
JavaScript Crash Course

Sumner Evans and Sam Sartor

November 10, 2016

Sumner Evans and Sam Sartor JavaScript Crash Course

JavaScript is NOT Java 1

JavaScript was written was created in 10 days in May 1995 by
Brendan Eich.
JavaScript was originally called Mocha and was renamed to
LiveScript before being renamed again to JavaScript.
Why JavaScript? Because Java happened to be popular then
(that was before people realized how much Java sucks in a
browser) and JavaScript looks syntactically similar at a glance.
JavaScript is standardized2 by Ecma International and there
have been a number of ECMAScript versions. The latest is
ECMAScript 6, but it is not fully supported by any browsers,
including Firefox which only has partial support.

1Lots of this slide’s information is from:
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

2JavaScript standards aren’t actually that standard.

Sumner Evans and Sam Sartor JavaScript Crash Course

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

JavaScript is NOT Java 1

JavaScript was written was created in 10 days in May 1995 by
Brendan Eich.
JavaScript was originally called Mocha and was renamed to
LiveScript before being renamed again to JavaScript.
Why JavaScript? Because Java happened to be popular then
(that was before people realized how much Java sucks in a
browser) and JavaScript looks syntactically similar at a glance.
JavaScript is standardized2 by Ecma International and there
have been a number of ECMAScript versions. The latest is
ECMAScript 6, but it is not fully supported by any browsers,
including Firefox which only has partial support.

1Lots of this slide’s information is from:
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

2JavaScript standards aren’t actually that standard.

Sumner Evans and Sam Sartor JavaScript Crash Course

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

JavaScript is NOT Java 1

JavaScript was written was created in 10 days in May 1995 by
Brendan Eich.
JavaScript was originally called Mocha and was renamed to
LiveScript before being renamed again to JavaScript.
Why JavaScript? Because Java happened to be popular then
(that was before people realized how much Java sucks in a
browser) and JavaScript looks syntactically similar at a glance.
JavaScript is standardized2 by Ecma International and there
have been a number of ECMAScript versions. The latest is
ECMAScript 6, but it is not fully supported by any browsers,
including Firefox which only has partial support.

1Lots of this slide’s information is from:
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

2JavaScript standards aren’t actually that standard.

Sumner Evans and Sam Sartor JavaScript Crash Course

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

JavaScript is NOT Java 1

JavaScript was written was created in 10 days in May 1995 by
Brendan Eich.
JavaScript was originally called Mocha and was renamed to
LiveScript before being renamed again to JavaScript.
Why JavaScript? Because Java happened to be popular then
(that was before people realized how much Java sucks in a
browser) and JavaScript looks syntactically similar at a glance.
JavaScript is standardized2 by Ecma International and there
have been a number of ECMAScript versions. The latest is
ECMAScript 6, but it is not fully supported by any browsers,
including Firefox which only has partial support.

1Lots of this slide’s information is from:
https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

2JavaScript standards aren’t actually that standard.

Sumner Evans and Sam Sartor JavaScript Crash Course

https://www.w3.org/community/webed/wiki/A_Short_History_of_JavaScript

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects & Primitives

Everything is either a primitive or an object.
Objects are ALWAYS passed by reference
Primitives are ALWAYS passed by value
Objects in JavaScript are mutable keyed
collections/dictionaries.
JavaScript is pseudoclassical.
JavaScript uses prototypes for inheritance.
There is no such thing as a class in JavaScript.1

1ECMAScript 6 added support for classes, but JavaScript classes are just wrappers around the underlying
prototype-based structure.

Sumner Evans and Sam Sartor JavaScript Crash Course

Primitives: Types1

JavaScript has six primitive types:

Boolean
Null
Undefined (yes, this is a type)
Number (can be a number between −(253 − 1) and 253 − 1,
NaN, -Infinity, or Infinity).
String (single or double quotes declares a string literal2)
Symbol (new in ECMAScript 6)

1Info on this slide from: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures
2Single quotes are recommended by Douglas Crockford because HTML normally uses double quotes and to

avoid conflicts when manipulating DOM objects, single quotes should be used.

Sumner Evans and Sam Sartor JavaScript Crash Course

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures

Objects: Inheritance and the Prototype Chain

Every JavaScript object is linked to a prototype. If a member
is not found in an object (i.e. if obj.foobar == undefined)
then the prototype is searched. It defines a sort of “default”
set of values for the object.
“Empty” objects start with Object.prototype defined as
their prototype.
You can set the prototype of an object to another object (or
to undefined) by calling myObj.prototype = otherObj;

Since the prototype of an object is just another object, it too
can have a prototype. Hence the prototype chain. When you
access a property of an object, the whole prototype chain is
searched for it.
The prototype relationship is a dynamic relationship. If a
property is added to the prototype, it is automatically visible
to all objects based on that prototype.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects: Inheritance and the Prototype Chain

Every JavaScript object is linked to a prototype. If a member
is not found in an object (i.e. if obj.foobar == undefined)
then the prototype is searched. It defines a sort of “default”
set of values for the object.
“Empty” objects start with Object.prototype defined as
their prototype.
You can set the prototype of an object to another object (or
to undefined) by calling myObj.prototype = otherObj;

Since the prototype of an object is just another object, it too
can have a prototype. Hence the prototype chain. When you
access a property of an object, the whole prototype chain is
searched for it.
The prototype relationship is a dynamic relationship. If a
property is added to the prototype, it is automatically visible
to all objects based on that prototype.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects: Inheritance and the Prototype Chain

Every JavaScript object is linked to a prototype. If a member
is not found in an object (i.e. if obj.foobar == undefined)
then the prototype is searched. It defines a sort of “default”
set of values for the object.
“Empty” objects start with Object.prototype defined as
their prototype.
You can set the prototype of an object to another object (or
to undefined) by calling myObj.prototype = otherObj;

Since the prototype of an object is just another object, it too
can have a prototype. Hence the prototype chain. When you
access a property of an object, the whole prototype chain is
searched for it.
The prototype relationship is a dynamic relationship. If a
property is added to the prototype, it is automatically visible
to all objects based on that prototype.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects: Inheritance and the Prototype Chain

Every JavaScript object is linked to a prototype. If a member
is not found in an object (i.e. if obj.foobar == undefined)
then the prototype is searched. It defines a sort of “default”
set of values for the object.
“Empty” objects start with Object.prototype defined as
their prototype.
You can set the prototype of an object to another object (or
to undefined) by calling myObj.prototype = otherObj;

Since the prototype of an object is just another object, it too
can have a prototype. Hence the prototype chain. When you
access a property of an object, the whole prototype chain is
searched for it.
The prototype relationship is a dynamic relationship. If a
property is added to the prototype, it is automatically visible
to all objects based on that prototype.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects: Inheritance and the Prototype Chain

Every JavaScript object is linked to a prototype. If a member
is not found in an object (i.e. if obj.foobar == undefined)
then the prototype is searched. It defines a sort of “default”
set of values for the object.
“Empty” objects start with Object.prototype defined as
their prototype.
You can set the prototype of an object to another object (or
to undefined) by calling myObj.prototype = otherObj;

Since the prototype of an object is just another object, it too
can have a prototype. Hence the prototype chain. When you
access a property of an object, the whole prototype chain is
searched for it.
The prototype relationship is a dynamic relationship. If a
property is added to the prototype, it is automatically visible
to all objects based on that prototype.

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects: Syntax

1 var myObj = { // this is an object literal
2 a: 3,
3 'b': 'JavaScript',
4 'is-awesome?': true,
5 doSomething: function () {
6 console.log(this.a); // 3
7 console.log(a); // error
8 }, // trailing commas are allowed
9 };

10 myObj.doSomething();
11 console.log(myObj.b, myObj['is-awesome?']);

Output:

1 3
2 error: a is undefined
3 JavaScript true

Sumner Evans and Sam Sartor JavaScript Crash Course

Objects: Arrays

JavaScript arrays are basically vectors (and are also objects,
remember?).

1 var arr = [1, 'a', {}, [], true];
2 arr[0] = 'not a number';
3 arr.push('this is basically a vector');
4 console.log(arr);

Output:

1 ['not a number', 'a', {}, [], true, 'this is basically a vector']

Note that the elements of an array do not have to be the same
type.

Sumner Evans and Sam Sartor JavaScript Crash Course

Variables

JavaScript is an untyped language. I don’t know what that means
and I don’t think that Brendan did either when he wrote the
language.

Variables are declared using the var keyword1.

Examples:

var name; - creates variable name of type undefined.
var name = ‘Sumner’; - string literal
var age = 18; - declaring a number literal
var hasFriends = false; - declaring a boolean
var significantOther = null;

1Sometimes you don’t need to use var as I have described above.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions

Functions are just objects with two special properties: a
context (scope) and the function code.
Functions can be defined anywhere where an object can be
defined and can be stored in variables.
Functions can access all arguments passed to a function via
the arguments variable.
Functions can access the callee of a function
(callee.func()) via the this variable.
Functions can also have named parameters.
Functions always return a value. If no return is explicitly
specified, the function will return undefined.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions

Functions are just objects with two special properties: a
context (scope) and the function code.
Functions can be defined anywhere where an object can be
defined and can be stored in variables.
Functions can access all arguments passed to a function via
the arguments variable.
Functions can access the callee of a function
(callee.func()) via the this variable.
Functions can also have named parameters.
Functions always return a value. If no return is explicitly
specified, the function will return undefined.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions

Functions are just objects with two special properties: a
context (scope) and the function code.
Functions can be defined anywhere where an object can be
defined and can be stored in variables.
Functions can access all arguments passed to a function via
the arguments variable.
Functions can access the callee of a function
(callee.func()) via the this variable.
Functions can also have named parameters.
Functions always return a value. If no return is explicitly
specified, the function will return undefined.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions

Functions are just objects with two special properties: a
context (scope) and the function code.
Functions can be defined anywhere where an object can be
defined and can be stored in variables.
Functions can access all arguments passed to a function via
the arguments variable.
Functions can access the callee of a function
(callee.func()) via the this variable.
Functions can also have named parameters.
Functions always return a value. If no return is explicitly
specified, the function will return undefined.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions

Functions are just objects with two special properties: a
context (scope) and the function code.
Functions can be defined anywhere where an object can be
defined and can be stored in variables.
Functions can access all arguments passed to a function via
the arguments variable.
Functions can access the callee of a function
(callee.func()) via the this variable.
Functions can also have named parameters.
Functions always return a value. If no return is explicitly
specified, the function will return undefined.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions

Functions are just objects with two special properties: a
context (scope) and the function code.
Functions can be defined anywhere where an object can be
defined and can be stored in variables.
Functions can access all arguments passed to a function via
the arguments variable.
Functions can access the callee of a function
(callee.func()) via the this variable.
Functions can also have named parameters.
Functions always return a value. If no return is explicitly
specified, the function will return undefined.

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions: Callback
Since JavaScript functions are objects, they can be passed just like
other objects.

1 function doStuff(callback) {
2 // do a bunch of processing
3 var x = 3;
4 console.log('in doStuff');
5 callback(x);
6 }
7

8 doStuff(function(x) {
9 console.log(x * 3);

10 });

Output:

1 in doStuff
2 9

Sumner Evans and Sam Sartor JavaScript Crash Course

Functions: New
JavaScript functions can be invoked with the new keyword,
mimicking traditional class-based languages:

1 function Thing(val) {
2 this.v = val;
3 }
4

5 var t = new Thing(12);
6 console.log(t.v); // prints 12

But don’t be fooled. Really that is just equivalent to:

1 ...
2

3 var t = {};
4 t.prototype = Thing.prototype;
5 t.Thing(12); // the important bit!
6 console.log(t.v); // prints 12

Sumner Evans and Sam Sartor JavaScript Crash Course

Scope
There are two scopes in JavaScript: global and function.1

Variables declared outside of a function are automatically in the
global scope.

Variables declared within a function without the var keyword are
also in the global scope.

1 var a = 2;
2 (function() {
3 b = 3
4 var c = 5;
5 })(); // this creates and invokes the function immediately
6

7 console.log(a); // logs 2
8 console.log(b); // logs 3
9 console.log(c); // error since c is undefined in global scope

Sumner Evans and Sam Sartor JavaScript Crash Course

Global Abatement

Because your code could coexist with other people’s code, on the
same HTML page, it is recommended that you reduce your global
footprint by only creating a few global objects and then putting all
assets into that object.

1 myGlobal = (function() {
2 var myInternalData = 10;
3 return {
4 data: 5,
5 subObject: {
6 cool: 'things',
7 },
8 fn: function() { return myInternalData; },
9 };

10 })();

Since you can add properties to objects at will, you can still split
your code into multiple files.

Sumner Evans and Sam Sartor JavaScript Crash Course

Private Variables

You can simulate private variables the same way:

1 var Dog = function(name) {
2 var gender = 'male';
3 this.name = name;
4 this.isBoy = function () {
5 return gender == 'male';
6 };
7 };
8

9 var myDog = new Dog('Sebastian');
10 console.log(myDog.gender); // logs undefined
11 console.log(myDog.name); // logs 'Sebastian'
12 console.log(myDog.isBoy()); // logs true

Sumner Evans and Sam Sartor JavaScript Crash Course

Syntax: Control Statements

1 // if statement syntax is identical to C++
2 if (condition) {
3 } else if (condition) {
4 } else {
5 }
6

7 // ternary syntax is just like C++
8 var a = condition ? val_if_true : val_if_false;
9

10 for (initializer; condition; incrementor) {
11 // for loop syntax is identical
12 }
13

14 for (var prop in obj) {
15 obj[prop].doThing(); // prop is the key
16 // could be a number or a string
17 }

Sumner Evans and Sam Sartor JavaScript Crash Course

Pitfalls: Variable Hoisting

Variables are hoisted to the top of the function they are declared
in. Thus, the following is entirely valid.

1 function scopeEx() {
2 b = 5;
3 console.log(b); // logs 5
4 var b = 3
5 console.log(b); // logs 3
6 }

This is confusing. Just declare your variables before you use them.

1In ES6, variables declared with let are actually block scope.

Sumner Evans and Sam Sartor JavaScript Crash Course

Pitfalls: Truthy, Falsy and == vs ===

JavaScript has the notion of being truthy and falsy.

The following values are always falsy: false, 0, "", null,
undefined, NaN.

Do not expect all falsy values to be equal to each other (false ==
null is false).

JavaScript has two equality operators:
== compares without checking variable type. This will cast
then compare.
=== compares and checks variable type.

Sumner Evans and Sam Sartor JavaScript Crash Course

DOM Manipulation

The Document Object Model is an API used by JavaScript to
interact with the elements of an HTML document.1
jQuery is great for simple DOM manipulation.

1 <div id="cool">Cool</div>
2 <div class="myCls">jQuery Demo</div>

1 var coolDiv = document.getElementById('cool'); // pure JS
2 coolDiv.style.background = 'blue';
3

4 var coolDiv = $('#cool'); // jQuery
5 coolDiv.css('background-color', 'blue');

jQuery does a ton of other useful things as well, but that’s what
the docs are for.

1https://en.wikipedia.org/wiki/Document_Object_Model

Sumner Evans and Sam Sartor JavaScript Crash Course

https://en.wikipedia.org/wiki/Document_Object_Model

Canvas Manipulation

While many JS games (like 2048) use lots of HTML and CSS to
drawn the game, with some JS and DOM/JQuery-stuff for the
logic. However, you can also draw the game directly using a
Canvas. All you need then is a few lines of HTML and the rest can
happen in your script. You can even create 3D stuff with WebGL
or a 3rd party library like Three.js.

1 var c = document.getElementById("myCanvas");
2 var ctx = c.getContext("2d");
3 ctx.moveTo(0,0);
4 ctx.lineTo(200,100);
5 ctx.stroke();

Sumner Evans and Sam Sartor JavaScript Crash Course

Libraries

• DOM Manipulation (HTML and CSS stuff)
– XJQuery (Yep)

• HTML5 Canvas (Direct drawing from JS)
– XEaselJS (Nice interation callbacks)
– bHive (Never used it, but other people like it)
– XPaper.js (Good vector and shape drawing)
– WebGL (3D Graphics if you can OpenGL the things)

∗ XThree.js (3D Graphics if you can’t Opengl the things)
∗ BabylonJS (Looks pretty I guess)

• WebSockets (TCP, multiplayer, experimental, good luck)
– Socket.io (talk to your Node.JS server?)

• Audio Stuff
– SoundJS (Again, never used)
– Google (you are smart, figure it out)

Sumner Evans and Sam Sartor JavaScript Crash Course

Additional Resources

A lot of this presentation was based off of JavaScript: The Good
Parts by Douglas Crockford. This is an essential read for anyone
interested in learning JavaScript for anything more than writing a
few simple scripts.

MDN is the best resource for JavaScript documentation
(https://developer.mozilla.org/en-US/).

JSHint (http://jshint.com/about/) is a tool which checks
JavaScript syntax and helps prevent bugs in your code. JSHint has
plugins for most IDEs and text editors. Here’s a SO article on the
Vim plugin: http://stackoverflow.com/questions/473478/
vim-jslint/5893447

Sumner Evans and Sam Sartor JavaScript Crash Course

https://developer.mozilla.org/en-US/
http://jshint.com/about/
http://stackoverflow.com/questions/473478/vim-jslint/5893447
http://stackoverflow.com/questions/473478/vim-jslint/5893447

