Introduction to Machine Learning
Lecture 07

Computer Vision for Geosciences

2021-04-23

- How to connect our features to actual categories or measurements of image content in human terms?
- It would be hard to write heuristics to describe which SIFT feature corresponds to a dog or cat.
- There are two reason to make this connection. One is prediction of responses for unseen data. The other to analyze the connection between x and y (in statistics called inference)

- We assume that there is a true mapping f that maps from the image or feature space (predictor x) to e.g. an object category (response y).
- x is also often called feature, input variable, just variable or independent variable.
- y is also often called ground truth, target, label, output variable or dependent variable
- In the following we will often consider x and y to be multidimensional but visualize them mostly as scalars.
- We want to estimate this function based on data we collected.
- When data is collected, we make an error ϵ.
- This error is almost always of probabilistic nature. Our data is noisy.
- The set of measurements is denoted by (Y, X) with all values collected for X and their corresponding ys in Y.

Non-parametric Methods

- Modeling of a wide range of functional forms possible.
- Usually very high number of observations necessary.
- In this case simply $\hat{f}(x)=Y_{\text {argmin }(|X-x|)}$
- We make an assumption about the functional form of f
- In this case we might assume that the f that generated our data is linear.
- We need a criterion that tells us how well the estimation fits our data.
- An often used metric is the mean square error.

How can we estimate our parameters?
$E(\alpha, \beta)=\frac{1}{n} \sum_{i}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i}\left(y_{i}-\alpha x_{i}+\beta\right)^{2}$

- To minimize the error, the first derivatives have to be zero.
- Using a linear model and mean square error allows for an analytical solution.
- Procedure is known as linear regression, a very simple and very popular method.

$$
\begin{aligned}
& \frac{d E}{d \alpha} \stackrel{!}{=} 0 \text { and } \frac{d E}{d \beta} \stackrel{!}{=} 0 \\
& \hat{\alpha}=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}} \\
& \hat{\beta}=\bar{y}-\hat{\alpha} \bar{x}
\end{aligned}
$$

- Black shows the data generating ground truth, blue the estimate based on the measured Black shows the data generating ground truth, blue the estimate based on the measured
data.

- This slide shows the error surface of the linear model we just fitted to the data.
- On the left for the parameter alpha on the right for beta.
- We were lucky, not only has our problem a analytical solution it also has a convex error surface.
- Same function plotted in 2d.
- We were lucky, not only has our problem a analytical solution it also has a convex error surface.

- Unfortunately, for more complex problems, this error surfaces are often non-convex
- Especially when we can not find analytical solutions, local minima in such non-convex objective function can be problematic.

A common pattern in machine learning is to apply linear methods trained on non-linear functions of the data.

- We map in a non-linear way to a higher dimensional features space and do linear regression.
- In our case we can map from our scalar feature space to $x^{\prime}=\left(x, x^{2}\right)$
- We see that relation between x and y stays the same while the x^{2} dimension shows square root characteristics.
- On this slide the underlying f from which the data is generated is $f(x)=x^{2}$.
- We see that relation between x and y is polynomial, while the x^{2} dimension now is linear.
$Y_{s}\left(x, x^{2}\right)$

- This slide shows a 17 th degree polynomial fitted to our data from before.

- Which of the two estimates of f is better?

Overfitting

- $y=f(x)+\epsilon=\frac{3}{2} x+10+\mathcal{N}(0,4)$
- Which of the two estimates of f is better?
- $y=f(x)+\epsilon=4(x-10)^{2}+\mathcal{N}(0,4)$

Underfitting

- If we restrict our model e.g. by limiting the complexity we call that bias.
- In this case the model is limited to learn linear mappings (high bias).

Bias-Variance Trade-Off: Bias

- Three different datasets. Each generated with the linear f we used above.
- A 17 th degree polynomial is fitted to each of them.
- We observe a high variance in the resulting polynomials.
- $y=f(x)+\epsilon=\frac{3}{2} x+10+\mathcal{N}(0,4)$
- Three different datasets. Each generated with the linear f we used above.
- Comparison on linear models versus polynomial models fitted to the same data.

Bias-Variance Trade-Off: Variance

- How can we measure the quality of our model?
- Which of the two is the better fit?

Model quality

- Which of the two has the smaller error (does minimize our objective)?

$$
\begin{equation*}
E=\frac{1}{n} \sum_{i}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2} \tag{1}
\end{equation*}
$$

- Which of the two has the smaller error (does minimize our objective)?

$$
E=\frac{1}{n} \sum_{i}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}
$$

(2)

- A number of models with increasing complexity was fitted to some training data.
- What do you think what form the data generating distribution has?

- A number of models with increasing complexity was fitted to some training data.
- What do you think what form the data generating distribution has?
- So far we looked at data were the response variable y was quantitative.
- Now we want to look at problems were the response is qualitative or categorical.
- This class of problems is referred to as regression problems.
- Examples: Categorization of facial expressions or objects in images.
- To do this our goal is it to identify a boundary in between a set of training points that separates the two classes.
- Whether we call a problem a classification or a regression problem depends only on the response variable.
- As for regression, we look only at quantitative predictor variables here
- When the predictor variable is categorical as e.g. in natural language processing they are usually embedded in a quantitative space.
- We could define the blue class label as 0 and the orange class label as 1 and then apply

- However, this would not generalize to more than the binary case.
- For three classes we cannot define and order as e.g. orange i blue i green, which would be implied if we would assign numbers to our classes as before.
- There is a number of algorithms to approach this problem: LDA, SVM, Trees, Forests, K-nearest-neighbors, Boosting
- For this lecture however, we will first focus on Logistic Regression.
- The core idea is to formulate the problem as the regression of a probability function.
- This probability connects the predictor variables with the categorical response variable.
- How to model the probability mass function? As a linear mapping as for the regression?
- p gets arbitrarily big, >1 and <1

How to model the probability mass function? The logistic function is one of many that makes the result look more like a probability.

- How to model the probability mass function? The logistic function is one of many that makes the result look more like a probability.

$$
p(\text { orange } \mid x)=1-p(\text { blue } \mid x)
$$

- If the samples in our data set are independent and identically distributed (iid assumption) we can write the probability of our dataset beeing generated by our model as a product of the probabilities of the samples.

$$
\begin{aligned}
p(Y \mid X, \Theta) & =\prod_{\forall i} p\left(y_{i} \mid x_{i}\right) \\
\log p(Y \mid X, \Theta) & =\sum_{\forall i} \log p\left(y_{i} \mid x_{i}\right) \\
E(\Theta)=-\log p(Y \mid X, \Theta) & =-\sum_{\forall i} \log p\left(y_{i} \mid x_{i}\right)
\end{aligned}
$$

- In our case $\Theta=(\alpha, \beta)$.
- If we fix the data and vary the parameters Θ, we call this the likelihood or log-likelihood respectively.
- We use the logarithm of the likelihood function for convenience.
- We define the error function as the negative log-likelihood and as for the linear regression we can use the derivatives of the error function to determine optimal estimates of α and β for the given dataset.
- The resulting error function describes the cross entropy between the modeled probability distribution and the true distribution q which is 1 if the sample belongs to the respective class and 0 otherwise.
- For further reading we refer to Bishop p48ff.

Logistic Regression: cross entropy

$$
E(\Theta)=-\sum_{\forall i} q(x) \log p\left(y_{i} \mid x_{i}\right)=H(q, p)
$$

- Using the softmax function which is a generalization of the logistic function, we can apply logistic regression to multi class problems.

Logistic Regression: softmax

$$
p_{i}(x)=\frac{e^{z_{i}(x)}}{\sum_{\forall j} e^{z_{j}(x)}}
$$

$$
z_{i}(x)=\alpha_{i} x+\beta_{i}
$$

- How to find structure in data if we don't have any labels?

