
• Graph Contrastive Learning (GCL) leverages the InfoMax principle [1, 2]. 
Goal of InfoMax is not to capture the full information from the input but 
to let the encoder 𝑓 be strong enough to keep the identity of the graph. 

• InfoMax principle may be risky because it may push encoders to capture 
redundant information that is irrelevant to the downstream tasks.

• Redundant information suffices to achieve InfoMax. Encoding it yields 
brittle representations with sub-optimal downstream task performance.

Adversarial Graph Augmentation to Improve Graph Contrastive Learning

Noisy information suffices InfoMax principle

Our AD-GCL principle: Learnable graph data augmentation

References

Susheel Suresh1, Pan Li1, Cong Hao2, Jennifer Neville1,3 | 1 Purdue University, 2 Georgia Tech, 3 Microsoft Research

Capturing useful information:
Graph Information Bottleneck viewpoint

Two GNNs maintain InfoMax. 
Simultaneously with  supervision from 
ground-truth labels (green) and noisy 
labels (blue) respectively. The curves 
show their testing performance on 
predicting ground-truth labels.

• Insight: “Learn” the graph augmentation (GDA) process (over a parameterized 
family) so that the encoder can capture the minimal information that is sufficient 
to identify each graph.

• Minimal information ⇒ largest randomness/perturbation

• Even with a very aggressive GDA i.e., where t(G) is very different from G, the 
encoder maintains high correspondence between the perturbed graph and the 
original graph.

• We show we can recover a form of the GIB principle using our AD-GCL while being
self-supervised.

• We give an upper bound on the irrelevant information captured by the encoder 
following AD-GCL and a lower bound guarantee on the mutual information 
between learnt representations and downstream task labels.

• Choose edge dropping as the way to perform graph augmentation. The dropping 
probability can be learnt using the Gumbel-Max reparameterization technique [3].

• Regularize the space of possible augmentations for control over what information is 
captured.

Practical AD-GCL Instantiation using learnable edge dropping

[1] Linsker. Computer 1988 [2] You et al. NeurIPS 2020 [3] Maddison et al. ICLR 2017 
[4] Tian et al. NeurIPS 2020. [5] Tschannen et al. ICLR 2020.
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Improved performance in varied learning settings

github.com/susheels/adgcl

• Minimize the averaged edge dropping probabilities to avoid being too aggressive.
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Sensitivity analysis of AD-GCL 
• AD-GCL robust to different 
λ reg strength values. 

• AD-GCL allows for non-
uniform edge-dropping 
probability.

• AD-GCL pushes high drop 
probability on redundant 
edges while low drop 
probability on critical edges

• Training dynamics plays a 
vital role in our principle. 

We can be clever if downstream 
labels Y are known. Easily avoid
above problem !

• But, traditional GIB requires knowledge of Y, and thus is not self-supervised.

• GCL methods use graph data augmentation (GDA) to perturb the original 
graphs and thereby control the amount of info the representations encode. 

Various ways to perturb viz. node 
dropping, edge dropping, subgraph 
sampling, attribute masking.

• GDAs are hand designed, domain knowledge required, dataset specific 
and require extensive evaluation.
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• Perturbing the attributes or structures of a graph may keep the identity of 
the graph. Graph contrastive learning (GCL)[2] helps to learn GNNs by 
maximizing the correspondence between the representations of the same 
graph in its different augmented forms. Current GCL approaches may be risky 
as they can encode information that is irrelevant to the downstream task. 

• We propose adversarial-GCL (AD-GCL) that’s aims to capture minimal 
sufficient information. This is theoretically motivated from the graph 
information bottleneck principle.

Introduction

• Unsupervised learning 
performance aggregated on 8 
OGB chemical datasets and 5 TU 
Social datasets for downstream 
graph classification task.

• Transfer learning performance 
aggregated fine tune tasks.

• Pretraining done using methods 
on x-axis.

• Semi-supervised learning 
performance aggregated 
on 3 TU Bio and 3 TU social 
datasets . 10% label 
supervision used for all 
methods in x-axis.

• All three learning settings showcase the superior performance of AD-
GCL with clear aggregated gains. More detailed results in paper. 


