
Universal Packages

Sumner Evans and Robby Zampino
February 1, 2018

Mines Linux Users Group

Introduction

What are packages?

A package is an archive containing a collection of executable files
or source code, along with metadata, which represent a computer

program.

What is a package format?

A package format is an organizational structure for delivering
packages to users.

Why do we need package formats?

• They provide a common way to bundle executables, libraries,
assets, etc. for deployment on user machines.

• They provide metadata about programs for use in package
managers.

• It would suck if we had to go find the source code for every
single program we want to use and compile from source.1

1Actually, some package formats do require compilation from source (for example some AUR packages) but at
least it helps automate this process.

A bit of history

1994 dpkg — the package format behind apt and
apt-get. Used by Debian-based systems.

1997 RPM — the package format behind yum and dnf. Used
by RHEL-like systems.

2002 pacman — the package manager for Arch Linux. It
just uses tar files.

2004 klik/PortableLinuxApps (2011)/AppImage (2013)
— a package format built to be Linux-distro agnostic.

2006 nix — a purely functional package format. Primarily
used by NixOS.

June 2016 snapd — the Canonical-backed universal package
format is ported to a wide range of Linux distros.

June 2016 Flatpak — the Red Hat-backed universal package
format becomes generally available.

Universal Package Formats

Common objectives

• Linux distro agnosticism
• Solve the “dependency hell”
• Create a “single” deployment target for all of Linux

AppImage

Why is AppImage cool?

• AppImage does not require installation. The AppImage
file is just its compressed image that is mounted with FUSE
when it runs.

• AppImage does not require root permission. The
application is run as the user and the base system is left
untouched.

• The AppImage itself is executable. Just chmod +x the
.AppImage file and run.

• Linus says so
“This is just very cool.”

~ Linus Torvalds

How does AppImage work?

Application developers use the appimagetool converts an AppDir
into a self-mounting filesystem image.

AppImages can be integrated with the system via menu entries,
icons, MIME types, etc. The appimaged daemon handles this
registering and unregistering process.

How to create an AppImage

Create an AppDir with the following files (totally copied from their
documentation):

• The files of the original application.
• A .desktop file that tells appimagetool about the name of

the application, and the icon it should use.
• A PNG, SVG or an XPM icon with the name given in the

.desktop file with the Icon entry.
• An AppRun file, which is used to start up the application

inside the filesystem. Once the AppImage ELF has mounted
the filesystem, it invokes this file. In the AppRun file, you can
run some initialization procedures (such as setting
environment variables), and then start up the real application.

• Optionally, you should also add AppStream metadata in
usr/share/metainfo.

Live Demo: Running an
AppImage

Snaps & snapd

Why are Snaps cool?

• Snaps are squashFS filesystems. They contain your app
code and a snap.yaml file with metadata.

• Snaps are self-contained. The necessary libraries and
runtimes are bundled in the snap. This allows you to have
different library versions in your application than exist on your
base system.

• Snaps can have different levels confinement.
• strict is the default policy. The snap has read and/or write

rights only in its own install space and selected areas.
• devmode is for development of Snaps.
• classic confinement behaves as a traditionally packaged

application, with full access to the system.

• Snaps can communicate with one another via interfaces.

How do Snaps work?

How to create a Snap

• Make your application.
• Make a snapcraft.yaml with a bunch of stuff.

• name
• version
• summary
• description
• grade
• confinement
• …

• Run snapcraft.

Live Demo: Running a Snap

flatpak

flatpak

• Flatpak is a system for building, distributing and running
sandboxed desktop applications on Linux.
(https://github.com/flatpak/flatpak)

Why is flatpak cool?

• Flatpak includes a system of runtimes that allow developers to
build their application against a stable base.

• Runtimes allow dedeuplication of dependencies between
packages

• Flatpak makes uses of bubblewrap for sandboxing
• Flatpak supports a system of Appstream metadata to allow

packages to show up nicely in various package managers

flatpak Overview

Runtimes

• org.freedesktop.Platform
• D-Bus
• GLib
• PulseAudio
• X11
• Wayland

• org.gnome.Platform (based on freedesktop)
• GStreamer
• PyGObject
• Vala
• GVFS
• other stuff to make Gnome work…

Runtimes

• org.kde.Platform
• Qt Frameworks
• KDE Frameworks

Sandboxing

• All processes run as the user with no capabilities
• All processes run in a transient systemd user scope with the

name flatpak-$appid-$pid

• / is a private tmpfs not visible anywhere else. This is
pivot_root:ed into so it is the new and all other mounts
from the host are unmounted from the namespace.

• Enviroment variables set:
• PATH=/app/bin:/usr/bin
• LD_LIBRARY_PATH=/app/lib
• XDG_CONFIG_DIRS=/app/etc/xdg:/etc/xdg
• XDG_DATA_DIRS=/app/share:/usr/share
• XDG_RUNTIME_DIR=/run/user/$pid

How to build a flatpak package

flatpak-builder

• Install the flatpak-builder package
• See https://flatpak.org/getting.html for instructions

Runtimes

• Add the respository hosting your runtime
• $ flatpak remote-add --if-not-exists flathub

https://flathub.org/repo/flathub.flatpakrepo

• Install the runtime and corresponding SDK
• $ flatpak install flathub

org.freedesktop.Platform//1.6
org.freedesktop.Sdk//1.6

Manifest

Packaging

• Package application
• $ flatpak-builder app-dir org.flatpak.Hello.json

• Test application
• $ flatpak-builder --run app-dir

org.flatpak.Hello.json hello.sh

• Upload to repository
• $ flatpak-builder --run app-dir

org.flatpak.Hello.json hello.sh

Comparison

Advantages of each of these universal package formats

• AppImage is great for portable, self-contained applications.
• Snaps are good for deploying single applications.
• Flatpak is good for distributing a set of applications. For

example Gnome development builds are in a Flatpak
repository.

• Nix is a cool functional package manager. Everytime you
build the same version of the same package you should get
the same output

Love to Hate Them

Proprietary enterprise applications are coming to Linux

Currently, when enterprises want to make a cross-platform
application, they see this:

macOS .dmg

Windows .exe

Linux .deb and .rpm and PKGBUILD and …, then deal with
the dependency hell2

However, when companies like Canonical come in and say “just
target snaps”, all of a sudden, it may tip the scale at enterprises
for them to start targeting Linux. If they create a snap, then they
capture all of the Linux market, not just the subset that uses a
particular format.
2Yes, you have to deal with dependency hell on other platforms too, but every platform has a different type of
dependency hell. Coming to Linux is an expensive prospect for many enterprises.

Pros and cons

Pros

• More application availability.
• More abstraction! No more dealing with a bunch of different

packaging formats.
• Easier troubleshooting: Developers can be certain (ideally)

that users are using the same software configuration

Pros and cons

Cons

• The applications are going to be crap. Bloated, Electron,
enterprise crap.

• More abstraction! Not much improvement on ease of
deployment in comparison to deploying to .deb.

• Library version management is somewhat delegated to the
application developers, Windows style. Heartbleed anybody.
This hopefully can be somewhat alleviated by runtimes.

Questions?

Resources

AppImage https://appimage.org/

Snapcraft https://snapcraft.io/

Flatpak https://flatpak.org/

Nix https://nixos.org/nix/

https://appimage.org/
https://snapcraft.io/
https://flatpak.org/
https://nixos.org/nix/

Copyright Notice

This presentation was from the Mines Linux
Users Group. A mostly-complete archive of our
presentations can be found online at
https://lug.mines.edu.

Individual authors may have certain copyright or
licensing restrictions on their presentations. Please
be certain to contact the original author to obtain
permission to reuse or distribute these slides.

https://lug.mines.edu

	Introduction
	Universal Package Formats
	AppImage
	Snaps & snapd
	flatpak
	How to build a flatpak package
	Comparison
	Love to Hate Them

