
Image Filtering
Lecture 03

Computer Vision for Geosciences

2021-03-12

1 / 65

Table of Contents

1. Introduction

2. Spatial Domain Filtering
1. linear spatial filter
2. convolutions
3. kernels types and applications

3. Frequency domain filtering
1. 1D Fourier transform
2. 2D Fourier transform
3. Butterworth filter

2 / 65

Table of Contents

1. Introduction

2. Spatial Domain Filtering
1. linear spatial filter
2. convolutions
3. kernels types and applications

3. Frequency domain filtering
1. 1D Fourier transform
2. 2D Fourier transform
3. Butterworth filter

3 / 65

Introduction:

The image transformations discussed so far are based on the expression:

g(x , y) = T [f (x , y)]
where:

• f(x, y) is an input image
• g(x, y) is the output image
• T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:
⇒ the operator T was applied to individual pixels (”Point Operations”), i.e., neighborhood = 1x1 pix
⇒ the function is an intensity transformation function, to change image contrast, etc.

4 / 65

Introduction:

The image transformations discussed so far are based on the expression:

g(x , y) = T [f (x , y)]
where:

• f(x, y) is an input image
• g(x, y) is the output image
• T is an operator on f defined over a neighborhood of point (x, y)

Previous lecture:
⇒ the operator T was applied to individual pixels (”Point Operations”), i.e., neighborhood = 1x1 pix
⇒ the function is an intensity transformation function, to change image contrast, etc.

5 / 65

Introduction:

Today: filtering!

⇒ Purpose: blur, sharpen, remove noise, filter frequencies, etc.

⇒ Approaches:
1. spatial domain filtering

• the neighborhood is >1 pixel (”Point Processing” → ”Neighborhood Processing”)
• spatial filtering modifies an image by replacing the value of each pixel by a function of the

values of the pixel and its neighbor
• if the operation performed on the image pixels is linear, then the filter is called a linear

spatial filter
• spatial filters are applied by convolution

2. frequency domain filtering
• the 2D direct Fourier transform is applied to extract image frequencies
• the amplitude spectrum can be band-passed to filter certain frequencies
• the inverse 2D direct Fourier transform is used to restitute filtered image

6 / 65

Introduction:

Today: filtering!

⇒ Purpose: blur, sharpen, remove noise, filter frequencies, etc.

⇒ Approaches:
1. spatial domain filtering

• the neighborhood is >1 pixel (”Point Processing” → ”Neighborhood Processing”)
• spatial filtering modifies an image by replacing the value of each pixel by a function of the

values of the pixel and its neighbor
• if the operation performed on the image pixels is linear, then the filter is called a linear

spatial filter
• spatial filters are applied by convolution

2. frequency domain filtering
• the 2D direct Fourier transform is applied to extract image frequencies
• the amplitude spectrum can be band-passed to filter certain frequencies
• the inverse 2D direct Fourier transform is used to restitute filtered image

7 / 65

Introduction:

Today: filtering!

⇒ Purpose: blur, sharpen, remove noise, filter frequencies, etc.

⇒ Approaches:
1. spatial domain filtering

• the neighborhood is >1 pixel (”Point Processing” → ”Neighborhood Processing”)
• spatial filtering modifies an image by replacing the value of each pixel by a function of the

values of the pixel and its neighbor
• if the operation performed on the image pixels is linear, then the filter is called a linear

spatial filter
• spatial filters are applied by convolution

2. frequency domain filtering
• the 2D direct Fourier transform is applied to extract image frequencies
• the amplitude spectrum can be band-passed to filter certain frequencies
• the inverse 2D direct Fourier transform is used to restitute filtered image

8 / 65

Table of Contents

1. Introduction

2. Spatial Domain Filtering
1. linear spatial filter
2. convolutions
3. kernels types and applications

3. Frequency domain filtering
1. 1D Fourier transform
2. 2D Fourier transform
3. Butterworth filter

9 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

a b c

d e f

g h i

A B C

D E F

G H I

R

KERNEL

input image output image

R = A*a + B*b + ... + H*h + I*i

100 5 200

30 25 10

50 20 10

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL

input image output image

70

R = 1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R = 70

KERNEL w(s,t)

input image output image

f(x,y) g(x,y)

s

t

x

y

where and define an odd-shape kernel size (m=2a+1, n=2b+1)

10 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

a b c

d e f

g h i

A B C

D E F

G H I

R

KERNEL

input image output image

R = A*a + B*b + ... + H*h + I*i

100 5 200

30 25 10

50 20 10

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL

input image output image

70

R = 1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R = 70

KERNEL w(s,t)

input image output image

f(x,y) g(x,y)

s

t

x

y

where and define an odd-shape kernel size (m=2a+1, n=2b+1)

11 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

a b c

d e f

g h i

A B C

D E F

G H I

R

KERNEL

input image output image

R = A*a + B*b + ... + H*h + I*i

100 5 200

30 25 10

50 20 10

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL

input image output image

70

R = 1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R = 70

KERNEL w(s,t)

input image output image

f(x,y) g(x,y)

s

t

x

y

where and define an odd-shape kernel size (m=2a+1, n=2b+1)

12 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

a b c

d e f

g h i

A B C

D E F

G H I

R

KERNEL

input image output image

R = A*a + B*b + ... + H*h + I*i

100 5 200

30 25 10

50 20 10

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL

input image output image

70

R = 1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R = 70

KERNEL w(s,t)

input image output image

f(x,y) g(x,y)

s

t

x

y

where and define an odd-shape kernel size (m=2a+1, n=2b+1)

13 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

a b c

d e f

g h i

A B C

D E F

G H I

R

KERNEL

input image output image

R = A*a + B*b + ... + H*h + I*i

100 5 200

30 25 10

50 20 10

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL

input image output image

70

R = 1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R = 70

KERNEL w(s,t)

input image output image

f(x,y) g(x,y)

s

t

x

y

where and define an odd-shape kernel size (m=2a+1, n=2b+1)

14 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

a b c

d e f

g h i

A B C

D E F

G H I

R

KERNEL

input image output image

R = A*a + B*b + ... + H*h + I*i

100 5 200

30 25 10

50 20 10

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

KERNEL

input image output image

70

R = 1/9*100 + 1/9*5 + ... + 1/9*20 + 1/9*10
R = 70

KERNEL w(s,t)

input image output image

f(x,y) g(x,y)

s

t

x

y

where and define an odd-shape kernel size (m=2a+1, n=2b+1)

15 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

16 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

17 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

18 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

19 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

20 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

21 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

22 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

23 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

24 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

25 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

26 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

27 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

28 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

• padding = pad the image so the kernel can also operate on the edges (pad size=kernel size//2)

1/9

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0original image

padded image (zero-padding)
padding_size = kernel_size // 2

KERNEL

various padding types (Richard Szeliski, 2010)

29 / 65

Spatial Domain Filtering
1. linear spatial filter

linear spatial filter
⇒ sum-of-products operation between an input image f(x,y) and a filter kernel w

• kernel size (m,n) defines the neighborhood of operation on pixel at position (x,y)
• kernel coefficients define the nature of the filter

⇒ kernel slides across the input image to produce a filtered output image g(x,y)
• stride = sliding step (stride=1 => kernel will slide by 1 pixel per column/row at a time)

• padding = pad the image so the kernel can also operate on the edges (pad size=kernel size//2)

1/9

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0original image

padded image (zero-padding)
padding_size = kernel_size // 2

KERNEL

various padding types (Richard Szeliski, 2010)

30 / 65

Spatial Domain Filtering
2. convolutions

linear spatial filter
⇒ the sum-of-products operation between the input image f (x , y) and filter kernel w (eq.1)

is the implementation of a spatial convolution (eq.2)

g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t) · f (x − s, y − t) (1)

g = w∗f (2)

linear spatial filtering ⇐⇒ spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

Nota Bene: spatial convolution and spatial correlation operate in the same way, except that the correlation kernel is
rotated by 180° (⇒ when kernel values are symmetric about its center, correlation and convolution yield the same result)

31 / 65

Spatial Domain Filtering
2. convolutions

linear spatial filter
⇒ the sum-of-products operation between the input image f (x , y) and filter kernel w (eq.1)

is the implementation of a spatial convolution (eq.2)

g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t) · f (x − s, y − t) (1)

g = w∗f (2)

linear spatial filtering ⇐⇒ spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

Nota Bene: spatial convolution and spatial correlation operate in the same way, except that the correlation kernel is
rotated by 180° (⇒ when kernel values are symmetric about its center, correlation and convolution yield the same result)

32 / 65

Spatial Domain Filtering
2. convolutions

linear spatial filter
⇒ the sum-of-products operation between the input image f (x , y) and filter kernel w (eq.1)

is the implementation of a spatial convolution (eq.2)

g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t) · f (x − s, y − t) (1)

g = w∗f (2)

linear spatial filtering ⇐⇒ spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

Nota Bene: spatial convolution and spatial correlation operate in the same way, except that the correlation kernel is
rotated by 180° (⇒ when kernel values are symmetric about its center, correlation and convolution yield the same result)

33 / 65

Spatial Domain Filtering
2. convolutions

linear spatial filter
⇒ the sum-of-products operation between the input image f (x , y) and filter kernel w (eq.1)

is the implementation of a spatial convolution (eq.2)

g(x , y) =
a∑

s=−a

b∑
t=−b

w(s, t) · f (x − s, y − t) (1)

g = w∗f (2)

linear spatial filtering ⇐⇒ spatial convolution

convolutions are the core operations used by Convolutional Neural Networks (CNN)

Nota Bene: spatial convolution and spatial correlation operate in the same way, except that the correlation kernel is
rotated by 180° (⇒ when kernel values are symmetric about its center, correlation and convolution yield the same result)34 / 65

Spatial Domain Filtering
3. kernels types and applications

Kernel coefficients define the nature of the filter
⇒ vary kernels coefficients according to the desired filtering operation

• smoothing spatial filters (low-pass)
- box filter
- gaussian filter

• sharpening spatial filters (high-pass)
- Sobel filter, Prewitt filter
- Laplacian filter

• other
- emboss filter
- etc.

35 / 65

Spatial Domain Filtering
3. kernels types and applications

Kernel coefficients define the nature of the filter
⇒ vary kernels coefficients according to the desired filtering operation

• smoothing spatial filters (low-pass)
- box filter
- gaussian filter

• sharpening spatial filters (high-pass)
- Sobel filter, Prewitt filter
- Laplacian filter

• other
- emboss filter
- etc.

36 / 65

Spatial Domain Filtering
3. kernels types and applications

Kernel coefficients define the nature of the filter
⇒ vary kernels coefficients according to the desired filtering operation

• smoothing spatial filters (low-pass)
- box filter
- gaussian filter

• sharpening spatial filters (high-pass)
- Sobel filter, Prewitt filter
- Laplacian filter

• other
- emboss filter
- etc.

37 / 65

Spatial Domain Filtering
3. kernels types and applications

Kernel coefficients define the nature of the filter
⇒ vary kernels coefficients according to the desired filtering operation

• smoothing spatial filters (low-pass)
- box filter
- gaussian filter

• sharpening spatial filters (high-pass)
- Sobel filter, Prewitt filter
- Laplacian filter

• other
- emboss filter
- etc.

38 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!

unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude

39 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!

unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude

40 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude

41 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude

42 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude

43 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect

⇒ edge detection (x-direction)⇒ edge detection (y-direction)⇒ edges + magnitude

44 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect

⇒ edge detection (x-direction)

⇒ edge detection (y-direction)⇒ edges + magnitude

45 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)

⇒ edge detection (y-direction)

⇒ edges + magnitude

46 / 65

Spatial Domain Filtering
3. kernels types and applications

⇒ no change!unweighted average, a.k.a. box filter (low pass)
⇒ blurring effect

LOW PASS FILTER

weighted average (low pass)
⇒ blurring effect

LOW PASS FILTER

(extension of the Laplacian kernel)
⇒ edge detection (no orientation)

HIGH PASS FILTER

identity kernel + highpass kernel
⇒ sharpening effect

HIGH PASS FILTER

⇒ styling effect⇒ edge detection (x-direction)⇒ edge detection (y-direction)

⇒ edges + magnitude
47 / 65

Spatial Domain Filtering
3. kernels types and applications

Gaussian filters are a true low-pass filter for the image
⇒ we can retrieve the low-frequency in an image
⇒ we can retrieve the high-frequency in an image by subtracting the low-frequency from the original image

48 / 65

Table of Contents

1. Introduction

2. Spatial Domain Filtering
1. linear spatial filter
2. convolutions
3. kernels types and applications

3. Frequency domain filtering
1. 1D Fourier transform
2. 2D Fourier transform
3. Butterworth filter

49 / 65

Frequency domain filtering
1. 1D Fourier transform

⇒ convolutions for spatial domain filtering is powerful, BUT it has high computational costs

⇒ frequency domain filtering offers computational advantages:

(convolution in the time domain ⇐⇒ multiplication in the frequency domain)

50 / 65

Frequency domain filtering
1. 1D Fourier transform

⇒ convolutions for spatial domain filtering is powerful, BUT it has high computational costs

⇒ frequency domain filtering offers computational advantages:

(convolution in the time domain ⇐⇒ multiplication in the frequency domain)

51 / 65

Frequency domain filtering
1. 1D Fourier transform

Fourier theorem: a continuous and periodic function can be approximated as infinite sum of sine- and
cosine-functions

• Forward transform: Time Domain → Frequency Domain
• Inverse transform: Frequency Domain → Time Domain

52 / 65

Frequency domain filtering
2. 2D Fourier transform

Fourier transform on images ?

⇒ an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes
⇒ the appearance of an image depends on the frequencies of its sinusoidal components:

(NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)

• low frequencies → regions with intensities that vary slowly (e.g., the walls in an image of a room)
• high frequencies → edges and other sharp intensity transitions

53 / 65

Frequency domain filtering
2. 2D Fourier transform

Fourier transform on images ?

⇒ an image can also be expressed as the sum of sinusoids of different frequencies and amplitudes
⇒ the appearance of an image depends on the frequencies of its sinusoidal components:

(NB: Fourier transform of a real function is symmetric about the origin; by convention frequency 0 is set at the center of image)

• low frequencies → regions with intensities that vary slowly (e.g., the walls in an image of a room)
• high frequencies → edges and other sharp intensity transitions

54 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on SYNTH images
⇒ ”dots” symmetric about origin in amplitude spectrum
⇒ distance/direction from origin imply frequency in time domain

55 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on SYNTH images
⇒ ”dots” symmetric about origin in amplitude spectrum
⇒ distance/direction from origin imply frequency in time domain

56 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on SYNTH images
⇒ ”dots” symmetric about origin in amplitude spectrum
⇒ distance/direction from origin imply frequency in time domain

57 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ frequency content concentrated at low frequencies (hence contain more image information than the higher ones)
⇒ amplitude spectrum shows two dominant directions: horizontal & vertical

(dominating directions originate from the regular patterns in the background of the original image)

58 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ frequency content concentrated at low frequencies (long wavelengths)
⇒ amplitude spectrum shows two dominant directions: horizontal & vertical

59 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ band-pass image frequencies

• low-pass filter → cut off high-frequencies
• high-pass filter → cut off low-frequencies

60 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ image can be reconstructed using the inverse Fourier transform

61 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ ideal low-pass filter (LPF) introduces artefacts:

- ”Ripples” near strong edges in the original image: ringing effect
- related to the sharp cut off in ideal frequency domain

62 / 65

Frequency domain filtering
2. 2D Fourier transform

2D Fourier transform on REAL images
⇒ ideal low-pass filter (LPF) introduces artefacts:

- ”Ripples” near strong edges in the original image: ringing effect
- related to the sharp cut off in ideal frequency domain

63 / 65

Frequency domain filtering
3. Butterworth filter

2D Fourier transform on REAL images
⇒ the Butterworth filter offers impulse response without side-lobes in the time domain ideal

→ no ”ringing effect”, due to the absence of discontinuity in spectrum

64 / 65

Frequency domain filtering
3. Butterworth filter

2D Fourier transform on REAL images
⇒ the Butterworth filter offers impulse response without side-lobes in the time domain ideal

→ no ”ringing effect”, due to the absence of discontinuity in spectrum

65 / 65

	Introduction
	Spatial Domain Filtering
	linear spatial filter
	convolutions
	kernels types and applications

	Frequency domain filtering
	1D Fourier transform
	2D Fourier transform
	Butterworth filter

