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Introduction:

The image transformations discussed so far are based on the expression:

g(x , y) = T [f (x , y)]
where:

• f(x, y) is an input image
• g(x, y) is the output image
• T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:
⇒ the operator T was applied to individual pixels (”Point Operations”), i.e., neighborhood = 1x1 pix
⇒ the function is an intensity transformation function, to change image contrast, etc.
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Introduction:

Today: filtering!

⇒ Purpose: blur, sharpen, remove noise, filter frequencies, etc.

⇒ Approaches:
1. spatial domain filtering

• the neighborhood is >1 pixel (”Point Processing” → ”Neighborhood Processing”)
• spatial filtering modifies an image by replacing the value of each pixel by a function of the

values of the pixel and its neighbor
• if the operation performed on the image pixels is linear, then the filter is called a linear

spatial filter
• spatial filters are applied by convolution

2. frequency domain filtering
• the 2D direct Fourier transform is applied to extract image frequencies
• the amplitude spectrum can be band-passed to filter certain frequencies
• the inverse 2D direct Fourier transform is used to restitute filtered image
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Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter
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where  and  define an odd-shape kernel size (m=2a+1, n=2b+1)
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• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
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⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
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Spatial Domain Filtering
2. convolutions

linear spatial filter
⇒ the sum-of-products operation between the input image f (x , y) and filter kernel w (eq.1)

is the implementation of a spatial convolution (eq.2)

g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t) · f (x − s, y − t) (1)

g = w∗f (2)

linear spatial filtering ⇐⇒ spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

Nota Bene: spatial convolution and spatial correlation operate in the same way, except that the correlation kernel is
rotated by 180° (⇒ when kernel values are symmetric about its center, correlation and convolution yield the same result)
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Spatial Domain Filtering
3. kernels types and applications

Kernel coefficients define the nature of the filter
⇒ vary kernels coefficients according to the desired filtering operation

• smoothing spatial filters (low-pass)
- box filter
- gaussian filter

• sharpening spatial filters (high-pass)
- Sobel filter, Prewitt filter
- Laplacian filter

• other
- emboss filter
- etc.
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Spatial Domain Filtering
3. kernels types and applications

⇒ no change!

unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude
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Spatial Domain Filtering
3. kernels types and applications

Gaussian filters are a true low-pass filter for the image
⇒ we can retrieve the low-frequency in an image
⇒ we can retrieve the high-frequency in an image by subtracting the low-frequency from the original image
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Frequency domain filtering
1. 1D Fourier transform

⇒ convolutions for spatial domain filtering is powerful, BUT it has high computational costs

⇒ frequency domain filtering offers computational advantages:

(convolution in the time domain ⇐⇒ multiplication in the frequency domain)
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Frequency domain filtering
1. 1D Fourier transform

Fourier theorem: a continuous and periodic function can be approximated as infinite sum of sine- and
cosine-functions

• Forward transform: Time Domain → Frequency Domain
• Inverse transform: Frequency Domain → Time Domain
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Frequency domain filtering
2. 2D Fourier transform

Fourier transform on images ?

⇒ an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes
⇒ the appearance of an image depends on the frequencies of its sinusoidal components:

(NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)

• low frequencies → regions with intensities that vary slowly (e.g., the walls in an image of a room)
• high frequencies → edges and other sharp intensity transitions
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Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on SYNTH images
⇒ ”dots” symmetric about origin in amplitude spectrum
⇒ distance/direction from origin imply frequency in time domain
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Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ frequency content concentrated at low frequencies (hence contain more image information than the higher ones)
⇒ amplitude spectrum shows two dominant directions: horizontal & vertical

(dominating directions originate from the regular patterns in the background of the original image)
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Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ frequency content concentrated at low frequencies (long wavelengths)
⇒ amplitude spectrum shows two dominant directions: horizontal & vertical
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Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ band-pass image frequencies

• low-pass filter → cut off high-frequencies
• high-pass filter → cut off low-frequencies
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Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ image can be reconstructed using the inverse Fourier transform
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Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ ideal low-pass filter (LPF) introduces artefacts:

- ”Ripples” near strong edges in the original image: ringing effect
- related to the sharp cut off in ideal frequency domain
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Frequency domain filtering
3. Butterworth filter

2D Fourier transform on REAL images
⇒ the Butterworth filter offers impulse response without side-lobes in the time domain ideal

→ no ”ringing effect”, due to the absence of discontinuity in spectrum

64 / 65



Frequency domain filtering
3. Butterworth filter

2D Fourier transform on REAL images
⇒ the Butterworth filter offers impulse response without side-lobes in the time domain ideal

→ no ”ringing effect”, due to the absence of discontinuity in spectrum

65 / 65


	Introduction
	Spatial Domain Filtering
	linear spatial filter
	convolutions
	kernels types and applications

	Frequency domain filtering
	1D Fourier transform
	2D Fourier transform
	Butterworth filter


