{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 16 PDE continued. Diffusion, Wave and Schroedinger eqns. Solution by the Fourier method. Transient grating."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"# import all python add-ons etc that will be needed later on\n",
"%matplotlib inline\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from sympy import *\n",
"from scipy.integrate import quad,odeint\n",
"init_printing() # allows printing of SymPy results in typeset maths format\n",
"plt.rcParams.update({'font.size': 14}) # set font size for plots"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 16.1 Diffusion across an interface and from a point\n",
"\n",
"Imagine that a very long, narrow tube is half filled with a dye solution and the other half contains pure solvent each half being separated by a partition. When partition is carefully removed, diffusion from either half into the other begins. The tube is so long ($x \\to \\infty$) that its ends do not affect the behaviour on an experimental time scale. Immediately on opening the partition the concentration at the interface is $c(x)= c_0$ for $x \\ge 0$ and $c(x) = 0$ for $x\\lt 0$ both conditions apply at $t = 0$. This initial condition is quite specific, and practical, but instead of keeping a constant value $c_0$ when $x \\ge 0$ and $t = 0$ the initial concentration can in general be a function of position, $f(x)$ which may range over the whole range of $x$.\n",
"\n",
"To obtain a solution equation (52); \n",
"\n",
"$$\\displaystyle \\frac{\\partial^2c_x}{\\partial x^2}=-c_xk^2$$\n",
"\n",
"is solved in a general way using exponentials as\n",
"\n",
"$$\\displaystyle c_x=\\alpha_ke^{ikx}+\\beta_ke^{-ikx} \\tag{57}$$\n",
"\n",
"where $\\alpha_k$ and $\\beta_k$ are constants determined by the initial and boundary conditions. This solution may generally also be taken as\n",
"\n",
"$$\\displaystyle c_x=b_ke^{-ikx}$$\n",
"\n",
"if $k$ is allowed to be positive or negative, the general solution can be written as the product of the time and spatial solutions and integrated,\n",
"\n",
"$$\\displaystyle c=\\int_{-\\infty}^\\infty b_ke^{-Dk^2t}e^{-ikx}dk \\tag{58} $$ \n",
"\n",
"The change into an integral, compared with the sum previously used (eqn. 55) is made because it is assumed that so many terms are needed in the summation it is equivalent to an integral. Using the initial condition that at $t$ = 0 the concentration is $f(x)$, equation (58) produces\n",
"\n",
"$$\\displaystyle f(x)=\\int_{-\\infty}^\\infty b_ke^{-ikx}dk$$\n",
"\n",
"and the constants $b_k$ are found with the Fourier transform \n",
"\n",
"$$\\displaystyle b_k=\\frac{1}{2\\pi}\\int_{-\\infty}^\\infty f(s)e^{iks}ds$$\n",
"\n",
"where $s$ is the integration variable. The complete solution is \n",
"\n",
"$$\\displaystyle c=\\frac{1}{2\\pi}\\int_{-\\infty}^\\infty \\int_{-\\infty}^\\infty e^{-Dk^2t}e^{-ik(s-x)}dsdk$$\n",
"\n",
"Solving the integral in $k$, keeping $t$ constant, gives the result for the concentration of the dye at position $x$ and time $t$ which is \n",
"\n",
"$$\\displaystyle c(x,t)=\\frac{1}{\\sqrt{4\\pi Dt}}\\int_{-\\infty}^\\infty f(s)e^{-(s-x)^2/4DT}ds \\qquad\\tag{59}$$\n",
"\n",
"where $f(s)$ is the initial concentration profile. At zero time, this equation reduces to $f(x)$, the initial profile.\n",
"\n",
"We started with a step function in concentration as the initial condition. To use this means that $f(x) = c_0$ when $x \\ge$ 0 and zero otherwise, and the last equation is changed by replacing $f(s)$ by $c_0$ and is\n",
"\n",
"$$\\displaystyle c(x,t)=\\frac{c_0}{\\sqrt{4\\pi Dt}}\\int_{-\\infty}^\\infty e^{-(s-x)^2/4Dt}ds \\qquad\\tag{60}$$\n",
"\n",
"because the function $f(x)$ is zero at $x \\lt 0$ but no other conditions apply when $t \\gt 0$. This integral cannot be evaluated in terms of a finite number of functions and must be calculated numerically as the _error function_. The error function is defined as\n",
"\n",
"$$erf(x)=\\frac{2}{\\sqrt{\\pi}}\\int_0^x e^{-s^2}ds$$\n",
"\n",
"and its value ranges from $0 \\to 1$. It is also the area under fractions the normalised Gaussian or error curve. It is convenient to define also the complementary error function,\n",
"\n",
"$$\\displaystyle erfc(x)=1-erf(x) = \\frac{2}{\\sqrt{\\pi}}\\int_x^\\infty e^{-s^2}ds$$\n",
"\n",
"which with a transformation of variables has the form of our result. Notice that $x$ appears as the argument of the function and as a limit in the integration. Letting $\\displaystyle z=(s-x)/\\sqrt{4Dt}$ then $\\displaystyle dz=ds/\\sqrt{4Dt}$ and \n",
"\n",
"$$\\displaystyle c(x,t)=\\frac{c_0}{\\sqrt{4\\pi Dt}} \\int_{s=0}^\\infty e^{-(s-x)^2/4Dt}ds \\\\\n",
"=\\frac{c_0}{\\sqrt{\\pi} } \\int_{-x/\\sqrt{4Dt} }^\\infty e^{-z^2}dz \\\\\n",
"=\\frac{c_0}{2}erfc\\left( -\\frac{x}{\\sqrt{4Dt} } \\right)$$\n",
"\n",
"Some concentration profiles are shown in Fig. 27 at different values of the product $\\displaystyle \\sqrt{4Dt)}$, which has units of distance. The mean or average distance diffused in one dimension in time $t$ is $\\sqrt{2Dt}$. A typical diffusion coefficient for a small molecule in a normal solvent is $\\approx 10^{-9}\\,\\mathrm{ m^2\\, s^{-1}}$; if the mean distance diffused is a micron, i.e. $\\sqrt{4Dt} = 10^{-6}$ m then the time taken is $t \\approx 0.5\\cdot 10^{-3}$ s or half a millisecond. Proteins, typically, have diffusion coefficients $10$ to $100$ times smaller say $10^{-11}\\,\\mathrm{ m^2\\, s^{-1}}$ and take correspondingly longer to diffuse. Diffusion is a very slow process indeed. In 3D the mean distance diffused is not much greater and is $\\sqrt{6Dt}$.\n",
"\n",
"![Drawing](diffeqn-fig27.png)\n",
"\n",
"Fig. 27 Diffusion after a step change in concentration. The initial concentration is in the right hand portion of the plot and is shaded. The concentration vs. distance is shown at the times given assuming a diffusion coefficient similar to that of lysozyme, $D$ = 11$\\cdot$ 10-2 nm2ns-1. The black dots show the average distance diffused for each time except for the smallest.\n",
"\n",
"____\n",
"\n",
"If the 'source term' $f(x)$ is a delta function $\\delta (x)$, then all the material is piled up at $x = 0$ in the tube and the integral reduces to \n",
"\n",
"$$\\displaystyle c(x,t)=\\frac{1}{\\sqrt{4\\pi Dt}} \\int_{-\\infty}^\\infty \\delta(s)e^{-(s-x)^2/4Dt}ds=\\frac{1}{\\sqrt{4\\pi Dt}}e^{-x^2/4Dt}$$\n",
"\n",
"because $\\delta(0) = 1$ and is otherwise zero. This function is a Gaussian or bell-shaped curve (see Chapter 12.3.3.) as material spreads out from the initial point on the line, rather as illustrated in fig 25. \n",
"\n",
"The general solution (59) can now be thought of as the convolution of a function $f(x)$ with a impulse $\\delta$ function in much the same way as described in Chapter 9.7 where fluorescence, equivalent to $f(x)$, is stimulated by a laser pulse which is equivalent to the exponential term in (59).\n",
"\n",
"One important application of equations similar to, but more complex than those described here is in the technique known as FRAP, which stands for fluorescence recovery after photo-bleaching. In this technique, a dye molecule is introduced into a biological membrane and then an intense laser is used to bleach the dye rapidly in the small circular spot of the focused laser. A second weaker laser stimulates the dye's fluorescence and the intensity of this is measured as the dye molecules diffuse into the bleached area. The rate at which the fluorescence recovers can be used to determine the diffusion coefficient of the dye molecules or proteins to which the dye may be attached. Should the protein contains an intrinsic chromophore, as does the green fluorescent protein (GFP), this can be used directly.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## 16.2 Asymmetric boundary conditions: reaction at a plane\n",
"\n",
"In some problems, asymmetric boundary conditions apply. One such case is a (semi) infinite tube that is closed at one end and filled with a solution at a concentration of $c_0$. Diffusion is caused by the fast removal of material at the closed end, for instance by an electrode reaction that causes precipitation, see Fig. 28,28a. The concentration at $t$ and $x$ is found using the initial conditions\n",
"\n",
"$$\\displaystyle t = 0,\\quad x \\gt 0, \\quad c = c_0$$\n",
"\n",
"which means that initially the concentration is $c_0$ everywhere, and the boundary conditions are\n",
"\n",
"$$t=0,\\quad x\\to \\infty, \\quad c=c_0 \\qquad \\text{ and } \\qquad t \\gt 0, \\quad x=0, \\quad c=0$$\n",
"\n",
"Starting with the diffusion equation \n",
"\n",
"$$\\displaystyle \\frac{\\partial c}{\\partial t}=D\\frac{\\partial^2 c}{\\partial x^2}$$\n",
"\n",
"the variables are separated and the general solution obtained as was equation (57),\n",
"\n",
"$$\\displaystyle c(x,t)=\\int_{-\\infty}^{\\infty} \\alpha_ke^{-Dk^2t}e^{-ikx}+\\beta+ke^{-Dk^2t}e^{ikx}dk$$\n",
"\n",
"![Drawing](diffeqn-fig28a.png)\n",
"\n",
"fig 28. Schematic of transient molecular concentration caused by precipitation in a tube.\n",
"_____\n",
"\n",
"The general solution has this form because there are both initial and boundary conditions to satisfy. The initial condition is that at $t = 0$ the concentration is $c_0$ when $x \\gt 0$ and this gives \n",
"\n",
"$$\\displaystyle c_0=\\int_{-\\infty}^\\infty \\alpha e^{-ikx}+\\beta_k e^{ikx}dk$$\n",
"\n",
"The boundary condition, $c = 0$ at all times at _x_ = 0 is used to find the constants $\\alpha$ and $\\beta$ . These conditions produce \n",
"\n",
"$$\\displaystyle \\int_{-\\infty}^\\infty \\alpha_ke^{-Dk^2t}+\\beta_k e^{-Dk^2t}dk=0$$\n",
"\n",
"and because $t$ is a constant in this expression, the exponentials cancel out. It then follows that $\\alpha_k=-\\beta_k$ and therefore\n",
"\n",
"$$\\displaystyle c_0=\\alpha_k\\int_{-\\infty}^\\infty e^{-ikx}- e^{ikx}dk$$\n",
"\n",
"The constants $\\alpha_k$ can be found by Fourier transforming this equation to give\n",
"\n",
"$$\\displaystyle \\alpha_k=\\frac{c_0}{2\\pi}\\int_{-\\infty}^\\infty e^{-ikx}- e^{ikx}dx$$\n",
"\n",
"Replacing $\\alpha_k$ into the general solution and changing the (dummy) integration variable in distance from $x$ to $s$ for clarity gives\n",
"\n",
"$$\\displaystyle c(x,t)=\\frac{c_0}{2\\pi}\\int_{0}^\\infty \\int_{-\\infty}^\\infty e^{-Dk^2t}\\left(e^{-ik(s+x)}-e^{ik(s-x)}\\right) dkds$$\n",
"\n",
"This complicated integration produces the result\n",
"\n",
"$$\\displaystyle \\frac{c}{c_0}=\\text{erf}\\left(\\frac{x}{\\sqrt{4Dt}} \\right) $$\n",
"\n",
"The concentration $c$ vs $x$ is plotted in Fig. 28 at several times with $D = 10^{-9}\\,\\mathrm{ m^2\\, s^{-1}}$ and as $c$ vs. $t$ at several distances. The flux, which is the concentration gradient at any point $x$ at time $t$, is \n",
"\n",
"$$\\displaystyle \\frac{\\partial c}{\\partial x}=\\frac{c_0}{\\sqrt{\\pi Dt}}e^{-x^2/(4Dt)}$$\n",
"\n",
"and this will tend to zero at $t \\to \\infty$.\n",
"\n",
"![Drawing](diffeqn-fig28.png)\n",
"\n",
"Fig. 28a Diffusion profiles where the concentration is zero at $x = 0$, such as may pertain on an electrode. Left: Concentration vs distance at the different times shown (in seconds). Right: Concentration vs. time at different distances (in metres). Note the logarithmic time scale. The diffusion coefficient used is $D = 10^{-9}\\,\\mathrm{ m^2\\, s^{-1}}$.\n",
"_____\n",
"\n",
"Diffusion to a plane can occur in an electrochemical cell. Initially, suppose that the concentration of oxidant $O_X$ is $c_0$ everywhere, and reductant $R_d$ is zero. The potential is then suddenly changed and the reaction starts. The oxidant begins to be reduced at the electrode. The concentration vs. distance is shown in Fig. 28 (left) and as time increases the amount of oxidant decreases away from the electrode. For example, after $5000$ s it is only about $40$% of its initial value, $2$ mm from the electrode. The reductant concentration shows the opposite trend since at all times oxidant + reductant = $c_0$. This argument assumes that the oxidant and reductant have the same diffusion coefficient. If the reaction $O_X + ne \\leftrightharpoons R_d$ is reversible, then Nernst's equation applies at the electrode surface and is\n",
"\n",
"$$\\displaystyle E=E^{\\mathrm{O}} -\\frac{RT}{nF}\\ln\\left(\\frac{R_d}{O_X} \\right) $$\n",
"\n",
"where $F$ is the Faraday constant and $n$ the number of electrons transferred in the reaction. For different values of $\\Delta E = E - E^O$ the ratio $s = O_X/R_d$ can be plotted vs. distance from the electrodes. The expression \n",
"\n",
"$$\\displaystyle f_R = (1 - c(x, t))/(1 + s)$$\n",
"\n",
"plots the fraction as reductant and \n",
"\n",
"$$\\displaystyle f_{O_X} = (s + c(x, t))/(1 + s)$$\n",
"\n",
"the fraction oxidant, their sum being one. At oxidative, or positive, potentials the ratio $O_X/R_d$ is large, and the electrode remains almost in equilibrium with the $O_X$ concentration, being almost $c_0$. If the potential is negative, $O_X/R_d \\lt 1$, and almost all of the oxidant in contact with the electrode reacts, eventually the region of reduced material expands away from the electrode, Fig. 29. The current measured in the electrochemical cell is initially large because the slope of concentration with distance is large, this is the flux, and the current is proportional to the flux. At longer times, the slope is smaller at the electrode, hence the flux is reduced and so is the current.\n",
"\n",
"![Drawing](diffeqn-fig29.png)\n",
"\n",
"Fig. 29 Left: Profile of fractional oxidant (solid line) and reductant (dashed) after $500$ seconds vs. distance (m) away from an electrode at different ratios of $s = O_X/R_d$, hence different potentials. The potentials are $\\Delta E = 0$ mV, $s = 1,\\, \\Delta E = 59.5$ mV, $s = 10$, and $\\Delta E = -41.6$ mV, $s = 1/5$, for $n = 1$ and at $300$ K. At longer times, the curves reach either zero or $c_0$ as $x$ increases. Right. The flux $\\partial c/\\partial x$ is shown at different $x$ (metres) vs. time (s) and shows how the current in a cell rapidly increases to some large value before slowly fading away.\n",
"\n",
"## 16.3 Diffusion into or out of a sphere\n",
"\n",
"When a substance diffuses into or out of a uniform sphere, the angular coordinates can normally be ignored as diffusion can occur equally well from any place on the sphere's surface. Only the radial coordinate is important and then the diffusion equation is\n",
"\n",
"$$\\displaystyle \\frac{\\partial c }{\\partial t}=D\\left( \\frac{\\partial^2 c}{\\partial r^2}+\\frac{2}{r}\\frac{\\partial c}{\\partial r} \\right)$$\n",
"\n",
"where $c$ is concentration and $r$ is the radial distance from the centre. Sometimes this equation is written as \n",
"\n",
"$$\\displaystyle \\frac{\\partial c }{\\partial t} =\\frac{1}{r^2}\\frac{\\partial}{\\partial r}\\left( Dr^2\\frac{2}{r}\\frac{\\partial c}{\\partial r} \\right)$$\n",
"\n",
"The equation appears to be one of great complexity but can be solved with the substitution u = cr, which produces the familiar diffusion equation\n",
"\n",
"$$\\displaystyle \\frac{\\partial u}{\\partial t}=D\\frac{\\partial^2 u}{\\partial r^2} $$\n",
"\n",
"which is solved by separating variables and applying the boundary and initial conditions in the normal way. If the sphere has a radius $R$, then $0 \\lt r \\le R$, and we will assume that the concentration at the sphere’s surface is always held constant at $c_s$. The boundary conditions are\n",
"\n",
"$$\\displaystyle t \\gt 0,\\quad u=0 \\;\\mathrm{at} \\; r=0, \\; \\mathrm{and} \\; u=Rc_s \\; \\mathrm{at}\\; r=R $$\n",
"\n",
"and the initial condition is $t = 0,\\, u = rf(r)$, where $f(r)$ is a function describing the initial concentration profile inside the sphere. Often this is taken to be constant. This problem is now very similar to that of equation (54), but the boundary conditions are slightly different, one condition is that the concentration is zero the other that it is a constant. It is these conditions that produce a very complicated solution that is the sum of the product of exponential and sine terms. The result is given by Crank (1979) and Carslaw & Jaeger (1959), the latter also giving a detailed derivation.\n",
"\n",
"## 16.4 Time-dependent Schroedinger equation\n",
"\n",
"The time-dependent Schroedinger equation is a partial differential equation that can be solved by separating the variables. The equation is\n",
"\n",
"$$\\displaystyle -\\frac{\\hbar^2}{2m}\\frac{\\partial \\psi}{\\partial x^2} + V(x)\\psi=i\\hbar\\frac{\\partial \\phi}{\\partial t} \\tag{61}$$\n",
"\n",
"and the wavefunction is a function of both time $t$ and position $x$. As an example, suppose that a particle has kinetic energy $E$ but is free of any electric, magnetic, or gravitational fields; therefore $V(x) = 0$. There is no expression in both $x$ and $t$, so separation of the wavefunction into the product $\\displaystyle \\psi(x, t) = \\varphi(x)u(t)$ is permitted and this allows two differential equations to be formed by substituting into\n",
"equation (61). This gives\n",
"\n",
"$$\\displaystyle -\\frac{\\hbar^2}{2m}\\frac{1}{\\varphi}\\frac{\\partial \\varphi}{\\partial x^2} =i\\hbar\\frac{\\partial \\phi}{\\partial t} $$\n",
"\n",
"and both terms must be equal to the same constant. The left-hand side of this equation is the Hamiltonian operator for the kinetic energy only, as $V$ = 0, and this is equal the energy $E = \\hbar\\omega$ . The energy equation becomes\n",
"\n",
"$$\\displaystyle \\frac{\\partial^2 \\varphi}{\\partial x^2}+\\frac{2m\\omega}{\\hbar}\\varphi=0, \\quad \\text{or} \\quad \\frac{\\partial^2 \\varphi}{\\partial x^2}+k^2\\varphi=0$$\n",
"\n",
"where $k$ is a positive constant $\\displaystyle k^2=\\frac{2m\\omega}{\\hbar}$ and the solution to this equation is the standard result,\n",
"\n",
"$$\\varphi = Ae^{ikx}+Be^{-ikx}$$\n",
"\n",
"where $A$ and $B$ are constants depending on the initial or boundary conditions.\n",
"\n",
"The time-dependent part is solved with \n",
"\n",
"$$\\displaystyle \\frac{i\\hbar}{u}\\frac{\\partial u}{\\partial t}=\\hbar\\omega\\quad\\text{ therefore }\\quad u(t) = e^{-i\\omega t}$$\n",
"\n",
"The constants of integration need not be added here because these have been included in $\\varphi$. The complete wavefunction is therefore \n",
"\n",
"$$\\displaystyle \\psi = Ae^{i(kx−ωt)} + Be^{−i(kx+ωt)}$$ \n",
"\n",
"which is the equation of two plane waves travelling in opposite directions. The wave’s phase velocity is $v = \\omega/k$. The probability of being position $x$ is\n",
"\n",
"$$\\displaystyle \\psi^*\\psi = |A|^2 + |B|^2 + AB^*e^{2ikx} + BA^*e^{−2ikx}$$\n",
"\n",
"which demonstrates that the particle shows interference and is thus localized periodically. If the particle does not have any boundary condition imposed on it either $A$ or $B$ be can arbitrarily set to zero and then the particle travels either to the right or left and the wavefunction is \n",
"\n",
"$$\\displaystyle \\psi = Ce^{i(kx−ωt)}$$\n",
"\n",
"where $\\displaystyle \\psi^*\\psi = |C|^2$ and $\\sqrt{C}$ is thus the normalization.\n",
"\n",
"The particle’s energy is $E = \\hbar\\omega$ or $\\displaystyle E = k^2\\frac{\\hbar^2}{2m}$, because momentum is $p = k\\hbar $ and we have defined $\\displaystyle k^2 = \\frac{2m\\omega}{\\hbar} $. \n",
"\n",
"The classical velocity of the particle is $v = p/m$ or $v = k\\hbar/m $ and this is identical to the group velocity, $v_g = d\\omega/dk$. The phase velocity is, by definition, $v_p = \\omega/k$, and this velocity is also $E/p$ because kinetic energy $E = p^2/2m$. The phase velocity is therefore $v/2$ and half the classical and group velocity. See Flugge (1999) for more details of this problem and many other interesting one-dimensional problems."
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"## 17 The wave equation\n",
"\n",
"### **(i) Travelling wave**\n",
"A _travelling wave_ can be imagined as a disturbance that moves both in space and time. Its general form is \n",
"\n",
"$$\\displaystyle u(x, t) = f (x - ct)$$\n",
"\n",
"where $f$ is a function of one variable (Knobel 2000). The wave moves with a speed $c$. The profile $f$ of the travelling wave remains the same as time passes; one of many travelling waves is \n",
"\n",
"$$\\displaystyle y = e^{\\large{-(x-ct)^2}}$$\n",
"\n",
"### **(ii) Standing wave**\n",
"A _standing wave_ varies in time and, although it appears to be fixed in space, it is the sum of two travelling waves moving in opposite directions. A taut wire when plucked will produce waves with the displacement depending upon its position $x$ along the wire and on time $t$. The vibrational frequency of such a wire is \n",
"\n",
"$$\\displaystyle v_n=\\frac{n}{2L}\\sqrt{\\frac{T}{\\sigma}}$$\n",
"\n",
"where $n \\ge 1$ defines the _normal mode_ and is an integer. The length of the wire is $L$ meters, tension $T$ newton and density $\\sigma$ g/m. \n",
"\n",
"Plucking a $0.5$ m long steel guitar string of density $\\sigma = 0.5$ g/m, with an applied force called tension $T$ of $80$ N will produce sine waves with frequencies of $n$ multiples of $400$ Hz. Sine waves are produced because the displacement of the guitar string is zero at both ends. Tuning the string to the required frequency is relatively easy as this is proportional to the square root of the tension. It is possible to appreciate why strings of different densities and lengths are used to cover the musical scales. (Overtones are also produced and it is these rather than the fundamental frequencies that give instruments their unique sounds).\n",
"\n",
"The general wave equation is\n",
"\n",
"$$\\displaystyle \\frac{\\partial^2 u }{\\partial t^2}=c^2\\frac{\\partial^2 u}{\\partial x^2}$$\n",
"\n",
"which has displacement $u$ at time $t$ and position $x$. It is interesting to compare this with the diffusion equation which has only the first derivative with respect to time. \n",
"\n",
"One general solution of the wave equation was indicated in the introduction. Here we solve this equation by separating variables in exactly the same manner as for the diffusion and other partial differential equations. The separation has the form \n",
"\n",
"$$\\displaystyle u(x, t) = w(t)v(x)$$\n",
"\n",
"and dividing both sides by $u$ gives\n",
"\n",
"$$\\displaystyle \\frac{1}{w}\\frac{\\partial^2 w }{\\partial t^2}=\\frac{c^2}{v}\\frac{\\partial^2 v}{\\partial x^2} =k^2$$\n",
"\n",
"where $k^2$ is the separation constant and different solutions are obtained depending on whether $k^2$ is zero, positive or negative. The solutions are readily found; when $k = 0$, then $\\displaystyle \\frac{\\partial^2 w}{\\partial t^2}=0,\\;\\frac{\\partial^2 v}{\\partial x^2}=0 $. Integrating twice produces $w = A + Bt,\\;v=C+Dx$ where $A,\\; B, \\;C,\\; D$, are constants determined by the initial and boundary conditions. The standing wave solution is the product $w(t)v(x)$;\n",
"\n",
"$$\\displaystyle u = (A + Bt)(C + Dx)$$\n",
"\n",
"If $k^2 \\gt 0$ then the solutions are found from \n",
"\n",
"$$\\displaystyle \\frac{\\partial ^2 w}{\\partial t^2}=k^2w,\\quad \\frac{\\partial^2 v}{\\partial x^2}=\\left( \\frac{k}{c} \\right)^2v$$\n",
"\n",
"and which produce\n",
"\n",
"$$\\displaystyle u=\\left(Ae^{-kt}+Be^{kt} \\right) \\left(Ce^{-kx/c}+De^{kx/c} \\right) $$\n",
"\n",
"When $k^2$ is changed to $-k^2$, the solutions are\n",
"\n",
"$$\\displaystyle u = \\big(A\\sin(kt) +B\\cos(kt)\\big)\\big(C\\sin(kx/c)+D\\cos(kx/c)\\big) \\tag{62}$$\n",
"\n",
"Which of these general solutions should be used depends on the initial and boundary conditions, and just as with other partial differential equations, linear combinations of these solutions may form the standing wave solution to a particular problem.\n",
"\n",
"Returning to the guitar string, suppose that it has length $L$ and as its ends are fixed in place; this determines two boundary conditions, which are\n",
"\n",
"$$\\displaystyle u(0, t) = 0;\\quad u(L, t) = 0$$\n",
"\n",
"However, although the initial displacement or velocity of the string is not yet defined these partial boundary conditions will only permit some solutions. At one end of the string, the condition is $u(0, t) = 0$; therefore, $u(0, t) = w(t)v(0) = 0$, which means that either $v(0)$ or $w(t)$ must be zero for all $t$. A wave that does not vary in time is not considered to be a standing wave, and this means that $v(0) = 0$ is a boundary condition. Similar reasoning with $u(L, t) = 0$ indicates that the standing wave must satisfy\n",
"\n",
"$$\\displaystyle v(0) = 0; \\quad v(L) = 0$$\n",
"\n",
"The only solution satisfying these two conditions is the sine/cosine solution (62). In this solution, only $\\sin(kx/c)$ is zero when $x = 0$, and $\\sin(kL/c)$ can be zero when $x = L$ depending on the value of $k$. Picking a value $k = n\\pi c/L$ where $n$ is an integer satisfies this condition making the general solution\n",
"\n",
"$$\\displaystyle u = C\\left(A\\sin\\left( \\frac{n\\pi ct}{L}\\right) + B \\cos\\left( \\frac{n\\pi ct}{L}\\right)\\right) \\sin\\left( \\frac{n\\pi x}{L}\\right) \\tag{63}$$\n",
"\n",
"This has the form of a standing wave as the amplitude of the $x$ wave is changed in time by the term in square brackets. The different integer values of $n \\gt 0$ produce different normal modes of the vibrating string. The fundamental, or first harmonic, has $n = 1$; the second harmonic or first overtone $n = 2$, and so forth. Any particularly complicated vibration that is produced when a string is struck or plucked is always a linear combination of these normal modes, because these modes are the only elementary vibrations present.\n",
"\n",
"Suppose that the initial amplitude and velocity of the guitar string are defined by some new initial conditions. If the string is plucked, just before it is released it has some particular shape; this is defined as $f (x)$, but can be defined more precisely later on. Also, supposing that all points on the string are stationary at $t = 0$, the new conditions will therefore be\n",
"\n",
"$$\\displaystyle u(x, 0) = f (x);\\quad \\frac{\\partial u(x, t)}{\\partial t} = 0$$\n",
"\n",
"As this time derivative is zero at time zero, the sine term in $t$ in the general solution must be zero, because its time derivative is a cosine which is not zero at $t = 0$. The general solution is therefore\n",
"\n",
"$$\\displaystyle u=\\sum_{n=1}^\\infty b_n\\cos\\left(\\frac{n\\pi ct}{L} \\right)\\sin\\left(\\frac{n\\pi x}{L} \\right)$$\n",
"\n",
"where it is assumed that it will be necessary to form a linear combination of solutions, hence the summation. The coefficient $b_n$ are found as in other examples by a Fourier series, since initially\n",
"\n",
"$$\\displaystyle f(x)=\\sum_{n=1}^\\infty b_n\\sin\\left(\\frac{n\\pi x}{L}\\right)$$\n",
"\n",
"and therefore\n",
"\n",
"$$\\displaystyle b_n=\\frac{2}{L}\\int_0^L f(x)\\sin\\left(\\frac{n\\pi x}{L} \\right)dx$$\n",
"\n",
"If the initial displacement has the form \n",
"\n",
"$$\\displaystyle f(x) = e^{\\large{-a|2x-L|} -e^{-aL}}$$\n",
"\n",
"which is peaked at the centre of the string, the solution is found by separating the integration into two parts to overcome the absolute value in the integral. The first part is from $0 \\to L/2$, and the second from $L/2 \\to L$. If the guitar string's length $L$ = 1/2 m, which has been calculated to have a fundamental frequency of $\\nu = 400$ Hz, the wave velocity is $c = \\lambda\\nu$ which is $100\\,\\mathrm{ m s^{-1}}$ because the wavelength is $L/2$.\n",
"\n",
"![Drawing](diffeqn-fig30.png)\n",
"\n",
"Fig. 30. Waves formed by plucking a wire in its centre showing displacement (greatly exaggerated in amplitude) at different times as fractions of the period $T$. The arrows show how the wave appears as two travelling waves moving in opposite directions.The dashed curve next to $T$ = 0 shows the initial function $f(x)$."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAGiCAYAAADjixw0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgLElEQVR4nO3dd1zU9R8H8NehcAwBd4iioOIq09yG5UhBLTXLcpQrd5mppKaVIwu1NEszs8xRlnuUlqKpYJJ79Msc4TaV3HeCsuTz++PdgaQIB3f3vfF6Ph738Lg7vrz5ety97zPeb51SSoGIiIjIiblpHQARERGRtTHhISIiIqfHhIeIiIicHhMeIiIicnpMeIiIiMjpMeEhIiIip8eEh4iIiJweEx4iIiJyeoW1DsBeZGRk4MKFC/D19YVOp9M6HCIiIsoDpRRu3ryJwMBAuLnlPI7DhOdfFy5cQFBQkNZhEBERUT6cO3cO5cqVy/F+Jjz/8vX1BSAnzM/PT+NoiIiIKC+MRiOCgoIy38dzwoTnX6ZpLD8/PyY8REREDia35ShctExEREROjwkPEREROT0mPEREROT0mPAQERGR02PCQ0RERE6PCQ8RERE5PSY8RERE5PSY8BAREZHTY8JDRERETo8JDxERETk9JjxERETk9JjwEBERkdNj81AiR6QUcOwY8OuvwJEj8rW7O/Doo0DTpkBQkNYRkiM4fRqIjQUOHQLS0wGdDnjkEeDJJ4FKleRrIifBhIfIkaSlAd9/D0RFAX/9lfPj6tYFRo0CnnsOKFTIdvGR/UtLA5YuBT78EPjjj5wf98gjwNtvAy+8wOcQOQWdUkppHYQ9MBqN8Pf3h8FggJ+fn9bhEN3rt9+Anj2B48fla70eaNQIqFdPRneSkoCdO4H9+4E7d+QxVasCX34pn9iJoqOBQYOAU6fk68KFgfr1gQYNAG9vICUF2L1bLqmp8pgaNYBvvwXq1NEubqIHyOv7N0d4iOzdnTvA5MnAuHFyvVQp4M035Y3L1/fex1+5AsyaBcyYIdNeTZsCr70mn+i9vW0fP2nPaASGDQPmzZOvS5cGhg4FBg4EihW79/E3bgAzZwLTpwOHD0tiPWWKfA+nuchBcYTnXxzhIbuUmgq8/DKwfLl8/dJLwOefA3l5jhoMwIgRwFdfydd16gBr1nB9j6s5fhxo317Weul0wOuvy5Soj0/u33vtGtCnjzxvAKB3b3k+cYqL7Ehe37+5S4vIXt26BTz7rCQ7Hh7AggXAokV5S3YAwN9fprOio4GSJWWqq149YMcOa0ZN9mTLFpmuOnIECAyUBcqffpq3ZAcAihcHVq0CPvsMcHMD5s8HunbNmu4iciBMeIjsUWqqJDvr1wNeXsDatbJ+Jz/Cw4E9e4BatYBLl4CnnpIkiJzbqlVAmzbA9esyJbV3L/DEE+YfR6eTKdHly2Wt2PLlQJcuWevEiBwEEx4ie6MU0K8fsGmTfBKPjpakpSCCg4G4OHkDvH0baNcua5qMnM+CBbK7KjUVeP55YOtWoEyZgh3zueck8dbrgdWrZT0PV0SQA2HCQ2Rvxo4FvvlG1kksX56/T+X34+MjazE6d5atyV26yPZkci7z58tam4wMWX+zdCng6WmZY0dEyI4tQKa5pk61zHGJbIAJD5E9WbECeP99uT5njozIWJKHB/Ddd8Arr8gbYrduTHqcyXffSZIDyOJkaywwfuEF4OOP5fqoUZweJYfBhIfIXhw9Kp/MAdldZXrjsrRCheSN0DQK8NJLTHqcwfLlQI8eMs00cKAsTrbWFvJhw4D+/eVndesGnDljnZ9DZEFMeIjsQVKSrLVITJS6OVFR1v15bm7A3LmS9Ny5I0nPsmXW/ZlkPWvWSOKRkSGjd7NmWb9ezqefyq6/a9eATp2kaCGRHWPCQ2QPRo2SAm9lygBLlkgFXGszJT29eknS060bFzI7op9+Al58UXphvfyylCJws8FLu6enPF+KF5cdYGPHWv9nEhUAEx4irW3ZIp/IAVmsHBBgu59tSnp69pSkp2tXJj2OJDpadk+lpcnamvnzbVsUMDgY+Ppruf7RR9LMlshOMeEh0tLNmzIFAUiriJYtbR9DoULyptWjB5MeR/LLL0CHDrL1vGNHWbBsi5HB/3r2WRklVEoS55s3bR8DUR4w4SHS0ogRsuAzOFh6XWmlUCHps3R30rNihXbx0INt3Sq1lFJSpG3EkiVSFFArn34KVKggTUmHDdMuDqIHYMJDpJWNG2XrOSBTEUWKaBuPKenp3l2Sni5dgJUrtY2J7rVtG/DMM0ByMvD007LY3MND25j8/GQ6VqeT0cIff9Q2HqL70Czh2bNnD9q2bYuiRYvCx8cHjRo1wrIC7BK5fv06ypYtC51Oh9atW1swUiIrMBiAvn3l+uuvA82aaRpOpkKFJPkyJT2dOzPpsSebNgFt20qftdatZRROr9c6KvHkk0BkpFzv1w+4fFnbeIj+Q5OEZ+vWrQgLC8P27dvx4osvYuDAgUhISEDnzp0xbdq0fB1z8ODBMBgMFo6UyEoiI4Fz54BKlYBJk7SOJjtT0vPyyxzpsScrVsiITlKStBpZtcpyFZQt5f33gZo1pWfbgAFsPUH2RdlYWlqaqlSpktLr9erAgQOZt9+4cUNVqVJFeXh4qNOnT5t1zBUrVigA6rPPPlMAVEREhNlxGQwGBUAZDAazv5fILD//rBSglE6n1LZtWkeTs/R0pV5+WWItXFipr77SOiLXlJGh1PTpSrm5yf/FCy8olZysdVQ5O3hQKXd3iXXJEq2jIReQ1/dvm4/wbNmyBSdOnEC3bt1Qu3btzNv9/f0xZswYpKamYuHChXk+3uXLlzFo0CB0794dTz/9tBUiJrKg69ezprKGDrVcnyxrKFRImlD26CE1Xvr1k5Epdsm2ndRUGSkZNkyKCg4YACxebD/TWPdTqxbw9ttyffBgTm2R3bB5whMTEwMACL9P9+eIiAgAQGxsbJ6PN3DgQBQqVAiffvqpReIjsqphw4ALF4AqVbJ6ZtkzU9IzYYJ8/fHHQKtW8juQdZ0+LVW3v/pKFgN//DEwe7Zt6+zk1+jRwKOPAleuSNJDZAdsnvDEx8cDAEJDQ++5LyAgAEWKFMl8TG4WLVqEVatW4YsvvkCxYsUsGieRxa1dCyxcKMX+FiwAvL21jihvdDqport0qXRc37pV3szWrNE6MueklIzi1K4N7NwJ+PvLc2fYMOu3i7AUD4+sIojLlsl6IyKN2TzhMS0s9vf3v+/9fn5+eVp8fOHCBQwZMgRdu3ZFhw4dzI4jJSUFRqMx24XIaq5dk2aLgEwLNW6sbTz58eKLwP79wGOPAVevSrG7554D/v5b68icx6lTsgurWzfZyde4MXDwoCxWdjR16kjLFAB49VV5zhBpyGHr8PTt2xfu7u6YMWNGvr5/0qRJ8Pf3z7wEBQVZOEKiuwwZAiQkANWqAe+9p3U0+VelCrBjB/DWW1LVd/VqoGpVYMwYWZ9E+XP5MjB8OFC9OrBhg4yQTJgAxMZKUUpHNXYsUKMG8M8/smaNSEM2T3hMIzs5jeIYjcYcR39MFi5ciPXr12PWrFkoWbJkvuIYPXo0DAZD5uXcuXP5Og5RrlavlrL/bm4ypWVvW4nNpdfLVvr9+4HHH5eaMJMmyRtzZCRw8qTWETqOY8ekDlNICDB9ulRObt4c+N//JFnQsnqyJej1MrXl5gYsWgSsW6d1ROTCbJ7wmNbu3G+dTkJCAhITE++7vuduBw4cAAC88MIL0Ol0mZeQkBAAQHR0NHQ6XbZdYP+l1+vh5+eX7UJkcZcvy84aQIb3GzTQNh5LqlkT2L5d1vI88ghgNMrC2sqVZWHz/Pkc9bmfK1eko3mzZjLi99lnUlunbl0Z3dm8WUbNnEWDBlkFCQcMAG7c0DQccl027zTXtGlTTJo0CRs3bkSXLl2y3RcdHZ35mAdp3LgxEhMT77k9MTERS5cuRbly5RAREYHy5ctbLnCi/DBty334YWDcOK2jsTydThpYtmsHrF8PzJwpHbx/+UUuffvKG154OBARIde1aHCppdRUYM8eICYG+PlnWYickSH36XTSJmLIEOCppxxnUbK5JkwAfvgB+OsvmbqbN0/riMgF6ZSybSnM9PR0VK1aFefPn8fOnTszR2EMBgMaNGiA06dP49ixYwj+d9764sWLMBgMKFOmTK5TXadPn0ZISAgiIiKwYcMGs+IyTaUZDAaO9pBlLFsmrRkKFQJ27ZJP8K7g5ElpZrl4MXDoUPb7/P2l9lCzZrLlunZt50uAUlKA3bslwYmNBX77Dbh9O/tjateWBq1duwKusn4wLk7+75WS5JgtgMhC8vz+bZMyiP+xZcsW5e7urnx9fVW/fv3U8OHDVYUKFRQANXXq1GyP7dmzpwKg5s+fn+txT506xUrLZB/OnVOqWDGpNvvOO1pHo52zZ5WaO1epF1/MOh93X3x9lWrbVqkpU5TauVOptDStIzZfSopSv/6q1MSJSj31lFJeXvf+niVLKvX880rNnq3UmTNaR6ydoUPlfAQEKHX5stbRkJPI6/u3Jh+tmjdvju3bt2PcuHFYunQp0tLSULNmTUyZMgWdO3fWIiQiy8nIAHr2lPUr9eoB776rdUTaCQoC+vSRy507wIEDMuoREwP8+qtsvf75Z7kA0jG+SRPZmt2unX3uUFJKpmbWrZORivuN4JQqJaNYppGsGjWcd7rKHFFRMuV55IhMd65ezfNCNmPzKS17xSktspipU4ERI6Sw4IEDspWb7nXnjuxGMk39bNt27yLnmjUl8WnfHqhfX3b7aCEtTeJbt04ux49nv//uBKdZM9lezjfy+zt4UNZypaXJ4u1+/bSOiBxcXt+/mfD8iwkPWcSBA0DDhnwxz4+MDFnzs2mTVBbevj17366HHpIFvu3aAS1bStVnazIYZNfUDz/ICNTdpTTc3WX7+NNPSyxMcMwzbRrw5pv8UEAWwYTHTEx4qMBu3ZIprCNHgGeflXL6fBPMv2vXZMpo7Vr59+5q6J6esqupfXvZAVahQsHPtVLAiRMy5fLDDzLylJaWdX+pUpLgtGsn2+59fQv281xZRob8v23eLIv5f/tNii0S5QMTHjMx4aECe+014PPPgTJlZKomn0Ux6T5SU2VKae1a4McfpbHm3cqWlbU/TZpIO4Zq1XIfAbp5Ezh6VN5st2+XS0JC9sdUqyZJVYcOMnLnCI07HcX58zJlef26NBuNitI6InJQTHjMxISHCmTlSqBTJ7m+caOMAJB1KAX8+ackPuvWSY2b9PR7HxcYCAQEACVKZFW3vn1bejpdvHhvcgPIKEPDhjKK06EDp1qszfR3o9PJ9GF4uNYRkQNiwmMmJjyUb8eOyYLamzdlsfKHH2odkWu5dUvq3phGafbuzXujytKl5f/ONDpUr57jt/5wNAMGyHq3EiWkXQkLxpKZmPCYiQkP5UtSkowI/Pkn8OSTsibB2QrpOaJr12Q9zuXL0sohNVVu1+tlqrFUKWmBUbSopmESgORkSTb37ZPk89df5f+JKI/y+v7NV2ai/DLV2/nzT5k6WbqUyY69KF5cLmT/PD2BFSuAOnVkenLQIODrr7ngnyxOo6IWRE7gvfdkDYK7u7xgBwRoHRGRYwoOlnYkbm7SdPaTT7SOiJwQEx6i/Fi6VBoiArL+ICxM23iIHF14OPDxx3L9zTezqm8TWQgTHiJzxcYCPXrI9chIoFcvTcMhchpDhkjLiYwM4MUXZYqLyEKY8BCZ49Ah2a6cmgp07AhMmaJ1RETOQ6cDZs2Ssg5JSVLo8cQJraMiJ8GEhyivTp0CWreWFgNhYcB337EQHZGleXjI2rjHHpNddq1aAX//rXVU5ASY8BDlxd9/SyuD8+el8/WPPwJeXlpHReScfH1lDU/FivJBo3lz4MIFraMiB8eEhyg3Fy9Kg8hTp4BKlYBffuGWZyJrCwgAtm6VHVzHj0vSc/Gi1lGRA2PCQ/QgZ89KQcFjx4CgICksWKaM1lERuYby5SXpKV8e+OsvGWX95x+toyIHxYSHKCfHjwNPPCH/BgfL7qwKFbSOisi1BAdL0lOuHHDkCJMeyjcmPET3c/iwjOycPSsNJH/9FQgJ0ToqItdUsaIkPYGBUtm8SRPg9GmtoyIHw4SH6L8OHgSaNpX1Ao88AmzbJp8uiUg7lSsDMTFZa3oefxz44w+toyIHwoSH6G6//CIjO1euAHXrygvsQw9pHRURAUBoKBAXJx9ELl6Uv9W4OK2jIgfBhIfI5NtvgTZtgJs3szqflyihdVREdLfAQBl1ffxx4MYNqdPz009aR0UOgAkPkVLABx9Iu4j0dKBLF2DjRsDfX+vIiOh+ihUDNm0C2rYFbt+W6ufz5mkdFdk5Jjzk2tLTgQEDgHfeka9HjpQKynq9tnER0YN5ewNr1sgHlTt3gD59pKGvUlpHRnaKCQ+5rsRE+WT41VfSw+ezz6Q3lhv/LIgcgrs7sGABMGaMfD1+PNC/v3yQIfoPvrKTa/rnH6BZMylf7+kJrFoFvPaa1lERkbl0OpmSnj1bPqzMnSsfZBITtY6M7AwTHnI9x44BjRsD+/YBJUtKfY9nn9U6KiIqiIEDgdWrpcfdzz9LKwoWKKS7MOEh1xIXJ7s7TH2xduwAGjXSOioisoT27YEtW2R35d698rceH691VGQnmPCQ61i9WpqAXrsGNGwoyU7lylpHRUSW1KgR8NtvUhn95ElJenbt0joqsgNMeMg1fP458PzzQHIy0K6dfAosVUrrqIjIGqpUkQ809epJEdHmzYEff9Q6KtIYEx5ybkrJDo7XXpPr/fvLAmVvb60jIyJreughWZ9nqtXTsSPwxRdaR0UaYsJDzistDejVC5g0Sb5+7z15wStcWNOwiMhGihQBfvhBavRkZACDBgFvv81aPS6KCQ85p5s3Zerqm2+AQoWAr78G3n1XtrASkesoXFhqbY0fL19HRckHobQ0LaMiDTDhIefzzz8yZx8dLVNXP/wAvPKK1lERkVZ0OmDcOKnRU6iQfBB6+mn5YEQugwkPOZf4+Htr7Dz9tNZREZE96NNHFi97e0svrieflK7r5BKY8JDz2L07q8ZOxYqyNbVBA62jIiJ70rYtEBsLlC4NHDwoH5COHNE6KrIBJjzkHNatk1YRV64AdetKshMaqnVURGSP6tWTbeuhocCZM0BYGLB9u9ZRkZVplvDs2bMHbdu2RdGiReHj44NGjRph2bJlefpepRTWr1+PQYMG4dFHH4W/vz+8vb1Rq1YtREVFITk52crRk1358kvpnXP7NhARAcTEyJZUIqKcVKwoldcbNgSuX5eipCtXah0VWZFOKdvvz9u6dSsiIiLg6emJLl26wNfXFytXrsSZM2cwdepUREZGPvD7k5OT4eXlBb1ej2bNmqFmzZpITk5GdHQ04uPjUb9+fcTExMDbjForRqMR/v7+MBgM8PPzK+ivSLagFDB2LPD++/J1797AnDnSQZmIKC9u3QK6dpW1PTodMG0aMHQod3Q6kDy/fysbS0tLU5UqVVJ6vV4dOHAg8/YbN26oKlWqKA8PD3X69OkHHiM1NVW9//776tq1a/fc3q5dOwVAffjhh2bFZTAYFABlMBjM+j7SSGqqUr16KSVpj1JjxyqVkaF1VETkiNLSlBo0KOv15PXXlUpP1zoqyqO8vn/bfEpry5YtOHHiBLp164batWtn3u7v748xY8YgNTUVCxcufOAx3N3d8fbbb6NYsWL33D569GgAQGxsrMVjJzthqrGzYIFsMf3yS2DCBH4iI6L8KVwYmDUL+Ogj+XrmTKnMnJSkbVxkUTZPeGJiYgAA4eHh99wXEREBoGDJivu/0xmFWU3XOSUkyOLku2vs9OundVRE5Oh0OuDNN4HlywFPT2DtWqBpU25bdyI2T3ji4+MBAKH32UETEBCAIkWKZD4mP+bNmwfg/gnV3VJSUmA0GrNdyM4dOADUrw/s3y+NP2NiWGOHiCyrUydpLlyypNTzatQI+PNPraMiC7B5wmMwGADIFNb9+Pn5ZT7GXOvXr8ecOXNQvXp19OnT54GPnTRpEvz9/TMvQUFB+fqZZCMrVgBNmgB//w1UrSpbSuvX1zoqInJGjRsDO3fKtvWzZ2Xb+ubNWkdFBeQ0dXj27NmDzp07w9/fH8uXL4der3/g40ePHg2DwZB5OXfunI0iJbMoJU0/X3hBdlNERMgLUaVKWkdGRM6sUiX5YNWkCWAwyGvPxx+z8agDs3nCYxrZyWkUx7S9zBx79+5FeHg43NzcEB0djYcffjjX79Hr9fDz88t2ITuTmAh07iw9cABg2DApMFi0qKZhEZGLKFFCWlB07w7cuQNERgLdunExs4OyecJjWrtzv3U6CQkJSExMvO/6npzs3bsXrVq1QkZGBqKjo1Gf0xzO4Y8/pBrq8uVSV+frr+XTFRejE5EteXoCCxcCM2bI68+SJTLldeKE1pGRmWye8DRt2hQAsHHjxnvui46OzvaY3JiSnTt37mDDhg1o2LCh5QIlbSglyU2DBsCxY0DZstIAlN3OiUgrOh3w+uuymPmhh7I+kK1erXVkZAabV1pOT09H1apVcf78eezcuTOzFo/BYECDBg1w+vRpHDt2DMHBwQCAixcvwmAwoEyZMtmmuvbt24eWLVsiPT0dGzZsQFhYWIHiYqVlO5CUBAwaBHz7rXzdujXwzTeyI4uIyB6cPy87uXbulK/79QOmTwd8fLSNy4Xl9f3b7ltL9OrVCwsXLsT8+fPRq1cvAMC1a9dQuXJlXL9+Ha1bt77vyE7RokUxdOjQPMfEhEdjv/0G9OoFxMcDbm7SLmLUKLlORGRPUlOlrc2HH8qodNWqwPffA3XqaB2ZS8rr+7cmCyKaN2+O7du3Y9y4cVi6dCnS0tJQs2ZNTJkyBZ07d871+41GI65fvw4A2LBhAzZs2HDPYypUqGBWwkMaSU6WF45p04CMDJnC+v574MkntY6MiOj+PDyAyZOB8HCgRw+Zfm/USHaUvvkm1xraKU1GeOwRR3g0sG+fvFgcPixf9+wJfPIJd2ERkeO4ehXo3x9YtUq+rlsXmDsXuKt1EllXXt+/OV9AtmcwyBbzhg0l2XnoIWkRsWABkx0iciwlSkhh1Pnz5fVr3z5Z0Pz22zKCTXaDCQ/ZjlLAokUy3/3JJ1LXonNn4NAhoH17raMjIsofnU7WIB45Igua79wBoqJklGfrVq2jo38x4SHb+N//pBFf9+7AP/8AVapIA9AlS6RnDRGRowsIkNphq1YBZcrI2p4WLeSD3d9/ax2dy2PCQ9ZlMABDh8ruhV9/lQ7nkyZJApRLg1ciIofUsaNM1w8eLDtNly2Tke3Jk4GUFK2jc1lMeMg6lJIaOlWrAp9+KkO8nToBR48Cb70F5NLrjIjIoRUtCsycKWt6wsKkF+Do0cCjj8roNtkcEx6yvN9/l23lPXvK9FXVqsDGjTLUy670RORKateW0e1vvpENGn/9JUVVO3YETp/WOjqXwoSHLOfGDWDIEJm+2r5dpq8mT5bpq1attI6OiEgbOp2sX/zrL9mhWqgQsGYNUL06MHEid3PZCBMeKriMDGmuV7WqDOFmZAAvvCDTV6NGSZEuIiJX5+cnTZAPHgSaNcsqvPrII8BPP2kdndNjwkMF8+efsvuqVy/g0iWgWjVg0yZZpMfpKyKiez3yiDQiXbwYCAyUzuvPPCPlOU6e1Do6p8WEh/Ln9m0prFW7tkxf+fgAU6bI+p2WLbWOjojIvul0QJcuMhI+YoS0o1i7FqhRAxg/Xl5jyaKY8JD5Nm6UTyhRUUB6unwqOXwYGDmS01dERObw9ZUmpP/7H/DUU7JtfcIESXx+/FHr6JwKEx7Ku3/+AV56CYiIkGHXsmWB1aulLUT58lpHR0TkuKpXz1oOUK6c7ODq0EEuZ85oHZ1TYMJDucvIAL78UtbnfP+9FNJ64w0po/7ss1pHR0TkHHQ62fBx5IjUK3N3l1GeGjWAqVOBtDStI3RoTHjowQ4dAp54AhgwQLad16kD7NolvbB8fbWOjojI+RQpIhXpDx6U199bt2SdT716wI4dWkfnsJjw0P2ZqoI+9hjw22/yB/jJJ5Ls1KundXRERM6vRg0gNhaYN0+6sv/vf1K1eeBA4Pp1raNzOEx46F4bNsii5MmTZVHys8/KouQ33pCdBEREZBs6HdC7t+zm6tVL2vbMmSNLDL77Tr6mPGHCQ1kSEoCuXYE2bYBTp2Th3OrVcmFNHSIi7ZQsCcyfD8TEyALnS5eAl1+WJszx8VpH5xCY8JAsSv7iC/nEsGSJLEoeOlRGdbgomYjIfjRtKmt73n8f8PQEfvkFqFlTtrKzE/sDMeFxdfv3A48/DgwaBBgMQN26wJ49wPTpXJRMRGSPPDyk8OuhQ1ImJCVFihU++qhUcKb7YsLjqq5dA159VRYg79oli5I//VSu16mjdXRERJSbSpWA9etlZD4gQJqTPvWUNCq9dEnr6OwOEx5Xk5EhK/6rVgVmz5YFb926AceOSafzQoW0jpCIiPJKpwM6d5ZFza+9Jl8vWiSv8V9+Ka/5BIAJj2vZv1+2NPbpA1y5Ilset26Vlf6BgVpHR0RE+eXvD3z2GbBzp/Q4vHFD6qc1aQL88YfW0dkFJjyu4MIFoF8/oH59+WMoUkSqdh48CDRrpnV0RERkKQ0aZK3DLFJEChU+9hgweDBw+bLW0WmKCY8zu3kTGDsWCA0F5s6Voc0uXWT6KjJSypYTEZFzKVxYdtoeOQJ07AjcuQPMmiVrfqKipLCsC2LC44xSUuTJXbkyMHGiPLkbNwbi4oDFizl9RUTkCsqVA1atAjZvls0oN2/K7q4qVWQtZ3q61hHaFBMeZ5KcLHO4lSrJ8OWlSzK6s3KlJDuPP651hEREZGstWsg016JFQPnywPnzspazWjVg4UKXSXyY8DiD27eBGTMk0Xn9dXkyly0ryc+ffwLPPScr94mIyDW5uQEvvSRLGqZOBUqVAk6ckHYV1asD33zj9IkPEx5HduuWLEyrWFH6XF24IC0gPv9cnsivvcZ1OkRElMXTU9ZwnjoFTJkiLSuOHwd69pSdu4sWyZofJ8SExxElJUmGHhICDB8uPbDKl5f2EPHxUjVZr9c6SiIislc+PsDIkZL4TJok3djj46VoYY0aTjniw4THkSQmSkYeHAyMGCFrdEJCgK++kifqgAFMdIiIKO+KFAHeeksSn6gooHhxqdjcs6es8Zk/H0hL0zpKi2DC4wiMRsnAg4PliXnliqzXmTdP5mP79pXeKkRERPnh6wuMHg2cPi3vNyVLytKIV16Rqs1z5wKpqVpHWSBMeOzZzZuScQcHA2PGAFevyq6rhQuljHjv3lyjQ0REluPrmzXi89FHQOnScr1fP3n/+eILh+3KzoTHHt26JU+0ihWlZsL165JhL1oEHD4M9OghhaWIiIisoUgR4M03Jdn5+GNpTnr2rKwRrVxZar0lJ2sdpVmY8NiT5GTpWF6xoiwmu3JFMupFi2R7+UsvMdEhIiLb8fYGhg0DTp6U8ieBgcDff0utt4oV5TYHGfFhwmMPUlOlc3nlylIO/J9/ZDHy/PkyovPSS+xiTkRE2vHykjpvJ05I6ZOgIODiRSmJUq2afDC3887smiU8e/bsQdu2bVG0aFH4+PigUaNGWLZsmVnHSElJwXvvvYfQ0FB4enoiMDAQ/fv3x6VLl6wUtYUpBaxeDTzyCPDqq1IwMCgImDNHFiP36sURHSIish+enjKtdfy4rOcJDJSFzt27S/uK6Gh5b7NDOqVsH9nWrVsREREBT09PdOnSBb6+vli5ciXOnDmDqVOnIjIyMtdjZGRkoG3btoiOjkajRo3QtGlTxMfHY/Xq1QgJCcHOnTtRqlSpPMdkNBrh7+8Pg8EAPz+/gvx6ebN7txR/2r5dvi5dGnj3XVkYxq3lRETkCG7dkmmtyZMBg0Fua9FCvq5f3yYh5Pn9W9lYWlqaqlSpktLr9erAgQOZt9+4cUNVqVJFeXh4qNOnT+d6nHnz5ikAqmvXriojIyPz9tmzZysAqn///mbFZTAYFABlMBjM+j6znTypVJcuSkkOrJSXl1LvvKOU0Wjdn0tERGQtV64oNXy4Uh4eWe9vL74o73lWltf3b5tPaW3ZsgUnTpxAt27dULt27czb/f39MWbMGKSmpmLhwoW5Huerr74CAEyaNAm6u/pEDRgwABUrVsR3332H27dvWzz+fLt+XYoFVqsGLFkiva169ZICTxMnylZAIiIiR1SiBDBtmryn9egh73HLlkmfrrfeyhr90ZDNE56YmBgAQHh4+D33RUREAABiY2MfeIzk5GTs2rULVatWRYUKFbLdp9Pp0KpVKyQlJWHv3r2WCboAjvyeih/6rkV8SDjuTP1YFig/9RSwf78sSi5XTusQiYiILKNCBakVd+CATG2lpCBtyjQcCWmL1QM34MQx7dpV2HxFbHx8PAAgNDT0nvsCAgJQpEiRzMfk5MSJE8jIyLjvMe4+dnx8PJ544on7PiYlJQUpd22lMxqNAICEhAQkJSXl/ovk0dJBG/Hl6XDA+0e4e6ciODAVIeV8UGmtDhX/vIiKFaUNlhv3yxERkQPLyJC9N0ePAseOlcbJ0t/i9KO38fdlD9xBYeBHIPL4N+j2bRuL/tybN2/m6XE2T3gM/w5r+fv73/d+Pz+/zMcU5Bh3P+5+Jk2ahAkTJtxz+/z58+Hp6fnAn28OXQQwAF/ec3tGhixyP37cYj+KiIjILnh4yAqOatWy354I4Msv731PLIjkPBZAdNk9z6NHj8bw4cMzvzYajQgKCkLv3r3ha+n1NMnJuOPuiYsXpWjlyZNSysD073/bkxQuDDz2GPD440BYmNR2umuZEhERkc0pJUt0YmOBXbuAQ4fubaju7i4l5apXl39DQqQ7UqlSgC4lWba1W9jNmzcxefLkXB9n84THNCqT0+iL0WhEsWLFCnyMux93P3q9Hvr7bP8OCAiw2rb0cuXu3aWXlgb873/Ajh3Azp1AXJyUNDh3DvjxR3lM+fJAp05Aly5AvXpMfoiIyDbu3JH3pdWrgTVr5P3pbkFBQPPmQNOm8v5UvbrtWzz6+Pjk6XE2T3juXl9Tt27dbPclJCQgMTERDRo0eOAxKlasCDc3txzX+jxonZC9cXcH6taVy+DBclt8PLB+vVxiYqR9yccfy6ViRUl8unaVeoVERESWdvgw8M03UkD5/Pms2728gIgI4OmnJdFxpBkImy+Vbdq0KQBg48aN99wXHR2d7TE58fLyQoMGDXDs2DGcOXMm231KKWzatAk+Pj6oV6+ehaK2rdBQYMgQSXiuXgVWrQI6d5aWJidPSgP1mjWlqOX06UBCgtYRExGRo7t8GZg5U0ZqHn4YmDJFkp2iRaWQ8qpV0uJx9Wqgb1+gUiXHSXYAaFN4sGLFig8sPHjq1KnM2y9cuKCOHDmibty4ke04Dlt4sAASE5VaskSpDh2UcnfPqu1UqJBSbdoo9f33SiUlaR0lERE5iuRkpVauVKp9e6UKF856XylcWG5bsUIeY8/y+v5t960levXqhYULF2L+/Pno1atX5u33ay1x/PhxrFq1CsHBwdi1a5d9t5YooKtXgaVLZchx166s2319Zb1Pjx7Ak09yuzsREWWnlLxvfPON1MG9fj3rvrp15f2ja1dZaOwI7La1hMmuXbtU69atlZ+fn/Ly8lINGjRQS5YsuedxPXv2VADU/Pnz77kvOTlZjR8/XlWqVEl5eHiogIAA1bdvX5WQkGB2PI4wwpOTY8ekO0VwcFZ2DihVvrxSY8YodeSI1hESEZHWTp9W6v33lapSJft7RWCgUiNGKHXokNYR5o9dj/DYI0cb4bmfjAzpRfrtt1LR+9/NagBkTrZ7d+C551jcmYjIVZw6BaxcKZedO7Nu9/aW94MePaQgcqFC2sVYUHl9/2bC8y9nSHjudvs2sHatDFlu2CBbC00eewxo104udepw2ouIyFlkZAAHDwI//yzbyPfty7pPp5Pt4z17As8/7zwtHJnwmMnZEp67XboELF4sc7W7dskgpklgoGwvbNdOsvw8ljMgIiI7ceMGsGmTJDnr1wP//JN1n5ubJDmdOgEdOwJlymgWptUw4TGTMyc8d/vnH/mjWLsW2LgRuLttmF4PNGsGtG0rl8qVNQuTiIhyoJRUOf7pJ3k9/+237KP4Pj5Ay5byYbZDB6B0ae1itQUmPGZylYTnbsnJUthw7Vpg3TopcHi30FCgTRtJfpo2tUpFcCIiyoOkJGDzZklwfv5ZqvHfrXr1rNfrJk3kA6yrYMJjJldMeO6mFHDkiAyH/vwzsG1b9h4p3t4y5dW5s3xicJa5XyIie3XjhhT5W7YM2LoVSEnJus/TU16TTSPyISGahak5JjxmcvWE57+MxqxPE+vX31tavH17oFs3oHVr6YpLREQFl5wsU1XffSf/3t1cOjhYpqnatpW2Dl5emoVpV5jwmIkJT86UAv74Q8qKf/+99PoyKV0a6N8fGDgQKFtWuxiJiBzZmTPA558Dc+cC165l3V6jhny47NhRpq0cqpWDjTDhMRMTnrxRCti/XxKfxYuBixfl9sKFpabDkCHA44/zj5KIKDdKyTrKGTOAH3+ULeUAUL68VDru1k36JvL19MGY8JiJCY/50tOlzsOMGcCvv2bd/uSTwPjxMuRKRETZKSX10caPB3bvzrq9ZUvg9ddl2sqRCwHaWl7fv1lyjvKtcGGp7bBtmxS66tNH1vNs2yaL6Zo1A2JjtY6SiMg+KAVERwONG8s6nN27ZR3OoEHAn39KLZ327ZnsWAsTHrKIWrVk7vnECeC11yTxiY2VpKdlS0mIiIhc1e7dwBNPyEaPXbsk0YmMlNYPn38ua3XIupjwkEWVKwd89hlw/Lh8anF3l91edeoAffsCCQlaR0hEZDt//y19DBs2BOLiZDv58OHAyZPA1KnAQw9pHaHrYMJDVhEUJJ9a/vpLavcoBXz9tRQzjIqSXl9ERM7q1i1gwgSgShVg0SK5rVcvGQWfNg0ICNA0PJfEhIesKjhYenjFxQENGgCJicDbbwPVqskuLy6ZJyJnkpEhNXSqVpVFybdvS+XjPXuA+fOlfyFpgwkP2cTjjwM7dsgnnXLlpI1Ft25y+927FIiIHNXOnfKa9vLLMpVVoYJUSd62DahXT+voiAkP2YybG/DSS8CxY8DEidLgbudOmdvu0SN7NWciIkdx5ox8gGvcWBYkFykiU/dHjwIvvMA6OvaCCQ/ZnLc38M47sr6nZ0+57dtvZa574kSu7yEix2A0AmPGyPTV4sWS2Lzyiry2jR7Nhsv2hgkPaSYwEFiwQKa0Hn9cFvmNHSvre5Yu5foeIrJP6enAnDmyCWPSJGnq2awZsHevbM4oU0brCOl+mPCQ5urXB7Zvl09IQUGyvqdLF6BRI9nSTkRkLzZskLpjAwcCly7JyPQPPwBbtkj5DbJfTHjILuh0kuQcPQq8955Me+3eLUULW7aUHQ5ERFrZsQNo1Qpo0wY4fBgoXlza6hw6JNWRuU7H/jHhIbvi7Q28+67Uqnj99azChQ0aSHPSw4e1jpCIXMnu3ZLkPP448Msv8poUGSnFVU2vUeQYmPCQXQoIkE9PpoXNbm7A6tXSObhXL6lSSkRkLfv3A+3ayS7SDRukv1WfPrLLdOpUoFgxrSMkczHhIbsWHCwLm//4A+jYUYp6LVwouyL69QNOn9Y4QCJyKr//Lq81desC69bJh61evSTRmTsXCAnROkLKLyY85BBq1ABWrZIaFxERskti7lzZJTFggCx0JiLKr0OHpGZO7drAmjWyJufll4EjR6RCcqVKWkdIBcWEhxxKgwYyvBwXJwsI09OBL78EKleWZqXnzmkdIRE5kiNHZMPEo48CK1ZkbaD488+s+mDkHJjwkEN6/HFg40bg11+BFi2AtDTgiy8k8XntNSnrTkSUkzNngN69gUceyar79cILMn2+eDFQvbrWEZKlMeEhh9akieziio2Vwl+pqdKlvXJlYNQoqYRKRGRy5QowfLiM3CxYIOsCn31W1u4sWwY8/LDWEZK1MOEhp/Dkk8DWrXJ58kmpfPrhh5L4zJkjU19E5LpSU4EpU4CKFYHp0+Xr5s1lXeDq1TKlRc6NCQ85lWbNgJgY2V1RtSpw+bJURH3sMVZtJnJVW7dKdeS33gJu3pSFyRs2ZNX4ItfAhIecjk4HPP20zMV/+qnUyzh0SCo29+0L3LihdYREZAsJCbLTqkULqeJeqpRMY+3bJ7s9WR3ZtTDhIafl7g4MGSIVUV99VW77+mtZpPjTT9rGRkTW9d130oj4u+8ksXn1VamlYypkSq6H/+3k9IoXB2bNArZtkzU9588DzzwDdO8OXL+udXREZEkGA/DSSzKyYzBIAcFdu+Q1gNWRXRsTHnIZTzwhOzEiI+UT3qJF8mK4b5/WkRGRJWzfLmt1vv9eWkFMmADs3AnUr691ZGQPmPCQS/H2lj44cXFSIv7UKanp88UXUoeDiBxPRoYkN02bSn2dkBCp0TV2LFC4sNbRkb2wecJjNBoxfPhwVKhQAXq9HsHBwRgxYgQSExPzfIz4+HhERUXhySefRGBgIDw8PBAUFIQePXrg6NGjVoyenEWjRjKy06GDbE8dNEiGwM14GhKRHbh5E3juOWD8eEl8evYEDh4EGjfWOjKyNzqlbPe5NikpCU2aNMHBgwcRHh6Oxx57DAcOHMDGjRtRv359bNu2DZ6enrkep0uXLli6dCkeeeQRNGnSBH5+fvjjjz+wfv16eHl5YcOGDXjyySfNis1oNMLf3x8GgwF+fn75/RXJwSgFTJsm21Xv3JGeXevWsUEgkSM4flw+tBw+DOj1MlLbq5fWUZGt5fn9W9nQ2LFjFQA1atSobLePGjVKAVBRUVF5Os78+fPV/v3777l98eLFCoCqUaOG2bEZDAYFQBkMBrO/lxzfr78qFRioFKBUqVJK7dihdURE9CDR0UoVLSp/s2XKKLVzp9YRkVby+v5tsxEepRTKlSsHo9GIhIQE+Pj4ZN6XlJSEgIAAlC5dGidOnCjQz6latSr++usvXL58GSVLlszz93GEh86fB9q1Aw4cADw9gYULgRdf1DoqIvqvOXNkm3lGBtCwIbBqFRAYqHVUpJW8vn/bbA1PfHw8Lly4gLCwsGzJDgD4+PggLCwMJ0+exLkCtrt2d3cHABTmSjUyU9mysnW9XTsgORno3BmIiuJiZiJ7oRTw3ntSPd20XicmhskO5Y1NEx4ACA0Nve/9pttNj8uP3bt3488//0T9+vVRtGjRBz42JSUFRqMx24WoSBHpqzN0qHz99ttA//7sxUWktTt3gMGDgXHj5Ot33wXmz5fRWKK8sFnCYzAYAAD+/v73vd80DGV6XH6O37NnT7i5ueHDDz/M9fGTJk2Cv79/5iUoKChfP5ecT6FC0lxw1iyp1zN3ruwCuXVL68iIXFNKCtC1K/D551I1eeZMGelhawgyh9nzPpGRkUhJScnz4994440cR3Us5fbt2+jYsSOOHj2KDz74AM2aNcv1e0aPHo3hw4dnfm00Gpn0UDavvipD5V27AmvXSi+utWuBEiW0jozIdRiNQMeOwJYt0i7m229lupnIXGYnPHPmzEFSUlKeH9+pUyeEhoZmjuzkNIJjmlLKaQQoJ8nJyejQoQO2bt2K0aNHY8yYMXn6Pr1eD71eb9bPItfz7LPApk2yrmfHDqBJEyA6GihfXuvIiJzfP/8AbdsC+/dnTTe3bKl1VOSozE54zCkQeLfc1ujktsbnfm7fvo0OHTpg06ZNGDlyJKKiovIVG9GDNGkiJetbt5aOy40bAxs2ADVrah0ZkfM6eRIIDwdOnJAu5+vXSysYovyy2Rqe0NBQBAYGIi4u7p4RoqSkJMTFxSEkJCTP00p3JztvvvkmpkyZYo2wiQAADz8sIzwPPwxcuCB9uWJjtY6KyDkdPCgtX06cAIKDpRUMkx0qKJslPDqdDn379kViYiImTpyY7b6JEyciMTER/fr1y3b7rVu3cPToUZw9ezbb7aZprE2bNmH48OH46KOPrB4/Ubly0p/niSekC3NEBLBypdZRETmXmBjpifXPP8CjjwK//QZYeRkouQibt5YICwvD77//jvDwcNSpUwf79+/PbC0RGxsLLy+vzMfHxMSgefPmaNq0KWJiYjJv79WrFxYuXIiAgAAMGDDgvj+rV69eCA4OznNsLDxIeXX7NvDSS7KewLRj5LXXtI6KyPGtWiWbBFJTgSefBH78ETBzWSe5oLy+f9u0Op+Pjw9iY2Mxfvx4rFy5Elu3bkWZMmUQGRmJcePGZUt2HuT06dMAgISEBEyYMOG+j2nWrJlZCQ9RXnl5AcuXS02QL76Qfy9cAN5/n9tkifLriy/kg0NGhuzK+v571tghy7LpCI894wgPmUsp4IMPpAAaAPTuLSXv/y32TUR5kJEhzXtNKxP695d6O4UKaRsXOQ67ay1B5Gx0OuCdd4CvvpIChfPnyzZ2M6o2ELm027eBLl2ykp333pORHiY7ZA1MeIgKqG9fYM0aGX7/+WfgqaeAK1e0jorIvl2+LH8ry5dnFRR8911OC5P1MOEhsoB27YDNm4HixYFdu4CwMODfpWZE9B9//SX1rHbsAIoWleKeL7+sdVTk7JjwEFnI449LgcLy5bNe0H//XeuoiOzL9u3yt2GqsfPbb7INncjamPAQWVD16vICXrMmkJAgW2u3btU6KiL7sGSJTGNduwY0aADs3Cl/M0S2wISHyMLKlgW2bZNPrUajtKRYtkzrqIi0oxQweXJWjZ1nn5UPAg89pHVk5EqY8BBZQdGi0m/r+eflBb5LF+CTT+SFn8iVpKUBAwYAo0fL10OHAitWAN7emoZFLogJD5GVeHoCS5dKMTWlgGHDgCFDgPR0rSMjsg2jURb0m0o3zJgBTJ/ObeekDSY8RFZUqJC0njDVGfnsMxnOT0zUNCwiq/v7b6BJEyA6WkZzVq8GXn9d66jIlTHhIbIynQ54800Zxvf0BH76SRqQnj+vdWRE1nHwINCwIfDHH7JOJzYWaN9e66jI1THhIbKR55+XTtClS2e9IRw8qHFQRBa2fr0k9BcuyA6snTuBevW0joqICQ+RTTVsmLUV9/x5GfL/6SetoyKyjDlzZM1OYiLQooWUaGAPZ7IXTHiIbCwkRN4IWrSQvlvt2wOzZmkdFVH+KQW8/TYwcCBw5w7Qs6eM9BQtqnVkRFmY8BBpoGhReUN45RXpFj14MDB8uLxZEDmS9HTpcB4VJV+PHy+NdD08NA2L6B5MeIg04uEBzJ2b9UYxfTrQubPU7SFyBMnJwAsvyPPYzQ348ktg3Dg2ACX7xISHSEM6nRRkW7JEEqCVK4HnnpM3EiJ7ZjBIFfE1awC9Xrqe9+undVREOWPCQ2QHOncG1q4FvLxkEXO7drK+h8geXb0KNGsm2839/KSq+HPPaR0V0YMx4SGyE+Hhsq7Hxwf45RegTRvg5k2toyLK7sYNea4ePCglFmJiJPkhsndMeIjsSNOmwKZN8qn511+BVq1k6oDIHpia4e7fD5QqJQ1AH3tM66iI8oYJD5GdadwY2LIFKF4c2LULeOYZ4NYtraMiV5eYCDz9tDwnixeXUcgaNbSOiijvmPAQ2aG6dYHNmwF/f2D79qyu60RauH1b6kVt3y7PyU2bgEcf1ToqIvMw4SGyU7VrywJmb29ZFNqrl9TsIbKl9HRZVL91K+DrK81A69TROioi8zHhIbJjYWHSZbpwYWDxYuCdd7SOiFyJUsCQIbKD0NT4tmFDraMiyh8mPER2Ljwc+OoruT5pkhR3I7KFadOA2bOlXtR330lTUCJHxYSHyAH06iUl+wHgtddkKzCRNW3YAIwcKdenT2edHXJ8THiIHMTYsUC3brKmolMn4NQprSMiZ3XypDzXlJLqyW+8oXVERAXHhIfIQeh00rOobl2pdNuhA7erk+XduiWjOdevy3qdmTO1jojIMpjwEDkQLy/pXfTQQ8AffwCvv651RORMTCM6v/8uVZRXrJA+WUTOgAkPkYMpVw74/nsZ8Zk3D1i0SOuIyFnMmCHPrUKFgGXL5LlG5CyY8BA5oBYtZE0PAAwcCBw9qm085Pji4oDISLk+bZq0OSFyJkx4iBzUu+8CzZtLV/UXX5RquET5kZgI9OgB3LkDdO0qtXeInA0THiIHVaiQ1EYpXVrW8wwdqnVE5KhGjZKdWUFBWXV3iJwNEx4iB1amjCQ9Op0UJFyyROuIyNFs2gR8/rlcnz9femUROSMmPEQOrmVL4O235fqgQcDff2sbDzkOgwF45RW5Pngw8NRT2sZDZE1MeIicwNixQP36wI0bQJ8+sr2YKDdDh0qCXLkyMHmy1tEQWZfNEx6j0Yjhw4ejQoUK0Ov1CA4OxogRI5CYmFig4w4aNAg6nQ46nQ4JCQkWipbIMbi7A998Iw0eN24EvvhC64jI3v34I7BgAeDmBixcCPj4aB0RkXXZNOFJSkpC06ZNMX36dFSrVg3Dhg1D1apVMXXqVLRo0QLJycn5Ou6mTZvwxRdfwId/seTCqlXL+pT+5ptAfLy28ZD9unJFCgwC8lx5/HFt4yGyBZsmPB9++CEOHjyIUaNGITo6GpMnT0Z0dDRGjRqFPXv2YPr06WYf02Aw4JVXXkGnTp1Qr149K0RN5Dhef122qt+6BfTsKX23iO6mlKz1unQJePhhYMIErSMisg2bJTxKKcydOxdFihTBu+++m+2+d999F0WKFMHcuXPNPu4bb7yB27dvY9asWZYKlchhubnJThtfX2DHDuCjj7SOiOzN0qXSMqJwYZnK8vTUOiIi27BZwhMfH48LFy4gLCzsnqknHx8fhIWF4eTJkzh37lyej7l27VosXLgQM2fOROnSpS0dMpFDqlBBWgQAwLhxwP/+p208ZD8uXgRefVWuv/OONKIlchU2TXgAIDQ09L73m26Pz+PCg6tXr6Jfv3549tln0bVrV7PjSUlJgdFozHYhchY9ewLt2wNpaUCvXvIvuTZTY9Dr14E6dYAxY7SOiMi2bJbwGAwGAIB/DlWt/Pz8sj0uN6+++ipSU1Mxe/bsfMUzadIk+Pv7Z16CgoLydRwie6TTAXPmAMWLAwcOAJMmaR0RaW3+fOCnnwAPD9nR5+6udUREtlXY3G+IjIxESkpKnh//xhtv5Diqk19Lly7FsmXL8M033yAgICBfxxg9ejSGDx+e+bXRaGTSQ04lIAD47DOgWzdg4kQZ8aldW+uoSAtnzmS1Hnn/fVmsTORqzE545syZg6SkpDw/vlOnTggNDc0c2clpBMc0pZTTCJDJtWvX8Nprr+Hpp59G9+7d8xzHf+n1euj1+nx/P5Ej6NIFWL4cWL1aprn27JFP+OQ6MjKkmvLNm7L9/K7PeUQuxewprcTERCil8nxp1qwZgNzX6OS2xsfk7NmzuHr1Kn766afMQoOmS2xsLACgTJky0Ol0OHjwoLm/HpFT0emkGWSJErJ4+YMPtI6IbO3zz4EtWwBvb9mVVaiQ1hERacPsEZ78Cg0NRWBgIOLi4pCUlJRtp1ZSUhLi4uIQEhKS67RSiRIl0KdPn/ve99NPPyEhIQHdunWDl5cXSpQoYdHfgcgRPfSQvOl17iwJT4cOsmiVnF98PDBypFz/6CNpIUHkqmyW8Oh0OvTt2xfvvfceJk6ciMl3NW6ZOHEiEhMTMeY/2wZu3bqFs2fPwtvbG+XLlwcABAUF5Vivp1mzZkhISMC0adPyvbaHyBm9+KLUXlm+XKa29u4FOKPr3O7ckf/r27elwezAgVpHRKQtm1ZaHjlyJGrVqoUpU6YgIiICo0ePRkREBKZMmYL69etjqGlV3b92796N6tWro0ePHrYMk8gpzZoFlCoFHDoki5jJuU2bJsUn/fyAr7+WopRErsymfwI+Pj6IjY3F0KFDceTIEUybNg1Hjx5FZGQkNm/eDC8vL1uGQ+RSSpWS9TyA9Nzau1fbeMh6Dh0CTAXtP/0U+HeAnMil6ZRSSusg7IHRaIS/vz8MBkNmTSAiZ9S1K7BkCVCjBrB/P6e2nE1aGtCwodRfatcO+OEHWbxO5Kzy+v7NQU4iFzNzJlC6NHD4MDB+vNbRkKW9/74kO8WLA19+yWSHyIQJD5GLKVkS+OILuf7hh8CuXdrGQ5azd29W6YHZs6X4JBEJJjxELqhjR+Cll6QoXa9eQHKy1hFRQSUnAz16yO6szp1lZx4RZWHCQ+SiZsyQEYCjR4GxY7WOhgpq1CjgyBGpuzRrltbRENkfJjxELqp4cWkwCmRtYSbH9PPPksAC0iSUNVeJ7sWEh8iFtW8v0yCmqa3bt7WOiMz1zz9A795yfcgQoE0bbeMhsldMeIhc3CefAIGBwF9/ybQIOQ6lJNm5dAmoWROYMkXriIjsFxMeIhdXrJhU4gVky/pPP2kbD+XdzJnA+vWApyeweLH8S0T3x4SHiNC6NWDq7NK7N3DxoqbhUB78739ZjUGnTgUefljbeIjsHRMeIgIg7SZq1QIuX5b1PBkZWkdEObl9Wypmp6QAzzwDvPqq1hER2T8mPEQEQFpMfP894OUFbNwoa3vIPo0YIZWyAwKAefNYTZkoL5jwEFGmGjWA6dPl+ltvSa8tsi/r1mXV2Vm4UJrCElHumPAQUTb9+wPPPitNKLt2BZKStI6ITC5ezNqCPmwYEB6ubTxEjoQJDxFlo9MBc+cCZcvKVnXTYmbSlqlW0pUrstZq0iStIyJyLEx4iOgeJUoA336blfysWKF1RPTpp7K2ystLtqDr9VpHRORYmPAQ0X01by7reACgXz/g7Flt43FlBw9m/V98/DFQvbqm4RA5JCY8RJSjCROABg2AGzeAl18G0tO1jsj13Lola6lSU4EOHYABA7SOiMgxMeEhohy5u8tWdV9f4NdfgQ8+0Doi1xMZKR3ty5SR6UVuQSfKHyY8RPRAlSoBs2fL9ffeA7Zv1zYeV/LDD8AXX8j1b74BSpbUNh4iR8aEh4hy9dJLQPfuslPopZeA69e1jsj5XbgA9Okj1998E2jZUtt4iBwdEx4iypNZs4DKlWXxcv/+0qmbrCMjA+jRA7h6FahTh1OJRJbAhIeI8sTXV9bzFC4s29RNHdbJ8j7+GNi8GfD2lnPu4aF1RESOjwkPEeVZ/fpAVJRcHzoUOHVK03Cc0qFDwNtvy/VPPgGqVtU0HCKnwYSHiMwSGQk0bSotJ155hV3VLSktTaopp6ZKF/S+fbWOiMh5MOEhIrO4uUmHbh8fICYG+PxzrSNyHlOmAPv2AcWKAXPmcAs6kSUx4SEis1WsCHz4oVwfNQo4flzbeJzB77/Ltn8AmDkTCAzUNh4iZ8OEh4jyZeBAoEULqQTcuzentgoiNVWmstLSpFN9t25aR0TkfJjwEFG+uLnJTq0iRaQY4YwZWkfkuKKipF9WiRJSaJBTWUSWx4SHiPItOBiYNk2ujx4NxMdrGo5DOngwq87OrFnAQw9pGg6R02LCQ0QF0q8f0KoVkJwMvPoqCxKaIyNDmoGmpwPPPw+8+KLWERE5LyY8RFQgOp302tLrgV9+AZYv1zoixzF3LrB7txR1nDGDU1lE1sSEh4gKrFIlYMwYuT50KGA0ahqOQ7h8GXjrLbk+cSJ3ZRFZGxMeIrKIkSOl19bFi1nbqylnY8ZIE9ZatYDXXtM6GiLnx4SHiCzC01PqxwAyPXPihLbx2LPff8/qRTZrlvQnIyLrsnnCYzQaMXz4cFSoUAF6vR7BwcEYMWIEEhMTzT5WRkYG5s2bhyZNmqBo0aLw9vZGlSpV0Lt3b9y8edMK0RPRg7RuDURESD2ZUaO0jsY+KSXtOZSSRcphYVpHROQadErZbk9FUlISmjRpgoMHDyI8PByPPfYYDhw4gI0bN6J+/frYtm0bPD0983SslJQUdOrUCevWrcOjjz6K5s2bQ6/X4+zZs9iyZQv27duHcuXK5Tk2o9EIf39/GAwG+Pn55fdXJHJ5hw7JNE1GBrBtG/DEE1pHZF9++kn6ZHl4AEePAiEhWkdE5Njy/P6tbGjs2LEKgBo1alS220eNGqUAqKioqDwfa+jQoQqAmjx58j333blzR925c8es2AwGgwKgDAaDWd9HRPfq318pQKn69ZXKyNA6GvuRnq5U9epybkaM0DoaIueQ1/dvm43wKKVQrlw5GI1GJCQkwMfHJ/O+pKQkBAQEoHTp0jiRh4n/8+fPIzg4GI0bN8a2bdssEh9HeIgs559/ZOdWUhKwZg3QoYPWEdmHb74BevYEiheXNU5Fi2odEZHjy+v7t83W8MTHx+PChQsICwvLluwAgI+PD8LCwnDy5EmcO3cu12OtWLEC6enpeOGFF3Dz5k189913mDRpEubNm4fz589b61cgojx66CFgyBC5/u677LMFyLqm8ePl+siRTHaIbM1mewPi/605Hxoaet/7Q0NDER0djfj4eAQFBT3wWPv27QMA3LhxA1WrVsXFixcz7/Pw8MDkyZMxbNiwBx4jJSUFKSkpmV8bWTiEyKLefFN2IP3xhxQj7NxZ64i0NX8+cOoUULo0MHiw1tEQuR6bjfAYDAYAgL+//33vNw1DmR73IJcuXQIATJgwAbVq1cKff/4Jo9GIdevWoWTJkhg+fDjWr1//wGNMmjQJ/v7+mZfckiwiMk/x4rIbCQDGjZP2Ca4qJUWKCwJSf+c/g9xEZANmj/BERkZmGxnJzRtvvJHjqE5+Zfw7Pl66dGmsXLkS3t7eAICnn34ac+fORdu2bTFt2jS0adMmx2OMHj0aw4cPz/zaaDQy6SGysKFDgU8/BY4dA1asALp00ToibSxYAPz9N1C2rPTOIiLbMzvhmTNnDpKSkvL8+E6dOiE0NDRzZCenERzTlFJOI0B3Mz2mZcuWmcmOSUREBPR6Pfbu3fvAY+j1euj1+lx/FhHln5+fJD1jxwJRUTKt5Wr9otLTgSlT5PrIkVKgkYhsz+wprcTERCil8nxp1qwZgKy1O6a1PP+V2xqfu1WtWhUAUPQ+q/7c3Nzg6+uL27dvm/urEZEVDB4MFCkia3l++knraGxv6VJZu1OyJNC3r9bRELkum63hCQ0NRWBgIOLi4u4ZIUpKSkJcXBxCQkLyNK3UokULAMDhw4fvue/y5cu4cuUKgoODLRI3ERVMsWLAoEFyPSpKKgy7iowMYPJkuT50KPCfAWkisiGbJTw6nQ59+/ZFYmIiJppW7/1r4sSJSExMRL9+/bLdfuvWLRw9ehRnz57NdnvTpk1RvXp1bN68GZs2bcq8XSmFMf+2bH7xxRet9JsQkbmGDQP0emDHDqm+7CrWrZPK076+bBBKpDWbt5YICwvD77//jvDwcNSpUwf79+/PbC0RGxsLLy+vzMfHxMSgefPmaNq0KWJiYrIda9euXWjRogVSU1Px3HPPoVy5cti+fTt2796NOnXqYNu2bffU+3kQFh4ksq6BA4E5c4D27YEfftA6Gtto1gyIjZW1O6Z1PERkWXZXeBCQAoOxsbEYOnQojhw5gmnTpuHo0aOIjIzE5s2bsyU7uWnYsCF2796NDh06YPPmzZg5cyauXr2K0aNHIzY21qxkh4isb+hQ+XftWuD4cU1DsYkDByTZKVwYeP11raMhIpuO8NgzjvAQWV/btsD69bKQeeZMraOxrh49gG+/Bbp2Bb7/XutoiJyXXY7wEJFrMxVAnz8fuHFD01Cs6uJFYMkSuZ5L0XcishEmPERkMy1bAo88Ik1F587VOhrr+fxz6Z0VFgbUr691NEQEMOEhIhvS6YA33pDrs2c7Z1PRlBTgyy/luul3JSLtMeEhIpvq2lUqMJ88CWzerHU0lrdqFXDpEhAYCHTsqHU0RGTChIeIbMrHB+jeXa7PmaNtLNYwe7b827+/7NAiIvvAhIeIbM7UQHPNGlng6yz++AP49VegUCHgP3VUiUhjTHiIyOZq1gQefxy4cweYN0/raCzHNLrTsaNMaRGR/WDCQ0SaMI3yfPWVJD6OLjFR6u4AWb3DiMh+MOEhIk288II0Fj1zBti4UetoCm7FCkl6QkOB5s21joaI/osJDxFpwstLqhEDzrF42TQ198orsv2eiOwLEx4i0oxpWmvdOuD8eW1jKYi//pLFym5uWUkcEdkXJjxEpJnq1YEnnpA1PF9/rXU0+Td/vvzbpg0XKxPZKyY8RKQp0yjP3LmOuXg5PR1YuFCuv/KKtrEQUc6Y8BCRpp5/HihRAjh3DoiO1joa80VHSy2hkiWBZ57ROhoiygkTHiLSlKdnVuVlR6zJY4q5e3fAw0PbWIgoZ0x4iEhzpqmgH38ELl/WNhZzXL4sMQOcziKyd0x4iEhzNWsC9esDaWnAokVaR5N3ixbJGp769YFHHtE6GiJ6ECY8RGQXTCMkX38NKKVtLHmhVNbOsj59tI2FiHLHhIeI7EKXLrKe588/gT17tI4md3v2SKyenhI7Edk3JjxEZBeKFpUdW4BjLF42xdipE+Dvr20sRJQ7JjxEZDdMU0OLFwO3bmkby4PcuiUxAlysTOQomPAQkd1o2hQICQGMRmDlSq2jydmqVRJjSIjETET2jwkPEdkNNzegd2+5bs/TWqbYeveWmInI/vFPlYjsSq9e0m08JgY4cULraO518iSwdavE2LOn1tEQUV4x4SEiuxIUBISHy3VTU057YoqpVSugfHltYyGivGPCQ0R2x7QQeMEC+2ooeueOxARwsTKRo2HCQ0R2p0MHoHhx4Px5YONGraPJsnEj8PffEtuzz2odDRGZgwkPEdkdvR54+WW5bk+Ll+fOlX+7d5cYichxMOEhIrtkmjL64QfgyhVtYwGAf/7JahTKVhJEjocJDxHZpVq1gLp17aeh6DffSKPQhg2l2SkRORYmPERkt0yjPPPmadtQ9O5GoX37ahcHEeUfEx4isltdu8pamT/+APbt0y6OuDjg2DHAxwfo3Fm7OIgo/5jwEJHdKlYsq6GoaYRFC6bFyp07A76+2sVBRPnHhIeI7JppWuv777VpKGowAMuWyXVOZxE5LiY8RGTXmjcHgoOlWefq1bb/+YsXA7dvAzVqAI0a2f7nE5Fl2DzhMRqNGD58OCpUqAC9Xo/g4GCMGDECiYmJZh0nPT0d8+bNQ+PGjVGqVCn4+vqiRo0aGDlyJBISEqwUPRHZ2t0NRbWY1jL9zD59pH8WETkmnVK22/uQlJSEJk2a4ODBgwgPD8djjz2GAwcOYOPGjahfvz62bdsGT0/PPB3r+eefx6pVq1C5cmW0bt0aer0eO3fuRFxcHMqUKYP9+/cjICAgz7EZjUb4+/vDYDDAz88vv78iEVnBmTNASIjsljp+HKhUyTY/9+BB4LHHAHd3qfpcqpRtfi4R5V1e379tOsLz4Ycf4uDBgxg1ahSio6MxefJkREdHY9SoUdizZw+mT5+ep+Ps3r0bq1atQoMGDXD48GHMnDkTU6dOxfbt2zFkyBBcvHgRX375pZV/GyKylQoVshqKfvGF7X7urFnyb8eOTHaIHJ3NEh6lFObOnYsiRYrg3XffzXbfu+++iyJFimCuaStELk6ePAkAaNmyJdzd3bPd98wzzwAALl++bIGoicheDB4s/86dCyQlWf/nXb0KfPedXH/9dev/PCKyLpslPPHx8bhw4QLCwsLg4+OT7T4fHx+EhYXh5MmTOHfuXK7HevjhhwEAv/zyC9LS0rLdt27dOgDAU089ZaHIicgetG0rU1k3bmQlItb09deyWLl2bSAszPo/j4isy6YJDwCEhobe937T7abHPUjNmjXxxhtvYPfu3ahRowaGDBmCESNGoEmTJvjyyy8xYcIEPJtLK+OUlBQYjcZsFyKyX25uWaM8M2ZYt/JyenrWdNaQIVysTOQMbJbwGAwGAIC/v/997zctNDI9LjeffPIJPvnkE5w5cyZzDU9cXBxatWqF5557LtfvnzRpEvz9/TMvQUFBefxNiEgrvXtLteM//wS2brXez1m7Fjh7FihZUqo9E5HjK2zuN0RGRiIlJSXPj3/jjTdyHNXJr4yMDAwcOBCLFy/GzJkz0aFDB3h7eyMuLg5DhgxBo0aNsHXrVtSvXz/HY4wePRrDhw/P/NpoNDLpIbJz/v5Ar14y+jJ1KtCiheV/hlLARx/J9X79gDxuHCUiO2d2wjNnzhwkmbFisFOnTggNDc0c2clpBMc0pZTTCNDd5s2bh6+++gqffvopBgwYkHl7mzZtsGLFCtSuXRtjxozBpk2bcjyGXq+HXq/P8+9BRPZh+HBg9mxg/Xpg/36gTh3LHj8mBtixQ3p4DRli2WMTkXbMntJKTEyEUirPl2bNmgHIfY1Obmt87rZ+/XoAQPPmze+5r1atWihWrBgOHDhg7q9GRA6gYsWsaaaoKMsf/4MP5N8+fQAzSnkRkZ2z2Rqe0NBQBAYGIi4u7p4RoqSkJMTFxSEkJCRP00qpqakA7r/1PCUlBTdv3uToDZETGz1a/l21CjhyxHLH3bUL2LwZKFwYGDnScsclIu3ZLOHR6XTo27cvEhMTMXHixGz3TZw4EYmJiejXr1+222/duoWjR4/i7Nmz2W4P+3ePaFRU1D3ricaPH4/09PT7jv4QkXN4+GEpBqhU1oiMJZiO9fLLUuyQiJyHzVtLhIWF4ffff0d4eDjq1KmD/fv3Z7aWiI2NhZeXV+bjY2Ji0Lx5czRt2hQxMTGZtxuNRjRs2BBHjx5FcHAwWrduDS8vL8TFxWH37t0oVaoUdu7ciYoVK+Y5NraWIHIs+/YB9erJlvE9e4C6dQt2vJgYaVTq5gYcPgxUrWqRMInIyuyytYSPjw9iY2MxdOhQHDlyBNOmTcPRo0cRGRmJzZs3Z0t2HsTPzw87d+7E6NGj4e3tjQULFuCzzz7D5cuXMXDgQOzfv9+sZIeIHE/dusBLL8koz7BhBavLc+eOHAMABg5kskPkjGw6wmPPOMJD5HjOnZPk5PZtYMUK4Pnn83ecefNkkbK/vzQnLVnSsnESkfXY5QgPEZElBQUBI0bI9REj8tdj6/p14O235frYsUx2iJwVEx4icmgjRwLlygGnTgFvvGHe9yolxQUTEoAqVbJaVxCR82HCQ0QOzccH+PZbWbz89dfAsmV5/965c4GVKwF3d2lI6uFhvTiJSFtMeIjI4TVrBowZI9f7989bbZ79+7NGhD74QHZ8EZHzYsJDRE5h3DigcWPAYACaNgUOHsz5sTt2SB+u27eBVq2AyEibhUlEGmHCQ0ROwd0d+PFH6a11+bKM+ixbBmRkZD0mPR345htJcgwGoEkTYPlyqb1DRM7N7OahRET2qmRJYMsW4Omngbg4oHNnoHp1SXCUAn7+GThxQh4bHi6tKXx8tI2ZiGyDCQ8RORV/f2DjRmDKFGDGDFnPc/eanpIlpeP68OHSEZ2IXAMLD/6LhQeJnI/RKFNYFy/K1+XLS58sjuoQOY+8vn9zhIeInJafH2vrEJHgUj0iIiJyekx4iIiIyOkx4SEiIiKnx4SHiIiInB4THiIiInJ6THiIiIjI6THhISIiIqfHhIeIiIicHhMeIiIicnpMeIiIiMjpMeEhIiIip8eEh4iIiJweEx4iIiJyeuyW/i+lFABpM09ERESOwfS+bXofzwkTnn/dvHkTABAUFKRxJERERGSumzdvwt/fP8f7dSq3lMhFZGRk4MKFC/D19YVOp7PosY1GI4KCgnDu3Dn4+flZ9NiUhefZNniebYPn2TZ4nm3DmudZKYWbN28iMDAQbm45r9ThCM+/3NzcUK5cOav+DD8/P/5B2QDPs23wPNsGz7Nt8DzbhrXO84NGdky4aJmIiIicHhMeIiIicnpMeGxAr9dj3Lhx0Ov1Wofi1HiebYPn2TZ4nm2D59k27OE8c9EyEREROT2O8BAREZHTY8JDRERETo8JDxERETk9JjxERETk9Jjw5MOePXvQtm1bFC1aFD4+PmjUqBGWLVtm1jFSUlLw3nvvITQ0FJ6enggMDET//v1x6dIlK0XtmAp6rk+cOIHx48ejffv2KFu2LHQ6HYKDg60XsIMqyHlWSmH9+vUYNGgQHn30Ufj7+8Pb2xu1atVCVFQUkpOTrRy94yjo83n9+vXo0qULqlWrhqJFi8Lb2xvVqlVDnz598Ndff1kxcsdiidfou12/fj3z9aN169YWjNSxFfQ8L1iwADqdLsdLTEyMReNlpWUzbd26FREREfD09ESXLl3g6+uLlStXonPnzjh37hwiIyNzPUZGRgY6dOiA6OhoNGrUCM8//zzi4+Mxd+5cbN68GTt37kSpUqVs8NvYN0uc619//RUTJkxAoUKFUL16dSQkJNggcsdS0POckpKCtm3bQq/Xo1mzZoiIiEBycjKio6Px9ttvY82aNYiJiYG3t7eNfiP7ZInn888//4ydO3eiYcOGaNOmDdzd3XHkyBEsXLgQ3333HX7++We0aNHCBr+N/bLEef6vwYMHw2AwWCFax2XJ89yhQwfUrl37ntst/uFUUZ6lpaWpSpUqKb1erw4cOJB5+40bN1SVKlWUh4eHOn36dK7HmTdvngKgunbtqjIyMjJvnz17tgKg+vfvb43wHYqlzvWJEyfUjh071K1bt5RSSun1elWhQgUrRe14LHGeU1NT1fvvv6+uXbt2z+3t2rVTANSHH35ojfAdhqWez7dv377v7b/88osCoOrVq2epkB2Spc7z3VasWKEAqM8++0wBUBERERaO2vFY6jzPnz9fAVDz58+3XrB3YcJjhujoaAVA9e7d+577FixYoACoCRMm5Hqcxo0bKwD3PCEyMjJUxYoVlY+PT+YbtKuy1Ln+LyY82VnrPJv89ttvCoB6+umnCxKmw7P2eVZKqWLFiqmiRYsW6BiOztLn+dKlS6pUqVKqe/fu6tSpU0x4/mWp82zrhIdTWmYwzSeGh4ffc19ERAQAIDY29oHHSE5Oxq5du1C1alVUqFAh2306nQ6tWrXCnDlzsHfvXjzxxBOWCdwBWeJcU+6sfZ7d3d0BAIULu/ZLjbXP844dO3D9+nU0adIk38dwBpY+zwMHDkShQoXw6aefckrrLpY+zwcOHMDVq1eRnp6O4OBgtGzZEiVKlLBIrHdz7VchM8XHxwMAQkND77kvICAARYoUyXxMTk6cOIGMjIz7HuPuY8fHx7t0wmOJc025s/Z5njdvHoD7vzC6Ekuf540bN+K3335DSkoK4uPjsW7dOpQsWRLTp0+3WMyOyJLnedGiRVi1ahXWrFmDYsWKMeG5i6WfzzNmzMj2tZeXF8aNG4dRo0YVLND/YMJjBtMTPqc29H5+frn+UeTlGHc/zlVZ4lxT7qx5ntevX485c+agevXq6NOnT75jdAaWPs8bN27EtGnTMr+uXLkylixZgrp16xYsUAdnqfN84cIFDBkyBF27dkWHDh0sGqMzsNR5DgkJwcyZMxEREYFy5crh2rVr2LJlC0aPHo233noL3t7eeP311y0WN7elE5HF7dmzB507d4a/vz+WL1/OxowWNnXqVCilcPPmzcwp8rCwMHz//fdah+YU+vbtC3d393tGHsiymjZtisGDByM0NBReXl4oW7YsunfvjujoaHh6emL8+PFIT0+32M9jwmMGUzabU+ZqNBpzzHjNOcbdj3NVljjXlDtrnOe9e/ciPDwcbm5uiI6OxsMPP1zgOB2dtZ7PRYoUQYMGDbBmzRpUq1YN/fv3x+XLlwsUqyOzxHleuHAh1q9fj1mzZqFkyZIWj9EZWPv1+eGHH0aTJk1w7do1HDlyJN/H+S8mPGa4e33NfyUkJCAxMTHHtTkmFStWhJubW47zmw+aG3UlljjXlDtLn+e9e/eiVatWyMjIQHR0NOrXr2+xWB2ZtZ/PhQsXRvPmzZGUlIS9e/fm+ziOzhLn+cCBAwCAF154IVsRvJCQEABAdHQ0dDrdfevGuApbvD6bks2kpKQCHeduTHjM0LRpUwAyf/5f0dHR2R6TEy8vLzRo0ADHjh3DmTNnst2nlMKmTZvg4+ODevXqWShqx2SJc025s+R5NiU7d+7cwYYNG9CwYUPLBergbPF8vnDhAoCsnXGuyBLnuXHjxujTp889l86dOwMAypUrhz59+uC5556zcPSOw9rP5zt37mQm7v/dzVwgNtn87iTS0tJUxYoVH1hs6dSpU5m3X7hwQR05ckTduHEj23FYeDB3ljrX/8U6PNlZ6jzv3btXFS1aVBUpUkRt377dRtE7Dkud5z179tz3+Bs2bFDu7u6qaNGiKjEx0Rq/gkOw1uuGUop1eO5iydeN/0pPT1dvvvmmAqCaN29u0biZ8Jhpy5Ytyt3dXfn6+qp+/fqp4cOHqwoVKigAaurUqdke27Nnz/sWVbpz546KiIhQAFSjRo3UqFGj1PPPP690Op0KCQlRly5dsuFvZL8sca4vX76sevbsmXlxc3NTPj4+2W67fPmyDX8r+1PQ83z16lVVrFgxBUC1bt1ajRs37p7L9OnTbftL2SFLPJ8BqEceeUR169ZNjRw5Ur322mvqiSeeUACUu7u7WrVqlQ1/I/tkifN8P0x4srPU8/nRRx9VL7/8sho1apTq16+fqlKligKgypUrp06cOGHRmJnw5MOuXbtU69atlZ+fn/Ly8lINGjRQS5YsuedxD/pjSk5OVuPHj1eVKlVSHh4eKiAgQPXt21clJCTY4DdwHAU916YXqQdd7v4k4qoKcp7zco45qiYK+nyOiopSrVq1UmXLllUeHh7K09NTValSRfXv318dPnzYRr+F/bPEa/R/MeG5V0HPc2RkpAoLC1MPPfSQcnd3Vz4+PqpWrVrqnXfeuadVjSXolFLKchNkRERERPaHi5aJiIjI6THhISIiIqfHhIeIiIicHhMeIiIicnpMeIiIiMjpMeEhIiIip8eEh4iIiJweEx4iIiJyekx4iIiIyOkx4SEiIiKnx4SHiIiInB4THiIiInJ6THiIiIjI6f0focv3+PUPlqEAAAAASUVORK5CYII=\n",
"text/plain": [
"