

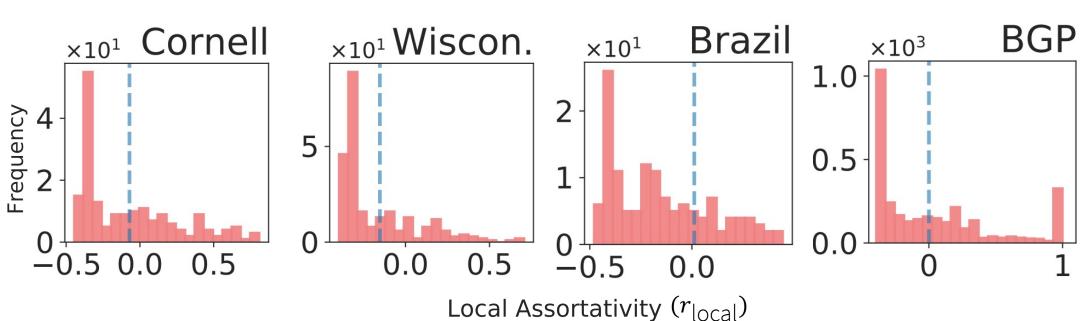
Breaking the Limit of Graph Neural Networks by Improving the Assortativity of Graphs with Local Mixing Patterns

Susheel Suresh¹, Vinith Budde², Jennifer Neville¹, Pan Li¹ and Jianzhu Ma¹ | ¹Dept. of Computer Science, Purdue University, ²Alexa AI, Amazon

Introduction

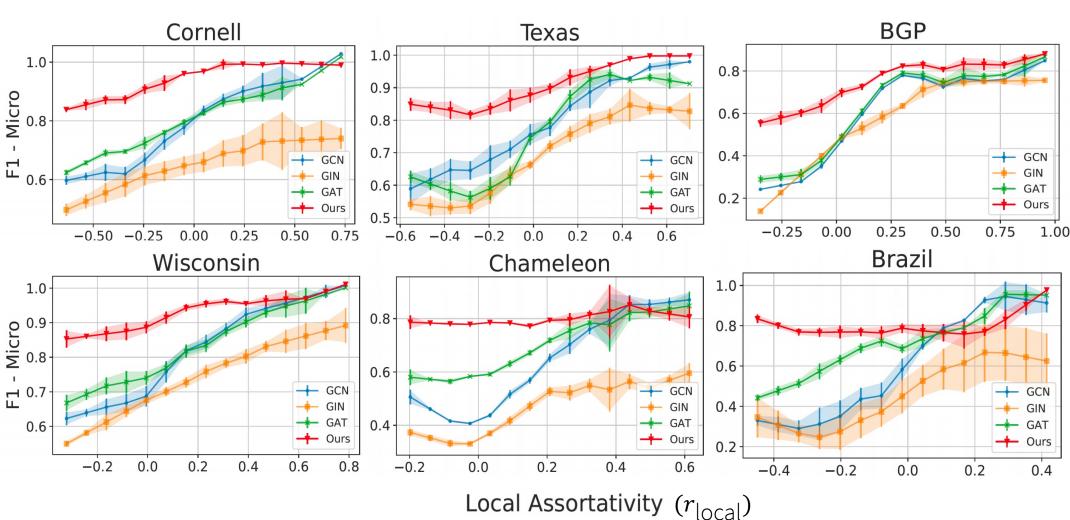
- GNNs are the de facto standard for graph representation learning. They perform neighborhood smoothing guided by the principle: proximity information from the surroundings of a node is a useful descriptor for predicting its labels.
- Mixing patterns in graphs characterize how nodes mix/connect based on their attributes. We show that the prediction performance of a wide range of GNNs are highly correlated with the notion of local assortativity in graphs.
- Motivated by this limit, we propose a graph transformation technique to boost GNN performance.

Heterogeneous mixing observed in real world networks



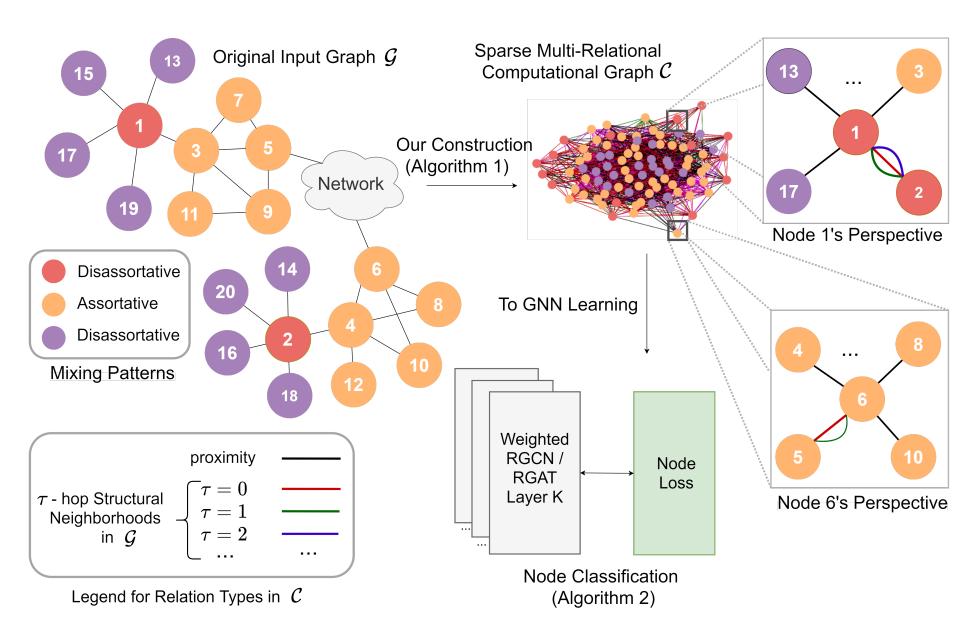
- Skewed and multimodal distributions observed.
- r_{global} (blue dotted line) measures average mixing pattern for the whole network. Fails to capture heterogeneous mixing patterns.

GNNs and local mixing



GNNs behave poorly in disassortative regime. However, in • assortative regime, they show strong performance.

Improving GNNs in disassortative regime



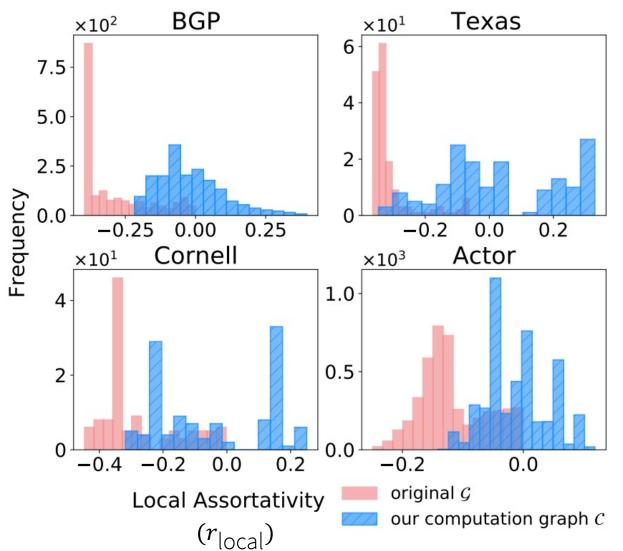
Our idea:

- Transform the original graph using both structural and proximity information to form a computation graph.
- Run GNNs on the computation graph. Adaptively choose between structure and proximity using attention.

Key ingredients:

- Pairwise node structural similarity measure by comparing ordered sequences at various neighborhoods.
- Pairwise node proximal similarity measure using original edges. • Relations in computation graph encode the above notions.

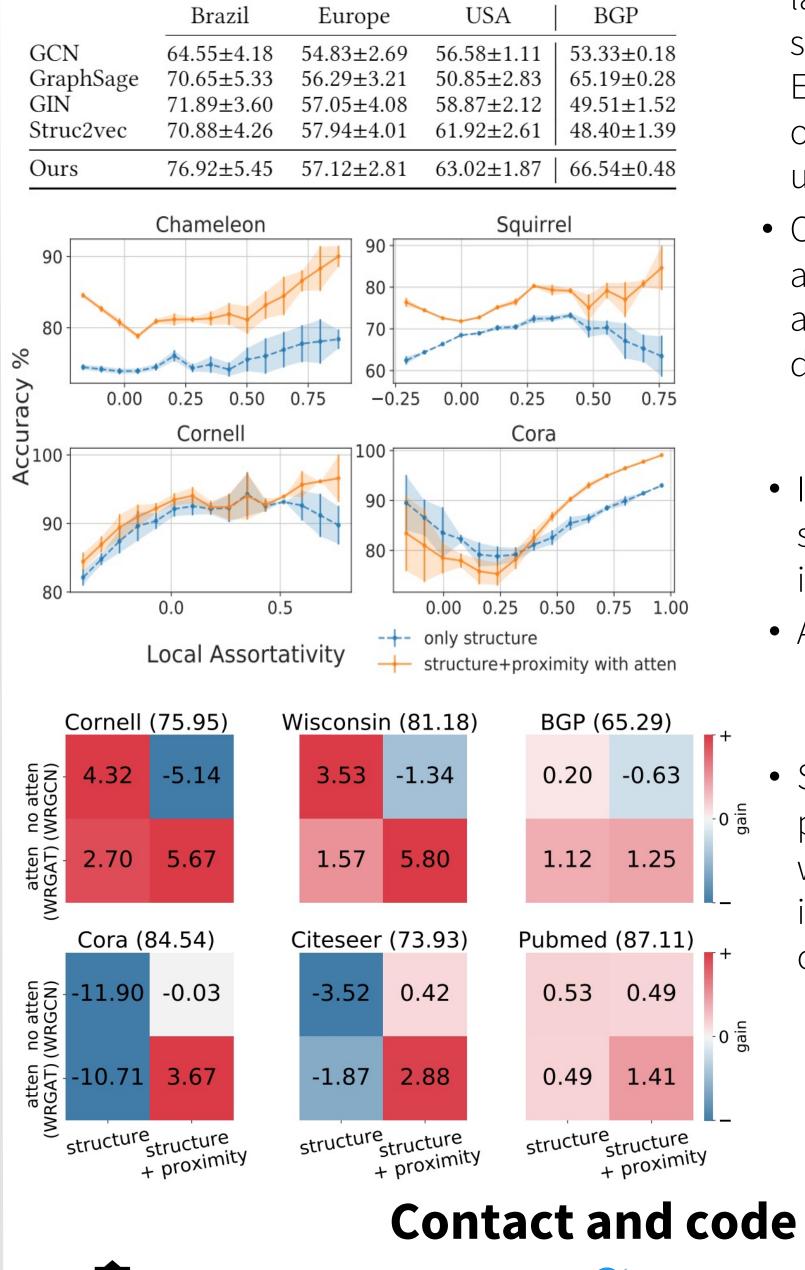
Our computation graph is more assortative

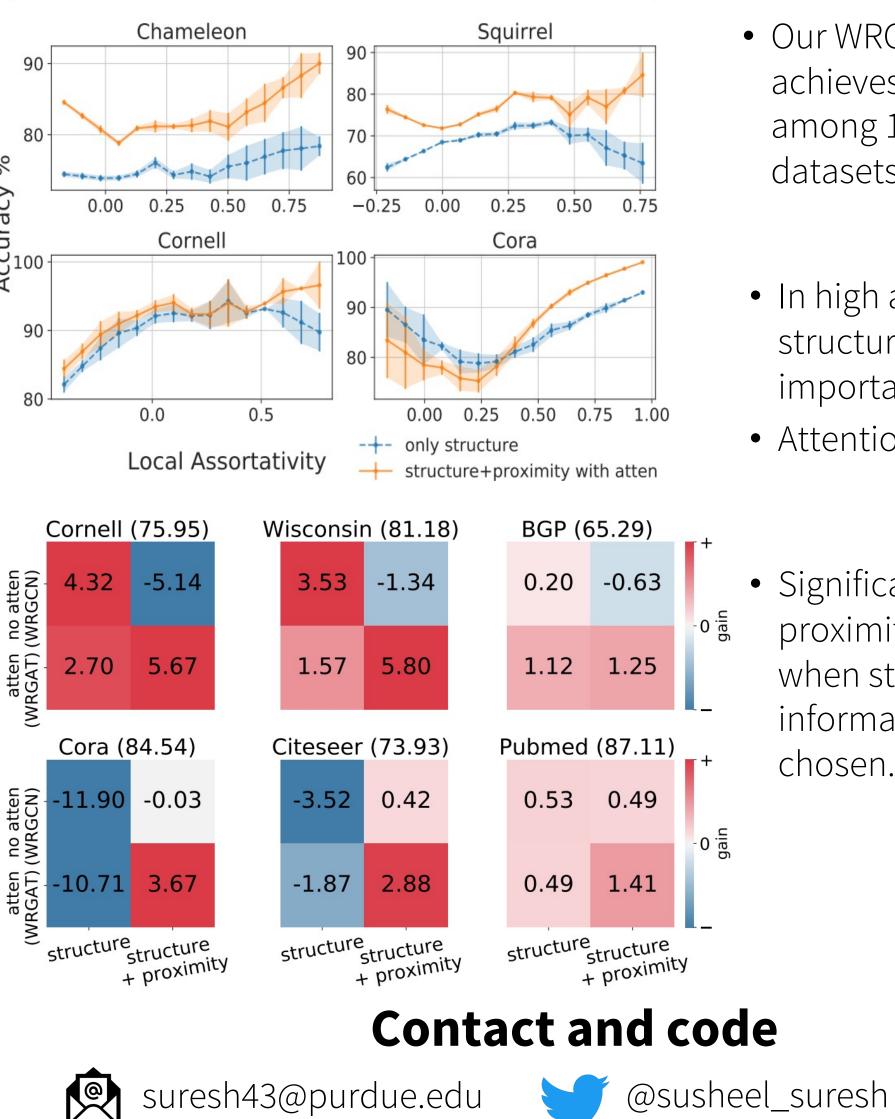


- The shift in local assortativity shows computation graph is inherently more assortative.
- Explicitly captures structural similarity of far away disassortative nodes.

	Chameleon	Squirrel	Actor	Cornell	Texas	Wisconsin	Cora	Citeseer	Pubmed
GCN	59.82 ± 2.58	36.89 ± 1.34	30.26 ± 0.79	57.03 ± 4.67	59.46 ± 5.25	59.80 ± 6.99	87.28±1.26	76.68 ± 1.64	87.38±0.60
GraphSage	58.73 ± 1.68	41.61 ± 0.74	34.23 ± 0.99	75.95 ± 5.01	82.43 ± 6.14	81.18 ± 5.56	86.90±1.04	76.04 ± 1.30	88.45 ± 0.5
GAT	54.69 ± 1.95	30.62 ± 2.11	26.28 ± 1.73	58.92 ± 3.32	58.38 ± 4.45	55.29 ± 8.71	86.37±1.69	75.46 ± 1.72	87.62±0.4
GCN-Cheby	55.24 ± 2.76	43.86 ± 1.64	34.11±1.09	74.32 ± 7.46	77.30 ± 4.07	79.41 ± 4.46	86.86±0.96	76.25 ± 1.76	88.08 ± 0.5
MixHop	60.50 ± 2.53	43.80 ± 1.48	32.22 ± 2.34	73.51 ± 6.34	77.84±7.73	75.88 ± 4.90	83.10±2.03	70.75 ± 2.95	80.75 ± 2.2
Geom-GCN ♣	60.90	38.14	31.63	60.81	67.57	64.12	85.27	77.99	90.05
H ₂ GCN ♣	59.39 ± 1.98	37.90 ± 2.02	35.86 ± 1.03	82.16 ± 4.80	84.86 ± 6.77	86.67±4.69	87.67±1.42	76.72 ± 1.50	88.50 ± 0.6
Ours (WRGAT)	65.24±0.87	48.85±0.78	36.53 ± 0.77	81.62±3.90	83.62±5.50	86.98±3.78	88.20±2.26	76.81±1.89	88.52±0.9

Table 2: Node classification on Air Traffic Networks and BGP Network. Mean test acccuracy \pm std. is shown over 20 runs.





Experiments and analysis

Table 1: Semi-supervised node classification showing mean test accuracy ± std. over 10 runs. Club Suit [*] denotes result obtained from the best model variant of respective papers.

Brazil	Europe	USA	BGP
4.55 ± 4.18 0.65 ± 5.33 1.89 ± 3.60 0.88 ± 4.26	54.83 ± 2.69 56.29 ± 3.21 57.05 ± 4.08 57.94 ± 4.01	56.58 ± 1.11 50.85 ± 2.83 58.87 ± 2.12 61.92 ± 2.61	53.33 ± 0.18 65.19 ± 0.28 49.51 ± 1.52 48.40 ± 1.39
6.92±5.45	57.12 ± 2.81	63.02±1.87	66.54±0.48

- suresh43@purdue.edu

- Stacking multiple GNN layers known to cause oversmoothing issues. Exacerbated when higher order neighborhoods are utilized (MixHop, H2GCN)
- Our WRGAT method achieves best overall rank among 12 benchmark datasets.
- In high assortative regime, structure is not so important.
- Attention mechanism helps.
- Significant gain over proximity only baseline when structure + proximity information is adaptively chosen.

github.com/susheels/gnns-and-local-assortativity