Digital Image Basics

Lecture 02

Computer Vision for Geosciences

1. Motivation
sources of images
2. What is a digital image?
eye versus pinhole camera
sampling and quantization
color image
color spaces
image histogram
3. Point operations
homogeneous point operations
inhomogeneous Point Operations
4. Computer Vision categorizing processing tasks
5. Image manipulation with Python
numpy tutorial + exercises

1. Motivation

sources of images

2. What is a digital image?
eye versus pinhole camera
sampling and quantization
color image
color spaces
image histogram
3. Point operations
homogeneous point operations
inhomogeneous Point Operations
4. Computer Vision
categorizing processing tasks
5. Image manipulation with Python
numpy tutorial + exercises

Images can be constructed using the entire electromagnetic spectra

Frequency, $v(\mathrm{~Hz})$

[^0]
Images can be constructed using the entire electromagnetic spectra

... a few examples in geosciences ...

Popocatépetl 2020-04-16

[^1]
camera

camera

satellite

satellite (SAR)

Popocatépetl 2021-02-28 (Sentinel-1,
satellite (InSAR)

Popocatépetl InSAR interferogram (MOUNTS)

satellite (InSAR)

Popocatépetl InSAR coherence (MOUNTS) $9 / 61$

Crab Nebula - remanent of an exploded star (supernova)

1. Motivation

sources of images
2. What is a digital image?
eye versus pinhole camera
sampling and quantization
color image
color spaces
image histogram
3. Point operations
homogeneous point operations
inhomogeneous Point Operations
4. Computer Vision
categorizing processing tasks
5. Image manipulation with Python
numpy tutorial + exercises

Comparison between human eye and pinhole camera

$$
\begin{aligned}
\text { Image } & =3 \mathrm{D} \text { world projection on } 2 \mathrm{D} \\
& \Rightarrow \text { projection using the pinhole camera model: }
\end{aligned}
$$

Camera coordinate system

Perspective transformation:

$$
\begin{equation*}
s m^{\prime}=K[R \mid t] M^{\prime} \tag{1}
\end{equation*}
$$

Digital Image

1. eye versus pinhole camera

$$
\begin{aligned}
\text { Image } & =3 \mathrm{D} \text { world projection on 2D } \\
& \Rightarrow \text { projection using the pinhole camera model: }
\end{aligned}
$$

Perspective transformation:

$$
\begin{equation*}
s m^{\prime}=K[R \mid t] M^{\prime} \tag{1}
\end{equation*}
$$

where:

- $M^{\prime}=3 \mathrm{D}$ point in space with coordinates $[X, Y, Z]^{T}$ expressed in Euclidean coordinates
- $m^{\prime}=$ projection of the 3 D point M^{\prime} onto the image plane with coordinates $[u, v]^{T}$ expressed in pixel units
= $K=$ camera calibration matrix (a.k.a instrinsićs parameters matrix)
- $f x, f y=$ focal lengths expressed in pixel units
- - $u_{0}, v_{0}=$ coordinates of the optical center (aka principal point), origin in the image plane
- $\quad[R \mid t]=$ joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world

Digital Image

1. eye versus pinhole camera

Image $=3 \mathrm{D}$ world projection on 2D
 \Rightarrow projection using the pinhole camera model:

Perspective transformation:

$$
\begin{equation*}
s m^{\prime}=K[R \mid t] M^{\prime} \tag{1}
\end{equation*}
$$

where:

- $M^{\prime}=3 \mathrm{D}$ point in space with coordinates $[X, Y, Z]^{T}$ expressed in Euclidean coordinates
- $m^{\prime}=$ projection of the 3D point M^{\prime} onto the image plane with coordinates $[u, v]^{T}$ expressed in pixel units
- $K=$ camera calibration matrix (a.k.a instrinsics parameters matrix) $f_{x}, f y=$ focal lengths expressed in pixel units -I $u_{0}, v_{0}=$ coordinates of the optical center (aka principal point), origith in the tmage plane
- $\quad[R \mid t]=$ joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

Digital Image

1. eye versus pinhole camera

Image $=3 \mathrm{D}$ world projection on 2D \Rightarrow projection using the pinhole camera model:

Perspective transformation:

$$
\begin{equation*}
s m^{\prime}=K[R \mid t] M^{\prime} \tag{1}
\end{equation*}
$$

(2)
where:

- $M^{\prime}=3 \mathrm{D}$ point in space with coordinates $[X, Y, Z]^{T}$ expressed in Euclidean coordinates
- $m^{\prime}=$ projection of the 3 D point M^{\prime} onto the image plane with coordinates $[u, v]^{T}$ expressed in pixel units
- $K=$ camera calibration matrix (a.k.a instrinsics parameters matrix)
- $f_{x}, f_{y}=$ focal lengths expressed in pixel units
- $u_{0}, v_{0}=$ coordinates of the optical center (aka principal point), origin in the image plane
- $[R \mid t]=$ joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates

Digital Image

1. eye versus pinhole camera

Image $=3 \mathrm{D}$ world projection on 2D \Rightarrow projection using the pinhole camera model:

Perspective transformation:

$$
\begin{equation*}
s m^{\prime}=K[R \mid t] M^{\prime} \tag{1}
\end{equation*}
$$

where:

- $\quad M^{\prime}=3 \mathrm{D}$ point in space with coordinates $[X, Y, Z]^{T}$ expressed in Euclidean coordinates
- $m^{\prime}=$ projection of the 3 D point M^{\prime} onto the image plane with coordinates $[u, v]^{T}$ expressed in pixel units
- $K=\underline{\text { camera calibration matrix }}$ (a.k.a instrinsics parameters matrix)
- $\quad f x, f y=$ focal lengths expressed in pixel units
- $u_{0}, v_{0}=$ coordinates of the optical center (aka principal point), origin in the image plane
- $\quad[R \mid t]=$ joint rotation-translation matrix (a.k.a. extrinsics parameters matrix), describing the camera pose, and translating from world coordinates to camera coordinates
- at each point we record incident light
- digitalization of an analog signal involves two operations
- spatial sampling (= discretization of space domain)
- intensity quantization ($=$ discretization of incoming light signal)

- at each point we record incident light
- digitalization of an analog signal involves two operations
- spatial sampling (= discretization of space domain)
- intensity quantization (= discretization of incoming light signal)

Digital Image

2. sampling and quantization

spatial sampling (= discretization of space domain)

\Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

intensity quantization ($=$ discretization of light intensity signal)
\Rightarrow typically, 256 levels (8 bits/pixel $=2^{8}$ values) suffices to represent the intensity

Digital Image
2. sampling and quantization

spatial sampling (= discretization of space domain)

\Rightarrow smallest element resulting from the discretization of the space is called a pixel (=picture element)

intensity quantization (= discretization of light intensity signal)
\Rightarrow typically, 256 levels (8 bits/pixel $=2^{8}$ values) suffices to represent the intensity

> 8-bit resolution
> $2^{8}=256$ gray levels

3-bit resolution
$2^{3}=8$ gray levels

2-bit resolution $2^{2}=4$ gray levels

1-bit resolution $2^{1}=2$ gray levels

\Rightarrow digital image function $f(x, y)$

\Rightarrow digital image function $f(x, y)$

Typical ranges:

- uint $8=[0-255]$ (8 bits $=1$ byte $=2^{8}=256$ values per pixel)
- float32 $=[0-1]$
$(32$ bits $=4$ bytes $=4.3 \mathrm{e} 9$ values per pixel)

How do we record colors?
\Rightarrow Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

How do we record colors?
\Rightarrow Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

How do we record colors?
\Rightarrow Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

How do we record colors?
\Rightarrow Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

How do we record colors?
\Rightarrow Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison

How do we record colors?
\Rightarrow Bayer Filter: color filter array for arranging RGB color filters on a square grid of photosensors

1. Original scene
2. Output of a 120×80-pixel sensor with a Bayer filter
3. Output color-coded with Bayer filter colors
4. Reconstructed image after interpolating missing color information (a.k.a. demosaicing)
5. Full RGB version at 120×80-pixels for comparison
\Rightarrow color image $=3 \mathrm{D}$ tensor in colorspace

- $\mathrm{RGB}=$ Red + Green + Blue bands (.JPEG)
- RGBA $=$ Red + Green + Blue + Alpha bands (.PNG, .GIF, .BMP, TIFF, .JPEG 2000)

Other ways to represent the color information?

HSV colorspace

3D tensor with different information

- more saturation S
\Rightarrow more intense colors

- more value V
- shift hue H
- more saturation S
\Rightarrow more intense colors
- more value V
\Rightarrow brighter colors

saturation x 2

- shift hue H
- more saturation S
\Rightarrow more intense colors
- more value V
\Rightarrow brighter colors

- shift hue H
\Rightarrow shift color

Digital Image

5. image histogram

Histogram of pixel values in each band:
original (uint8)

Digital Image
5. image histogram

Histogram of pixel values after conversion from RGB (3-bands) to gray-scale (1-band):
gray-scale (uint8)

Digital Image

5. image histogram

Histogram of pixel values after conversion to float values (range [0-1])
gray-scale (float)

- original gray-scale

- histogram rescale to 10-90 percentiles
contrast stretching
- histogram equalize
spread out the most frequent intensit, values
- original gray-scale
- histogram rescale to 10-90 percentiles \Rightarrow contrast stretching

[^2]- original gray-scale
- histogram rescale to 10-90 percentiles \Rightarrow contrast stretching
- histogram equalize
\Rightarrow spread out the most frequent intensity values

1. Motivation
sources of images
2. What is a digital image?
eye versus pinhole camera
sampling and quantization
color image
color spaces
image histogram
3. Point operations
homogeneous point operations inhomogeneous Point Operations
4. Computer Vision
categorizing processing tasks
5. Image manipulation with Python
numpy tutorial + exercises

Point operations

1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)
identity

Point operations

1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

Point operations

1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

Point operations

1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

logarithm

square root

Point operations

1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)

logarithm

inverse

exponential

square root

Point operations

1. homogeneous point operations

Homogeneous Point Operations (does not depend on pixel position)
identity

logarithm

inverse

exponential

square root

square

$g(x, y)=f(x, y)^{2}$

Inhomogeneous Point Operations (depends on pixel position) EX : background detection / change detection

Inhomogeneous Point Operations (depends on pixel position) EX : background detection / change detection

1. Motivation
sources of images
2. What is a digital image?
eye versus pinhole camera
sampling and quantization
color image
color spaces
image histogram
3. Point operations
homogeneous point operations
inhomogeneous Point Operations
4. Computer Vision categorizing processing tasks
5. Image manipulation with Python
numpy tutorial + exercises

Computer Vision processing levels:

- Low-level vision
- image manipulation
- feature extraction
(edges, gradients,
- Mid-level vision
- panorama stitching
- Structure from Motion (SfM) \Rightarrow 2D to 3D
- Optical Flow \Rightarrow velocities
- High-level vision
- classification: what is in the image?
- tagging: what are ALL the things in the image?
- detection: where are they?
- semantic segmentation \Rightarrow segment image and give names

Computer Vision processing levels:

- Low-level vision
- image manipulation
(resizing, color adjustments, ...)
- feature extraction
(edges, gradients, ...)
- Mid-level vision
- panorama stitching
- Structure from Motion (SfM) $\Rightarrow 2 \mathrm{D}$ to 3D
- Optical Flow \Rightarrow velocities
- High-level vision
- classification: what is in the image?
- tagging: what are ALL the things in the
image?
- detection: where are they?
- semantic segmentation \Rightarrow segment image and give names

Computer Vision processing levels:

- Low-level vision
- image manipulation
(resizing, color adjustments, ...)
- feature extraction
(edges, gradients, ...)
- Mid-level vision
- panorama stitching
- Structure from Motion (SfM) $\Rightarrow 2 \mathrm{D}$ to 3D
- Optical Flow \Rightarrow velocities
- High-level vision
- classification: what is in the image?
- tagging: what are ALL the things in the
image?
- detection: where are they?
- semantic segmentation \Rightarrow segment image
and give names

Computer Vision processing levels:

- Low-level vision
- image manipulation
(resizing, color adjustments, ...)
- feature extraction
(edges, gradients, ...)
- Mid-level vision
- panorama stitching
- Structure from Motion (SfM) $\Rightarrow 2 \mathrm{D}$ to 3D
- Optical Flow \Rightarrow velocities
- High-level vision
- classification: what is in the image?
- tagging: what are ALL the things in the image?
- detection: where are they?
- semantic segmentation \Rightarrow segment image and give names

1. Motivation
sources of images
2. What is a digital image?
eye versus pinhole camera
sampling and quantization
color image
color spaces
image histogram
3. Point operations
homogeneous point operations
inhomogeneous Point Operations
4. Computer Vision
categorizing processing tasks
5. Image manipulation with Python
numpy tutorial + exercises

In Binder:

\Rightarrow Open CV4GS_02_imagebasics/CV4GS_02_numpy-tutorial.ipynb Open CV4GS_02_imagebasics/CV4GS_02_exercices.ipynb

In Binder:

\Rightarrow Open CV4GS_02_imagebasics/CV4GS_02_numpy-tutorial.ipynb
\Rightarrow Open CV4GS_02_imagebasics/CV4GS_02_exercices.ipynb

[^0]: a few examples in geosciences

[^1]: Popocatépetl 2021-02-25 (Sentinel-2, MOUNTS)

[^2]: - histogram equalize
 \Rightarrow spread out the most frequent intensit values

