Deep Learning 01: TensorFlow introduction

Lecture 10

Computer Vision for Geosciences

2021-04-09

S AUMA i
SN o
o L
L

VNIVERZDAD NACJONAL
AVFN°MA DE
MEXICO

Table of Contents

1. Overview: frameworks for Deep Learning

2. Installing Tensor Flow

3. From ML (sklearn) to DL (tensorflow)

Table of Contents

1. Overview: frameworks for Deep Learning

Overview: frameworks for Deep Learning

Several frameworks exist:

= Tensor Flow TensorFlow

= developped by Google

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

Overview: frameworks for Deep Learning

Several frameworks exist:

= Tensor Flow TensorFlow

= developped by Google
= includes the high-level API Keras library (TF version >2) Keras

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

Overview: frameworks for Deep Learning

Several frameworks exist:

= Tensor Flow TensorFlow
= developped by Google
= includes the high-level API Keras library (TF version >2) Keras
- PyTorch O PyTorch

= developed by Facebook

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

Overview: frameworks for Deep Learning

Several frameworks exist:

= Tensor Flow TensorFlow
= developped by Google
= includes the high-level API Keras library (TF version >2) Keras
- PyTorch O PyTorch

= developed by Facebook
= based on the Torch framework (Lua) , torch

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

Overview: frameworks for Deep Learning

Several frameworks exist:

= Tensor Flow TensorFlow
= developped by Google
= includes the high-level API Keras library (TF version >2) Keras
= PyTorch O P)/TOI’Ch
= developed by Facebook
= based on the Torch framework (Lua) , torch
= Caffe, Apache’'s MXNet, Theano, etc. Caffe @Xnet theano

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
http://torch.ch/
http://caffe.berkeleyvision.org/
https://mxnet.apache.org/
https://en.wikipedia.org/wiki/Theano_(software)

Overview: frameworks for Deep Learning

Popularity of the main frameworks until 2018 (from Chollet 2017 1)
NB: this graph is not up-to-date, since 2018 PyTorch has significantly gained popularity, competing with Tensor Flow

TensorFlow

—— Keras

Figure 3.2 Google web search interest for different deep-learning frameworks over time

Table of Contents

2. Installing Tensor Flow

10/26

Installing Tensor Flow

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

11/26

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

Installing Tensor Flow

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

2. Activate the created environment
$ conda activate tf

12/26

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

Installing Tensor Flow

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

2. Activate the created environment
$ conda activate tf

3. Install additional packages in the active environment
$ conda install jupyter matplotlib pandas scikit-learn

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

Installing Tensor Flow

Installing Tensor Flow with Anaconda (instructions):
= we will install Tensor Flow in a "conda environment”

1. Create environment and install Tensor Flow package & dependencies inside

$ conda env list # optional: list existing environments
$ conda create -n tf tensorflow # create environment called "tf" & install CPU-only TensorFlow

2. Activate the created environment
$ conda activate tf

3. Install additional packages in the active environment
$ conda install jupyter matplotlib pandas scikit-learn

4. Launch Jupyter from the active environment, import Tensor Flow, and you're good to go!
$ jupyter notebook

Create a new notebook with Python 3 kernel
import tensorflow as tf

https://www.tensorflow.org/
https://docs.anaconda.com/anaconda/user-guide/tasks/tensorflow/

Installing Tensor Flow

Nota Bene

Two distinct versions of TF exist, depending on whether it should run on CPU (Central Processing Unit), or GPU (Graphics Processing Unit)

= CPU-only TensorFlow (recommended for beginners)

$ conda create -n tf tensorflow

= GPU TensorFlow
$ conda create -n tf-gpu tensorflow-gpu

= GPU will be much faster, but more expensive, and trickier to setup (requires CUDA) J

15/26

Table of Contents

3. From ML (sklearn) to DL (tensorflow)

16 /26

From ML (sklearn) to DL (tensorflow)

Toy example: linear classification task using scikit-learn and tensor flow

perceptron: | y = sign(w’x + b)

= y e {-1,1}: predicted class — banana or apple
= x € R2: feature vector — [hue, elongation]

= w € R?2: “weight vector” — needs to be learned
= b e R: “"bias” — needs to be learned

= sign: sign function returning the sign of a real number

17 /26

https://en.wikipedia.org/wiki/Sign_function

From ML (sklearn) to DL (tensorflow)

Toy example: linear classification task using scikit-learn and tensor flow

perceptron: | y = sign(w’x + b)

= y e {-1,1}: predicted class — banana or apple

= x € R2: feature vector — [hue, elongation]

= w € R?2: “weight vector” — needs to be learned

= b e R: “bias” — needs to be learned

= sign: sign function returning the sign of a real number

b X1 B R inputs (features)

R output: y = sign(w'x+b) € {-1, 1}

--- step function: sign(z)
--- weighted sum: z = w'x+b = w;x; + wyx, + b

.............. weights w & bias b (to be learned)

18 /26

https://en.wikipedia.org/wiki/Sign_function

From ML (sklearn) to DL (tensorflow)

Solution with Scikit-Learn: Perceptron classifier

from sklearn import datasets
from sklearn import linear_model
from sklearn.utils import shuffle
from skl

from sklearn

import
etrics import accuracy_score

Load data
iris = datasets.load_iris()

X = iris.datal:, (2, 3)] # petal length, petal width
¥ = (iris.target == 0).astype('int') # Iris setosa?

1.1 Load data

Preprocess data
X, y = shuffle(X, y, randos_state=0)
scaler = StandardScaler(

X = scaler.fit_transforn(X) shuffle
- scale

- split into train/test

y-test = y(75:]

Select model 2. Select model
clf = linear_model.Perceptron()
Train model
clf.fit(X_train, y_train) .

3. Train model
print(‘weights: ', clf.coef.)
print(‘bias:’, clf.intercept.)

Evaluate
pred = clf.predict(X_train)
_score(y_train, y_pred)

Predict from model
y-pred = clf .predict([(2, 0.511)

Plot data + linear classifier
#plt.scatter(X[:,0, X[:,1], c=y)
plt.scatter(X_train(:,0], X_trainl:,1], c
plt.scatter(X_test(:,0], X_test[:,1],

y_train)
_test, alph

weights = clf..coef_[0]
bias = clf.intercept_
slope = -weights(0) /
yintercept = -bias
_x = np.linspace(-2,2)

_y = slopes_x + yintercept
plt.plot(_x, _y, '-r')

1.2 Preprocess data

loss (error)

Y weeeeeeeee QUEDUL: y {-1,1}
training ---- step function: si
weighted sum: z = w'x+b = wyx; + wax, + b
update w & b
W1 weights w & bias b (to be learned)

b X1 -- inputs (features)

19/26

From ML (sklearn) to DL (tensorflow)

Solution with Scikit-Learn: Perceptron classifier

from sklearn
from sklearn
from sklearn

import datasets
import linear_sodel
utils import shuffle

from skl import.
from sklearn.metrics import accuracy_score

Load data

iris = datasets.load_iris()

X = iris.datal:, (2, 3)] # petal length, petal width
¥ = (iris.target == 0).astype('int') # Iris setosa?

Preprocess data
X, y = shuffle(X, y, randos_state=0)
scaler = StandardScaler(:

X = scaler.fit_transforn(X)

Select model
clf = linear_model.Perceptron()

Train model
<lf.£it(X_train, y_train)

print(*veights
print(*bias:

c1t.coot)
<1t intercept..)

Evaluate
y-pred = clf .predict(X_train)
accuracy_score(y_train, y_pred)

Predict from model
y-pred = clf.predict(((2, 0.51))

Plot data + linear classifier

#plt.scatter(X[:,0, X[:,1], c=y)
plt.scatter(X_train(:,0), X_trainl:,1], c=y_train)
plt.scatter(X_test(:,0), X_test[:,1], c=y_test, alpha=

weights = clf..coef_[0]
11 . intercept._
slope = -weights(0) /
yintercept = -bi
np.linspace(-2,2)
slopes_x + yintercept
plt.plot(_x 3

eights(1]
sghts(1]

D

1.1 Load data

1.2 Preprocess data
- shuffle

- scale

- split into train/test

2. Select model

3. Train model

.28)

loss (error)
Y -eeeeeeeeeeee gutput: y

training

step function: s
————— weighted sum: z = w'x+b = wyx; + wpx, + b

bias b (to be learned)

- weights w

b X1 X2 - input
ights: [wl=-0.54, w2=-0.53] O..
154 weights: [w .54, w . °
bias: b=-1.00
1.04
0.5
0.01
—~0.5
-1.04
-1.51
=15 -1.0 -0.5 0.0 0.5 1.0 15

20/26

From ML (sklearn) to DL (tensorflow)

Solution with Tensor Flow - Keras: 1 neuron network

import temsorflow as tf
from sklearn import datasets

from sklearn import linear_model
from sklearn.utils import shuffle
from skl import

from sklearn.metrics import accuracy.score

Load data
iris = datasets.load_iris()
X = iris.datal:, (2, 3)] # petal length, petal width
- (iris.target

0).astype('int') # Iris setosa?

Proprocoss data
X, y = shuffle(X, y, randon_state=0)
scaler = StandardScaler()

X = scaler.fit_transforn()

X_train = X[:75)
y-train = y[:75]
X._test = X[75:]
y_test = y(75:]

model = tf keras. Sequential ([
t.keras. layers. Flatten (input._shaps
. keras. layers.Dense(1, activatio

nodel.. suamary ()

Compile model

model. conpile(optimizer="sgd" ,
loss="BinaryCrossentropy’ ,
Betrics=['accuracy'])

Train model
history = model.fit(X_train, y_train, epochs=50) #, batch_size=10)

Evaluate model
test_loss, test_acc = model.evaluate(X_test, y_test, verboses2)
print('Test accura

, test_acc)

Predict (data should be preprocessed just like training data)

probability_zodel = tf tial((model, tf.keras.lay ttaax 1)
pred = probability_model predx(n(“ 2, -211)
print (pred)

1.1 Load data

1.2 Preprocess data
shuffle
scale
split into train/test

2.1 Build model
- set layer type/order

2.2 Compile model

- set loss function

- set optimizer

- set metrics

3. Train model

- learn layer parameters (weights/biases)

- plot training history (check for overfitting)

loss (error)

training

&

update w & b

® ,.
= T 7

X1 X2

W1NW2

i2 input neurons

1 layer
th 1 neurons

Model: "sequential®

Layer (type) Output Shape Param #
flatten (Flatten) (None, 2) 2]
dense (Dense) (None, 1) 3

Total params: 3
Trainable params: 3
Non-trainable params: @

21/26

From ML (sklearn) to DL (tensorflow)

So if we can do the same thing, why switch from sklearn to tensor flow ?

22/26

From ML (sklearn) to DL (tensorflow)

So if we can do the same thing, why switch from sklearn to tensor flow ?

Tensor Flow is a framework for Deep Learning

= can design multi-layered networks, and train them in a very flexible/optimized manner

= can solve much more complex problems, by optimizing several thousands/millions of
weights during training!

23 /26

From ML (sklearn) to DL (tensorflow)

"Hello World” example in Keras TensorFlow: MNIST fashion dataset classification task with MLP

import tensorflow as tf -
Load data o
fashion_mnist = tf.keras.datasets. fashion_mnist 1.1 Load data
- training dataset [ﬂ
(X_train_full, y_train_full), (X_test, y_test) = fashion_mist.load_data() validation dataset Ao oot Fshttop Fahtop Oress Fahitnop

X_valid, X_train = X_train_full[:5000], X_train_ful1(5000:] test dataset

y-valid, y_train = y_train_full(:5000], y_train_full(5000:] [
1.2 Preprocess data ‘ f

Preprocess data
X_train, X_test, X_valid = X_train/255.0, X_test/255.0, X_valid/255.0 - scale pixel intensities to 0-1 |

Patover e Fatorer e e
Build model (using the Sequential API) Model: “sequential®
model = tf.keras. zodels. Sequential ([
tf .keras. layers. Flatten(input_shape=[28, 281), . Layer (type) Output Shape Paran #
el ckaceec Denzs (300 . 2.1 Build model flatten (Flatten) (Hone, 784) o
tf .keras. layers.Dense(100, activation="relu"), - set layer type/order
tt.k) dense (bense) (Hone, 360) 235500
a1 summnry () dense 1 (bense) Thone, 168) 36160
. Gense 3 (bense) Thone, 10) 1610
Conpile model .
2.2 Compile model
Bodol. conpilo(10ss="sparse_catogorical_crossentropy”, set loss function Total porans: 266,010
optimizer="sgd", - set optimizer Non-trainable parans: ®
metrics=[*accuracy"]) - set metrics

Train model
history = model.fit(X_train, y_train, validation data=(X_valid, y_valid),
epochs=30, # nb of times X_train is seen seen
batch_size=32) # nb of images per training instance 3. Train model
print('training instances per epoch = {}'.format(X_train.shape[0] / 32)) - learn layer parameters (weights/biases)
- plot training history (check for overfitting)

Plot training history
import pandas as
pd.DataFrame (history.history) .plot () 02— saunacy

Evaluate model a0l - -
R, BT LT R Ty S L
print(‘Test accuracy: ', test_acc) . g class (91 = Akl boot
Predict . s

s o o) z

img = (np.expand_dims(img,0)) # add image to a batch B

y_proba = model.predict (ing) .round(2) H -

y_pred = np.arguax(model . predict (ing) , axis=-1) g0

plt.bar(range(10), y_probalo]) o .

plt. inshow(ing(0,: ,
plt.title(‘class {}

. cmap='binary")
{}'.format(y_pred, class_names[np.argmax(y_proba)]))

24 /26

https://www.tensorflow.org/tutorials/keras/classification

From ML (sklearn) to DL (tensorflow)

"Hello World” example in Keras TensorFlow: MNIST fashion dataset classification task with MLP

import tensorflow as tf

Load data
fashion_mnist = tf.keras.datasets.fashion mnist

(x_train_full, y_train_full), (X_test, y_test) = fashion_mnist.load_data()
X_valid, X_train = X_train_full(:5000], X_train_full(5000:]
y-valid, y_train = y_train_full[:5000], y_train_full[5000:]

Preprocess data
X_train, X_test, X_valid = X_train/255.0, X_test/255.0, X_valid/255.0

Build model (using the Sequential API)
model = tf.keras. zodels. Sequential ([
tf .keras. layers. Flatten(input_shape=[28, 281),
©f keras.1 Dense (300

©f keras. layers Dense (100, activation="relu"),
o

model. summary ()

Compile model
model. conpile (Loss="sparse_categorical_crossentropy”,
optimizer="sgd",
metrics=[*accuracy"])

Train model

history - model.fit(X_train, y_train, validation_data=(X_valid, y_valid),
epochs=30, # nb of times X_train is seen seen
batch_size=32) # mb of images per training instance

print(*training instances per epoch = {}'.format(X_train.shape(0] / 32))

Plot training history
import pandas as pd
pd.DataFrame (history.history) .plot ()

Evaluate model
test_loss, test_acc = model.evaluate(X_test, y_test)
print(‘Test accuracy:', test_acc)

Predict
ing = X_test[0,:,:]

img - (np.expand_dims(img,0)) # add image to a batch
y-proba = model.predict (ing) .round(2)

y-pred = np.argnax(model.predict (ing), axis=-1)

plt.bar (range(10), y_proba(0])
plt.imshou(ing[0,:,:], cmap='binary')
plt.title('class {}

{}'.format(y_pred, class_names[np.argmax(y_proba)]))

1.1 Load data
- training dataset

- validation dataset
- test dataset

1.2 Preprocess data
- scale pixel intensities to 0-1

2.1 Build model
- set layer type/order

2.2 Compile model
- set loss function

- set optimizer

- set metrics

3. Train model
- learn layer parameters (weights/biases)
- plot training history (check for overfittin

AT [

Fsnnnos

ke oot Fsnrtnop Tanrton

output

300,000 weights (300+100)
100 bias.

s probability vector

output

10 neurons + softmax
hidden laye
00 neurons
hidden layer
300 neur

input layer

f 784 neurons (28+28)
input = image (28x28 pixels)
02— accuracy
ool — | ! !)
I I]
o class (9) = Ankle boot
) " dass 25

https://www.tensorflow.org/tutorials/keras/classification

From ML (sklearn) to DL (tensorflow)

Key parameters and definitions (from Google's ML glossary, Chollet 2017, etc.)

loss function (objective function)

The quantity that will be minimized during training. It represents a measure of success for the task at hand.

optimizer

Determines how the network will be updated based on the loss function. It implements a specific variant of stochastic gradient descent (SGD).
accuracy

The fraction of predictions that a classification model got right.

epoch

Each iteration over all the training data.

batch_size

Number of samples per gradient update.

activation function
A function (for example, ReLU or sigmoid) that takes in the weighted sum of all of the inputs from the previous layer and then generates and passes an

output value (typically nonlinear) to the next layer.

softmax
A function that provides probabilities for each possible class in a multi-class classification model. The probabilities add up to exactly 1.0. For example,

softmax might determine that the probability of a particular image being a dog at 0.9, a cat at 0.08, and a horse at 0.02. 26 /26

https://developers.google.com/machine-learning/glossary

	Overview: frameworks for Deep Learning
	Installing Tensor Flow
	From ML (sklearn) to DL (tensorflow)

