
Git

Sumner Evans

September 22, 2016

Sumner Evans Git



What is Git?

Git is a system which tracks changes made to a code base.

Git was created by Linus Torvalds to help facilitate Linux
kernel development.

Linus’s motto when he built Git was to take Concurrent
Version System (CVS) as an example of what not to do and if
in doubt, make the opposite decision. 1

1https://en.wikipedia.org/wiki/Git
Sumner Evans Git



What is Git?

Git is a system which tracks changes made to a code base.

Git was created by Linus Torvalds to help facilitate Linux
kernel development.

Linus’s motto when he built Git was to take Concurrent
Version System (CVS) as an example of what not to do and if
in doubt, make the opposite decision. 1

1https://en.wikipedia.org/wiki/Git
Sumner Evans Git



What is Git?

Git is a system which tracks changes made to a code base.

Git was created by Linus Torvalds to help facilitate Linux
kernel development.

Linus’s motto when he built Git was to take Concurrent
Version System (CVS) as an example of what not to do and if
in doubt, make the opposite decision. 1

1https://en.wikipedia.org/wiki/Git
Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? I

Example Scenario:

1 You start a project called “my-proj” and write a ton of code.

2 You finally get it to (kinda) work.

3 You decide to make a copy of “my-proj” for backup purposes.

4 You continue development on “my-proj” but then screw
something up really bad.

5 You decide to revert back to your copy.

6 Then you realize your copy doesn’t have a bug fix that you
actually wanted.

7 You then proceed to manually compare the files in the backup
to those in your new code and figure out what you still want
to have.

This is terrible.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? II

Another Scenario:

1 You start working on a project with a partner.

2 You write a bunch of code.

3 You email the code in a .zip file, then go home for the
weekend.

4 You and your partner had decided to work on two separate
tasks over the weekend so you make some changes to the
code and your partner makes some changes to the code.

5 You come together and start copying files. Then you realize
you both modified main().

6 You then manually determine what changed in both files and
reconcile them.

This is awful.

Sumner Evans Git



Why use Version Control? III

How Version Control Systems (VCS) solve this:

VCS keeps track of revisions, changes in the code in entities
called changesets or commits.

Most VCS allow version merging. That means multiple people
can be working on the same file and resolve discrepancies
later. Git is very elegant in handling merge conflicts such as
this.

Sumner Evans Git



Why use Version Control? III

How Version Control Systems (VCS) solve this:

VCS keeps track of revisions, changes in the code in entities
called changesets or commits.

Most VCS allow version merging. That means multiple people
can be working on the same file and resolve discrepancies
later. Git is very elegant in handling merge conflicts such as
this.

Sumner Evans Git



Why use Git?

Git is a VCS so it solves all of the issues I’ve described. So why use
Git over some other VCS?2

It’s a distributed VCS. That means that you have a full copy
of the code and every change ever made by anyone to that
code on your local machine. A beneficial side effect of this is
that you can work offline.

It’s faster.

Git rarely fully deletes anything, this is good because you can
undo most actions.

Everyone else is using it.

2List inspired by
https://www.git-tower.com/blog/8-reasons-for-switching-to-git

Sumner Evans Git

https://www.git-tower.com/blog/8-reasons-for-switching-to-git


Why use Git?

Git is a VCS so it solves all of the issues I’ve described. So why use
Git over some other VCS?2

It’s a distributed VCS. That means that you have a full copy
of the code and every change ever made by anyone to that
code on your local machine. A beneficial side effect of this is
that you can work offline.

It’s faster.

Git rarely fully deletes anything, this is good because you can
undo most actions.

Everyone else is using it.

2List inspired by
https://www.git-tower.com/blog/8-reasons-for-switching-to-git

Sumner Evans Git

https://www.git-tower.com/blog/8-reasons-for-switching-to-git


Why use Git?

Git is a VCS so it solves all of the issues I’ve described. So why use
Git over some other VCS?2

It’s a distributed VCS. That means that you have a full copy
of the code and every change ever made by anyone to that
code on your local machine. A beneficial side effect of this is
that you can work offline.

It’s faster.

Git rarely fully deletes anything, this is good because you can
undo most actions.

Everyone else is using it.

2List inspired by
https://www.git-tower.com/blog/8-reasons-for-switching-to-git

Sumner Evans Git

https://www.git-tower.com/blog/8-reasons-for-switching-to-git


Why use Git?

Git is a VCS so it solves all of the issues I’ve described. So why use
Git over some other VCS?2

It’s a distributed VCS. That means that you have a full copy
of the code and every change ever made by anyone to that
code on your local machine. A beneficial side effect of this is
that you can work offline.

It’s faster.

Git rarely fully deletes anything, this is good because you can
undo most actions.

Everyone else is using it.

2List inspired by
https://www.git-tower.com/blog/8-reasons-for-switching-to-git

Sumner Evans Git

https://www.git-tower.com/blog/8-reasons-for-switching-to-git


How to Get Git

Git is awesome! How do I get it? Good news: Git is cross
platform.

Linux: Install the git package using your distribution’s
package manager

OS X: I recommend using Homebrew: brew install git

(http://brew.sh/)

Windows: Download the installer from
https://git-scm.com/

If you need a GUI, check out SourceTree on macOS and Windows.
If you need a GUI on Linux, you are doing Linux wrong.

You should also setup SSH which is extremely easy, but I will not
cover that here as this is a talk about Git not SSH.

Sumner Evans Git

http://brew.sh/
https://git-scm.com/


Hot to use Git (locally)

Initialize (git init): Initializes a Git repository on your local
machine in the current working directory.

Add (git add): Marks files to include in the next commit, an
entity which stores the state of the repository at a given time.

Reset (git reset): Opposite of add; marks the file as not
included in the next commit.

Commit (git commit): Creates a commit.

Log (git log): Shows the history of your repository.

Diff (git diff [file]): Determines the difference between
the file’s current state and its state at the last commit.

Git ignore (modify the .gitignore file): Any file that
matches one of the patterns in .gitignore will not be
tracked by Git.

Sumner Evans Git



How to use Git with a remote

Add Remote (git remote add [name] [url]): Adds a
remote, a version of the repository hosted externally from your
local machine. Most likely on something like Github or an
company’s internal network.

Push (git push -u origin master): Pushes all changes
on the given branch to the remote.

Clone (git clone): Copies the entire repository to the
location.

Fetch (git fetch): Retrieves changes from the remote.

Merge (git merge): Merges a branch into another branch.
(More on branches later, but in this case, we are merging the
origin/master into our local master branch.)

Pull (git pull): Retrieves any new changes from the remote
and merges them with your local changes.

Sumner Evans Git



Undoing Things

Undo the last n commits (given that you haven’t pushed them
yet) git reset --hard HEAD~n

Undo the nth to last commit by creating a new commit that
reverts all of the changes git revert HEAD~n

Somebody’s done it before. Just Google it.

Sumner Evans Git



Merging Changes I

What happens if multiple developers make changes to the same
file? This will cause merge conflicts.

There are plenty of tools which you can use to resolve such
conflicts. None of them are that good because merge conflicts are
just terrible in general.

Play around with a bunch of them and see which one you like best.
Here are a few to get you started: Meld, KDiff3, and vimdiff.

Sumner Evans Git



Merging Changes II

Invoking the mergetool : use git mergetool.

For each conflict, you can choose to take their version, your
version, a combination of the two or neither.

Most UIs will give you three panes: one for the remote version of
the file, one for the local version of the file and one for the merged
version of the file.

Sumner Evans Git



Branches I

Branches allow you to separate develop a given functionality
without affecting the original code base.

For example, if you have an established product and you want to
add a feature but you are uncertain about its viability, you can
create a branch and build a prototype on that branch. If it fails,
you can delete the branch and never see it again or if it works, you
can merge the branch back into master.

Sumner Evans Git



Branches3II

Branches can be thought of as bookmarks pointing to a specific
changeset.

Note, HEAD is pointer to the current branch.

3Info in the rest of the Branches section is mainly from
https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is

Sumner Evans Git

https://git-scm.com/book/en/v1/Git-Branching-What-a-Branch-Is


Branches III

To switch branches, use git checkout [branch]. This moves
HEAD to point to your new branch.

Sumner Evans Git



Branches IV

If you commit something to your new branch, the branch pointer
moves to the new commit. The pointer to master will not move.

Sumner Evans Git



Branches V

Of course, you can always switch back to master using git

checkout master.

Sumner Evans Git



Branches VI

If you make a commit on the master branch, the master pointer
moves to that new commit. At this point, the branch histories
have diverged.

Sumner Evans Git



Branches VII: How to actually do it

Create a Branch: git branch [branch name]

Switch to a branch: git checkout [branch name]

Create a new branch and switch to it:
git checkout -b [branch name]

List branches: git branch

Push branch to remote: git push -u [remote name]

[branch name]

Sumner Evans Git



Merging Changes: Branch Edition

If you want changes from a different branch in your current branch,
you can use git merge [other branch].

When you merge changes from another branch, one of two things
will happen4:

1 Your branch will be fast-forwarded to the other branch.
This means that there are no changes in your current branch
that are not in the other branch.

2 A merge commit will be created and your branch pointer will
be updated to point to this commit.
This happens when there are changes in the current branch
that are not in the other branch.

4These are the only ones I can thing of off the top of my head. You can
force either of these functionalities with their respective command line options.

Sumner Evans Git



Branch and Development Workflow

Branches are extremely scalable so you can ignore them, or use
them for everything, it’s your choice.

One methodology used by companies in the industry is Git Flow.
This is a system whereby new branches are created for every
bugfix, new feature, release, and hotfix. If you want to learn more
about it, look at this website: http:

//nvie.com/posts/a-successful-git-branching-model/

Sumner Evans Git

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/


The Random Stuff: Stashing

When you have changes in your working directory, merges and
switching branches (sometimes) doesn’t work. You have two main
options here:

1 Commit your changes. If you can do this, you should.

2 Occasionally you just don’t want to commit. In this case, you
will want to stash your changes using
git stash [save [stash name]].

3 To un-stash, use git stash pop. You may have to resolve
merge conflicts.

Sumner Evans Git



The Random Stuff: Submodules

What is a submodule? It is literally a repository inside of another
repository.

Why is this useful? If you have a custom library shared between
many projects, you can place that library in a standalone Git
repository. Then you can add it as a submodule to your products
via git submodule add [clone url].
The submodule is its own repository so it can be contributed to
independently, but it can also be modified and contributed to as a
submodule.

Sumner Evans Git



The Random Stuff: Rebasing

What is it good for? If you want to keep your graph clean, you
can use rebasing to avoid merge commits.

Why would you use this? I don’t know. I never have and I
normally want to see all of the changes in a graph, but it’s a thing
that you can do in Git and if you want to learn more, read the docs.

Sumner Evans Git



The Random Stuff: Aliases

As one would expect from something designed and built by Linus
Torvalds, Git supports the concept of aliasing one git command to
another name.

For example, you might want to alias checkout to co. This
particular alias can be achieved using
git config --global alias.co checkout.

Now you can invoke git checkout using git co.

Another option is using your shell’s alias functionality. This is often
more powerful, but that isn’t part of this talk.

Sumner Evans Git



The Random Stuff: Resources/Tips

I obviously was unable to tell you about everything you can do
with Git. I’ve really only scratched the surface.

man git *: The man pages on Git are good. Use them as
your first line of defense.

git-scm.com/book/en/v2: A huge resource about how to
do everything Git.

gitignore.io: Generates a .gitignore file for a given
project type, OS, and IDE.

git reset --hard HEAD: Undoes all changes since the last
commit.

git diff HEAD:file1 file2: Shows the difference
between file1 and file2.

Sumner Evans Git



Where to Go from Here?

If you haven’t ever used Git, start by using it locally and with
Github.

If you know the basics, start exploring branches. Learn about
them and find a flow which works best for you.

If you know most things about Git, just keep using it. Try and
start remembering how to do certain things that you find
yourself often Googleing for.

Become the person everyone asks for Git advice. It’s used in the
industry, so many companies will want to see knowledge of this
tool.

Sumner Evans Git



Where to Go from Here?

If you haven’t ever used Git, start by using it locally and with
Github.

If you know the basics, start exploring branches. Learn about
them and find a flow which works best for you.

If you know most things about Git, just keep using it. Try and
start remembering how to do certain things that you find
yourself often Googleing for.

Become the person everyone asks for Git advice. It’s used in the
industry, so many companies will want to see knowledge of this
tool.

Sumner Evans Git



Where to Go from Here?

If you haven’t ever used Git, start by using it locally and with
Github.

If you know the basics, start exploring branches. Learn about
them and find a flow which works best for you.

If you know most things about Git, just keep using it. Try and
start remembering how to do certain things that you find
yourself often Googleing for.

Become the person everyone asks for Git advice. It’s used in the
industry, so many companies will want to see knowledge of this
tool.

Sumner Evans Git


