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Motivation: sources of images

Images can be constructed using the entire electromagnetic spectra

... a few examples in geosciences ...
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Motivation: sources of images

camera

Popocatépetl 2020-04-16

satellite

Popocatépetl 2021-02-25 (Sentinel-2, MOUNTS)

microscope

Popocatépetl 2019-01-22 (andesite, ©T.Boulesteix)6 / 61

http://www.mounts-project.com/timeseries/341090


Motivation: sources of images

camera

Popocatépetl 2013-01-29 (UV camera, Campion et al. 2018)

satellite

Popocatépetl 2019-02-17 (Sentinel-5P, MOUNTS)
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https://doi.org/10.3389/feart.2018.00163
http://www.mounts-project.com/timeseries/341090


Motivation: sources of images

camera

Nyiragongo 2016-04-16 (FLIR image, Valade et al. 2018)

satellite

Etna 2021-02-23 (Sentinel-2 image, MOUNTS)
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https://www.sciencedirect.com/science/article/pii/S0012821X18304631
http://www.mounts-project.com/timeseries/211060


Motivation: sources of images

satellite (SAR)

Popocatépetl 2021-02-28 (Sentinel-1,
MOUNTS)

satellite (InSAR)

Popocatépetl InSAR interferogram (MOUNTS)

satellite (InSAR)

Popocatépetl InSAR coherence (MOUNTS) 9 / 61

http://www.mounts-project.com/timeseries/341090
http://www.mounts-project.com/timeseries/341090
http://www.mounts-project.com/timeseries/341090


Motivation: sources of images

telescope

Crab Nebula - remanent of an exploded star (supernova) 10 / 61

https://www.constellation-guide.com/crab-nebula-messier-1/
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Digital Image
1. eye versus pinhole camera

Comparison between human eye and pinhole camera
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Digital Image
1. eye versus pinhole camera

Image = 3D world projection on 2D
⇒ projection using the pinhole camera model:

(from PyTorch Geometry)

Perspective transformation:

s m
′

= K [R|t]M
′

(1)

s

[

u

v

1

]

=

[

fx 0 u0
0 fy v0
0 0 1

][

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

]

[

X

Y

Z

1

]

(2)

where:

• M′ = 3D point in space with coordinates [X , Y , Z ]T expressed in
Euclidean coordinates

• m′ = projection of the 3D point M′ onto the image plane with

coordinates [u, v ]T expressed in pixel units

• K = camera calibration matrix (a.k.a instrinsics parameters matrix)

• fx, fy = focal lengths expressed in pixel units
• u0, v0 = coordinates of the optical center (aka principal

point), origin in the image plane

• [R|t] = joint rotation-translation matrix (a.k.a. extrinsics parameters
matrix), describing the camera pose, and translating from world
coordinates to camera coordinates
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Digital Image
2. sampling and quantization

• at each point we record incident light
• digitalization of an analog signal involves two operations

• spatial sampling (= discretization of space domain)
• intensity quantization (= discretization of incoming light signal)
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Digital Image
2. sampling and quantization

spatial sampling (= discretization of space domain)
⇒ smallest element resulting from the discretization of the space is called a pixel (=picture element)

intensity quantization (= discretization of light intensity signal)
⇒ typically, 256 levels (8 bits/pixel = 28 values) suffices to represent the intensity
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Digital Image
2. sampling and quantization

⇒ digital image function f (x , y)
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Digital Image
2. sampling and quantization

⇒ digital image function f (x , y)

Typical ranges:

• uint8 = [0-255]
(8 bits = 1 byte = 28 = 256 values per pixel)

• float32 = [0-1]
(32 bits = 4 bytes = 4.3e9 values per pixel)
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Digital Image
3. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

(source wikipedia)

26 / 61

https://en.wikipedia.org/wiki/Bayer_filter


Digital Image
3. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

2. Output of a 120×80-pixel sensor with a Bayer filter

3. Output color-coded with Bayer filter colors

4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80-pixels for comparison

27 / 61



Digital Image
3. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

2. Output of a 120×80-pixel sensor with a Bayer filter

3. Output color-coded with Bayer filter colors

4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80-pixels for comparison

28 / 61



Digital Image
3. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

2. Output of a 120×80-pixel sensor with a Bayer filter

3. Output color-coded with Bayer filter colors

4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80-pixels for comparison

29 / 61



Digital Image
3. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

2. Output of a 120×80-pixel sensor with a Bayer filter

3. Output color-coded with Bayer filter colors

4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80-pixels for comparison

30 / 61



Digital Image
3. color image

How do we record colors?
⇒ Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene

2. Output of a 120×80-pixel sensor with a Bayer filter

3. Output color-coded with Bayer filter colors

4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)

5. Full RGB version at 120×80-pixels for comparison

31 / 61



Digital Image
3. color image

⇒ color image = 3D tensor in colorspace
• RGB = Red + Green + Blue bands (.JPEG)
• RGBA = Red + Green + Blue + Alpha bands (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)
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Digital Image
4. color spaces

Other ways to represent the color information?

RGB colorspace HSV colorspace

• Hue (H) = [0-360] ⇒ shift color

• Saturation (S) = [0-1] ⇒ shift intensity

• Value (V) = [0-1] ⇒ shift brightness
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Digital Image
4. color spaces

3D tensor with different information

RGB colorspace HSV colorspace
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Digital Image
4. color spaces

•more saturation S
⇒ more intense colors

•more value V
⇒ brighter colors

•shift hue H
⇒ shift color
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Digital Image
5. image histogram

Histogram of pixel values in each band:
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Digital Image
5. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):
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Digital Image
5. image histogram

Histogram of pixel values after conversion to float values (range [0-1])
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Digital Image
5. image histogram

•original gray-scale

•histogram rescale to 10-90 percentiles
⇒ contrast stretching

•histogram equalize
⇒ spread out the most frequent intensity values
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Point operations
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Point operations
1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)
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Point operations
1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

51 / 61



Point operations
2. inhomogeneous Point Operations

Inhomogeneous Point Operations (depends on pixel position)
EX: background detection / change detection
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Point operations
2. inhomogeneous Point Operations

Inhomogeneous Point Operations (depends on pixel position)
EX: background detection / change detection
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Computer Vision: categorizing processing tasks

Computer Vision processing levels:

• Low-level vision
• image manipulation

(resizing, color adjustments, ...)

• feature extraction
(edges, gradients, ...)

• Mid-level vision
• panorama stitching
• Structure from Motion (SfM) ⇒ 2D to 3D
• Optical Flow ⇒ velocities

• High-level vision
• classification: what is in the image?
• tagging: what are ALL the things in the

image?
• detection: where are they?
• semantic segmentation ⇒ segment image

and give names
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Image manipulation with Python: numpy tutorial + exercises

In Binder:

⇒ Open CV4GS 02 imagebasics/CV4GS 02 numpy-tutorial.ipynb

⇒ Open CV4GS 02 imagebasics/CV4GS 02 exercices.ipynb
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