
Git Good
How to understand Git

Sumner Evans
26 September 2023

Mines ACM

A bit about me

My name is Sumner, I’m a software engineer at Beeper.

• I graduated from Colorado School of Mines in 2018 with my
bachelor’s in CS and 2019 with a master’s in CS.

• I am an adjunct professor. Currently I’m teaching CSCI 406.
I’ve taught 341, 400, and 564 in the past as well.

• I enjoy skiing, volleyball, and soccer.
• I’m a 4th degree black belt in ATA taekwondo.

1

Overview

1. Why use Git?

2. Commits

3. Branches

4. Merging

5. Rebasing

6. Remotes

7. Advanced Tips

This talk is interactive!
If you have questions at any point, feel free to interrupt me.

2

Why use Git?

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? I

Example Scenario:

1. You start a project called ”my-proj” and write a ton of code.
2. You finally get it to (kinda) work.
3. You decide to make a copy of ”my-proj” for backup
purposes.

4. You continue development on ”my-proj” but then screw
something up really bad.

5. You decide to revert back to your copy.
6. Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7. You then proceed to manually compare the files in the
backup to those in your new code and figure out what you
still want to have.

This is terrible. 3

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Why use Version Control? II

Another Scenario:

1. You start working on a project with a partner.
2. You write a bunch of code.
3. You email the code in a .zip file, then go home for the
weekend.

4. You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5. You come together and start copying files. Then you
realize you both modified main().

6. You then manually determine what changed in both files
and reconcile them.

This is awful.
4

Version Control Systems

Version Control Systems (VCSs) such as Git solve these
problems.

• VCS keeps track of revisions, changes in the code in
entities called changesets or commits.

• Most VCS allow version merging. That means multiple
people can be working on the same file and resolve
discrepancies later. Git is very elegant in handling merge
conflicts such as this.

5

Version Control Systems

Version Control Systems (VCSs) such as Git solve these
problems.

• VCS keeps track of revisions, changes in the code in
entities called changesets or commits.

• Most VCS allow version merging. That means multiple
people can be working on the same file and resolve
discrepancies later. Git is very elegant in handling merge
conflicts such as this.

5

Git is popular

Git is a very popular version control system.

Services such as GitHub and GitLab provide free hosting for Git
repositories.

It has become the de-facto industry standard for source
control.

6

Git is a distributed version control system

Distributed because you can use it without being connected to
a central server. You have a full copy of the code on your own
computer.

Version control because it keeps track of changes to files.

But how does it keep track of all of the changes?

7

Git is a distributed version control system

Distributed because you can use it without being connected to
a central server. You have a full copy of the code on your own
computer.

Version control because it keeps track of changes to files.

But how does it keep track of all of the changes?

7

Commits

Commits: what are they?

Commits are sets of differences (diffs) in files.1

Commits reference their parent(s) and contain information
about the changes made in the repo since that parent commit.

1This is a bit of a lie, more on that later.

8

Commits: what are they?

Commits are sets of differences (diffs) in files.1

Commits reference their parent(s) and contain information
about the changes made in the repo since that parent commit.

1This is a bit of a lie, more on that later.
8

Commits: they form a DAG, and are stored on the “heap”

Commits form a Directed Acyclic Graph (DAG). There are no
loops in the graph, and every commit points to its parent(s).

Every single commit is stored in the .git directory of your
repository2 which can be thought of like a “heap” for commits.
The parents of a commit are also stored in this “heap”.

We will return to this fact when we talk about branches.

2Technically another lie.

9

Commits: creating

You can create a commit by running git commit. This will
create a commit based on the checked-out commit with the
changes that you have “staged”.

• You can stage changes by running git add and passing a
list of files.

• You can stage all changes by running git add -A.
• Pro tip: If you want to add specific parts of files, use git
add -p.

If you want to remove from the stage, you can run git reset
(optionally passing a list of files to unstage).

10

Commits: creating

You can create a commit by running git commit. This will
create a commit based on the checked-out commit with the
changes that you have “staged”.

• You can stage changes by running git add and passing a
list of files.

• You can stage all changes by running git add -A.
• Pro tip: If you want to add specific parts of files, use git
add -p.

If you want to remove from the stage, you can run git reset
(optionally passing a list of files to unstage).

10

Commits: creating

You can create a commit by running git commit. This will
create a commit based on the checked-out commit with the
changes that you have “staged”.

• You can stage changes by running git add and passing a
list of files.

• You can stage all changes by running git add -A.
• Pro tip: If you want to add specific parts of files, use git
add -p.

If you want to remove from the stage, you can run git reset
(optionally passing a list of files to unstage).

10

Commits: creating

You can create a commit by running git commit. This will
create a commit based on the checked-out commit with the
changes that you have “staged”.

• You can stage changes by running git add and passing a
list of files.

• You can stage all changes by running git add -A.
• Pro tip: If you want to add specific parts of files, use git
add -p.

If you want to remove from the stage, you can run git reset
(optionally passing a list of files to unstage).

10

Commits: creating

You can create a commit by running git commit. This will
create a commit based on the checked-out commit with the
changes that you have “staged”.

• You can stage changes by running git add and passing a
list of files.

• You can stage all changes by running git add -A.
• Pro tip: If you want to add specific parts of files, use git
add -p.

If you want to remove from the stage, you can run git reset
(optionally passing a list of files to unstage).

10

Commits: what will be committed?

If you ever want to know what will be included in your commit,
you can run git status to show the list of files staged for
commit.
> git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: git.tex

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working

directory)↪→

modified: git.pdf
modified: git.tex

The git.tex file has only some lines staged for commit.
11

Commits: what will be committed?

If you ever want to know what will be included in your commit,
you can run git status to show the list of files staged for
commit.
> git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: git.tex

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working

directory)↪→

modified: git.pdf
modified: git.tex

The git.tex file has only some lines staged for commit.
11

Commits: what will be committed?

If you ever want to know what will be included in your commit,
you can run git status to show the list of files staged for
commit.
> git status
On branch master
Your branch is ahead of 'origin/master' by 1 commit.

(use "git push" to publish your local commits)

Changes to be committed:
(use "git restore --staged <file>..." to unstage)

modified: git.tex

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working

directory)↪→

modified: git.pdf
modified: git.tex

The git.tex file has only some lines staged for commit.
11

Commits: what will be committed, but with more detail?

To see the details of the changes that are staged (that is, will
be committed), you can run git diff --cached.
If you want to see the details of the changes that are not
staged, you can run git diff.
git diff optionally accepts a list of files to diff.
diff --git a/git.tex b/git.tex
index 2c01a7b..91148d1 100644
--- a/git.tex
+++ b/git.tex
@@ -33,9 +33,7 @@

\section{Why use Git?}

-\begin{frame}{Why use Git? I}
-
- Example Scenario:
+\begin{frame}{Example Scenario 1}

\begin{enumerate}[<+->]
\item You start a project called ``my-proj'' and write a ton of code.

12

Commits: what will be committed, but with more detail?

To see the details of the changes that are staged (that is, will
be committed), you can run git diff --cached.
If you want to see the details of the changes that are not
staged, you can run git diff.
git diff optionally accepts a list of files to diff.
diff --git a/git.tex b/git.tex
index 2c01a7b..91148d1 100644
--- a/git.tex
+++ b/git.tex
@@ -33,9 +33,7 @@

\section{Why use Git?}

-\begin{frame}{Why use Git? I}
-
- Example Scenario:
+\begin{frame}{Example Scenario 1}

\begin{enumerate}[<+->]
\item You start a project called ``my-proj'' and write a ton of code.

12

Commits: showing existing commits

You can view a commit using git show <commit hash>.
commit cb1b9610e4d34aa66b52e7fb722654679b4529e2
Author: Sumner Evans <me@sumnerevans.com>
Date: Tue Jan 31 10:42:58 2023 -0700

matrix-synapse: 1.76.0rc2 -> 1.76.0

Signed-off-by: Sumner Evans <me@sumnerevans.com>

diff --git a/modules/services/matrix/synapse/default.nix
b/modules/services/matrix/synapse/default.nix↪→

index b142cf0..675ab77 100644
--- a/modules/services/matrix/synapse/default.nix
+++ b/modules/services/matrix/synapse/default.nix
@@ -7,20 +7,20 @@ let

Custom package that tracks with the latest release of Synapse.
package = pkgs.matrix-synapse.overridePythonAttrs (old: rec {

pname = "matrix-synapse";
- version = "1.76.0rc2";
+ version = "1.76.0";

format = "pyproject";

src = pkgs.fetchFromGitHub {
owner = "matrix-org";
repo = "synapse";

... 13

Commits: summary

Use git add and git reset (or variants) to stage/unstage
changes for your.

Use git commit to create a commit from the currently staged
changes (which you can see by running git diff
--cached).

14

Commits: summary

Use git add and git reset (or variants) to stage/unstage
changes for your.

Use git commit to create a commit from the currently staged
changes (which you can see by running git diff
--cached).

14

Branches

Branches: what are they?3

Remember how we said that the .git directory is like a “heap”
for commits?

Branches are pointers to a specific commit in that heap. You
can then follow that commit’s parent pointers to reconstruct
the graph.

3Info in the rest of the Branches section is mainly from
https://git-scm.com/book/en/v2/
Git-Branching-Branches-in-a-Nutshell

15

https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell

Branches: pointers

16

Branches: creating them

Branches can be created using the git branch <branch
name> command. This will not change your HEAD pointer.

If you want to create a branch and also change the HEAD
pointer to the newly created branch, you can use:
git checkout -b <branch name>.
You can use git branch [-a] to list (all) branches. 17

Branches: creating them

Branches can be created using the git branch <branch
name> command. This will not change your HEAD pointer.

If you want to create a branch and also change the HEAD
pointer to the newly created branch, you can use:
git checkout -b <branch name>.
You can use git branch [-a] to list (all) branches. 17

Branches: moving HEAD around

HEAD is a special pointer to the current repository state.
Checking out a commit/branch will update the files in your
working directory.

You can move the HEAD pointer to a different commit using
git checkout <commit hash or branch name>.

18

Branches: moving HEAD around

HEAD is a special pointer to the current repository state.
Checking out a commit/branch will update the files in your
working directory.

You can move the HEAD pointer to a different commit using
git checkout <commit hash or branch name>.

18

Branches: moving other branches around

If you want to move the branch that HEAD is pointing to to a
different location, you can use git reset.
git reset --hard <commit hash> will move the branch
that HEAD is pointing to to the specified commit, discarding all
changes in your working directory.

git reset --soft <commit hash> will move the branch
that HEAD is pointing to to the specified commit, leaving all
changes since the specified commit as staged changes in your
working directory.

19

Branches: moving other branches around

If you want to move the branch that HEAD is pointing to to a
different location, you can use git reset.
git reset --hard <commit hash> will move the branch
that HEAD is pointing to to the specified commit, discarding all
changes in your working directory.

git reset --soft <commit hash> will move the branch
that HEAD is pointing to to the specified commit, leaving all
changes since the specified commit as staged changes in your
working directory.

19

Branches: moving other branches around

If you want to move the branch that HEAD is pointing to to a
different location, you can use git reset.
git reset --hard <commit hash> will move the branch
that HEAD is pointing to to the specified commit, discarding all
changes in your working directory.

git reset --soft <commit hash> will move the branch
that HEAD is pointing to to the specified commit, leaving all
changes since the specified commit as staged changes in your
working directory.

19

Branches: checkout gotchas and pro-tips

• If you checkout a commit hash, you will be in a detached
HEAD state because your HEAD pointer is not pointing to a
branch.

• If you have uncommitted changes, switching branches
might fail.
You can use git stash to save the changes in your
working directory, then checkout the other branch, and
then git stash pop to restore the changes.
Alternatively, you can just create a WIP commit and then
switch to the other branch.

Pro tip: You can use - to refer to the previously checked out
object.

20

Branches: checkout gotchas and pro-tips

• If you checkout a commit hash, you will be in a detached
HEAD state because your HEAD pointer is not pointing to a
branch.

• If you have uncommitted changes, switching branches
might fail.
You can use git stash to save the changes in your
working directory, then checkout the other branch, and
then git stash pop to restore the changes.
Alternatively, you can just create a WIP commit and then
switch to the other branch.

Pro tip: You can use - to refer to the previously checked out
object.

20

Branches: checkout gotchas and pro-tips

• If you checkout a commit hash, you will be in a detached
HEAD state because your HEAD pointer is not pointing to a
branch.

• If you have uncommitted changes, switching branches
might fail.
You can use git stash to save the changes in your
working directory, then checkout the other branch, and
then git stash pop to restore the changes.
Alternatively, you can just create a WIP commit and then
switch to the other branch.

Pro tip: You can use - to refer to the previously checked out
object.

20

Branches: checkout gotchas and pro-tips

• If you checkout a commit hash, you will be in a detached
HEAD state because your HEAD pointer is not pointing to a
branch.

• If you have uncommitted changes, switching branches
might fail.
You can use git stash to save the changes in your
working directory, then checkout the other branch, and
then git stash pop to restore the changes.
Alternatively, you can just create a WIP commit and then
switch to the other branch.

Pro tip: You can use - to refer to the previously checked out
object.

20

Branches: making commits

If you commit something while HEAD is pointed to a branch,
both HEAD and your branch will move to the new commit.

21

Branches: making commits

If you commit something while HEAD is pointed to a branch,
both HEAD and your branch will move to the new commit.

21

Branches: using multiple branches

Of course, you can always switch back to master using git
checkout master.

22

Branches: divergence

If you make a commit on the master branch, the master
pointer moves to that new commit creating divergent branch
histories.

23

Branches: where am I?

Often, you want to get a summary of where you are in the
repository. That’s where git log comes in.
> git log
commit b08107c144003ba42495995d59234595d2d875b4 (HEAD -> master, origin/master,

origin/HEAD)↪→
Author: Sumner Evans <me@sumnerevans.com>
Date: Mon Feb 13 14:35:57 2023 -0700

fix some things

Signed-off-by: Sumner Evans <me@sumnerevans.com>

commit 6c1f8b53ac774dc6b0376810b4745951bd572519
Merge: 47bc626 67f0f4d
Author: Ethan Richards <42894274+ezrichards@users.noreply.github.com>
Date: Mon Feb 13 14:06:08 2023 -0700

Merge branch 'master' of github.com:ColoradoSchoolOfMines/mineshspc.com

...

This is mostly useless. Let’s make it better.

24

Branches: where am I?

Often, you want to get a summary of where you are in the
repository. That’s where git log comes in.
> git log
commit b08107c144003ba42495995d59234595d2d875b4 (HEAD -> master, origin/master,

origin/HEAD)↪→
Author: Sumner Evans <me@sumnerevans.com>
Date: Mon Feb 13 14:35:57 2023 -0700

fix some things

Signed-off-by: Sumner Evans <me@sumnerevans.com>

commit 6c1f8b53ac774dc6b0376810b4745951bd572519
Merge: 47bc626 67f0f4d
Author: Ethan Richards <42894274+ezrichards@users.noreply.github.com>
Date: Mon Feb 13 14:06:08 2023 -0700

Merge branch 'master' of github.com:ColoradoSchoolOfMines/mineshspc.com

...

This is mostly useless. Let’s make it better.

24

git log: but actually good

For git log to be useful, you want it to show all branches,
show a graph, and get rid of most of the details.
> git log --all --graph --decorate --oneline
* b08107c (HEAD -> master, origin/master, origin/HEAD) fix some things
* 6c1f8b5 Merge branch 'master' of github.com:ColoradoSchoolOfMines/mineshspc.com
|\
| * 67f0f4d fix background color bug
* | 47bc626 Fix accordion
|/
* 186b52a Archive overhaul
* 385666b Fix accordion arrows
* 3d0f64a Archive preliminary updates
* aaae02b Update FAQ and archive pages
* b2a64f7 Merge branch 'master' of github.com:ColoradoSchoolOfMines/mineshspc.com
|\
| * 1450745 make footer reveal
* | f7ddfa2 Fix alt text
|/
* 0f89721 created student confirm registration page
* 7b15e86 editing teams: ensure that you can't change from in-person to remote or

vice versa↪→
* e15bda6 save team below member list
* 853dcd1 add ability to add team members

25

Branches: summary

• Branches are pointers to commits.
• Use git checkout to move between branches.
• Use git log to see where you are.

26

Merging

Merging: resolving divergent histories4

If you want to merge the changes from branch A into another
branch B, you need to:

1. Switch to branch B (git checkout B)
2. Run git merge A.

This will do one of two things: fast-forward or create a merge
commit.

4Info in the rest of the Merging section is mainly from https://git-scm.
com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

27

https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Merging: fast-forwarding

If the branch you are merging is directly ahead of the branch
you are merging into, Git will just move the pointer in a
fast-forward merge.

28

Merging: fast-forwarding

If the branch you are merging is directly ahead of the branch
you are merging into, Git will just move the pointer in a
fast-forward merge.

28

Merging: creating a merge commit

If the branch you are merging has diverged from the one you
are merging into, Git will create a merge commit through a
three-way merge.

29

Merging: creating a merge commit

If the branch you are merging has diverged from the one you
are merging into, Git will create a merge commit through a
three-way merge.

29

Merging: resolving conflicts

Occasionally, this process doesn’t go smoothly. If you changed
the same part of the same file differently in the two branches
you’re merging, Git won’t be able to merge them cleanly.
> git merge iss53
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.

You can always use git status to see what has been
automatically merged and what files have conflicts.
> git status
On branch master
You have unmerged paths.

(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

30

Merging: resolving conflicts

Occasionally, this process doesn’t go smoothly. If you changed
the same part of the same file differently in the two branches
you’re merging, Git won’t be able to merge them cleanly.
> git merge iss53
Auto-merging index.html
CONFLICT (content): Merge conflict in index.html
Automatic merge failed; fix conflicts and then commit the result.

You can always use git status to see what has been
automatically merged and what files have conflicts.
> git status
On branch master
You have unmerged paths.

(fix conflicts and run "git commit")

Unmerged paths:
(use "git add <file>..." to mark resolution)

both modified: index.html

no changes added to commit (use "git add" and/or "git commit -a")

30

Merging: editing files to resolve merge conflicts

You can use a merge tool to resolve conflicts, however I find
that it’s easier to just manually resolve the conflicts.

Visual Studio Code has a good UI for this. The process you
should follow is as follows:

1. Open a file with the conflict.
2. Find one of the conflict-resolution markers.
3. Make edits to resolve the conflict.
4. Run git add on the file.
5. Repeat steps 1-4 until all conflicts are resolved.
6. Run git commit to commit the merge.

31

Merging: understanding conflict-resolution markers

In order to find the conflict-resolution markers, search for
<<<<<<<. Each conflict-resolution block should look
something like this:
<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>
=======
<div id="footer">
please contact us at support@github.com

</div>
>>>>>>> iss53:index.html

The first part (between <<<<<<< and =======) is what the
branch you are merging into has. The second part (between
======= and >>>>>>>) is what the branch you are merging
from has.

Sometimes, you just one one side of the conflict, other times
you need to be more nuanced in your merge.

32

Merging: understanding conflict-resolution markers

In order to find the conflict-resolution markers, search for
<<<<<<<. Each conflict-resolution block should look
something like this:
<<<<<<< HEAD:index.html
<div id="footer">contact : email.support@github.com</div>
=======
<div id="footer">
please contact us at support@github.com

</div>
>>>>>>> iss53:index.html

The first part (between <<<<<<< and =======) is what the
branch you are merging into has. The second part (between
======= and >>>>>>>) is what the branch you are merging
from has.

Sometimes, you just one one side of the conflict, other times
you need to be more nuanced in your merge.

32

Merging: summary

• Merging allows you to pull changes from one branch into
another branch.

• Use git merge A to merge branch A into the current
branch.

• Git will do a fast-forward merge if possible, otherwise it
will create a merge commit.

• You might have to resolve merge conflicts.

33

Rebasing

Rebasing: maintaining linear histories

Most merge commits are useless. They clutter the history, and
normally don’t add anything of value to the understanding of
how the codebase evolved.
* b08107c (HEAD -> master, origin/master, origin/HEAD) fix some things
* 6c1f8b5 Merge branch 'master' of github.com:ColoradoSchoolOfMines/mineshspc.com
|\
| * 67f0f4d fix background color bug
* | 47bc626 Fix accordion
|/
* 186b52a Archive overhaul
* 385666b Fix accordion arrows

Ideally the above history would be linear:
* b08107c (HEAD -> master, origin/master, origin/HEAD) fix some things
* 47bc626 Fix accordion
* 67f0f4d fix background color bug
* 186b52a Archive overhaul
* 385666b Fix accordion arrows

34

Rebasing: maintaining linear histories

Most merge commits are useless. They clutter the history, and
normally don’t add anything of value to the understanding of
how the codebase evolved.
* b08107c (HEAD -> master, origin/master, origin/HEAD) fix some things
* 6c1f8b5 Merge branch 'master' of github.com:ColoradoSchoolOfMines/mineshspc.com
|\
| * 67f0f4d fix background color bug
* | 47bc626 Fix accordion
|/
* 186b52a Archive overhaul
* 385666b Fix accordion arrows

Ideally the above history would be linear:
* b08107c (HEAD -> master, origin/master, origin/HEAD) fix some things
* 47bc626 Fix accordion
* 67f0f4d fix background color bug
* 186b52a Archive overhaul
* 385666b Fix accordion arrows

34

Rebasing: what it does

Rebasing allows you to take the commits from one branch and
reapply them on top of another branch.

35

Rebasing: what it does

Rebasing allows you to take the commits from one branch and
reapply them on top of another branch.

35

Rebasing: what it does

Rebasing allows you to take the commits from one branch and
reapply them on top of another branch.

35

Rebasing: how to rebase

To rebase, follow this procedure:

1. Checkout the branch that you want to rebase.
2. Run git rebase A, where A is the branch or commit you
want to rebase onto.

Note that rebasing rewrites history. Generally you should only
rebase local commits, or branches that you are the only one
using.

36

Rebasing: how to rebase

To rebase, follow this procedure:

1. Checkout the branch that you want to rebase.
2. Run git rebase A, where A is the branch or commit you
want to rebase onto.

Note that rebasing rewrites history. Generally you should only
rebase local commits, or branches that you are the only one
using.

36

Rebasing: interactive rebase

Say you are working on a feature branch and you’ve made the
following commits:
* 1a2b3c4 (HEAD -> my-feature) add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

But you realize that your fix fizzing commit introduced a
bug! So you fix the issue but you don’t want to end up with a
“fix the fix” commit.

Interactive rebasing can help! Go ahead and create a new “fix
the fix” commit:
* a81abe1 (HEAD -> my-feature) fixup! fix fix fizzing
* 1a2b3c4 add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

37

Rebasing: interactive rebase

Say you are working on a feature branch and you’ve made the
following commits:
* 1a2b3c4 (HEAD -> my-feature) add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

But you realize that your fix fizzing commit introduced a
bug! So you fix the issue but you don’t want to end up with a
“fix the fix” commit.

Interactive rebasing can help! Go ahead and create a new “fix
the fix” commit:
* a81abe1 (HEAD -> my-feature) fixup! fix fix fizzing
* 1a2b3c4 add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

37

Rebasing: interactive rebase

Say you are working on a feature branch and you’ve made the
following commits:
* 1a2b3c4 (HEAD -> my-feature) add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

But you realize that your fix fizzing commit introduced a
bug! So you fix the issue but you don’t want to end up with a
“fix the fix” commit.

Interactive rebasing can help! Go ahead and create a new “fix
the fix” commit:
* a81abe1 (HEAD -> my-feature) fixup! fix fix fizzing
* 1a2b3c4 add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

37

Rebasing: interactive rebase (continued)

Interactive rebasing can help! Go ahead and create a new “fix
the fix” commit:
* a81abe1 (HEAD -> my-feature) fixup! fix fizzing
* 1a2b3c4 add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

Now, run git rebase -i master to start an interactive
rebase. This will open an editor with the following (as well as
instructions):
pick 8a9b0c1 fix fizzing
pick 1a2b3c4 add more buzz
pick a81abe1 fixup! fix fizzing

Now, you can move the commit order around by editing the
file, and also fixup the commit, which will squash the two
commits together into one!
pick 8a9b0c1 fix fizzing
fixup a81abe1 fixup! fix fizzing
pick 1a2b3c4 add more buzz

38

Rebasing: interactive rebase (continued)

Interactive rebasing can help! Go ahead and create a new “fix
the fix” commit:
* a81abe1 (HEAD -> my-feature) fixup! fix fizzing
* 1a2b3c4 add more buzz
* 8a9b0c1 fix fizzing
* 1d2e3f4 (master) fizz the buzz

Now, run git rebase -i master to start an interactive
rebase. This will open an editor with the following (as well as
instructions):
pick 8a9b0c1 fix fizzing
pick 1a2b3c4 add more buzz
pick a81abe1 fixup! fix fizzing

Now, you can move the commit order around by editing the
file, and also fixup the commit, which will squash the two
commits together into one!
pick 8a9b0c1 fix fizzing
fixup a81abe1 fixup! fix fizzing
pick 1a2b3c4 add more buzz

38

Rebasing: interactive rebase result

Now, you can move the commit order around by editing the
file, and also fixup the commit, which will squash the two
commits together into one!
pick 8a9b0c1 fix fizzing
fixup a81abe1 fixup! fix fizzing
pick 1a2b3c4 add more buzz

After saving and exiting the editor, Git will rewrite the history of
your branch to look like this:
* a9bb207 (HEAD -> my-feature) add more buzz
* 4e89d4f fix fizzing
* 1d2e3f4 (master) fizz the buzz

and the fix fizzing commit will contain the changes from
both commits!

Note that you now have different commit hashes! The old
commits are still in tact (you can checkout them), but you
have moved your branch (pointer) to the new commit.

39

Rebasing: interactive rebase result

Now, you can move the commit order around by editing the
file, and also fixup the commit, which will squash the two
commits together into one!
pick 8a9b0c1 fix fizzing
fixup a81abe1 fixup! fix fizzing
pick 1a2b3c4 add more buzz

After saving and exiting the editor, Git will rewrite the history of
your branch to look like this:
* a9bb207 (HEAD -> my-feature) add more buzz
* 4e89d4f fix fizzing
* 1d2e3f4 (master) fizz the buzz

and the fix fizzing commit will contain the changes from
both commits!

Note that you now have different commit hashes! The old
commits are still in tact (you can checkout them), but you
have moved your branch (pointer) to the new commit.

39

Rebasing: interactive rebase result

Now, you can move the commit order around by editing the
file, and also fixup the commit, which will squash the two
commits together into one!
pick 8a9b0c1 fix fizzing
fixup a81abe1 fixup! fix fizzing
pick 1a2b3c4 add more buzz

After saving and exiting the editor, Git will rewrite the history of
your branch to look like this:
* a9bb207 (HEAD -> my-feature) add more buzz
* 4e89d4f fix fizzing
* 1d2e3f4 (master) fizz the buzz

and the fix fizzing commit will contain the changes from
both commits!

Note that you now have different commit hashes! The old
commits are still in tact (you can checkout them), but you
have moved your branch (pointer) to the new commit.

39

Rebasing: interactive rebase shortcut

The workflow I described in the previous slides is so common
that there are tools built-in to Git to help you accomplish them.

• git commit --fixup <commit> automatically marks
your commit as a fix of a previous commit. (It uses that
fixup! syntax from the previous slide.)

• git rebase -i --autosquash opens the editor and
automatically reorders the fixup commits when the
interactive rebase editor opens and sets them to fixup
instead of pick.

See https://fle.github.io/
git-tip-keep-your-branch-clean-with-fixup-and-autosquash.
html for more details.

40

https://fle.github.io/git-tip-keep-your-branch-clean-with-fixup-and-autosquash.html
https://fle.github.io/git-tip-keep-your-branch-clean-with-fixup-and-autosquash.html
https://fle.github.io/git-tip-keep-your-branch-clean-with-fixup-and-autosquash.html

Rebasing: bailing out

If you ever need to cancel a rebase, use git rebase
--abort.
This will restore your repository state to what it was before you
started the rebase process.

41

Rebasing: other applications

There are lots of other reasons to rebase.

• You want to pull in changes from another branch without
merging.

• You want to modify a commit that added a file by accident.
• You want to reorder your commits to make it more clear to
a code reviewer what you changed.

• Somebody else pushed a commit to the remote branch,
and you want to add your commit on top of theirs.

42

Remotes

Remotes: what are they?5

Remote repositories are versions of your project that are
hosted on the Internet or network somewhere. You can have
several of them, each of which generally is either read-only or
read/write for you.

GitHub is a popular choice for where to host your remote
repositories, but other options exist such as GitLab, sourcehut,
Bitbucket, and many other self-hosted options.

5Much of the content of this section is from
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

43

Remotes: what are they?5

Remote repositories are versions of your project that are
hosted on the Internet or network somewhere. You can have
several of them, each of which generally is either read-only or
read/write for you.

GitHub is a popular choice for where to host your remote
repositories, but other options exist such as GitLab, sourcehut,
Bitbucket, and many other self-hosted options.

5Much of the content of this section is from
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes

43

Remotes: managing them

• View all of your remotes with:
> git remote -v
origin git@github.com:sumnerevans/acm-git-good.git

(fetch)↪→

origin git@github.com:sumnerevans/acm-git-good.git
(push)↪→

• You can add remotes using:
> git remote add other git@github.com:other/repo.git

• You can change the URL of a remote:
> git remote set-url origin

git@github.com:other/repo.git↪→

• When you clone a repository, it automatically creates a
remote called origin that points to your remote
repository.

• Note: origin is not special, it’s just a default.
44

Remotes: managing them

• View all of your remotes with:
> git remote -v
origin git@github.com:sumnerevans/acm-git-good.git

(fetch)↪→

origin git@github.com:sumnerevans/acm-git-good.git
(push)↪→

• You can add remotes using:
> git remote add other git@github.com:other/repo.git

• You can change the URL of a remote:
> git remote set-url origin

git@github.com:other/repo.git↪→

• When you clone a repository, it automatically creates a
remote called origin that points to your remote
repository.

• Note: origin is not special, it’s just a default.
44

Remotes: managing them

• View all of your remotes with:
> git remote -v
origin git@github.com:sumnerevans/acm-git-good.git

(fetch)↪→

origin git@github.com:sumnerevans/acm-git-good.git
(push)↪→

• You can add remotes using:
> git remote add other git@github.com:other/repo.git

• You can change the URL of a remote:
> git remote set-url origin

git@github.com:other/repo.git↪→

• When you clone a repository, it automatically creates a
remote called origin that points to your remote
repository.

• Note: origin is not special, it’s just a default.
44

Remotes: managing them

• View all of your remotes with:
> git remote -v
origin git@github.com:sumnerevans/acm-git-good.git

(fetch)↪→

origin git@github.com:sumnerevans/acm-git-good.git
(push)↪→

• You can add remotes using:
> git remote add other git@github.com:other/repo.git

• You can change the URL of a remote:
> git remote set-url origin

git@github.com:other/repo.git↪→

• When you clone a repository, it automatically creates a
remote called origin that points to your remote
repository.

• Note: origin is not special, it’s just a default.
44

Remotes: managing them

• View all of your remotes with:
> git remote -v
origin git@github.com:sumnerevans/acm-git-good.git

(fetch)↪→

origin git@github.com:sumnerevans/acm-git-good.git
(push)↪→

• You can add remotes using:
> git remote add other git@github.com:other/repo.git

• You can change the URL of a remote:
> git remote set-url origin

git@github.com:other/repo.git↪→

• When you clone a repository, it automatically creates a
remote called origin that points to your remote
repository.

• Note: origin is not special, it’s just a default.
44

Remote Branches: what are they?

The remote repository is entirely separate from your local
repository. The remote repository has its own set of branches,
commits, etc.

45

Remote Branches: three new concepts

1. Fetch: to download the current state of the remote
repository, use the git fetch command.
Git does not automatically fetch the state of the remote
repository!

2. Push: to update the remote repository with your local
state, use the git push command.

3. Tracking branches: tracking branches are local branches
that have a direct relationship to a remote branch.

46

Remote Branches: three new concepts

1. Fetch: to download the current state of the remote
repository, use the git fetch command.
Git does not automatically fetch the state of the remote
repository!

2. Push: to update the remote repository with your local
state, use the git push command.

3. Tracking branches: tracking branches are local branches
that have a direct relationship to a remote branch.

46

Remote Branches: three new concepts

1. Fetch: to download the current state of the remote
repository, use the git fetch command.
Git does not automatically fetch the state of the remote
repository!

2. Push: to update the remote repository with your local
state, use the git push command.

3. Tracking branches: tracking branches are local branches
that have a direct relationship to a remote branch.

46

Remote Branches: divergence

The state of the local and remote repositories can diverge.

Use
git fetch to get the latest state of the remote repository.

Now use the tools we already know for divergent branches.

47

Remote Branches: divergence

The state of the local and remote repositories can diverge.

Use
git fetch to get the latest state of the remote repository.

Now use the tools we already know for divergent branches.

47

Remote Branches: divergence

The state of the local and remote repositories can diverge. Use
git fetch to get the latest state of the remote repository.

Now use the tools we already know for divergent branches. 47

Remote Branches: divergence (continued)

Git provides a command to fetch and then merge the remote
branch into the local branch called git pull.
Warning: by default, git pull will create a merge commit if
the remote branch has diverged from the local one!

Merge commits are ugly! Use git pull --rebase to tell
git pull to rebase your local changes on the remote
changes instead.
Tell Git to never merge when pulling
You can configure Git to fail instead of making a merge
commit by setting the pull.ff configuration option to
only.

> git config --global pull.ff only
48

Remote Branches: divergence (continued)

Git provides a command to fetch and then merge the remote
branch into the local branch called git pull.
Warning: by default, git pull will create a merge commit if
the remote branch has diverged from the local one!

Merge commits are ugly! Use git pull --rebase to tell
git pull to rebase your local changes on the remote
changes instead.
Tell Git to never merge when pulling
You can configure Git to fail instead of making a merge
commit by setting the pull.ff configuration option to
only.

> git config --global pull.ff only
48

Remote Branches: divergence (continued)

Git provides a command to fetch and then merge the remote
branch into the local branch called git pull.
Warning: by default, git pull will create a merge commit if
the remote branch has diverged from the local one!

Merge commits are ugly! Use git pull --rebase to tell
git pull to rebase your local changes on the remote
changes instead.
Tell Git to never merge when pulling
You can configure Git to fail instead of making a merge
commit by setting the pull.ff configuration option to
only.

> git config --global pull.ff only
48

Remote Branches: pushing

Pushing can be thought of merging your local tracking into the
remote tracking branch.

If your branch is already configured to track a remote branch,
you can just use git push.
If you have a new branch that doesn’t have a corresponding
remote tracking branch, use

> git push -u origin <branch name>

49

Remote Branches: pushing

Pushing can be thought of merging your local tracking into the
remote tracking branch.

If your branch is already configured to track a remote branch,
you can just use git push.
If you have a new branch that doesn’t have a corresponding
remote tracking branch, use

> git push -u origin <branch name>

49

Remote Branches: pushing harder

In certain circumstances, you want to push a divergent branch
to the remote. Examples include:

• You did an interactive rebase and need to push the newly
rebased changes.

• You reset your branch to a previous commit and want it to
be the latest commit on the branch.

In these cases, you can use the --force or
--force-with-lease options to tell Git to push your local
state to the remote regardless of what is currently there.

--force-with-lease is less dangerous than --force
because it will check that your current view of the remote state
is up-to-date.

50

Remote Branches: pushing harder

In certain circumstances, you want to push a divergent branch
to the remote. Examples include:

• You did an interactive rebase and need to push the newly
rebased changes.

• You reset your branch to a previous commit and want it to
be the latest commit on the branch.

In these cases, you can use the --force or
--force-with-lease options to tell Git to push your local
state to the remote regardless of what is currently there.

--force-with-lease is less dangerous than --force
because it will check that your current view of the remote state
is up-to-date.

50

Advanced Tips

Undoing Things

Commits are kept around in the .git directory (remember, it’s
like a heap), which means that even if you loose a pointer to a
commit (for example by moving all branch pointers away from
it), it still exists!

You can use git reflog to see the history of when the tips
of branches and other references were updated in the local
repository.

If you screwed something up and you don’t know what to do,
https://ohshitgit.com/ is a great resource.

51

https://ohshitgit.com/

Undoing Things

Commits are kept around in the .git directory (remember, it’s
like a heap), which means that even if you loose a pointer to a
commit (for example by moving all branch pointers away from
it), it still exists!

You can use git reflog to see the history of when the tips
of branches and other references were updated in the local
repository.

If you screwed something up and you don’t know what to do,
https://ohshitgit.com/ is a great resource.

51

https://ohshitgit.com/

Cherry-picking

You can apply arbitrary commits to your current branch by
cherry-picking them.

This is similar to rebasing.

52

Aliases

Git supports the concept of aliasing one command to another
name.
For example, you can alias the pretty log command I showed
earlier to git l by using the following command:
> git config --global alias.l "log --oneline --graph --all

--decorate"↪→

Now you can just type git l to get the pretty version of the
log output.

53

Ignoring Files

You can tell Git to not ever commit certain files by ignoring
them using the .gitignore file.
Any file that matches one of the patterns in .gitignore will
not be tracked by Git.

Warning: if you have already committed the file, it will still be
tracked.

If you want to delete a file from Git, but keep it on your
computer, use git rm --cached <file>.

54

Ignoring Files

You can tell Git to not ever commit certain files by ignoring
them using the .gitignore file.
Any file that matches one of the patterns in .gitignore will
not be tracked by Git.

Warning: if you have already committed the file, it will still be
tracked.

If you want to delete a file from Git, but keep it on your
computer, use git rm --cached <file>.

54

Blaming

Want to see the last commit that modified each line of a file?
Use git blame.
This is often a helpful way to see which commit cause a bug or
see what needs to be changed when making a similar change.

55

Resources/Tips

I obviously was unable to tell you about everything you can do
with Git. There are hundreds of options on every single
command.

• man git *: The man pages on Git are good. Use them as
your first line of defense.

• git-scm.com/book/en/v2: A huge resource about how to
do everything Git.

• gitignore.io: Generates a .gitignore file for a given
project type, OS, and IDE.

• delta: provides a much prettier diff interface.

56

https://git-scm.com/book/en/v2
https://gitignore.io
https://github.com/dandavison/delta

	Why use Git?
	Commits
	Branches
	Merging
	Rebasing
	Remotes
	Advanced Tips

