Morphology and Segmention

Computer Vision for Geosciences

2021-03-19

1. Introduction

2. Mathematical Morphology

- 1. Basic concepts
- 2. Primitive Morphological Operations
- 3. Composite Morphological Operations

3. Image Segmentation

- 1. histogram-based segmentation
- 2. edge-based segmentation
- 3. region-based segmentation

4. Analyze segmented image

1. Introduction

2. Mathematical Morphology

- 1. Basic concepts
- 2. Primitive Morphological Operations
- 3. Composite Morphological Operations

3. Image Segmentation

- 1. histogram-based segmentation
- 2. edge-based segmentation
- 3. region-based segmentation

4. Analyze segmented image

```
<u>Previous lecture</u>:

convolution: f(x, y), g(x, y), \underline{w}: \mathbb{N} \to \mathbb{R}

where w = \underline{\text{filter kernel}}

\to (\text{mostly}) linear operators
```

Today:

```
morphology: f(x, y), g(x, y), \underline{\mathbf{b}}: \mathbb{N} \to \{0, 1\}
```

where $D = \frac{\text{structuring eleme}}{1}$

ightarrow non-linear operators

ightarrow concerned with connectivity and shape (close to set theory)

segmentation:

ightarrow labeling image pixels to partition an image into regions

```
<u>Previous lecture</u>:

convolution: f(x, y), g(x, y), \underline{w}: \mathbb{N} \to \mathbb{R}

where w = \underline{\text{filter kernel}}

\to (\text{mostly}) linear operators
```

```
Today:morphology:f(x, y), g(x, y), \underline{b}: \mathbb{N} \to \{0, 1\}where b = \underline{structuring element}\rightarrow non-linear operators
```

 \rightarrow concerned with connectivity and shape (close to set theory)

segmentation:

ightarrow labeling image pixels to partition an image into regions

```
<u>Previous lecture</u>:

convolution: f(x, y), g(x, y), \underline{w}: \mathbb{N} \to \mathbb{R}

where w = \underline{\text{filter kernel}}

\to (\text{mostly}) linear operators
```

Today:

```
morphology: f(x, y), g(x, y), \underline{\mathbf{b}}: \mathbb{N} \to \{0, 1\}
```

where b = structuring element

 \rightarrow non-linear operators

 \rightarrow concerned with connectivity and shape (close to set theory)

segmentation:

 \rightarrow labeling image pixels to partition an image into regions

1. Introduction

2. Mathematical Morphology

- 1. Basic concepts
- 2. Primitive Morphological Operations
- 3. Composite Morphological Operations

3. Image Segmentation

- 1. histogram-based segmentation
- 2. edge-based segmentation
- 3. region-based segmentation

4. Analyze segmented image

Initially proposed for binary images (Matheron and Serra, 1964)
 → later extended to gray-scale images, and later color images

■ Binary images produced by simple thresholding are imperfect due to image noise, etc. ⇒ morphological image processing attempts to remove these imperfections

- Main applications:
 - Image pre-processing (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, convex hull, ...]
 - Segmentation
 - Quantitative description of objects (area, perimeter, ...)

Initially proposed for binary images (Matheron and Serra, 1964)
 → later extended to gray-scale images, and later color images

Binary images produced by simple thresholding are imperfect due to image noise, etc.
 ⇒ morphological image processing attempts to remove these imperfections

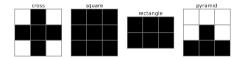
- Main applications:
 - Image pre-processing (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, convex hull, ...]
 - Segmentation
 - Quantitative description of objects (area, perimeter, ...)

Initially proposed for binary images (Matheron and Serra, 1964)
 → later extended to gray-scale images, and later color images

Binary images produced by simple thresholding are imperfect due to image noise, etc.
 ⇒ morphological image processing attempts to remove these imperfections

- Main applications:
 - Image pre-processing (noise filtering, shape simplification)
 - Enhancing object structure (skeletonizing, convex hull, ...)
 - Segmentation
 - Quantitative description of objects (area, perimeter, ...)

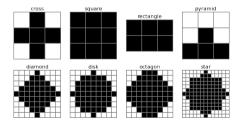
1) a kernel called a **structuring element** is used to determine filtering operation:


- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it

NB: like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. NB: the shape, size, and orientation of the structuring element depends on application

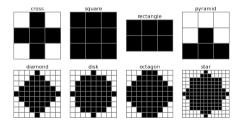
1) a kernel called a structuring element is used to determine filtering operation:

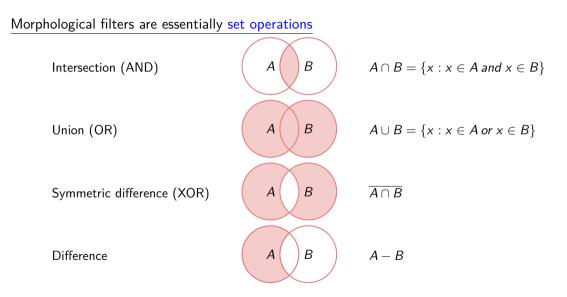
- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it


 \underline{NB} : like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. \overline{NB} : the shape, size, and orientation of the structuring element depends on application

1) a kernel called a structuring element is used to determine filtering operation:

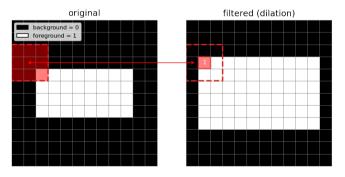
- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it


 \underline{NB} : like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. \overline{NB} : the shape, size, and orientation of the structuring element depends on application


1) a kernel called a structuring element is used to determine filtering operation:

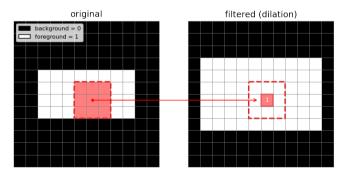
- the <u>size</u> is determined by the matrix dimensions
- the shape is determined by the pattern of 1 and 0 in the matrix
- the origin is usually the matrix center, although it can also off-centered or even outside it

 \underline{NB} : like convolution kernels, it is common to have structuring elements of odd dimensions with the center as the origin. \overline{NB} : the shape, size, and orientation of the structuring element depends on application


2) the image is first **padded**, and the structuring element than **<u>slides</u>** across it

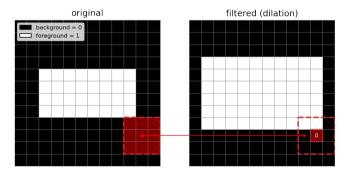
- \rightarrow Primary Morphological Operations are: $\underline{\text{dilation}}$ and $\underline{\text{erosion}}$
- \rightarrow Concatenation of dilation and erosion result in higher level operations \Rightarrow Composite Morphological Operations: closing and opening

1. **Dilation**: the dilation of a set F with a structuring element b is defined as:

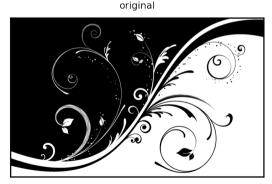

$$G = F \oplus b = \{x : (\hat{b})_x \cap F \neq \emptyset\}$$

if >= 1 pixel within the mask = "1", the result is "1", otherwise "0"

1. **<u>Dilation</u>**: the dilation of a set *F* with a structuring element *b* is defined as:


$$G = F \oplus b = \{x : (\hat{b})_x \cap F \neq \emptyset\}$$

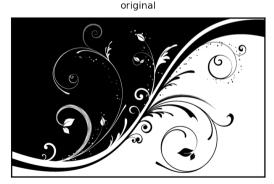
if >= 1 pixel within the mask = "1", the result is "1", otherwise "0"


1. **<u>Dilation</u>**: the dilation of a set F with a structuring element b is defined as:

$$G = F \oplus b = \{x : (\hat{b})_x \cap F \neq \emptyset\}$$

if ≥ 1 pixel within the mask = "1", the result is "1", otherwise "0"

- 1. **<u>Dilation</u>**: the dilation of a set F with a structuring element b is defined as:
 - \Rightarrow Foreground objects get larger
 - \Rightarrow Background objects get smaller
 - \Rightarrow Small gaps are closed

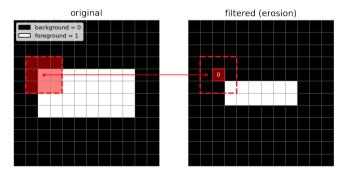


dilation (b=3x3)

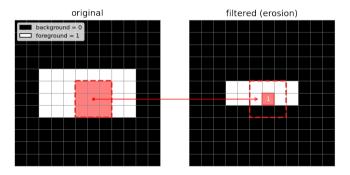
- 1. **<u>Dilation</u>**: the dilation of a set F with a structuring element b is defined as:
 - \Rightarrow Foreground objects get larger
 - \Rightarrow Background objects get smaller
 - \Rightarrow Small gaps are closed

dilation (b=7x7)

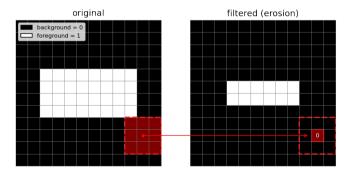
- 1. **<u>Dilation</u>**: the dilation of a set F with a structuring element b is defined as:
 - \Rightarrow Foreground objects get larger
 - \Rightarrow Background objects get smaller
 - \Rightarrow Small gaps are closed


original

dilation (b=**11x11**)




```
G = F \ominus b = \{x : (b)_x \subseteq F\}
```



if all pixel within the mask = "1" => the result is "1", otherwise "0"

```
G = F \ominus b = \{x : (b)_x \subseteq F\}
```


if all pixel within the mask = "1" => the result is "1", otherwise "0"

```
G = F \ominus b = \{x : (b)_x \subseteq F\}
```


if all pixel within the mask = "1" => the result is "1", otherwise "0"

- \Rightarrow Foreground objects get smaller, small objects disappear
- \Rightarrow Background objects get larger
- \Rightarrow Objects get separated

original

- \Rightarrow Foreground objects get smaller, small objects disappear
- \Rightarrow Background objects get larger
- \Rightarrow Objects get separated

original

- \Rightarrow Foreground objects get smaller, small objects disappear
- \Rightarrow Background objects get larger
- \Rightarrow Objects get separated

original

erosion (b=11x11)

Concatenation of <u>dilation</u> and <u>erosion</u> result in higher level operations: <u>closing</u>, <u>opening</u>

L. Opening:

<u>Problem</u>: erosion causes deletion of small objects, BUT other objects shrink Solution: after *erosion*, apply *dilation* with the same structuring element \Rightarrow **opening**

 $G = F \circ b = (F \ominus b) \oplus b$

Usage example: removing small isolated "bright spots" (EX: volcanic SO2 detection from Sentinel-SP as foreground (mask=1))

1. **Opening**:

<u>Problem</u>: erosion causes deletion of small objects, BUT other objects shrink Solution: after erosion, apply dilation with the same structuring element \Rightarrow open

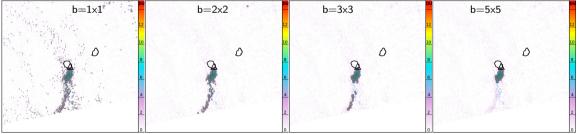
 $G = F \circ b = (F \ominus b) \oplus b$

Usage example: removing small isolated "bright spots" (EX: volcanic SO2 detection from SentineI-5P as foreground (mask=1))

1. Opening:

<u>Problem</u>: erosion causes deletion of small objects, BUT other objects shrink <u>Solution</u>: after *erosion*, apply *dilation* with the same structuring element \Rightarrow **opening**

 $G = F \circ b = (F \ominus b) \oplus b$


Usage example: removing small isolated "bright spots" (EX: volcanic SO2 detection from Sentinel-5P as foreground (mask=1))

1. Opening:

<u>Problem</u>: erosion causes deletion of small objects, BUT other objects shrink <u>Solution</u>: after *erosion*, apply *dilation* with the same structuring element \Rightarrow **opening**

 $G = F \circ b = (F \ominus b) \oplus b$

Usage example: removing small isolated "bright spots" (EX: volcanic SO2 detection from Sentinel-5P as foreground (mask=1))

Concatenation of <u>dilation</u> and <u>erosion</u> result in higher level operations: <u>closing</u>, <u>opening</u>

2. Closing:

<u>Problem</u>: dilation closes small holes and fractions, BUT objects get enlarged <u>Solution</u>: after *dilation*, apply *erosion* with the same structuring element \Rightarrow **closing**

 $G = F \bullet b = (F \oplus b) \ominus b$

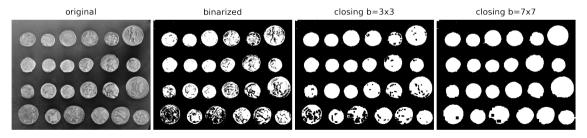
2. Closing:

Problem: dilation closes small holes and fractions, BUT objects get enlarged

<u>Solution</u>: after *dilation*, apply *erosion* with the same structuring element \Rightarrow closing

 $G = F \bullet b = (F \oplus b) \ominus b$

2. Closing:


<u>Problem</u>: dilation closes small holes and fractions, BUT objects get enlarged <u>Solution</u>: after *dilation*, apply *erosion* with the same structuring element \Rightarrow **closing**

 $G = F \bullet b = (F \oplus b) \ominus b$

2. Closing:

<u>Problem</u>: dilation closes small holes and fractions, BUT objects get enlarged <u>Solution</u>: after *dilation*, apply *erosion* with the same structuring element \Rightarrow **closing**

 $G = F \bullet b = (F \oplus b) \ominus b$

1. Introduction

2. Mathematical Morphology

- 1. Basic concepts
- 2. Primitive Morphological Operations
- 3. Composite Morphological Operations

3. Image Segmentation

- 1. histogram-based segmentation
- 2. edge-based segmentation
- 3. region-based segmentation

4. Analyze segmented image

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - \underline{ex} : manual thresholding
 - $\underline{ex}:$ automatic thresholding (e.g., Otsu)
 - \underline{ex} : k-means clustering
- Edge-based segmentation

 \Rightarrow based on local $\mathrm{contrast}
ightarrow$ uses gradients rather than the grey values

- Region-based segmentation
 - \Rightarrow based on image gradients and region properties
 - ex: Watershed transform
 - ex: Random Walker
 - ex: Flood Fill
- Many other!
 - ex: Graph-cuts

ex: Active Contours, Region Growing, Weighted Pyramid Linking, Mean-Shift, etc.

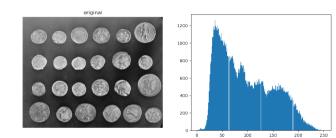
- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - \underline{ex} : k-means clustering
- Edge-based segmentation

$\overrightarrow{\Rightarrow}$ based on local $\underline{contrast} \rightarrow$ uses gradients rather than the grey values

- Region-based segmentation
 - \Rightarrow based on image gradients and region properties
 - ex: Watershed transform
 - ex: Random Walker
 - ex: Flood Fill
- Many other!
 - ex: Graph-cuts

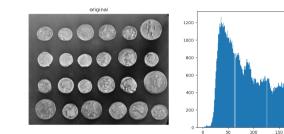
ex: Active Contours, Region Growing, Weighted Pyramid Linking, Mean-Shift, etc.

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - \underline{ex} : k-means clustering
- Edge-based segmentation
 - \Rightarrow based on local $\underline{contrast} \rightarrow$ uses gradients rather than the grey values
- Region-based segmentation
 - \Rightarrow based on image gradients and region properties
 - \underline{ex} : Watershed transform
 - ex: Random Walker
 - <u>ex</u>: Flood Fill
- Many other
 - ex: Graph-cuts

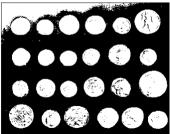

ex: Active Contours, Region Growing, Weighted Pyramid Linking, Mean-Shift, etc.

- Histogram-based segmentation
 - \Rightarrow based on thresholding of pixel values
 - ex: manual thresholding
 - ex: automatic thresholding (e.g., Otsu)
 - ex: k-means clustering
- Edge-based segmentation
 - \Rightarrow based on local $\underline{contrast} \rightarrow$ uses gradients rather than the grey values
- Region-based segmentation
 - \Rightarrow based on image gradients and region properties
 - ex: Watershed transform
 - ex: Random Walker
 - <u>ex</u>: Flood Fill
- Many other!
 - ex: Graph-cuts
 - $\underline{ex:}$ Active Contours, Region Growing, Weighted Pyramid Linking, Mean-Shift, etc.

 \Rightarrow based on thresholding pixel values


- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method)

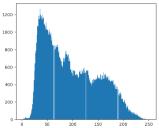
(threshold calulated to separate pixels into two classes, minimizing intra-class intensity variance)



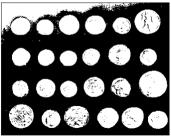
- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method)

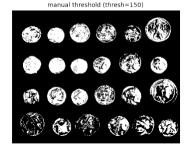
(threshold calulated to separate pixels into two classes, minimizing intra-class intensity variance)

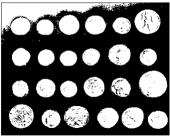
automatic threshold (Otsu thresh=107)

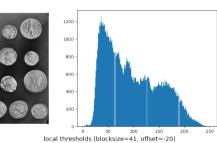


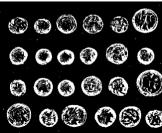
200 250


- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method) (threshold calulated to separate pixels into two classes,


minimizing intra-class intensity variance)



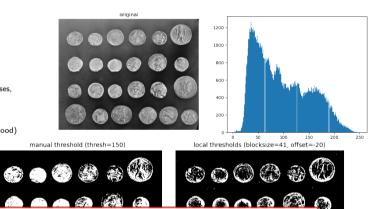

- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method) (threshold calulated to separate pixels into two classes, minimizing intra-class intensity variance)
 - local thresholding (adaptive) (thresholds calulated based on pixel local neighborhood)

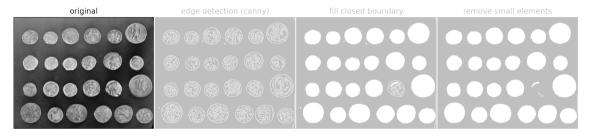

automatic threshold (Otsu thresh=107)

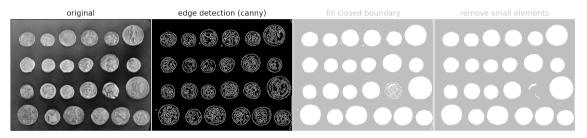
original

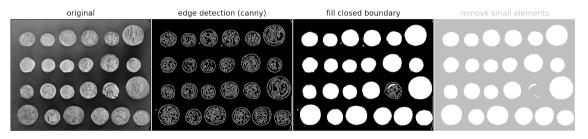
- \Rightarrow based on thresholding pixel values
 - global thresholding
 - manual
 - automatic (e.g. Otsu's method) (threshold calulated to separate pixels into two classes, minimizing intra-class intensity variance)
 - local thresholding (adaptive) (thresholds calulated based on pixel local neighborhood)

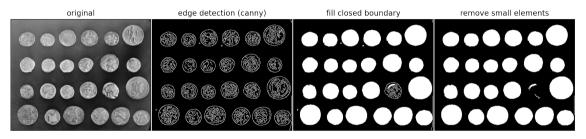
automatic threshold (Otsu thresh=107)

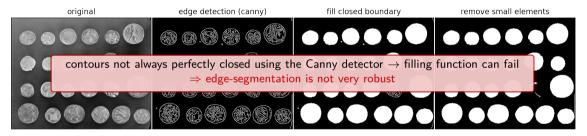



image background shares too many gray levels with the coins \Rightarrow histogram-based thresholding/segmentation is insufficient

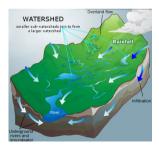


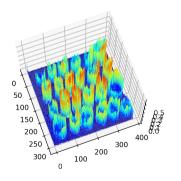



\Rightarrow based on image gradients

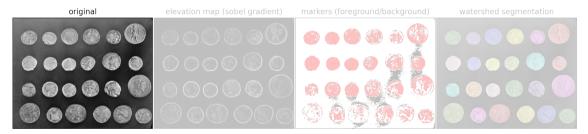

1. apply Canny edge detection algorithm (involves gradient detection using e.g. Sobel operator)

- 1. apply Canny edge detection algorithm (involves gradient detection using e.g. Sobel operator)
- 2. apply mathematical morphology to fill inner part of the coins

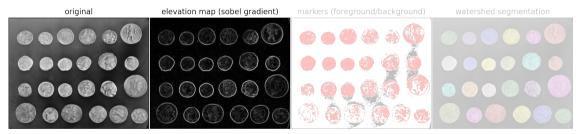

- 1. apply Canny edge detection algorithm (involves gradient detection using e.g. Sobel operator)
- 2. apply mathematical morphology to fill inner part of the coins
- 3. remove objects smaller than a threshold



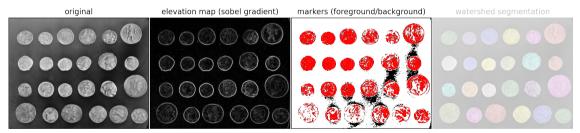
- 1. apply Canny edge detection algorithm (involves gradient detection using e.g. Sobel operator)
- 2. apply mathematical morphology to fill inner part of the coins
- 3. remove objects smaller than a threshold


 \Rightarrow region-growing approach that fills "basins" in the image

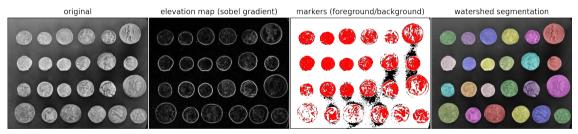
- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - \rightarrow flooding starts from "<u>markers</u>", in order to determine the catchment basins of these markers



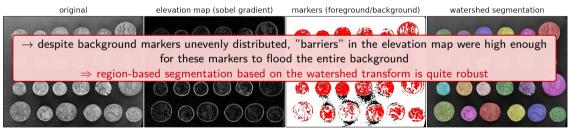
- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - \rightarrow flooding starts from "markers", in order to determine the catchment basins of these markers



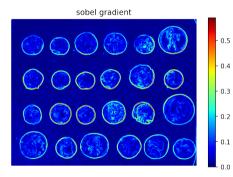
- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - ightarrow flooding starts from "markers", in order to determine the catchment basins of these markers


1. build "elevation map" from image gradient amplitude (using the Sobel operator)

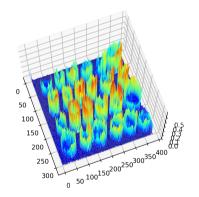
- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - \rightarrow flooding starts from "markers", in order to determine the catchment basins of these markers


- 1. build "elevation map" from image gradient amplitude (using the Sobel operator)
- 2. define markers for background / foreground (here based on the extreme parts of the histogram)

- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - \rightarrow flooding starts from "markers", in order to determine the catchment basins of these markers



- 1. build "elevation map" from image gradient amplitude (using the Sobel operator)
- 2. define markers for background / foreground (here based on the extreme parts of the histogram)
- 3. apply watershed transform (and colorize segmented elements)


- \Rightarrow region-growing approach that fills "basins" in the image
- \Rightarrow the name "watershed" comes from an analogy with hydrology:
 - \rightarrow the watershed transform "floods" a "topographic" representation of the image
 - \rightarrow flooding starts from "markers", in order to determine the catchment basins of these markers

- 1. build "elevation map" from image gradient amplitude (using the Sobel operator)
- 2. define markers for background / foreground (here based on the extreme parts of the histogram)
- 3. apply watershed transform (and colorize segmented elements)

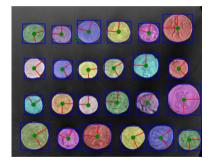
- 1. Start with lowest "altitude" (Gradient amplitude)
- 2. Increase the "water level" each time by 1
- 3. Merge all connected pixel with same/less level

1. Introduction

2. Mathematical Morphology

- 1. Basic concepts
- 2. Primitive Morphological Operations
- 3. Composite Morphological Operations

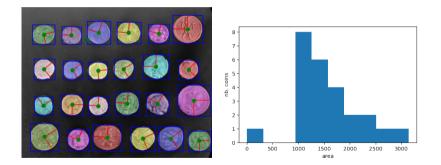
3. Image Segmentation


- 1. histogram-based segmentation
- 2. edge-based segmentation
- 3. region-based segmentation

4. Analyze segmented image

The segmented elements can be analysed indidually to:

 \rightarrow provide statistics on their shape, distribution, orientation, etc.


(e.g. crystal/bubble shape distribution in a rock sample)

The segmented elements can be analysed indidually to:

 \rightarrow provide statistics on their shape, distribution, orientation, etc.

(e.g. crystal/bubble shape distribution in a rock sample)

Exercice:

 \Rightarrow analyze a thermal infrared image of a lava lake \rightarrow segment the crustal plates from the incandescent cracks and analyze