Image Filtering Lecture 03

Computer Vision for Geosciences

2021-03-12

1. Introduction

2. Spatial Domain Filtering

- 1. linear spatial filter
- 2. convolutions
- 3. kernels types and applications

3. Frequency domain filtering

- 1. 1D Fourier transform
- 2. 2D Fourier transform
- 3. Butterworth filter

1. Introduction

2. Spatial Domain Filtering

- 1. linear spatial filter
- 2. convolutions
- 3. kernels types and applications

3. Frequency domain filtering

- 1. 1D Fourier transform
- 2. 2D Fourier transform
- 3. Butterworth filter

The image transformations discussed so far are based on the expression:

g(x,y) = T[f(x,y)]

where:

- f(x, y) is an input image
- g(x, y) is the output image
- T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

 \Rightarrow the operator T was applied to individual pixels ("Point Operations"), i.e., neighborhood = 1x1 pix \Rightarrow the function is an *intensity transformation function*, to change image contrast, etc. The image transformations discussed so far are based on the expression:

g(x,y) = T[f(x,y)]

where:

- f(x, y) is an input image
- g(x, y) is the output image
- T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:

 \Rightarrow the operator T was applied to individual pixels ("Point Operations"), i.e., neighborhood = 1x1 pix

 \Rightarrow the function is an *intensity transformation function*, to change image contrast, etc.

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
 - 1. spatial domain filtering
 - the neighborhood is >1 pixel ("Point Processing" \rightarrow "Neighborhood Processing")
 - spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbor
 - if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
 - spatial filters are applied by <u>convolution</u>
 - 2. frequency domain filtering
 - the **<u>2D direct Fourier transform</u>** is applied to extract image frequencies
 - the amplitude spectrum can be band-passed to filter certain frequencies
 - the inverse 2D direct Fourier transform is used to restitute filtered image

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
 - 1. spatial domain filtering
 - the neighborhood is >1 pixel ("Point Processing" \rightarrow "Neighborhood Processing")
 - spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbor
 - if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
 - spatial filters are applied by <u>convolution</u>
 - 2. frequency domain filtering
 - the **2D direct Fourier transform** is applied to extract image frequencies
 - the amplitude spectrum can be band-passed to filter certain frequencies
 - the inverse 2D direct Fourier transform is used to restitute filtered image

Today: filtering!

 \Rightarrow Purpose: blur, sharpen, remove noise, filter frequencies, etc.

- \Rightarrow Approaches:
 - 1. spatial domain filtering
 - the neighborhood is >1 pixel ("Point Processing" \rightarrow "Neighborhood Processing")
 - spatial filtering modifies an image by replacing the value of each pixel by a function of the values of the pixel and its neighbor
 - if the operation performed on the image pixels is linear, then the filter is called a linear spatial filter
 - spatial filters are applied by <u>convolution</u>
 - 2. frequency domain filtering
 - the **<u>2D direct Fourier transform</u>** is applied to extract image frequencies
 - the amplitude spectrum can be band-passed to filter certain frequencies
 - the inverse 2D direct Fourier transform is used to restitute filtered image

1. Introduction

2. Spatial Domain Filtering

- 1. linear spatial filter
- 2. convolutions
- 3. kernels types and applications

3. Frequency domain filtering

- 1. 1D Fourier transform
- 2. 2D Fourier transform
- 3. Butterworth filter

\Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

- \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w
 - kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
 - kernel coefficients define the nature of the filter

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

- \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w
 - kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
 - kernel coefficients define the nature of the filter

KERNEL

 $\mathbf{R} = \mathbf{A}^*\mathbf{a} + \mathbf{B}^*\mathbf{b} + \dots + \mathbf{H}^*\mathbf{h} + \mathbf{I}^*\mathbf{i}$

- \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w
 - kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
 - kernel coefficients define the nature of the filter

KERNEL

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

where a and b define an odd-shape kernel size (m=2a+1, n=2b+1)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter

 \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
 - padding = pad the image so the kernel can also operate on the edges (pad_size=kernel_size//2)

KERNEL

 \Rightarrow sum-of-products operation between an input image f(x,y) and a filter kernel w

- kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
- kernel coefficients define the nature of the filter
- \Rightarrow kernel <u>slides</u> across the input image to produce a *filtered* **output image** g(x,y)
 - stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)
 - padding = pad the image so the kernel can also operate on the edges (pad_size=kernel_size//2)

various padding types (Richard Szeliski, 2010)

zero

wrap

clamp

⇒ the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a spatial convolution (eq.2)

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)$$
(1)
$$g = w * f$$
(2)

⇒ the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a spatial convolution (eq.2)

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)$$
(1)
$$g = w * f$$
(2)

linear spatial filtering \iff spatial convolution

⇒ the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a spatial convolution (eq.2)

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)$$
(1)
$$g = w * f$$
(2)

linear spatial filtering \Longleftrightarrow spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

⇒ the sum-of-products operation between the input image f(x, y) and filter kernel w (eq.1) is the implementation of a spatial convolution (eq.2)

$$g(x, y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s, t) \cdot f(x - s, y - t)$$
(1)
$$g = w * f$$
(2)

linear spatial filtering \iff spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

<u>Nota Bene</u>: spatial <u>convolution</u> and spatial <u>correlation</u> operate in the same way, except that the correlation kernel is rotated by 180° (\Rightarrow when kernel values are symmetric about its center, correlation and convolution yield the same result)₆₅

- smoothing spatial filters (low-pass)
 - box filter
 - gaussian filter

- smoothing spatial filters (low-pass)
 - box filter
 - gaussian filter
- sharpening spatial filters (high-pass)
 - Sobel filter, Prewitt filter
 - Laplacian filter

- smoothing spatial filters (low-pass)
 - box filter
 - gaussian filter
- sharpening spatial filters (high-pass)
 - Sobel filter, Prewitt filter
 - Laplacian filter
- other
 - emboss filter
 - etc.

identity			
0	0	0	
0	1	0	
0	0	0	

 \Rightarrow no change!

LOW PASS FILTER

average			
0.1	0.1	0.1	
0.1	0.1	0.1	
0.1	0.1	0.1	

unweighted average, a.k.a. <u>box filter</u> (low pass) \Rightarrow blurring effect

LOW PASS FILTER

gaussian

weighted average (low pass) \Rightarrow blurring effect

HIGH PASS FILTER

(extension of the Laplacian kernel) \Rightarrow edge detection (no orientation)

HIGH PASS FILTER

 $\begin{array}{l} \mbox{identity kernel} + \mbox{highpass kernel} \\ \Rightarrow \mbox{sharpening effect} \end{array}$

 \Rightarrow styling effect

 \Rightarrow edge detection (x-direction)

 \Rightarrow edge detection (y-direction)

 \Rightarrow edges + magnitude

Gaussian filters are a true low-pass filter for the image

- \Rightarrow we can retrieve the low-frequency in an image
- \Rightarrow we can retrieve the high-frequency in an image by subtracting the low-frequency from the original image

1. Introduction

2. Spatial Domain Filtering

- 1. linear spatial filter
- 2. convolutions
- 3. kernels types and applications

3. Frequency domain filtering

- 1. 1D Fourier transform
- 2. 2D Fourier transform
- 3. Butterworth filter

\Rightarrow convolutions for **spatial domain filtering** is powerful, BUT it has high computational costs

⇒ **frequency domain filtering** offers computational advantages:

($\underline{convolution}$ in the time domain \iff multiplication in the frequency domain)

- \Rightarrow convolutions for $\textbf{spatial}\ \textbf{domain}\ \textbf{filtering}$ is powerful, BUT it has high computational costs
- \Rightarrow **frequency domain filtering** offers computational advantages:

(*convolution* in the time domain \iff *multiplication* in the frequency domain)

Frequency domain filtering 1. 1D Fourier transform

<u>Fourier theorem</u>: a continuous and periodic function can be approximated as infinite sum of sine- and cosine-functions

- Forward transform: Time Domain \rightarrow Frequency Domain
- Inverse transform: Frequency Domain → Time Domain

Fourier transform on images ?

\Rightarrow an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes

- the appearance of an image depends on the frequencies of its sinusoidal components: (NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)
 - **low frequencies** \rightarrow regions with intensities that vary slowly (e.g., the walls in an image of a room)
 - high frequencies ightarrow edges and other sharp intensity transitions

Fourier transform on images ?

 \Rightarrow an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes

- ⇒ the appearance of an image depends on the frequencies of its sinusoidal components: (NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)
 - low frequencies \rightarrow regions with intensities that vary slowly (e.g., the walls in an image of a room)
 - high frequencies \rightarrow edges and other sharp intensity transitions

2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

2D Fourier transform on SYNTH images

- \Rightarrow "dots" symmetric about origin in amplitude spectrum
- \Rightarrow distance/direction from origin imply frequency in time domain

- \Rightarrow frequency content concentrated at low frequencies (hence contain more image information than the higher ones)
- \Rightarrow amplitude spectrum shows two dominant directions: horizontal & vertical

(dominating directions originate from the regular patterns in the background of the original image)

Frequency domain filtering 2. 2D Fourier transform

2D Fourier transform on REAL images

- \Rightarrow frequency content concentrated at low frequencies (long wavelengths)
- \Rightarrow amplitude spectrum shows two dominant directions: horizontal & vertical

Frequency domain filtering 2. 2D Fourier transform

2D Fourier transform on REAL images

 \Rightarrow band-pass image frequencies

- **low-pass** filter → cut off high-frequencies
- high-pass filter \rightarrow cut off low-frequencies

\Rightarrow image can be reconstructed using the $\underline{inverse\ Fourier\ transform}$

low-pass filtered image

high-pass filtered image

- \Rightarrow ideal low-pass filter (LPF) introduces artefacts:
 - "Ripples" near strong edges in the original image: ringing effect
 - related to the sharp cut off in ideal frequency domain

low-pass filtered image

ringing effect

- \Rightarrow ideal low-pass filter (LPF) introduces artefacts:
 - "Ripples" near strong edges in the original image: ringing effect
 - related to the sharp cut off in ideal frequency domain

· Ideal LPF has significant 'side-lobes' in the time domain

 \Rightarrow the **<u>Butterworth</u>** filter offers impulse response without side-lobes in the time domain ideal \rightarrow no "ringing effect", due to the absence of discontinuity in spectrum

Impulse response without side-lobes in the time domain

 \Rightarrow the **<u>Butterworth</u>** filter offers impulse response without side-lobes in the time domain ideal \rightarrow no "ringing effect", due to the absence of discontinuity in spectrum

