75.85    0.622421               8641.97   \n",
       "276126  42121  2021-11-22         1559.36   35.210000             148385.31   \n",
       "276127   9015  2021-11-22           25.40    0.120000               6932.50   \n",
       "\n",
       "        death_rate_total  visitor_flows_to_selected_area   \n",
       "0               0.000000                        225932.0  \\\n",
       "1               0.000000                       2410769.0   \n",
       "2               0.000000                        155015.0   \n",
       "3               0.000000                        291306.0   \n",
       "4               0.000000                        943468.0   \n",
       "...                  ...                             ...   \n",
       "276123       1214.848144                         27845.0   \n",
       "276124        532.710791                         40167.0   \n",
       "276125         61.708636                         53778.0   \n",
       "276126       3143.863179                         14101.0   \n",
       "276127        109.875203                         32688.0   \n",
       "\n",
       "        visitor_flows_from_selected_area  pop_flows_to_selected_area   \n",
       "0                               222941.0                   4296827.0  \\\n",
       "1                              2203579.0                  34150598.0   \n",
       "2                               176145.0                   2935064.0   \n",
       "3                               221035.0                   5711711.0   \n",
       "4                               855974.0                  10914786.0   \n",
       "...                                  ...                         ...   \n",
       "276123                           15230.0                    415693.0   \n",
       "276124                           52320.0                    568134.0   \n",
       "276125                           75885.0                    725802.0   \n",
       "276126                           15193.0                    196044.0   \n",
       "276127                           43879.0                    502565.0   \n",
       "\n",
       "        pop_flows_from_selected_area  confirmed_cases_total  death_total   \n",
       "0                          4489797.0                      1            0  \\\n",
       "1                         31518502.0                      7            0   \n",
       "2                          3281805.0                     24            0   \n",
       "3                          4196901.0                      6            0   \n",
       "4                          9880641.0                      2            0   \n",
       "...                              ...                    ...          ...   \n",
       "276123                      228453.0                  20504          432   \n",
       "276124                      733340.0                  84114         1951   \n",
       "276125                      979598.0                  97191          694   \n",
       "276126                      202678.0                  29499          625   \n",
       "276127                      641831.0                  56217          891   \n",
       "\n",
       "        cases  death     pop  \n",
       "0           1      0     131  \n",
       "1           1      0   37172  \n",
       "2           1      0   80680  \n",
       "3           0      0   17376  \n",
       "4           1      0    1396  \n",
       "...       ...    ...     ...  \n",
       "276123     93      0    3556  \n",
       "276124    491      8   36624  \n",
       "276125    853      7  112464  \n",
       "276126    310      7    1988  \n",
       "276127    206      1   81092  \n",
       "\n",
       "[276128 rows x 15 columns]"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "attributes = pd.read_csv(\"attributes/Covid_Rate_Mobility_US_2020_2021_weekly.csv\", dtype={'geoid': str} )\n",
    "attributes"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6432a95e-76bb-499e-8ebc-8f5ecbdfd715",
   "metadata": {
    "tags": []
   },
   "source": [
    "</br></br>\n",
    "### Set the parameters to create visualizations using Multiple Linked Charts (MLC)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "439b454b-7b12-42e8-a8ef-57f90f4a4e05",
   "metadata": {},
   "source": [
    "The interface will include two choropleth maps, a chart displaying the top or bottom values of your selected variable, such as COVID-19 confirmed rates, within the geographic regions of your map, and multiple linked charts (MLC). The MLC feature allows users to click on any county to explore spatiotemporal patterns of selected variables, such as COVID-19 confirmed or death rates, across multiple time series charts.\n",
    "\n",
    "&nbsp;&nbsp;&nbsp;&nbsp; Your result visualization would be similar to the image below.</br>\n",
    "&nbsp;&nbsp;&nbsp;&nbsp; <img src=\"../images/ACM_MLC.PNG\" width=\"60%\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff54804b-f145-4e1f-83f9-7cb9e2e6197d",
   "metadata": {},
   "source": [
    "- Specifying the map center and zoom levels is optional in MLC([latitude, longitude], zoom level). When MLC() is called without these parameters, the map center and zoom levels are automatically adjusted."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "1a747e83-51ba-45fa-b0a2-9dc6db4bd7ce",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1b92439f355f423d936e24b44461420c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(Tab(children=(VBox(children=(VBox(children=(HBox(children=(Text(value='attributes', description…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "MLC([38, -97], 4)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "991a4dbe-8c5d-48a2-b20b-2fd64c08d55e",
   "metadata": {
    "tags": []
   },
   "source": [
    "</br></br>\n",
    "### Set the parameters to create visualizations using Comparison Line Chart (CLC)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b11eee94-40e1-40a0-8796-aa2113aa229b",
   "metadata": {
    "tags": []
   },
   "source": [
    "Configure the parameters to visualize your COVID-19 datasets using the Comparison Line Chart (CLC). The interface will include two choropleth maps, a chart displaying the top or bottom values of your selected variable, such as COVID-19 confirmed rates, within the geographic regions of your map, and the Comparison Line Chart (CLC). The CLC feature allows users to click on any county on the two choropleth maps to compare spatiotemporal patterns of selected variables, such as COVID-19 confirmed or death rates, in a single interactive line chart.\n",
    "\n",
    "&nbsp;&nbsp;&nbsp;&nbsp; Your result visualization would be similar to the image below.</br>\n",
    "&nbsp;&nbsp;&nbsp;&nbsp; <img src=\"../images/ACM_CLC.PNG\" width=\"60%\"/>"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8dd2ef40-c5a7-4082-b835-ab88bd642056",
   "metadata": {},
   "source": [
    "- Specifying the map center and zoom levels is optional in CLC([latitude, longitude], zoom level). When CLC() is called without these parameters, the map center and zoom levels are automatically adjusted."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6fcbd279-ae86-4974-aaca-e60559157c45",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "dd24035628724b5c90241c7146a6b5ff",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "VBox(children=(Tab(children=(VBox(children=(VBox(children=(HBox(children=(Text(value='attributes', description…"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "CLC([38, -97], 4)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}