
Introduction to Machine Learning
Lecture 07

Computer Vision for Geosciences

2021-04-23

1 / 39



Why do machine learning?

2 / 39

• How to connect our features to actual categories or measurements of image content in
human terms?

• It would be hard to write heuristics to describe which SIFT feature corresponds to a dog
or cat.

• There are two reason to make this connection. One is prediction of responses for unseen
data. The other to analyze the connection between x and y (in statistics called inference).



What is machine learning?
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• We assume that there is a true mapping f that maps from the image or feature space
(predictor x) to e.g. an object category (response y).

• x is also often called feature, input variable, just variable or independent variable.
• y is also often called ground truth, target, label, output variable or dependent variable
• In the following we will often consider x and y to be multidimensional but visualize them

mostly as scalars.



What is machine learning?
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• We want to estimate this function based on data we collected.
• When data is collected, we make an error ε.
• This error is almost always of probabilistic nature. Our data is noisy.
• The set of measurements is denoted by (Y ,X ) with all values collected for X and their

corresponding ys in Y .



Non-parametric Methods
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• Modeling of a wide range of functional forms possible.
• Usually very high number of observations necessary.
• In this case simply f̂ (x) = Yargmin(|X−x |)



Parametric Methods
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• We make an assumption about the functional form of f .
• In this case we might assume that the f that generated our data is linear.



How can we estimate our parameters?

E (α, β) = 1
n

∑
i

(yi − f̂ (xi ))2 = 1
n

∑
i

(yi − αxi + β)2
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• We need a criterion that tells us how well the estimation fits our data.
• An often used metric is the mean square error.



Linear Regression

dE
dα

!= 0 and dE
dβ

!= 0

α̂ =
∑

i (xi − x̄)(yi − ȳ)∑
i (xi − x̄)2

β̂ = ȳ − α̂x̄
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• To minimize the error, the first derivatives have to be zero.
• Using a linear model and mean square error allows for an analytical solution.
• Procedure is known as linear regression, a very simple and very popular method.
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• Black shows the data generating ground truth, blue the estimate based on the measured
data.



Error surface

10 / 39

• This slide shows the error surface of the linear model we just fitted to the data.
• On the left for the parameter alpha on the right for beta.
• We were lucky, not only has our problem a analytical solution it also has a convex error

surface.



Error surface
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• Same function plotted in 2d.
• We were lucky, not only has our problem a analytical solution it also has a convex error

surface.



Error surface
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• Unfortunately, for more complex problems, this error surfaces are often non-convex.
• Especially when we can not find analytical solutions, local minima in such non-convex

objective function can be problematic.



What if linear is not good enough?
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• A common pattern in machine learning is to apply linear methods trained on non-linear
functions of the data.

• We map in a non-linear way to a higher dimensional features space and do linear
regression.



What if linear is not good enough?
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• In our case we can map from our scalar feature space to x ′ = (x , x2)
• We see that relation between x and y stays the same while the x2 dimension shows

square root characteristics.



What if linear is not good enough?
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• On this slide the underlying f from which the data is generated is f (x) = x2.
• We see that relation between x and y is polynomial, while the x2 dimension now is linear.



What if linear is not good enough?
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• This slide shows a 17th degree polynomial fitted to our data from before.
• y = f (x) + ε = 3

2 x + 10 +N (0, 4)



Overfitting

17 / 39

• Which of the two estimates of f is better?
• y = f (x) + ε = 3

2 x + 10 +N (0, 4)



Underfitting
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• Which of the two estimates of f is better?
• y = f (x) + ε = 4(x − 10)2 +N (0, 4)



Bias-Variance Trade-Off: Bias

19 / 39

• If we restrict our model e.g. by limiting the complexity we call that bias.
• In this case the model is limited to learn linear mappings (high bias).



Bias-Variance Trade-Off: Variance
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• Three different datasets. Each generated with the linear f we used above.
• A 17th degree polynomial is fitted to each of them.
• We observe a high variance in the resulting polynomials.
• y = f (x) + ε = 3

2 x + 10 +N (0, 4)



Bias-Variance Trade-Off: Variance
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• Three different datasets. Each generated with the linear f we used above.
• Comparison on linear models versus polynomial models fitted to the same data.



Bias-Variance Trade-Off

22 / 39

• Higher model complexity leads to higher variance and lower bias.



Model quality
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• How can we measure the quality of our model?
• Which of the two is the better fit?



Model quality
E = 1

n
∑

i
(yi − f̂ (xi ))2 (1)
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• Which of the two has the smaller error (does minimize our objective)?



Model quality: test dataset
E = 1

n
∑

i
(yi − f̂ (xi ))2 (2)
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• Which of the two has the smaller error (does minimize our objective)?
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• A number of models with increasing complexity was fitted to some training data.
• What do you think what form the data generating distribution has?
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• A number of models with increasing complexity was fitted to some training data.
• What do you think what form the data generating distribution has?



Classification
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• So far we looked at data were the response variable y was quantitative.
• Now we want to look at problems were the response is qualitative or categorical.
• This class of problems is referred to as regression problems.
• Examples: Categorization of facial expressions or objects in images.



Classification
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• To do this our goal is it to identify a boundary in between a set of training points that
separates the two classes.

• Whether we call a problem a classification or a regression problem depends only on the
response variable.

• As for regression, we look only at quantitative predictor variables here.
• When the predictor variable is categorical as e.g. in natural language processing they are

usually embedded in a quantitative space.



Can we solve this with Linear Regression?
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• We could define the blue class label as 0 and the orange class label as 1 and then apply
linear regression.



Can we solve this with Linear Regression?
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• However, this would not generalize to more than the binary case.
• For three classes we cannot define and order as e.g. orange ¿ blue ¿ green, which would

be implied if we would assign numbers to our classes as before.



Logistic Regression
P(class = blue|x) (3)
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• There is a number of algorithms to approach this problem: LDA, SVM, Trees, Forests,
K-nearest-neighbors, Boosting

• For this lecture however, we will first focus on Logistic Regression.
• The core idea is to formulate the problem as the regression of a probability function.
• This probability connects the predictor variables with the categorical response variable.



Logistic Regression
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• How to model the probability mass function? As a linear mapping as for the regression?
• p gets arbitrarily big, > 1 and < 1



Logistic Regression
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• How to model the probability mass function? The logistic function is one of many that
makes the result look more like a probability.



Logistic Regression

p(blue|x) = eαx+β

1 + eαx+β

p(orange|x) = 1− p(blue|x)
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• How to model the probability mass function? The logistic function is one of many that
makes the result look more like a probability.



Logistic Regression: Maximum Likelihood

p(Y |X ,Θ) =
∏
∀i

p(yi |xi )

log p(Y |X ,Θ) =
∑
∀i

log p(yi |xi )

E (Θ) = − log p(Y |X ,Θ) = −
∑
∀i

log p(yi |xi )
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• If the samples in our data set are independent and identically distributed (iid assumption)
we can write the probability of our dataset beeing generated by our model as a product of
the probabilities of the samples.

• In our case Θ = (α, β).
• If we fix the data and vary the parameters Θ, we call this the likelihood or log-likelihood

respectively.
• We use the logarithm of the likelihood function for convenience.
• We define the error function as the negative log-likelihood and as for the linear regression

we can use the derivatives of the error function to determine optimal estimates of α and
β for the given dataset.



Logistic Regression: cross entropy

E (Θ) = −
∑
∀i

q(x) log p(yi |xi ) = H(q, p)
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• The resulting error function describes the cross entropy between the modeled probability
distribution and the true distribution q which is 1 if the sample belongs to the respective
class and 0 otherwise.

• For further reading we refer to Bishop p48ff.



Logistic Regression: softmax

pi (x) = ezi (x)∑
∀j ezj (x)

with

zi (x) = αix + βi
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• Using the softmax function which is a generalization of the logistic function, we can apply
logistic regression to multi class problems.



What’s missing? Unsupervised learning.
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• How to find structure in data if we don’t have any labels?
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